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Péter Major

Mathematical Institute of the
Hungarian Academy of Sciences

and
Bolyai College of the Eötvös
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Abstract. We prove a limit theorem about the distribution of an almost periodic function

F (R) =
∞
P

n=1

ane2πiλnR,
∞
P

n=1

|an|2 < ∞, when R is uniformly distributed in an interval

[0, T ], and T → ∞. Also a limit theorem is proved about the distribution of the random
vector

`

F (R), F (R+w(R, T ))
´

, R ∈ [0, T ], if the function w(R, T ) is appropriately defined.
Similar results were proved also in other papers. (See [2] and [3].) The proofs in this paper

are essentially different from the previous ones, and they may give some new insight to
this problem. Previous proofs were based on ergod theoretical arguments, while in this

paper some standard methods of Fourier analysis are applied. These investigations were
motivated by the study of the limit behavior of the number of lattice points in a randomly
magnified strip in the plane.
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1. Introduction

In this paper the following problem is discussed: Let us consider a function

F (R) =

∞∑

n=1

ane2πiλnR (1.1)

with
∞∑

n=1

|an|2 < ∞ , (1.2)

where λ1, λ2, . . . are different non-zero real numbers. We also assume that λ2n =
−λ2n−1 and a2n = ā2n−1 for n = 1, 2, . . . . This restriction is not essential, we only
impose it to work with real valued functions. Define the distribution µT of the function
F (R) with respect to the uniform distribution in the interval [0, T ] by the formula

µT (A) =
1

T
λ{R : 0 ≤ R ≤ T, F (R) ∈ A} (1.3)

for any measurable set A ⊂ R
1, where λ denotes the Lebesgue measure. We want to

prove that the measures µT have a weak limit. We also want to prove a generaliza-
tion of this result in the case when the joint distribution of the functions F (R) and
F (R + w(R, T )) are investigated with a nice function w(R, T ). We shall study the
limit distribution of this vector if R is uniformly distributed in an interval [aT, bT ],
0 < a < b ≤ 1, and T → ∞. Choose some constants 0 < a < b ≤ 1, consider a function
w(R, T ), aT ≤ R ≤ bT , and define the joint distribution of the functions F (R) and
F (R + w(R, T )) by the formula

µT,w,(a,b)(A) =
1

(b − a)T
λ{R : aT ≤ R ≤ bT, (F (R), F (R + w(R, T ))) ∈ A} , (1.4)

for any measurable set A ⊂ R
2. We want to prove that under appropriate conditions the

measures µT,w,(a,b) with fixed numbers 0 < a < b ≤ 1 converge weakly to a probability
measure as T → ∞.

Problems of such type arose in the investigation of the number of lattice points in
a randomly magnified domain RC, where C is a convex set with a smooth boundary,
and R is a randomly chosen magnifying constant. It is proved, (see [2]), that the
number of lattice points N(R) in the domain RC after an appropriate normalization

χ(R) =
N(R) − Area (RC)√

R
can be written in the form (1.1). We are interested in the

limit behavior of the number of lattice points in a randomly enlarged domain RC or
in a randomly defined strip (R + α(R))C \RC, with an appropriately defined function
α(R), when the number R is randomly chosen. This can be described by means of
the representation of χ(C) in the form of a series (1.1) and the above indicated limit
theorems.

Actually the results of the present paper are only slight generalizations of earlier
papers (see [2], [3]), where similar results were proved because of the same motivation.
Nevertheless, we think that it is useful to revisit this problem for the following reason:
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Our approach is different from that of the above mentioned papers, and we think that
it has some interesting features. In previous papers the proofs were based on the ergod
theorem. Because of this approach some measure theoretical problems arose whose
solution seems to be hard. We want to show that these problems can be avoided
by replacing the ergod theorem by a multi-dimensional continuous time version of the
following well-known number theoretical result: For an irrational number α the sequence
nα (mod 1), n = 1, 2, . . . , is asymptotically uniformly distributed in the interval [0, 1].

Before formulating the results of this paper we have to explain the content of formula
(1.1). The function F (R) in this formula is considered as an element of the Besicovitch
space, i.e. we assume that it has the following property: For all ε > 0 there exists an
index p0 = p0(ε) in such a way that

lim sup
T→∞

1

2T

∫ T

−T

∣
∣
∣
∣
∣
F (R) −

p
∑

n=1

ane2πiλnR

∣
∣
∣
∣
∣

2

dR < ε (1.5)

for p > p0. The theory of Besicovitch spaces can be found in [1], but in the present
paper we do not need its fine details. Here we only use relation (1.5). Let us remark
that the definition in (1.5) does not define the function F (R) in a unique way. Indeed,
if F (R) and F̄ (R) are two functions such that

lim
T→∞

1

2T

∫ T

−T

|F (R) − F̄ (R)|2 dR = 0 ,

then the functions F (R) and F̄ (R) simultaneously satisfy or do not satisfy relation
(1.5). Thus the theorems formulated below state in particular that the limit distribution
appearing in them do not depend on which function F (R) we take from those satisfying
formula (1.5). Our first result is the following

Theorem 1. For all functions F (R) satisfying (1.1) and (1.2) the probability measures
µT defined in (1.3) converge weakly to a probability measure µ as T → ∞. Moreover,
for all continuous functions g(u) such that |g(u)| < Au2 + B with some appropriate
numbers A > 0 and B > 0, the relation

lim
T→∞

1

T

∫ T

0

g(F (R)) dR = lim
T→∞

∫

g(u)µT ( du) =

∫

g(u)µ( du) (1.6)

holds. In particular,

lim
T→∞

1

T

∫ T

0

F (R) dR = 0 , (1.7)

and

lim
T→∞

1

T

∫ T

0

F (R)2 dR =
∞∑

n=1

|an|2 . (1.7′)

To formulate Theorem 2 first we have to clarify how to define the class of “width”
functions w(R, T ) in it. We consider two different cases. In case a) this width has
constant order, and in a point R = uT , a ≤ u ≤ b, the value of the “width” function
w(R, T ) is close to a monotone function K(u) for large T , and in case b) it tends to
infinity as T → ∞ in a regular way. First we formulate Theorem 2, and then show that
it contains the results of Section 2 in [3] as a special case.
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Theorem 2. Let a function F (R) be given, which satisfies relations (1.1) and (1.2), and
let K(x) be a continuously differentiable, monotone (increasing or decreasing) function
with non-vanishing derivative in an interval [a, b], 0 < a < b ≤ 1, and K(x) > 0 for all
x ∈ [a, b]. Assume that the function w(R, T ), T > 0, aT < R < bT , satisfies one of the
following conditions:

a) w(R, T ) = K

(
R

T

)

+o(1) and
∂

∂R
w(R, T ) =

1

T
K ′

(
R

T

)

(1+o(1)), aT ≤ R ≤ bT .

b) There exists some function L(T ), L(T ) → ∞ and
L(T )

T
→ 0 as T → ∞, such that

w(R, T ) = L(T )K

(
R

T

)

(1 + o(1)), and
∂

∂R
w(R, T ) =

L(T )

T
K ′

(
R

T

)

(1 + o(1)),

aT ≤ R ≤ bT .

The term o(1) is uniformly small for aT ≤ R ≤ bT as T → ∞ in both cases a)
and b).

Then the measures µT,w,(a,b) defined in (1.4) with these functions w(R, T ) have a

weak limit µ̄ on R
2 as T → ∞. In case a) µ̄ equals some probability measure µ

K(x)
(a,b) ,

i.e. it depends only on the function K(x) and not on the special form of the function
w(R, t). The relation

µ̄ = µ∞
(a,b) = µ × µ (1.8)

holds, if w(R, T ) satisfies the conditions of case b), where µ is the probability measure
defined in Theorem 1, and × denotes direct product. In particular, the limit measures
µ∞

(a,b) do not depend on the parameters a and b.

The statement about the weak convergence of the measures µT,w,(a,b) can be strength-
ened in the following way: If w(R, T ) satisfies condition a) or b), and g(u, v) is a
continuous function such that |g(u, v)| < A(u2 + v2) + B with some appropriate A > 0
and B > 0, then

lim
T→∞

1

(b − a)T

∫ bT

aT

g(F (R), F (R + w(R, T )) dR = lim
T→∞

∫

g(u, v)µT,w,(a,b)(du, dv)

=

∫

g(u, v) µ̄(du, dv)

(1.9)

with µ̄ = µ
K(x)
(a,b) in case a) and µ̄ = µ∞

(a,b) = µ × µ in case b).

Let us fix some function K(x) which satisfies the conditions imposed on it in The-

orem 2. Then, the probability measures µ
zK(x)
(a,b) depend continuously on z in the weak

topology for 0 < z < ∞, and

lim
z→∞

µ
zK(x)
(a,b) = µ∞

(a,b) , (1.10)

Let us recall that the probability measures µzK(x) are called continuous in the
weak topology if for all bounded and continuous functions g the integrals

∫
g dµzK(x)

are continuous functions of z, and they converge to a measure µ∞ as z → ∞ if
lim

z→∞

∫
g dµzK(x) =

∫
g dµ∞ for all bounded and continuous functions g.
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In paper [3] the following problem is investigated. Let the function F (R) be equal to
the normalized number of lattice points χ(R) in a domain RC. We are interested in the
asymptotic behavior of the number of lattice points in a strip (R+w(R, T ))C\RC, where
R is uniformly distributed in an interval aT < R < bT . In such an investigation the
knowledge of the limit distribution of the vector

(
F (R), F (R+w(R, T ))

)
, aT ≤ R ≤ bT ,

as T → ∞, can be useful. The most interesting choice of the function w(R, T ) is that
when for fixed T the area of the set (R + w(R, T ))C \RC equals a constant S(T ), and
the function S(T ) satisfies the relation

lim
T→∞

S(T )

2T
= z, 0 < z ≤ ∞, and lim

T→∞

S(T )

T 2
= 0 . (1.11)

This case is considered in paper [3]. If the area of the set C equals one, and the area of
the strip (R + w(R, T ))C \RC is S(T ), then the function w(R, T ) satisfies the equality

w(R, T )2 + 2Rw(R, T ) = S(T ) . (1.12)

It is not difficult to see that the function w(R, T ) defined by formulas (1.11) and (1.12)
satisfies the conditions of Theorem 2. If the number z is finite, then case a) of Theorem 2
holds with K(x) = z/x, and if it equals infinity, then case b) holds with K(x) = 1/x and
L(T ) = S(T )/2T . Hence the results of Section 2 of [3] are consequences of Theorem 2
with the above choice of the function K(x) and L(T ).

One would like to give an explicit description of the limit measures appearing in
Theorems 1 and 2. We return to this question at the end of this paper. Here we

formulate a result which gives a decomposition of the measures µ
K(x)
(a,b) . Let us define the

distribution of the vector (F (R), F (R + x)) in the interval [0, T ] with a fixed number
0 ≤ x < ∞ by the formula:

νx
T (A) =

1

T
λ{R : 0 ≤ R ≤ T, (F (R), F (R + x)) ∈ A} (1.13)

for any measurable set A ⊂ R
2. Now we formulate the following

Theorem 3. For fixed 0 < x < ∞ the measures νx
T converge weakly to a probability

measure νx, and also the relation

lim
T→∞

1

T

∫ T

0

g(F (R), F (R + x)) dR =

∫

g(u, v) νx(du, dv) , (1.14)

holds if g(u, v) is a continuous function, and |g(u, v)| < A(u2 + v2) + B with some
constants A > 0 and B > 0. For a fixed function g(u, v) the integral at the right-hand
side of (1.14) is a continuous and bounded function of x.

The identity

µ
K(x)
(a,b) =

1

(b − a)

∫ b

a

νK(x) dx =
1

(b − a)

∫ K(b)

K(a)

νx

K ′(K−1(x))
dx (1.15)

holds for the function µ
K(x)
a,b defined in Theorem 2.

We shall prove the following corollary of the above results:
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Corollary. Let h(x) be an integrable function on an interval [a, b], 0 < a < b ≤ 1. Let
the function w(R, T ) satisfy the conditions of case a) of Theorem 2. Then the relation

lim
T→∞

1

T

∫ bT

aT

g
(
F (R), F (R + w(R, T ))

)
h

(
R

T

)

dR =

∫ b

a

h(x)

∫

g(u, v) νK(x)(du, dv) dx

(1.16)
holds for all continuous functions g(u, v) if one of the following conditions is satisfied:
Either g(u, v) is bounded or h(u) is square integrable and |g(u, v)| < A(u2 + v2) + B
with some appropriate numbers A > 0 and B > 0.

This paper consists of four sections. In Section 2 we prove the Theorems in the
special case when the sum (1.1) defining the function F (R) contains finitely many
terms. In Section 3 we carry out a limiting procedure which proves the results of the
paper by means of Section 2. In Section 4 we make some comments and prove some
generalizations.

Let us make a short comparison of the method of this paper with previous ones. The
main difference of the proof of Theorem 1 in this paper and in [2] is that we replace the
application of the ergod theorem by a number theoretical distribution theorem. The
formulation of Theorems 2 and 3 are very close to the results of Section 2 in [3]. The
proofs are essentially different. In paper [3] these results were deduced from Theorem 1
by a tricky ergod theoretical argument. Here we show that a slight modification of the
proof of Theorem 1 supplies a direct proof for them.

2. The proof of the results in a special case

Let us consider the case when the function F (R) is defined by a finite sum

F (R) = Fp(R) =

p
∑

n=1

ane2πiλnR (2.1)

with an even number p, real non-zero numbers λn such that λ2n = −λ2n−1, a2n = ā2n−1,
and the measures µT , µT,w,(a,b) and νx

T are defined in formulas (1.3), (1.4) and (1.13)
by means of this function. We prove in this Section Theorems 1, 2 and 3 in the case
when these measures are determined by a function of the form (2.1). In the next Section
we prove the result for general functions F (R) defined in (1.1) by approximating them
with the functions Fp appearing in (2.1). We shall indicate the dependence of these
measures on the functions Fp by denoting them as µT (Fp), µT,w,(a,b)(Fp) and νx

T (Fp)
when necessary. The main results of this Section are the following

Propositions 1., 2. and 3. Let the function F (R) be defined by the finite trigono-
metrical sum (2.1), and let the measures µT , µT,w,(a,b) and νx

T be defined in formulas
(1.3), (1.4), and (1.13) by means of this function F (R). If the function w(R, T ) and
S(T ) satisfies the conditions of Theorem 2, then Theorems 1, 2, and 3 hold with this
choice of the corresponding measures.

Proof of Proposition 1. We have to investigate the asymptotic behavior of the expression

1

T

∫ T

0

g(F (R)) dR (2.2)



LIMIT THEOREMS ABOUT ALMOST PERIODIC FUNCTIONS 7

as T → ∞ in the case when g(u) is a bounded continuous function. We shall rewrite,
following the argument of [2] and [4], the expression in (2.2) as an integral on a torus
with respect to an appropriate measure. It is useful to work, when handling the func-
tion F (R), with frequencies linearly independent over the rational numbers. Since the
frequencies λn may not have this property we express them as a linear combination of
some numbers τ1, . . . ,τs linearly independent over the rational numbers

λn = Tn(τ1, . . . , τs) =
s∑

k=1

A(n, k)τk , n = 1, 2, . . . , p, k = 1, . . . , s (2.3)

with integer coefficients A(n, k). Let V denote the unit interval with the group action
addition modulo 1. Introduce its s-fold and p-fold direct products

V = V × · · · × V
︸ ︷︷ ︸

s times

(2.4)

and
V ′ = V × · · · × V

︸ ︷︷ ︸

p times

. (2.4′)

Define the maps U : R
1 → V

U(R) = {Rτk (mod 1), k = 1, . . . , s} . (2.5)

V : V → V ′

V (u1, . . . , us) =

{
s∑

n=1

A(n, k)uk (mod 1), n = 1, . . . , p

}

(2.6)

for (u1, . . . , us) ∈ V with the integer coefficients A(n, k) appearing in (2.3) and G : V ′ →
R

1

G(u1, . . . , up) =

p
∑

n=1

ane2πiun . (2.7)

Clearly, F (R) = G
(
V (U(R))

)
. Define the probability measure ρT on V induced by the

map U by the formula

ρT (A) =
1

T
λ{R : 0 ≤ R ≤ T, U(R) ∈ A} (2.8)

for all measurable sets A ⊂ V.

Then the integral (2.2) can be rewritten as

1

T

∫ T

0

g(F (R)) dR =

∫

V

g(G(V (u))) ρT (du) . (2.9)

The relation
ρT ⇒ ρ as T → ∞ (2.10)



8 PÉTER MAJOR

holds, where ρ denotes the Haar measure on V, and ⇒ means weak convergence of
probability measures. Relation (2.10) is a known result. Nevertheless, we give its proof,
because it is short, and we need its modification in the proof of Proposition 2. By Weil’s
lemma (or by the characteristic function method on commutative compact groups) to
prove (2.10) it is enough to check that, with the notation (u1, . . . , us) = u ∈ V,

lim
T→∞

∫

exp

{

2πi

s∑

k=1

mkuk

}

ρT ( du) = lim
T→∞

1

T

∫ T

0

exp

{

2πi

s∑

k=1

mkτkR

}

dR

= lim
T→∞

exp

{

2πiT
s∑

k=1

mkτk

}

− 1

2πiT
s∑

k=1

mkτk

= 0

if m1,m2, . . . ,mk are integers, and not all of them equal zero. Relations (2.9) and (2.10)
imply that

lim
T→∞

1

T

∫ T

0

g(F (R)) dR = lim
T→∞

∫

g(G(V (u))ρT (du) =

∫

g(G(V (u))ρ(du) ,

since g
(
G(V (u))

)
is a bounded, continuous function. The last relation implies that

lim
T→∞

1

T

∫ T

0

g(F (R)) dR =

∫

g(u)µ(du) (2.11)

with the measure µ defined on R
1 by the relation

µ(A) = ρ{u : u ∈ V, G(V (u)) ∈ A} (2.12)

for all measurable sets A ∈ R
1. Relations (2.11) and (2.12) imply that the measures

µT converge weakly to the measure µ defined in (2.12). To complete the proof of
Proposition 1 observe that the function |F (R)| is bounded by Cp =

∑p

n=1 |an| for all
R ∈ R

1. Hence all measures µT and µ are concentrated in the interval [−Cp, Cp], and
relation (1.6) follows for all continuous functions g(u), since they can be replaced by
their truncation at ±Cp, which are bounded continuous functions. Finally, relations
(1.7) and (1.7′) follow from the observation that F (R) is a finite sum, and the relations

lim
T→∞

1

T

∫ T

0

eiλnR dR = 0

lim
T→∞

1

T

∫ T

0

ei(λn−λn′ )R dR = δ(n, n′)

hold. ¤

Proof of Proposition 2. The proof of Proposition 2 is very similar to that of Proposi-
tion 1. The main difference is that we have to carry out the integral transformations by
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means of different functions G, U and V , and the statement formulated in (2.10) has to
be generalized.

Define the maps U : R
1 → V × V

U(R) = U(R,w, T ) = {Rτk (mod 1), k = 1, . . . , s ,

(R + w(R, T ))τk (mod 1), k = 1, . . . , s} ,
(2.13)

V : V × V → V ′ × V ′

V (u1, . . . , u2s) =

{
s∑

k=1

A(n, k)uk (mod 1), n = 1, . . . , p ,

s∑

k=1

A(n, k)uk+s (mod 1), n = 1, . . . , p

} (2.14)

for (u1, . . . , u2s) ∈ V × V with the integer coefficients A(n, k) appearing in (2.3) and
G : V ′ × V ′ → R

2

G(u1, . . . , u2p) =

(
p
∑

n=1

ane2πiun ,

p
∑

n=1

ane2πiun+p

)

. (2.15)

Then
(
F (R), F (R + w(R, T ))

)
= G

(
V (U(R))

)
. Define the probability measure ρ̄T =

ρ̄T,w,(a,b) on V × V induced by the map U by the formula

ρ̄T,w,(a,b)(A) =
1

(b − a)T
λ{R : aT ≤ R ≤ bT, U(R,w, T )) ∈ A} (2.16)

for any measurable set A ⊂ V × V.

We claim that if w(R, T ) satisfies the conditions of Theorem 2, then the limit relation

ρ̄T,w,(a,b) ⇒ ρ̄ as T → ∞ (2.17)

holds with a probability measure ρ̄ on V × V. Moreover, we claim that

ρ̄ = ρ̄
K(x)
(a,b) (2.17′)

if w(R, T ) satisfies the conditions of case a) of Theorem 2 with K(x), i.e. the limit
depends only on the function K(x) in this case, and

ρ̄ = ρ̄∞a,b = the Haar measure ρ × ρ on V × V (2.17′′)

if w(R, T ) satisfies the conditions of case b) of Theorem 2.

To prove (2.17) we show that the Fourier coefficients

Lw,T (m1, . . . ,m2s) =

∫

V×V

exp

{

2πi

2s∑

k=1

mkuk

}

ρ̄T,w,(a,b)( du)
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with u = (u1, . . . , u2s) ∈ V × V have a limit

lim
T→∞

Lw,T (m1, . . . ,m2s) = L(m1, . . . ,m2s) (2.18)

for all integers m1, . . . ,m2s. These Fourier coefficients can be rewritten by an integral
transformation as

Lw,T (m1, . . . ,m2s) =
1

(b − a)T

∫ bT

aT

ei(A(m1,...,m2s)R+B(m1,...,m2s)w(R,T )) dR (2.19)

with

A(m1, . . . ,m2s) = 2π

s∑

k=1

(mk + mk+s)τk ,

B(m1, . . . ,m2s) = 2π

s∑

k=1

mk+sτk .

(2.19′)

Because of the linear independence of the numbers τk both expressions A(m1, . . . ,m2s)
B(m1, . . . ,m2s) can disappear simultaneously only if all coefficients mk are zero, which
is a trivial case. Otherwise we claim that

lim
T→∞

Lw,T (m1, . . . ,m2s) =







0 if A(m1, . . . ,m2s) 6= 0

1
(b−a)

∫ b

a
eiBK(u) du if A(m1, . . . ,m2s) = 0 and

w(R, T ) satisfies case a)

0 if A(m1, . . . ,m2s) = 0 and

w(R, T ) satisfies case b)

.

(2.20)
The first line in relation (2.20) can be proved by means of relation (2.19) with the
change of variables AR + Bw(R, T ) = u. Let us observe that because of the conditions
of Theorem 2 du

dR
= A + o(1) uniformly for aT ≤ R ≤ bT , and the boundaries of the

domain of integration after the change of variables are aAT (1+o(1)) and bAT (1+o(1)).
Hence we get that

lim
T→∞

Lw,T (m1, . . . ,m2s) = lim
T→∞

(1 + o(1))

(b − a)A(m1, . . . ,m2s)T

∫ bA(m1,...,m2s)T

aA(m1,...,m2s)T

eiu du = 0

in this case. If the conditions of the second line of (2.20) hold, i.e. when the conditions
of case a) of Theorem 2 hold, and A = 0, then we can calculate the expression (2.19)

with the change of variables u =
R

T
. Simple calculation shows that

1

(b − a)T

∫ bT

aT

eiBw(R,T ) dR → 1

(b − a)

∫ b

a

eiBK(u) du ,

and the second relation of (2.20) holds. The third line of (2.20) (this case holds when
A = 0 and condition b) is satisfied.) can be proved similarly with the change of variables



LIMIT THEOREMS ABOUT ALMOST PERIODIC FUNCTIONS 11

u =
R

T
and v =

1

L(T )
w(uT, T ). Some calculation shows that v = K(u)(1 + o(1)),

∂v

∂u
= K ′(u)(1 + o(1)), and

1

(b − a)T

∫ bT

aT

eiBw(R,T ) dR =
1

(b − a)

∫ b

a

eiBw(uT,T ) du

=
1

(b − a)

∫ K(b)

K(a)

eiBL(T )v 1

K ′(K−1(v))
(1 + o(1)) dv → 0

by the Riemann lemma. The convergence of the Fourier coefficients formulated in
relation (2.20) implies formulas (2.17), (2.17′) and (2.17′′). In particular, relation (2.17′′)
holds, since in the case when w(R, T ) satisfies case b) of Theorem 2, then all non-trivial
Fourier coefficients of ρ̄ equal zero.

Let us also show that the Fourier coefficients in the second line of formula (2.20)
corresponding to the function zK(x) tend to zero as z → ∞. This relation holds,
because B 6= 0 in this case, and the Riemann lemma yields that

1

(b − a)

∫ b

a

eizB(m1,...,m2s)K(u) du =
1

(b − a)

∫ K1(b)

K1(a)

eizB(m1,...,m2s)u

K ′(K−1(u))
du → 0 as z → ∞

(2.21.)

Let g(u, v) be a bounded continuous function. We get similarly to the argument of
Proposition 1 from relations (2.17) (2.17′) and (2.17′′) that

lim
T→∞

1

(b − a)T

bT∫

aT

g(F (R), F (R + w(R, T )) dR = lim
T→∞

1

(b − a)T

bT∫

aT

g
(
G
(
V (U(R))

))
dR

= lim
T→∞

∫

g(G(V (u))ρ̄T,w,(a,b) (du) =

∫

g(G(V (u))ρ̄ (du)

(2.22)

with ρ̄ = ρ̄
K(x)
(a,b) if case a) and ρ̄ = ρ̄∞

(a,b) if case b) of Theorem 2 holds. Hence

lim
T→∞

1

(b − a)T

∫ bT

aT

g(F (R), F (R + w(R, T )) dR =

∫

g(u, v)µ̄(du, dv) (2.23)

with
µ̄(A) = ρ̄{u : u ∈ V × V, G(V (u)) ∈ A} (2.24)

for all measurable sets A ∈ R
2.

Relation (2.23) implies the weak convergence of the measures µT,w,(a,b) to µ̄. Formula
(2.24) together with the form of the measures ρ̄ imply that the measure µ has the
prescribed form if cases a) of Theorem 2 holds, i.e. it depends only on the function
K(x). If case b) of Theorem 2 holds, then a comparison of formulas (2.12) and (2.24)
together with relation (2.17′′) and the product form of the functions G and V in formulas
(2.14) and (2.15) imply formula (1.8). Relation (1.9) can be deduced from the weak
convergence in the same way as the analogous result in Proposition 1. To prove formula



12 PÉTER MAJOR

(1.10) and continuity of the measures µ
zK(x)
(a,b) (in the variable z) it is enough to prove

the continuity of the expression
∫

g(G(V (u))ρ̄
zK(x)
(a,b) (du). Because of the Weierstrass

approximation theorem it is enough to check the continuity of the Fourier coefficients.
This follows from relations (2.20) and (2.21). Proposition 2 is proved. ¤

Proof of Proposition 3. The proof is based on a representation similar to Proposition 2.
Define the maps U : R

1 → V × V

U(R) = U(R, x) = {Rτk (mod 1), k = 1, . . . , s ,

(R + x)τk (mod 1), k = 1, . . . , s} .
(2.25)

and the maps V (u1, . . . , u2s) and G(u1, . . . , u2p) by formulas (2.14) and (2.15) as in the
proof of Proposition 2. Introduce the measures

ρ̂T,x(A) =
1

T
λ{R : 0 ≤ R ≤ T, U(R, x) ∈ A} (2.26)

for any measurable set A ⊂ V × V. Then

ρ̂T,x ⇒ ρ̂x as T → ∞ (2.27)

with Fourier coefficients

Lx(m1, . . . ,m2s) =

{
0 if A(m1, . . . ,m2s) 6= 0

exp{iB(m1, . . . ,m2s)x} if A(m1, . . . ,m2s) = 0
. (2.28)

with the functions A(m1, . . . ,m2s) and B(m1, . . . ,m2s) defined in (2.19′). Then we get
the proof of the identity (1.14) as in the proof of Proposition 2 with the limit measure

νx(A) = ρ̂x{u : u ∈ V × V, G(V (u)) ∈ A} (2.29)

for all measurable A ∈ R
2. The expression at the right-hand side of (1.14) is clearly a

bounded function, and it is a continuous function of x, because the Fourier coefficients
of ρ̂x are continuous functions of x. A comparison of the Fourier coefficients in (2.20)
and (2.28) yields that

ρ̄
K(x)
(a,b) =

1

(b − a)

∫ b

a

ρ̂K(x) dx =
z

(b − a)

∫ K(b)

K(a)

1

K ′K−1(x)
ρ̂x dx .

This relation together with (2.24) and (2.29) imply relation (1.15). Proposition 3 is
proved. ¤



LIMIT THEOREMS ABOUT ALMOST PERIODIC FUNCTIONS 13

3. Proof of the Theorems

First we formulate an estimate which enables us to generalize the results of Section 2
to functions satisfying (1.1) and (1.2).

Let g(u, v) be a continuous function such that |g(u, v)| < A(u2 + v2) + B with some
A > 0 and B > 0, F (R) a function satisfying (1.1) and (1.2), Fp(R) the trigonometrical
series containing the first p terms of F (R), and let some numbers 0 < a < b ≤ 1 and
functions w(R, T ), satisfying either case a) or case b) of Theorem 2. We claim that for
all ε > 0 there are some thresholds p0 = p0(ε) and T0 = T0(p, ε) for p > p0 such that

∣
∣
∣
∣
∣

1

(b − a)T

∫ bT

aT

g
(
F (R), F (R + w(R, T ))

)
dR

− 1

(b − a)T

∫ bT

aT

g
(
Fp(R), Fp(R + w(R, T ))

)
dR

∣
∣
∣
∣
∣
< ε

(3.1)

for any p > p0 and T > T0(p, ε). Moreover, the threshold p0 can be chosen depending
only on ε, a, b and g(u, v), but not depending on the choice of the function w(R, T ) of
which we only require that it satisfied the conditions of Theorem 2.

To prove relation (3.1) first we make the following observation: For any (u, v) ∈ R
2

and (u0, v0) ∈ R
2 and 1 > η > 0 there exist some constants K = K(η) and K0 depending

only on the function g(u, v) such that

|g(u, v) − g(u0, v0)| < η + K((u − u0)
2 + (v − v0)

2) + K0(u
2
0 + v2

0)I({u2
0 + v2

0 > η−1})
+ K0(u

2 + v2)I({u2 + v2 > η−1}) ,
(3.2)

where I(A) denotes the indicator function of the set A.

Indeed, relation (3.2) holds with

K0 = 2 sup
u2+v2≥1

|A(u2 + v2) + B|
u2 + v2

≤ 2(A + B)

if u2
0 + v2

0 > η−1 or u2 + v2 > η−1. On the complementary set this inequality holds
if (u0 − u)2 + (v0 − v)2 < δ with some δ = δ(η) because of the uniform continuity of
the function g(u, v) on this set. Finally, relation (3.2) holds on the remaining set if
K = K(η) is chosen sufficiently large. Relation (3.2) can be rewritten in a simpler form.
We can apply the inequality

(u2 + v2)I({u2 + v2 > η−1}) ≤ 2u2I({u2 > (2η)−1} + 2v2I({v2 > (2η)−1} ,

and write with the help of this relation that

|g(u, v) − g(u0, v0)| < η + K
(
(u − u0)

2 + (v − v0)
2
)

+ K0

[
(u2

0I({u2
0 > η−1} + v2

0I{v2
0 > η−1}

]

+ K0

[
(u2I({u2 > η−1} + v2I{v2 > η−1}

]
.

(3.2′)
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with a new constant K which corresponds to the bound η/2 and with a new constant
K0 which is the double of the original one.

We shall prove (3.1) from (3.2′) with the choice (u0, v0) = (Fp(R), Fp(R +w(R, T ))),
(u, v) = (F (R), F (R + w(R, T ))) with an appropriate η > 0 and p = p(η) and then by
integration with respect to R.

By relation (3.2′)

∣
∣g
(
F (R), F (R + w(R, T ))

)
− g
(
Fp(R), Fp(R + w(R, T ))

)∣
∣

< η + K
[
(F (R) − Fp(R))2 + (F (R + w(R, T )) − Fp(R + w(R, T )))2

]

+ K0

[
Fp(R)2I{Fp(R)2 > η−1} + Fp(R + w(R, T ))2I{Fp(R + w(R, T ))2 > η−1}

]

+ K0

[
F (R)2I{F (R)2 > η−1} + F (R + w(R, T ))2I{F (R + w(R, T ))2 > η−1}

]
.

The inequality ∣
∣
∣
∣
∣

K0

(b − a)T

∫ bT

aT

F (R)2I{F (R)2 > η−1} dR

∣
∣
∣
∣
∣
<

ε

8
(3.3)

holds, if η < η(ε) and T > T (ε). Indeed, by relation (1.5) there is some p̄ = p̄(ε), and
T (ε) in such a way that

K0

(b − a)T

∫ bT

aT

|F (R) − Fp̄(R)|2 dR <
ε

32
.

for T > T (ε). The function |Fp̄(R)| is bounded. Put η = inf
R

4|Fp̄(R)|−2. Then the last

inequality implies (3.3), since F (R)2 < 4|F (R) − Fp̄(R)|2 on the set {F (R)2 > η−1}.
We also claim that

∣
∣
∣
∣
∣

K0

(b − a)T

∫ bT

aT

F (R + w(R, T ))2I{F (R + w(R, T ))2 > η−1} dR

∣
∣
∣
∣
∣
<

ε

8
(3.3′)

if η < η(ε) and T > T (ε). This can be proved similarly to (3.3) with some modification.
Apply the change of variables u = R + w(R, T ) in the integral in (3.3′). Since w(R, T )
satisfies the conditions Theorem 2, du

dR
→ 1 uniformly for aT ≤ R ≤ bT , as T → ∞. The

domain of integration after this change of variable is the interval [aT (1 + o(1)), bT (1 +
o(1))]. Hence after this change of variables the integral in (3.3′) can be estimated in
the same way as in (3.3). Relations (3.3) and (3.3′) remain valid if the function F (R)
is replaced by Fp(R) with p > p̄, and T > T (ε, p).

Choose η so that relations (3.3) and (3.3′) and their variants for the function Fp(R)
hold and η < ε/4. Then, because of relation (1.5) and the argument in the proof of
(3.3′) some thresholds p0 = p(η) and T0 = T0(η, p) can be chosen in such a way that for
p > p0 and T > T0

K

(b − a)T

∫ bT

aT

(F (R) − Fp(R))2 dR <
ε

8
(3.4)

and
K

(b − a)T

∫ bT

aT

(F (R + w(R, T )) − Fp(R + w(R, T )))2 dR <
ε

8
(3.4′)
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with the constant K = K(η) appearing in formula (3.2′). Formulas (3.3), (3.3′), their
variants for the function Fp(R), (3.4) and (3.4′) together with the relation η < ε/4
imply (3.1).

It follows from (3.1) and relation (1.9) already proved for the function Fp that

lim sup
T→∞

∣
∣
∣
∣
∣

1

(b − a)T

∫ bT

aT

g
(
F (R), F (R + w(R, T ))

)
dR

−
∫

g(u, v)µ̄(Fp)( du, dv)

∣
∣
∣
∣
< ε

for all p > p(ε) with µ̄(Fp) = µ
K(x)
(a,b) (Fp) if w(R, T ) satisfies the conditions of case a)

and with µ̄(Fp) = µ∞
(a,b)(Fp) if it satisfies the conditions of case b) of Theorem 2. This

relation implies that

lim
T→∞

1

(b − a)T

∫ bT

aT

g
(
F (R), F (R + w(R, T ))

)
dR = lim

T→∞

∫

g(u, v)µT,w,(a,b)( du, dv)

= lim
p→∞

∫

g(u, v) µ̄(Fp)(du, dv) .

(3.5)
with the same choice of the measure µ̄(Fp) as in the previous formula. The last relation
also means that all limits in this formula exist. Since relation (3.5) also holds for
g(u, v) = u2 + v2, hence the measures µT,w,(a,b) are uniformly tight, and we get by
applying relation (3.5) that there exists the limit

µ̄ = lim
T→∞

µT,w,(a,b) = lim
p→∞

µ̄(Fp) , (3.6)

with the same measures µ̄(Fp) as in (3.5) and in the previous formula, and also relation
(1.9) holds with the function F (R). Moreover, for a fixed bounded continuous function
g(u, v) the limit

lim
p→∞

∫

g(u, v)µ
zK(x)
(a,b) (Fp)(du, dv) =

∫

g(u, v)µ
zK(x)
(a,b) (du, dv)

is uniform in z, and this fact together with the continuity properties of the measures

µ
zK(x)
(a,b) (Fp) imply the continuity of the measures µ

zK(x)
a,b for 0 < z < ∞ and relation

(1.10). This completes the proof of Theorem 2 with the exception of formula (1.8).

A similar, but simpler argument shows that relation (3.1) holds if the pair of functions
g
(
F (R), F (R + w(R, T ))

)
and g

(
Fp(R), Fp(R + w(R, T ))

)
are replaced by the pairs of

functions g
(
F (R), F (R + x)

)
and g

(
Fp(R), Fp(R + x)

)
or g

(
F (R)

)
and g

(
Fp(R)

)
.

The same argument as in the proof of Theorem 2 with the first replacement yields
the existence of the limit

lim
p→∞

νx(Fp) = νx

together with relation (1.14) and the continuity of the integral in (1.14) as a function
of x. If |g(u, v)| < A(u2 + v2) + B, then the bound
∣
∣
∣
∣

∫

g(u, v)νx( du, dv)

∣
∣
∣
∣
≤ lim sup

T→∞

1

T

∫ T

0

A
[
(F (R)2 + F (R + x)2) + B

]
dR ≤ const.
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holds with a constant independent of x, as we claimed. The identity (1.15) follows by
a simple limiting procedure when F (R) is approximated by the functions Fp(R). This
completes the proof of Theorem 3.

The second replacement in formula (3.1) supplies the proof of Theorem 1 in the same
way. Finally, since the measures µ(Fp) tends to µ and µ∞

(a,b)(Fp) = µ(Fp) × µ(Fp) tend

to µ∞
(a,b) as p → ∞, a limiting procedure implies the second relation in (1.10). The proof

of the Theorems is completed.

Proof of the Corollary. Let us first consider the case when a simple function h(u) =
hk(u) is chosen which is the linear combination of the indicator function of certain
intervals. In this case formula (1.15) implies (1.16). A general density function h(u)
can be approximated by a sequence hk(u) in such a way that

lim
k→∞

∫ b

a

|hk(u) − h(u)|p du = 0 , p = 1, 2.

Then a simple limiting procedure hk → h gives the proof of the Corollary. ¤

4. Some comments and generalizations

The limit distributions in Theorems 1, 2 and 3 were given as the limit of a sequence

of probability measures µ(Fp), µ
K(x)
(a,b) (Fp), µ∞

(a,b) and νx(Fp) which appeared as the

solution of the corresponding problems when the function F was replaced by finite
trigonometrical series. To describe these approximating measures we had to express
the frequencies λ1, . . . , λp as the linear combination of some numbers τ1, . . . , τs linearly
independent over the rational numbers with integer coefficients. This is possible for all
finite subsets of the frequencies λn appearing in (1.1), but may be not possible for all λn

simultaneously. We shall say that the function F (R) has almost independent frequencies
if all frequencies {λn, n = 1, 2, . . . } in formula (1.1) can be expressed simultaneously
as the finite linear combination of some numbers τ1, τ2, . . . linearly independent over
the rational numbers with integer coefficients. In this case the limit distributions in
Theorems 1 and 3 can be described directly. If the function F (R) arises as the Fourier
expansion of a randomly magnified convex domain with a nice boundary, then it has
almost periodic frequencies in the generic case, but not always. The case when it has
almost independent frequencies is discussed in detail in paper [3]. This property holds
for instance if the function F (R) gives the Fourier expansion of the number of lattice
points in concentrical circles of radius R.

If the function F (R) in (1.1) is a finite trigonometrical series, then the limit distri-
butions appearing in Theorems 1 and 3 have a relatively simple form. They are the
distribution of a random variable of the form

∑
aje

2πiTj , where all (finitely many) Tj are
linear combinations of independent on the interval [0, 1] uniformly distributed random
variables with integer coefficients.

This can be seen by following the construction of the limit measures in the proofs
of Section 2. Indeed, to understand the structure of the limit measure µ appearing in
Theorem 1 let us express the frequencies λn in the form (2.3), and define the functions
V and G by means of this formula as it was done in (2.6) and (2.7). Then formula
(2.12) states that the measure µ is equal to the distribution of the random variable
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G(V (ξ)), where ξ = (ξ1, . . . , ξs) is a uniformly distributed random variable on the
torus V defined in vector (2.4). The coordinates of the random vector V (ξ1, . . . , ξs)
are linear combinations of independent, uniformly distributed random variables in [0, 1]
with integer coefficients, and this fact together with the form of the function G gives a
representation of G(V (ξ)) in the above described form.

The measures νx can also be represented in a similar way. Here again, the measure νx

is the limit distribution of the random variable G(V (ξ)), but now the functions G and V
are defined in (2.14) and (2.15), and ξ = (ξ1, . . . , ξ2s) is a ρ̂x distributed random vector,
where ρ̂x is the probability measure on V × V with Fourier coefficients (2.28). Actually
ρ̂x distributed random vector has a very simple representation. Indeed, let η1, . . . , ηs

be independent uniformly distributed random variables on the unit interval [0, 1], and
let ηs+k = ηk + τk, (mod 1), k = 1, . . . , s. Then relation (2.19′) and the expression for
the Fourier coefficients (2.28) imply that (η1, . . . , η2s) is a ρ̄x distributed random vector.
Then, since the vectors (ηk, ηk+s) = (ηk, ηk + τk (mod 1)) are independent, and ηk is
uniformly distributed in [0, 1], the same argument works as in the case of the measure µ.

If the function F (R) has almost independent frequencies, then the set of frequencies
{λn, n = 1, . . . , p} can be expressed in (2.3) with numbers τk and coefficients A(n, k)
independent of p. In the polynomials whose distribution equal µ(Fp) and νx(Fp) the
same independent random variables can be used for different p. Then the limit distri-
bution µ and νx are the distribution of the limit of the random variables constructed
for the representation of µ(Fp) and νx(Fp). Let us observe that the random variables
constructed in such a way converge in L2 norm as p → ∞, and not only their distri-
bution is convergent. This convergence holds, because of (1.2) and the orthogonality of
the terms e2πiTj appearing in these expressions. (Actually this representation could be
proved by working directly with the function F (R) instead of its approximation by the
functions Fp(R).)

In certain cases the above representation is even simpler. So e.g. if F (R) is the Fourier
expansion of the number of lattice points in a circle of radius R, then F (R) has almost
independent periods. Moreover, each λn can be expressed as a single τk multiplied by
an integer. In this case the above argument yields a representation of µ and νx as the

distribution of sums of independent random variables. The measures µ
K(x)
(a,b) appearing

in Theorem 2 do not have such a simple representation as µ or νx. On the other hand,
they can be expressed as the mixture of the measures νx as it is done in (1.15). This
relation together with the continuity of the measures νx also implies that

lim
b→a

µ
K(x)
(a,b) = νK(a) .

Theorems 2 and 3 can be generalized in a natural way. The vectors



F
(

R +

l∑

j=1

wj(R, T )
)

, l = 1, . . . ,m



 , aT < R < bT

or 

F
(

R +
l∑

j=1

xj

)

, l = 1, . . . ,m



 , 0 < R < T
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have a limit distribution as T → ∞ if all wj(R, T ) satisfy the conditions of Theorem 2.
They also have the continuity properties analogous to Theorem 2 and 3. In particular,
the limit of the first vector equals the m-fold direct product of the measure µ if all
w(j(R, T ) satisfy the conditions of case a) in Theorem 2 with functions zjK(x), and
zj → ∞. The proofs can be done by slightly modifying the method of the present paper.
We omit the details.

In Theorem 2 we assumed that aT ≤ R ≤ bT with some a > 0. Some of the results
follow automatically also for a = 0 from our results, but to generalize all statements
of Theorem 2 to the case when the parameter a can take also the value zero some
additional conditions must be imposed. To carry out all required limiting procedures
we must know that

lim
ε→0

lim sup
T→∞

1

T

∫ εT

0

F (R + w(R, T )) dR = 0

To guarantee the last relation some additional properties should be imposed on the
function w(R, T ). Since the restriction a > 0 is not essential in applications we proved
Theorem 2 only under the condition a > 0.

The results of this paper were proved originally for finite trigonometrical sums in
Section 2, and then in Section 3 these results were generalized to functions which can
be well approximated by finite trigonometrical sums. The content of formulas (1.1) and
(1.2) was the possibility of such a good approximation. In applications this condition
can be checked. On the other hand, the weak convergence of the random variables
F (R), F

(
(R), F (R + w(R, T ))

)
or
(
F (R), F (R + x)

)
in Theorems 1, 2 and 3 also hold

if formulas (1.1) and (1.2) are replaced by the following weaker condition: There exists
a sequence of finite trigonometrical sums Fp(R), p = 1, 2, . . . , such that

lim
p→∞

lim sup
T→∞

1

2T

∫ T

−T

min{1, |Fp(R) − F (R)|} dR = 0 . (4.1)

Similar conditions were formulated in paper [2] or [4].

We only briefly explain why formula (4.1) implies the weak convergence in Theo-
rems 1, 2 and 3. If we consider functions of the form g(u, v) = gs,t(u, v) = ei(su+tv), then

one can show by means of condition (4.1) and the relation ∂
∂R

(R + w(R, T )) = 1 + o(1)
that the under the conditions of Theorem 2 the limits

lim
T→∞

1

(b − a)T

∫ bT

aT

g
(
F (R), F (R + w(R, T ))

)
dR

= lim
T→∞

lim
p→∞

1

(b − a)T

∫ bT

aT

g
(
Fp(R), Fp(R + w(R, T ))

)
dR

(4.2)

exist. Hence to prove the weak convergence of the distribution of the random vectors
(
g(F (R), g(F (R + w(R, T ))

)
, aR ≤ T ≤ bT , it is enough to check the compactness of

these distributions in the weak topology. To do this it is enough to show that for any
ε > 0 there exits a constant K = K(ε) such that the following relation holds. The
function h(u, v) = hK(u, v) = HK(u2 + v2), where HK(u) is defined by the relations
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HK(u) = 0 for |u| ≤ K, HK(u) = 1 for |u| ≥ 2K, and HK(u) is given by linear
interpolation for K < |u| < 2K, satisfies the inequality

lim sup
T→∞

1

(b − a)T

∫ bT

aT

h
(
Fp(R), Fp(R + w(R, T ))

)
du dv < ε .

To prove this relation, choose a number p̄ such that for T > T (p̄)

1

2T

∫ T

−T

min{1, |Fp̄(R) − F (R)|} dR <
(b − a)

2
ε .

Then, since Fp̄(R) is a bounded function we can choose K = 1 + 2 sup
R

Fp̄(R). It is not

difficult to see that
∫

h
(
Fp̄(R), Fp̄(R + w(R, T ))

)
dR = 0, and relation (4.2) holds with

this choice of the function hK(u, v). The analogue of Theorem 2 under condition (4.1)
can be proved by working out the details. The modified version of Theorems 1 and 3
can be proved similarly.

In this paper we did not discuss such functions w(R, T ) which satisfy the relation

lim
T→0

sup
0≤R≤T

w(R, T ) = 0 .

The reason for this omission is not our disinterest for this case. Actually, the description
of this case is a very exciting problem. This is related to the investigation of the limit
behavior of the number of lattice points in randomly chosen thin strips. This is a
very interesting problem with many unsolved conjectures and few rigorous results. The
methods of the present paper are not sufficient to study such problems. Here some
essentially new ideas are needed.
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