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A Limit Theorem
for the Robbins-Monro Approximation

P. Major and P. Révész

1. Introduction

Let M(x) (— o0 <x< +o0) be an unknown monotonically increasing func-

tion with
M(@®)=0 and M(x)*+0 if x=+0.

Suppose that we can measure the value of M(x) only with some random error
Y, i.e. the value M(x)+ Y, for any x can be obtained by an experiment. Our aim
is to find the root 6.

Robbins and Monro ([1]) constructed the following sequence: let X, be an
arbitrary real number and define the sequence {X,} by the recursion

1
X=X, 2, (=12, (1)

where Z, =M (X,)+ Yy .
Blum ([2]) under some simple conditions proved that P(X,— 6)=1.

Chung ([3]) investigated the behaviour of the sequence {(X, — 6)}. Under some
further conditions he proved that if

M@)=a,=a>%+ and D?*(Y,)=¢>(x)—d”
(x— 0) then
1 t _ u?
[ e T du=AH(0,5)
V275 “w
where s?>=0%/(20.—1). Some further results in this direction are given in [4, 5, 6]
(among others).

In this paper we intend to investigate the sequence {(X,—8)} in the case
0<M'(0)<t. '

P{yn(X,—0)<t} -

2. Results
From now on the following conditions of Blum ([2]) will be assumed:
Condition 1.
P(Yy <t|Yy, Yy, ... Yy )=PYy <tlX,,Y,...Y .X,)
=P(Yy <t|X)=H(|X,).

Condition 2. _
E(Y |X,)=]tdH(|X,)=0.
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Condition 3. There exist positive constants ¢ and d such that |M(x)|<c+d|x|.

Condition 4.

E(YZ|X,)=[t*dH (1| X,)SK*< + 0.
Condition 5. M(x)<0 if x<0 and M(x)>0 if x>0 (i.e. we assume: =0).
Condition 6. inf |M(x)|>0 for every pair of positive numbers §,, J,.

1 =|x[=62
Conditions 5 and 6 are able to replace the condition of monotonicity, so the
condition of monotonicity will not be assumed. Further we assume:

Condition 7. M (x) is twice differentiable at 0.
Our first theorem corresponds to the case a=3.
Theorem 1. Suppose that M'(0)=a=1,

DX(Y)=c*(x)>0>  (x—0) ?
and
hm 11m sup j* sz dP=0- (3)
Ao N0 [x[Se |y, |24
Then

P{l/ e X,,<t}—>,/V(0,0'2).
logn

Now we turn to the case 0<M'(0)=a<1. Our second theorem is a strong
law for this case.

Theorem 2. Suppose that 0<M'(0)=a=o, <% and M"(0)=o,. Then there
exists a random variable Z=2, such that
P(n*X,—Z)=1.
It is natural to ask: how can we characterize the behaviour of the sequence
n* X, —Z? An answer to this question is given in

Theorem 3. Suppose that < M'(0)=oa <% and (2) and (3) hold. Then
2
P(n*~*(n* X, — Z)<t)=P(}/n X, ~n*~ Z<t)~>e/V(0, 1_}27«)
where Z was defined in Theorem 2.
Let us mention that the statement that the limit distribution of }/n X, —n*~*Z

is normal is clearly correct in the case a>73.
Now we turn to the investigation of n* X, — Z in the case «=%. One can prove

Theorem 4. Suppose that M'(0)=a,=a=%, M"(0)=u, and (2) and (3) hold. Then
P (n“(n“ X,,—Z)——;% Z2<t) - A(0,207).

The case a <4 is characterized in

Theorem 5. Suppose that 0< M'(0)=a <% and M"(0)=a,. Then
n*(n X,,—Z)-»%;— 7*=7,
with probability 1.
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The sequence n*(n* X,—Z)— Z, can be characterized by
Theorem 6. Suppose that t<M'(0)=a <% further (2) and (3) hold. Then

2

In fact,in Theorem 6 the condition,<a <2 can be replaced by the condition
1<a<landin this form Theorem4 becomes a spemal case of Theorem 6. Theorem 4
has been formulated because its proof is slightly different.

Continuing this process one can get our
Theorem 3k + 1. Suppose that

M’(O)=a=ocl=7(E:_—1)—, M'(0)=a,,..., M*DO)=0,
and (2) and (3) hold. Then
P(n(k“)“X —nkeZ —plk— e 22 Z*—ple=2ee 73 ¢, Z"+1<t)
qm(o o )= (oﬁri 2)
T 1-2a k

where c5, Cy, ..., Cy. ¢ are constants depending on oy, a,, ..., & 4.

Theorem 3k + 2. Suppose that

7 1 1t
0<M(0):(x<m and M (O)Z(XZ,...,M(k+1)(0)=06k+1.
Then
n‘k“)“Xn—nk“Z—n("_l’“%Zz—---—cka—->ck+1Zk+1
with probability 1 where c5, c,, ..., ¢, | are constants depending on oy, 0y, ..., 0, ;.

Theorem 3k + 3. Suppose that

1

m<M (0)=OC=OCI<

1
7 00) = (k+1) (()) —
20t and M"(0)=a,,...,M ©O)=0y

and (2) and (3) hold. Then

P(nt=C+a(pkia x _yhaz o Z¥Y<t)> A (0, 52),

2
2 g

T 12«

where c;, ¢y, ..., ¢, are constants depending on oy, oy, ..., 0, ;.

The authors are indebted to Prof L.Schmetterer for his valuable remarks,
especially the present forms of the proofs of Lemmas 3 and 4 are due to him.
6 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 27
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3. Lemmas
Qur first two lemmas are known:

Lemma 1 ([8]). Let {b?} be a sequence of real numbers for which

bf+1_(1——)b2+— (n=1,2, ...

where 0<p<1 and A>0. Then

bi<

B
3
where B is constant depending on A, p and b, .

Lemma 2 ([4] p.377). Let U,, (k,n=1,2,...) be a double array such that
EWU U1, Upas ooy Uy o1)=0

hm ZEIE(Un |I]nl7Uv ‘9Un,k—1)—E(Un2k)|:0

n— 00 k=1

lim Z E(U2)=5"

h— 0 k=

lim Z EUg Aitr>) =0

B> ®© P

where y , is the indicator functlon of A. Then S,= Z U, is asymptotically normal
with mean 0 and variance s* =1

Lemma 3. Let X,=X,(w) (weQ) be the Robbins-Monro process (obeying
Conditions 1-6). Then for any £>0, 6>0 there exists a measurable set F = such
that

P(F)>1-6
and
1
jXZ dP<—5—— pelcar)

if n is big enough, where M’ (0)=0 <3.

Proof. By Blum’s theorem ([2]) our conditions imply that X, —0 with prob-
ability 1. Choose an ¢>0 and an >0 such that M(x)=ax+e(x)x where
le(x)| < ¢ whenever |x|<#. Define F= () {w: |X,(w)|<n}. If ny is large enough
then P(F)=1-4. nZno

Let no+k

F ={w:|X,|<n} and F, = () {o:|X,|<n}.
n=no
It follows that
K2
j" 2.2 [ X} ——(oc g) j" X2+—~ fX2+——

Frn
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for nzn,. Taking into account that | X7, < | X7 we get
Fu

Funsi

2 K?
b, 150, (1 _7(0‘—8)) +7

where
b= | X2.
Fn

1
Since ¢ +2/n* Ze if n is large enough, it follows that b, =0 (W) (if n is large
1
enough) and therefore | X?=0 (W) :
F

Lemma 4. Let 1, %,, ... be a sequence of random variables for which

EMyi1lMp ---51)=0 (n=1,2,..), )
EMm} |y, n)SK? n=1,2,..). (5)
Then
T=rY (140 ()], (0<a<gy )
= i) 2k+ 1)

converges to 0 with probability 1 (n — ).

Proof. Let ¢ be a positive number for which 2(k+ 1) «<1—2¢ and put

]
]1.
=3 i
j=1J

Then by Kolmogorov’s inequality

n KZ 1 © K2

1
P S|Z2L<—- —_— < — [
{max[S|=L{< P &~ e=p l; fr2e

1Z1Zn

that is
P{w: |S,(w)| is uniformly bounded} =P(G)=1-9

for any 0>0 if m is large enough. It follows from Abel’s theorem that

T@)=0 (1 — =) =o()

whenever weG.

4. Proofs

The following simple formulas will be frequently used in all proofs. By the
iteration of (1) one can obtain

o

Xn+m+1:].—[ (1_n+k)Xn_-ZO nl(l-—

k=0 n+i 2o ‘>(U(Xj)+Y})

6%
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and applying the relations

% —mio(d) M oq m 1
1 ton —=log—4+0(—
i E,,i ot ( )
@ 1 {
L=o(3)
we get
) . 1 mem 1
(ntmFX, . =n 1+0(7) X,= Y o 1+0(7) UX)+Y). (6
j=n

Introduce the notations

A, v)=j§ jll_a <1+0 (%)) U(x),
B,(u, v)= EJTI—— <1+0 (}i)) Y,.

Now we can turn to the

Proof of Theorem 1. Theorem 1 clearly follows from (6) and the following two
statements:

(i) for any £>0 there exists a measurable set F = such that P(F)>1—¢ and
A, (1, n)/y/logn— 0 in probability as n— oo.

(ii) B,(1,n)/y/logn tends to A'(0, ¢%) in law as n— oo.

(i) follows from Lemma 3.

(ii) can be obtained as a consequence of Lemma 2, making use of Blum’s
theorem. The details will not be given because we could repeat the method used
in Sacks’ paper ([4]).

Proof of Theorem 2. 1t is clearly enough to prove that for any ¢ >0 there exists
a measurable set F < such that P(F)>1—¢ and the series A4, (1, ©), B,(1, )
are convergent on F.

Since
E(Y,|Y,_q,..., Y)=0, E(YJZIY;._l, L HEKE (j=1,2,..)

J

with probability 1. The almost everywhere convergence of B, (1, o0) on Q follows
from Kolmogorov’s three series theorem (see e.g. [ 7] 387).

Now choose the set F as it was chosen in Lemma 4. Since
2 S 1 1 2
IU(XJ)‘éDXJ and Z }1—_—“ 1+0 7 Xj
j=1

is convergent (on F, by the Beppo-Levi theorem), the series A4,(1, o) is really
convergent.
Proof of Theorem 3. Letting m tend to infinity in (6) we get

n* X, —Z=A4,(n, o)+ B, (n, ©).
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In order to prove our Theorem it is enough to show that
n*=* A (n, )
tends to O in probability (n —» o0) and
nf~* B, (n, o)

tends to A7 (0, 62/(1 —2)) in law as n— co.
Our first statement follows from Theorem 2 if +<a <2 and the second one
from Lemma 3 (making use of Sacks’ ideas) if a <3.

Proof of Theorem 4. As a first step we prove that:
n Aun, 00) = 2222 (n—>o0,05Y)
with probability 1. To see this, set
U(X)=U,(X) === X} + U (X))

where U, (X ;)=0(X?).
Then

2 1 1

nmAa(n’ 00)=”az jlma <1+0 (]_)) (%XJZ'FUZ(XJ))
j=n

o, Z* A .,

BT ———J.Za -I-o(l)—>———2OCI Z2.

o

n

J
Theorem 4 follows from this fact and from the fact that
W B, (n, o0)

tends to A7(0,20?%) in law as n— co. This fact was already stated in the Proof
of Theorem 3.
Proof of Theorem 5. In the Proof of Theorem 4 we have already seen that

n* A_(n, 0)— 22 72,
2a

In order to prove Theorem 5 it is enough to show that
n*B,(n,0)—0  (with probability 1; n— c0).

This statement is a straight consequence of Lemma 4.

Proof of Theorem 6. As a first step we prove that

o(1
(a) : (8)

n*A,(n, w):%22+ -
1



86 P. Major and P. Révész

Since by Theorem 5
_ zZ a, Z* o)
n n* + 2 nZa n2a
and
z? o
XY?_ nZa + nl(’mt)

making use of (7) we get (8).
Now one can get the Theorem as follows:

o(1)

na

n“(n"Xn—Z)zg—;ZZ+ +n* B, (n, o0)

and

1
4 —2a

P [”“(n“Xn—Z)——ai Zz] = 0(1)+n**B, (n, )
20 n

where the first member of the right hand side tends to 0 with probability 1 and
the second one is asymptotically normal (see the Proof of Theorem 3).

Theorems 3k+ 1, 3k+2, and 3k+3 can be proved by induction, using the
Taylor expansion of U(X) up to (k+ 1) terms.
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