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On a Class of Self-Similar Fields

P. Major*

In [2] the behavior of some self-similar fields was investigated where their self-
similarity parameter is near a critical value. There is another critical value at which
these fields become meaningless. In this paper we investigate those fields in the
vicinity of the other critical parameter. We also generalize the results of [2] by
considering a more general class of self-similar fields.

1. Introduction

In [2] the asymptotic behavior of some self-similar fields was investigated in
the case where their self-similarity parameter is near a critical value. These
fields, denoted by H, ,, were defined by the formula

Hyoo (%) = %f@(x, + ot x)Zg,, (X)) .. Zg, (dx) @ ES.

; (1.1)
Here S denotes the Schwartz space of rapidly decreasing functions in the
v-dimensional Euclidean space ®’, G, is the spectral measure with
density function

Shea (X) = IxI'“”‘")ak(ﬁ), x ER,

(1.2)

a(k,e)=v(l—%)+i, 0<e<,

a,(v) is a real-valued even |r/k[—1 times differentiable function on the
unit sphere S” ' of @, where Ju[ is the smallest integer not smaller than u,
and ~ denotes the Fourier transform. The random spectral measure Z; -
corresponding to the spectral measure G, ., and the Wiener-Ité 1ntegra1
with respect to it is defined as in [1].

We have also considered the discrete time version of the field Hy ..
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defined by the formula
T 1 ~ v
Hy (1) = yz f(pn(xl i xk)ZGM,ak(dxl) cee ZGk,mk (dx), n€Z’,
(1.3)

where 2" denotes the »-dimensional integer lattice and ¢,, n € 2, is the
indicator function of the rectangle

xj”=1[n(f),n(f) + 1), n=(n',...,n".

(Here and in the following we denote the coordinates of a vector by
superscripts.)

In [2] it was shown that the fields defined by formulas (1.1) and (1.3) are
meaningful for 0 < e < ». Their asymptotic behavior was investigated in
the case when € — 0. The first result of this paper describes their asymptotic
behavior in the case when € — ».

Let us fix a standard normal variable 1, and define the generalized fields
L, k=1,2,... by the formula

L (p) = ¢(0)H,(n), QES, (1.4)

where H, denotes the kth Hermite polynomial with leading coefficient 1.

Their discrete counterparts are the fields L,, k = 1,2, ... defined by the
formula

Ly (n) = H,(n), neZ. (1.5)

We emphasize that in the definition of the fields L, the same random
variable 7 is used for all p € S and k. An analogous statement holds for the
fields L,. Now we formulate the following:

Theorem 1.  For all positive integers N the joint distributions of the fields
k'(v — e)"'/sz’k/sz’e,ak, 1 <k <N, tend to the joint distributions of the
fields L, defined in (1.4) if e—>v, where D, = [ a,(v)dv. The joint
distributions of the discrete fields k! (v — €)*/*D,”*/ 217,%@ tend to the joint
distributions of the fields L, defined in (1.5) if e > .

Now we consider the following class of self-similar fields : [—

1 -
Hk,(,ak,p,uk((p) = P f(P(xl LA xk)|x1+ mes o g |
X+ o0+ X
X _ -y
uk( |xl P owww oo xkl )ZGk,(,ak(dxl) ZGk,(\ak (dxk)
pES, (1.6)

where p is a real number and u, (x) is a complex-valued continuous func-
tion over "', u (— x) =u, (x). Naturally we consider these fields only if

the stochastic integrals in (1.6) are meaningful. The discrete versions of
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fields are the fields ﬁk,c,ak,p,uk defined by

e 1 o
Hk,(,ak,p,uk(n) = qu?n(xl ey xk)|x1+ 25w g g lP

» Xi+ -+ x,
( X, + - F x|

X ZGk“k(dxl) o Zkak (dx;), nef’. (1.7)

The above-defined fields contain the fields defined by formulas (1.1) and
(1.3) as special cases. They appeared in some limit theorems in [3]. The next
theorem is a generalization of the results in [2].

Let us consider the Gaussian fields H/ . Whose distributions are deter-
mined by the formulas

EH[,(9)=0, @ES (18)

and

EHE, (9)H, (V) =fq5(x)$(x)|x|2p uk(|x7|)‘2dx pYES. (1.8)

Their discrete versions are the fields I_-I_,f’ », Whose distributions are defined
by the formulas '

EHY, (n) =0 (1.9)
and

— 2
EH[ (ML, () = [ 6,6 (0l 5 )\ dx, mmeg.

|x]
(1.9

Theorem 2. The fields Hy o pu> k > 2, are meaningful if 0 < e < v and
2p + v — € > 0. Assume that these inequalities hold, and let, moreover, 2p + v
> 0. Then for all integers N, N > 2, the joint distributions of the fields
(eBk")l/sz,e‘ak’p’uk, where 2 < k < N, and B, is as defined in (1.10) of [2],
tend to the joint distributions of the independent Gaussian fields Hf, 2<
k < N, defined in (1.8) and (1.8'), if e >0. (We define the independence and
the convergence of joint distributions of generalized fields as in [2] in the
section before the formulation of Theorem 2.)

Theorem 2.  The fields H—k,e,a,‘,,p,uk’ k > 2 are meaningful if 0 < e < v, 2p +
v—e€>0 and 2p — € <0. Assume that these inequalities hold, and let,
moreover, —v < 2p < 1. Then for all integers N, N > 2, the joint distribu-
tions of the fields (ch_l)'/zﬁk,(,ak’P’uk, 2< k <N, tend to the joint distribu-
tions of the independent Gaussian fields I?,f‘uk, 2 < k < N, defined in (1.9) and
(1.9) if e—>0.



296 P. MAJOR

In the special case p =0, u,(x) = 1, Theorem 2 of this paper coincides
with Theorem 2 of [2]. We could not find the counterpart of Theorem 1 if
the more general class of fields defined in (1.6) and (1.7) is considered. We
remark that in Theorem 2’ more restrictive conditions had to be imposed
for the existence of the random fields than in Theorem 2. This difference is
due to the fact that the functions ¢,, n € €”, unlike the functions ¢ €5,
tend relatively slowly to zero at infinity.

This paper consists of three sections. Section 2 contains the proof of
Theorem 1 and Section 3 the proof of Theorems 2 and 2".

2. Proof of Theorem 1

Let us define the measures p; , ¢ €5, on ** by the formula
Be o (4) =L|c5(x1 + o+ x) G (dx)) .. G (dxy),  AEBM.

(Here and in the following we omit the index g, if it leads to no ambiguity.
The same will be done with the index u,.) The main step of the proof is to
show that the measure p  is essentially concentrated in a small neighbor-
hood of the origin if € ~ v. First we prove that for allg €5 and d >0

f|q’5(xl + - F x)PI(x)| > d)Gro (d%) - - - Gre (dxy)
=0((r—o 7). @21

(We denote by I(A4) the indicator function of the set 4.) To this end, we
first show that for v — 1/2 < e <,

I= fei<,,x>|x|—<a( ﬁ)exp(— ‘-;IL—Z )I(|x| > d)dx
< K17 — )3, (22)

where the constant K may depend on d but not on 4. First we prove (2.2)
in the case » = 1. Because of the monotonicity of the function

|x| ~<exp(—|x|*/24)
and the periodicity of the trigonometric functions, we get that

% = Yot = 27/l (—e
< e <
I<C f_wcos(tx)exp( 5 )|x| dx 2Cf0 | x|~ <dx
= I—C_—'e 7' < -—1(36 <K|TA -7 it i <(1- ¢
and

Cld| *
|1l

I< 4fd+(27/|tb|x|"dx< <K|1 -7 it i >(1- e
d
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In the case » > 1 we get, by rewriting the expression in (2.2) in polar
coordinates and by applying (2.2) for the case » = 1, that

I=L.,,la(s)f_o:o‘r|wligexp(— %)I(M > d)exp[i( -I;—l ,s)|t|r] drds

()

Now we can estimate the integral in (2.1) by the method used in the proof
of Lemma 2 in [2]. By the monotone convergence theorem,

B
< K(v— a)"2/3|t|-2/3f a(s) ds< K|t| (v — )22,

f|q5(xl + o x)PI(x| > d)Ge (dx)) - - . i (dxy)

=limf|"(x+---+)c)|21(]x|>d)exp——|x;|2
el PLX k 1 24

%l :
exp(— |2f4| )Gk‘z(dxl) o Gy (dxy) = AlgnwlA(e). (23)

By applying the same argument for the estimation of I,(«) as in Lemma 2
of [2], we get, denoting by ¢(u) the function whose Fourier transform is

0P,
1(e) =fxp(u)[fe"‘”wxr‘exp(— %)dx}

2
i(xXu) | o] —€ _ | x|
fe | x| exp( o )I(|x| > d)dx}du.

k—1

X

We can estimate the first inner integral in the last formula by formula (2.6)
of Lemma 1 of [2] and the second inner integral by formula (2.2). Let us
observe that C, < K(v — a) ' for v — 1/2 < a < » in Lemma 1 of [2], as
can be seen from (2.7) and the last formula in the proof of Lemma 1 of that
paper. Hence we obtain

a1 < K(r =)™ [yl ul 4=

The last integral is convergent for (k —2)/(k — 1" +2/3(k — 1) < € < »;
hence the last relation, together with (2.3), implies relation (2.1).

Obviously we may replace I(|x,| > d) by (x| >d), j=1, , k, in
(2.1). Hence, by exploiting the L, isomorphism property of Wlener 1t
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integrals, we obtain
E[(v — ([t o+ x)Zg, (dx) - Zg, ()
GO [1(x1 < d) ... 1] < d)Zg, (dx) - Zg,, ((;zxk))}2

1 o~ ~
= L= [[6(xi+ -+ +x) = $OI(x| <d) ..
(2.4)
I(1x] < @)’ Gro(@x) - - - Gi(dxy)
< K,(v = €)'+ K, sup |§(x)— ¢(0)]*.
|x| < kd
By Itd’s formula,

(v — e)k/2q3(0)f1(|x1| <dy... (x| < d)Zg (dxy) ... Zg (dx)

= GO (= ) [1(x] < d)Ge ()] i)
(2.5)

where n = [[I(|x]| < d)G,., ()] V*[1(|x| < d)Zg, (dx) is a standard nor-
mal random variable. On the other hand, it is not difficult to see that

(v — e)f1(|x| < d)Gk,E(dx)»LMak(o)du ase>v.  (2.6)

Let » — € and d tend to zero. If d tends to zero sufficiently slowly, then
the right side of (2.4) tends to zero (the constant K, depends on d), and
relation (2.6) remains valid. Hence formulas (2.4), (2.5), and (2.6) imply
that (v — €/*/?D,” */?H, .(¢) tends in distribution to L,(¢) as e—>». The
multidimensional convergence of these random variables and the discrete
field version of this result can be proved in the same way.

3. Proof of Theorem 2

In [2] two different methods were presented for proving the results of that
paper. Both methods could be adapted for proving Theorem 2 of this
paper. We have chosen the second method since fewer changes are needed
in the proof.

Let us define the measures g, ., 0 < e <», on }” by the formula

e (A) = fB(A)G"" (dx)) . . . Gy (dx)), 3.1)
where

B(A)= (x=(x1, ... %) €A, x, + - - +x, € 4).
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We need some properties of the measures y, .. We recall that a sequence of
locally finite measures G, (i.e., G,(A4) < oo for all bounded sets 4 € B”) is
said to tend vaguely to a locally finite measure G,, if

ff(x)G,,(dx)eff(x)GO(dx)
for all continuous functions with bounded support.

Lemma 1. For all k=23, ... the measures €D, 'y, tend vaguely to the
Lebesgue measure X on " as €—>0, where D, = (27)""[ sr1by (V) dv, a
=((k = 1)/k)v, and b, is as defined in Lemma 1 of [2].

Proof of Lemma 1. The proof of Lemma 2 in [2], with some small mod-
ifications, gives

eDqu)(x)‘uk’c (dx)—)fq;(x)dx

for all ¢ €5. Since all infinitely differentiable functions with compact
support belong to §, and this class of functions is everywhere dense in the
class of continuous functions with compact support (with respect to the
supremum norm), this relation implies Lemma 1.

We need the next result in order to control the behavior of the measures
M at infinity and in a neighborhood of the origin.

Lemma 2. ForallA>1,8>0,0<e<v—8andg€ES,

a. € X)|x [P  (dx
S PN (@)

€

i (p(x)|x|2”uk7((dx)’ <A
(Ixl<1/4)

with m=2p + v — e if n > 8. (The constant C, may depend on ¢, p

and 8.)
14
> ef — L xPru, (dx) < GA Y,
(>4 j=1 1+ (x)
14 1 , )
¢ ———— [x|Pp (AX) < CA T
j;IxI<1/A}jI;I] L+ (xD) [P (dx) < C

with { =1 —2p + € and n the same as in part (a) if n > 8 and { > 8.
(Here C, may depend on § and p.)

Proof of Lemma 2. Define the measures f, .,

Ty (A) =f B i O L R AED.
B(4)

Obviously p, (A4) < [sup,c g1 a; ()] Py (A) for all 4 € B, hence p,  can
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be replaced by fi, . in Lemma 2. We claim that
Fe(B) = c(k,e)ﬂxl*edx forall B €9 and C(k,e) < C(k)e . (3.2)

The first relation in (3.2) follows from the homogeneity property B (AB)
=A""" [ (B) forallA > 0and B € ®’, and the invariance of fi, . under
all rotations of ®}”. The second relation in (3.2) can be read from Lemmas 1
and 2 in [2]. Indeed, to check this relation it is enough to check, for
example, that the right side of (2.12) in [2] is less than C(k)e !
a=r(l —1/k)+ €¢/k. But in our case a(v) = 1, therefore

f;(u) = C(a)|u*™" with [C(a)| < C forv(l1-1/k)y<a<v—268/k
by Lemma 1 of [2], and these facts imply the desired relation. Because of
formula (3.2) the following estimates imply part (a) of Lemma 2:

@(x)|x|* ~“dx
‘J;IXI>A} 2
since |@(x)| < C(a)|x| “forall [x| >l and a >0if p €5.

U (p(x)|x|2p_(dx) < Cf|x|2p"dx< C'A~".
{IxI<1/4}

£ & x| """ dx< C'A"
(x> 4)

The second inequality of part (b) can be proved in the same way. To prove
the first inequality we have to show that

14

I= [ — L —xpredx< ca
{IxI>4}) j=1 1 + (x(«f))
Obviously,
I<vf » | x|« ——l—zdx.

{IxI> 4, max; <, | xP| =[xV} J=1 14 (x4
Observe that max,;,[x] <|x| < Vmax1<j<,,|x | Hence |x|?#~¢
< max(L, (v|x V¥ 7) on the set {|x'"V|=max,;,[x], |x| >4}, and
that this set is contained in the set {|xV| > 4 /»}. Therefore

e T 1
I<Cf |xD P[] ———— dx
(Il >4/v) = )2

j=2 14 (x)

v—1 2p—¢€
=2c| [ Loax| [T X
—o 1+ x? A/v 1 + x

< C’'47%

Lemma 2 is proved.

Now we can prove that the variance of (eB, )'/’H, _,(¢) tends to the
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variance of H;‘(qy), @ €5 as e—>0. One has to observe that

Dkef |¢(x;+ - + xk)|2|x1 R o T
(1/A<|x;+ -+ +x|<4)

x4+ o+ x\f
uk( —[x—l—_*_——m) Gk’( (dxl) TR Gk,e (dxk)

=eD "x2x21’u(—x—>
kf{l/A<|xl<A}|<p< )PPl

2
=5 "xzxzf”u(—x—)l dx as e€—>0
f{l/A<|x|<A}l(p( )H l k lxl

for all 4 > 1 because of Lemma 1. The corresponding integrals on the sets
| |x,+ -+ +x]>Aand|x; + -+ +x]<1/4 are negligible for large A4
| because of Lemma 2. These facts imply the desired convergence. By
‘ exploiting the orthogonality of Wiener-It integrals of different multiplicity,
one can see immediately that the linear combinations of the variables
| (eB H2g kep (P also have the prescribed asymptotic variance. Since
g, (P < CI[G-i1/( + |x 1), n€2’, the asymptotic variance in the
discrete field case can be determined in the same way. It is not difficult to
see, by using Lemma 2, that the fields H, ., and 17,%1, exist under the
conditions of Theorems 2 and 2'.
We complete the proof of Theorems 2 and 2’ by slightly modifying the
arguments of Section 4 in [2].
Let us define the measures p/ , on R* by the formula

le,(,w(B) =f3l¢(xl b wem s b xk)121x1+ e xklsz,c(dxl) oo Gre(dxy),

B € 3", (3.3)

X

2
’J‘k,( (d‘x)

where either ¢ €S or ¢ = @,, n € Z". It follows from Lemma 2 that

A
<Ce A" (3.4)

If(A)=p,f’€)q)(|x1+--- + x| >Aor|x, + - +x]< 1)

with n* = n if ¢ €S and n* = min(n,{) if ¢ = ¢,, n €Z". Here n and ¢
are the same as in Lemma 2. Inequality (3.4) corresponds to inequality (4.4)
in [2]. Inequalities.(4.5) and (4.6) in [2] also remain valid after the following
changes. In the definitions of I5 and I5 we replace the measure p ., by
pf ., defined in (4.3), the event |x, + --- + x,| < A by the event 1/4
<|x;+ -+ + x| <A, and we write A’+?7! instead of 4” on the right
side of these inequalities. Now we can complete the proof of Theorems 2
and 2’ by making small changes in the proof of Section 4 in [2]. The

sequences a; = a;(¢) and the sets D}, D* can be defined in the same way as
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in [2]. It can be seen, by choosing 4 = € ® with a sufficiently small § > 0,
that relations (4.1) and (4.2) of [2] remain valid if P 18 Teplaced by pf -
The estimates needed for the justification of these relations are almost the
same as the estimates at the end of Section 4 in [2]. These relations imply
that the central limit theorem holds for the elements of the classes
(eB, )'/?H,, and (eB; ")/ ’H,.. Since the asymptotic variance of the
random variables of these fields is already determined, Theorems 2 and 2’
are proved.
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