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Summary. In this paper we prove the following statement. Given a random 

walk S, = ~ 5j, n =  1, 2, ... where 51, 52, ... are i.i.d, random variables, P(ej 
j = l  

= I ) = P ( e j = - - 1 ) = � 8 9  let e(n) denote the number of points visited exactly 
once by this random walk up to time n. We show that there exists some 

~x(n) 
constant C, 0 < C < oo, such that lim,_~:osup ~ - -  C with probability 1. The 

proof applies some arguments analogous to the techniques of the large devia- 
tion theory. 

1. Introduction 

The following problem was proposed by P. Erd6s and P. R4v6sz: Let us consider 

a random walk So=0,  S , =  ~ 5j, n =  1, 2, ... where 51, 52, ... are i.i.d, random 
j = l  

variables, P ( e j = I ) = P ( e j = - 1 ) = � 8 9  and define the random set sc'n consisting 
of the points visited by this random walk up to time n exactly once, i.e. let 

d , =  {x, ~k, O<k<n, such that Sk=x, and Sz4 xforO<_l<n, 14k}. 

Let e (n)= 1~4.1 denote the number of points in the set ~ , .  Let f(n) be an arbitrary 
function such that f(n)~oo as n ~ o o ,  It is not difficult to see with the help 

~(n) 
of the zero-one law that there exists some constant C such that lim sup C 

with probability 1, but C = 0 or C = oo is also possible. Erd6s and R6v6sz asked 
with which choice o f f ( n )  is the above constant C such that 0 < C < o o .  This 
question is answered in the following 
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1 ~(n) ) Theorem 1. There exists  some 0 < C < oo such that P im sup ~ = C = 1. 

We can give an upper and a lower bound for the constant C in Theorem 1, 
but we cannot give its exact value. In the proof  of Theorem 1 we need a good 
asymptotic for the probability P(~(n)>xn)  for certain values of x, .  Especially, 
we are interested in the question for which x, has the above probability of 
brder 1/n. Hence we shall prove the following 

Theorem 2. For all K > 0  and e > 0  there exists  an no=no(K ,  e) threshold such 
that for  n > n o 

K K 
n ~ ~ < P ( ~ ( n ) > K l o g 2 n ) < n  -T+~ 

with a constant L > 0 which is defined in the following Lemma 3. 

Lemma 3. There exists  some L, 0 < L <  co, such that our random walk S~ satisfies 
the relation 

lira n P ( S j > O  for  all O < j < n  and S~<S ,  for  a l l O < j < n ) = L .  
n --~ oo 

Erd6s and R6v6sz conjectured that in Theorem 1 one has to divide by log n 
instead of log 2 n. This conjecture turned out to be incorrect, but it deserves 
some consideration. It is relatively simple to prove that with probability 1 there 
are infinitely many n and an appropriately small C > 0 such that for these n 
there is a block [k, k + c log n], k + c log n < n, with the following properties: a) 
ek = ,~k + 1 . . . .  F.k + c log n = 1, b) S k  > S j f o r j < k  and S k  + c log n < S j for k + c log n < j <= n. 
These properties imply that {Sk, S k + l , - - . ,  Sk+clogn} c ~  and ~(n)>c logn for 
these n. The idea behind the conjecture is the feeling that this is the typical 
way how exceptionally large sets d~ appear. Let us remark that if we have 
a dispersed set 0 ~ j l  <J2 <.--<Jm<-_ n, where Jk--Jk-1 is relatively large for k 
=2,  3, ..., m then the probability of the event {S jl, Sj . . . . . .  Sj~} ~ ~ ,  is much 
less than the probability of the event {Sj, S j+ 1, . . . ,  Sj+m} ~ d~.  But on the other 
hand there are much more dispersed sets O < j x < J 2 < . . . < j m < = n  than blocks 
[ . j , j+m],  j__< n. Hence the typical way how exceptionally large sets ~4~ appear 
is that d , =  {S~1, . . . ,  S j J ,  and {j~, . . . , j~} is a dispersed set. This is the reason 
why Erd6s and R6v6sz' conjecture does not hold, but the proof requires a 
more refined analysis. 

The paper consists of three sections. In Sect. 2 we prove Theorem 2 together 
with two lemmas, in Sect. 3 we prove Theorem 1, make some comments, and 
formulate some open problems. 

2. The Proof of Theorem 2 

We start this section with the 

Proo f  o f  Lemma 3. Let us first consider the case n = 2 m. We have 

I = P ( S j > O  f o r a l l 0 < j < n ,  S j<S~  f o r a l l 0 < j < n )  

=P ( S m > sup { - ( ( S j - S n ) - ( S , , - S n ) ) } ,  (Sn-Sm)> sup S, - -SmIB, )P(Bn)(2 .1)  
m<j<_n O < l < m  
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with 

B . = { S i > 0  f o r a l l 0 < j < m ,  S . - -S~>O f o r a l l m < l < n } .  

Let us define the probability measures #.,  n = 1, 2 . . . .  on the plane R 2 

t 
Since the random vectors {$1, ..., S,,} and { S , - S n - 1 ,  S ~ - S , _ 2  . . . . .  S , - S m }  
are independent and identically distributed, hence it follows from (2.1) that 

I = # , .  x # m ( A ) ' p 2 ( s j > o  for all 0 < j < m )  (2.2) 

with the following set A ~ R  2 • R 2" 

A = {(xl, Yl, X2 "Y2), Xl > y2--X2, X2 >Yl  --Xt}- 

It is known (see, e.g. [3], Chap. Ill., Sect. 3) that 

1 
P ( S j > 0  for all 0 < j < m ) ~  l ~  (2.3) 

On the other hand it is proved (see, e.g. [1], Theorem 4.3 with t =  1) that there 
w 

is a probability measure #* such that /~,---~#*. The measure #* is defined in 
[1] explicitly. We are not interested in its exact form, what is imported for 
us is the relation 

lim #m X #re(A)=# * • # * ( A ) > 0  (2.4) 
m-~oo 

Relations (2.2), (2.3) and (2.4) imply Lemma 3 in the case n = 2 m .  The case 
n = 2 m + 1 is similar. Lemma 3 is proved. 

Let C~k(n ) denote the number of subsets of s~', with exactly k elements, i.e. 

, ,  /l ol\ 
let C~ktnJ= ~ k ]" In the proof  of Theorem 2 the following Lemma 4 plays an 

/ 

essential role. 

Lemma 4. Let  k~c~ log n with some c~>0. For all q > 0  there exists some n o 
= n o (c~, tl) threshold such that .for n > n o 

[(L - t/) log n] k < E c~ k (n) < [(L + t/) log n] k 

where L is the same as in Lemma 3. 

Before its proof  we make some comments about  the role of Lemma 4 in 
the proof  of Theorem 2. Theorem 2 is a large deviation type result. Indeed, 
as we shall later show in Remark 1, e(n) is less than a sufficiently large constant 
(which is independent of n) with probability almost one, and Theorem 2 gives 
an asymptotic for the probability of the event e(n)> K log 2 n. In Classical large 
deviation theory one usually investigates the tail behaviour of a random variable 
Z .  with the help of its moment  generating function cp.(t)= E exp(tZ.). In our 
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investigation the function Eak(n) plays the same role as the moment  generating 
function in other problems. Here the good choice of the parameter k (like the 
good choice of the parameter t in q),(t) in other cases) supplies good estimates 
for us. We can get an upper bound for ~(n)>KlogZn with the help of the 
Markov inequality. In order to get a lower bound first we have to find the 
size of those random sets d ,  whose subsets give the main contribution to the 
expectation EC~k(n ). Also the lower bound can be obtained with the help of 
Lemma 4. The method of the proof is similar to the way as the strong convexity 
of log q~,,(t) is exploited in the large deviation theory. 

Proof of Lemma 4. Let us define the following events: 

Cl (r, t)= {co: Sr(co)<Sl(co)<St(co ) for all r <l <t} 

D1 (j) = {co: St (co) < Sj-(co), for all 0 < l <j} 

D2(j)=Dz(j, n)= {co: Sl(co)>Sj(co) for all j <  l<n}. 

By Lemma 3 

P(C(r, t))=P(C(O, t - - r ) )=  t ~  r (1 + o(1)). (2.5) 

On the other hand (see, e.g. [-2], Chap. III.) 

1 
P(D 1 (j)) = ~ (1 + o(1)) (2.6) 

V2 j 

t 
P(D2 (j))= (1 + o(1)). (2.6)' 

[/2 rt (n --j) 

(n" /Id"+ l\ Put d+=~C,c~{z , z>0} ,  c~+(n)=[d,+[ and e [  ) = I  k )" Then by exploiting 

that {Sj~(CO),S~2(CO),...,Sjk(CO)}cd, +, O~j l<j z< . . .< jk<n ,  if and only if 
co e D1 (Jl) ~ C (J l, J2) n . . .  :~ C(jk_ 1, Jk) :~ D2 (Jk) we get that 

E a / ( n ) =  ~ P(DI(jOc~C(jl,j2)c~...c~C(jk_I,jk)~Dz(jk)) 
0 < J l  < , i2  < . - .  < J k  < n  

= ~, P(D(jl)) P(C(jl ,J2))...P(C(jk- 1 ,Jk))P(D2(Jk)). 
O < J l  < J 2  < . , .  < J k  <= n 

(2.7) 

Set 

Then 

and 

U(j, l)= ~ P(C(jt,j2))P(C(j2,J3)) ...... P(C(jk-~,jk)). 
J = J l  < J 2  < ..- < Jk = /  

U (j, l) = U (0, l - j )  
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Ecz/(n)= ~ U(jl,jk)P(D(jO)P(D(jk) ) 
0 < "  < "  < n  = J l  J k =  

n - r  

= U(O, r) ~ P(DI(j))P(D2(r+j)). 
r = O  j = O  

Hence (2.6), (2.6)' and (2.5) imply that 

n r 1 

Ec~-(n)<const ~ U(O,r) ~ 1 1 
.=o 15 

~ (c(~ <const ' .  ~ U(0, r )<const '  P , 
r = O  j =  

< [(L + r/) log n] k. (2.8) 

F /  n 
On the other hand, since Ja =<~, Jt-Jz- 1 > ~ ,  l=  1, 2, ..., k imply that jl<=~n, 

const 
P(D2 (Jr))~ , hence (2.7) implies that 

E~+ (n) > ~, P(DI(Jl))P(C(O, j2--jl))...P(C(O, jk--Jk-1)P(D2(]k))) 
o<j~ <3 

/ 1  . . 

3k >.h-J~- ~ > 0 
l=l ..... k 

H 

> const n/3 1- 3 k  ] k -  1 

[ - [  ~ \  ~/ ] k  - 1 

1 (2.9) 

Put ~r = d , -  d,+,  ~2 = 1~r [ and ~- (n) = (]Q" 1). The estimates (2.8) and (2.9) 

also hold for E e~-(n). We claim that 

Eo~[(n)<EC~k(n)<Ec~;(n)+Eo:~_l(n)+Eo~[(n)+Eo~f_l(n ) . (2.10) 

Indeed, the left hand side of (2.10) is trivial, and one can see the right hand 
side with the help of the observation that 1~4. + 1>1 implies 1~r (1~4.-I 
can contain only inf Sk in this case) and ]d . -  I> 1 implies 1~r + 1< 1. Lemma 4 

O<_k<_n 

follows from (2.8), (2.9) and (2.10). 

K 
Proof of Theorem2. a) The proof of the upper bound: Set k = ~ l o g n .  We 
have by Lemma 4 and Stirling's formula 
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/ /K log 2 n\\ E ek (n) 
Pc~(n)> Kl~ k ))<= (Klokg2n) 

< (L + t/)k log n k K k ~- log n) ~ : - )L  Av t / \k  ~ K 

if t/is chosen sufficiently small. 
K 

b) The proof of the lower bound: Put q,.=q,.(n)=P(c~(n)=m), k = s  logn, 
k '= k(1 +6) with 

L 
6=e  100K and /s  

We claim that 

and 

m 1 

m < K l o g Z n  

m 1 

m>Klog2n 

First we show that (2.11) and (2.12) imply Part b of Theorem 2. Indeed, since 

they imply that 

hence 

EO:k'(n)= Sq" k' 

~, q,.(km)>=�89 
K log2 n < m < [C log2 n 

P(~(n)>Klog2n) > ~, q,, 
K l o g 2 n < m < K l o g 2 n  

1 ( m ) > l ~ k , ( n )  
> (i~log2n~ Y', qm k' = 3 

K l o g a n < m < f ~ l o g 2 n  

\ k ' ]  

Now, by Lemma 4 and the Stirling formula 

2 1 [(L-t/)logn]k'.{K(l+_6) ' P(~(n)>Klog n)=>5 ~ ~  ~ eL l~ k 

( /( log 2 hi" 
k' ] 

l ( e  L--t/ 1+6 \k' ,, 
=3- L 1+26)  =>n-Z- 

if t/is chosen sufficiently small. 
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" /s logn=k(1+26). Since k">k' we In order to prove (2.12) introduce k = s  
can write 

(1 k' 

(~ (~ I1= E qmk,= E q~, m> log2.  > log2. (m) k"k,, 
(/s log: n] (/s log: n] 

< k' ] m k ] 

=(/~l?'gzn']k ] m>K,og2,, ~ q"(k")<-----log2n~ k" ] 

Now Lemma 4 and the Stirling formula imply that 

=< ~(KlogZn)k'-k"k' logn) k'' [L(l +63)logn]k" 
11 ( ~  (1 +6)logn) ( ~  ek'-k" 

= ( L l o g n ) k ' ( ~ ]  k' e k'-k'" (1 +63) k''. 
\ 1 ~ o /  

A simple Taylor expansion up to the second term implies that 

ek,_k,,{l + 26]k' ~, 1~5 - ]  =exp{k[-5  +(1 +6)(6-362 + 0(53))]} 

and 

= exp{--k(~ + 0(53))} = exp{-log n(2KL 52+ 0(63))}, 

I 1 ~ (L log n) k' n- ~ o2 + o (~3) ~ �89 E c~ k, (n). 

The proof of (2.11) is similar. Since k' > k 

I2<m<~og2nqm(km')~(Kli'g2;m<~Klog2nqm(~)~(Kli'g2n; 

Hence by Lemma 4 

(K log 2 n) k' -k K k 
K ~  k ' (L l~ ek'-k(L(1 I2<(~( l+8) logn)  +53) 10gn)k 

<(Llogn)k' (1 + 5) -k' ek'-k(1 -Jr- 53) k, 

E~k(n). 
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and since 

k k =exp~ logn[~(  [K  a)(3_ 62 6-Z(1+ - T  (1 + 6)-k' e ' -  K + 0 (a3))]} 

=exp{logn(--~L ~2 "~- 0 (~ 3))} 

I2 =< (L log n) k'. n-  ~ a= + o(a3) =< �89 E c~ k, (n). 

Theorem 2 is proved. 

M. P~ter 

3. The Proof of Theorem 1 and Comments 

P r o o f  o f  Theorem 1. By Theorem 2 

P(o~(n) > (L + e) log 2 n) < oo 
n=l 

for arbitrary ~ > 0. Hence the Borel-Cantelli lemma implies that 

~(n) 
lira sup ~ < L with probability 1. 

In order to make an estimate from below introduce the stopping times M,,  
n = l ,  2, ... 

M.  = {infj, S; > n}. 
Then 

M,  _ 0 2im n T -  with probability 1, (3.1) 

and 
M(n+ t)2-- Mn2 =>2n+ 1. 

Let us define the event A k = A k (e), k = 1, 2 . . . .  

Ak = {the random walk 0, SMk2 + 1 -- SMk2, . . . ,  SUk~ + k -- SMk~ visits at 

least (L-- 5) log 2 k points with positive coordinates exactly once}. 

The events A k are independent, and it follows from Theorem 2 that for large 
kPk(Ak) > k -  1+~. Hence the Borel-Cantelli lemma implies that infinitely many 
events A k occur with probability one. This implies that 

o ~ ( M k ~ + k ) > ( L - e ) l o g e k  for infinitely many k with probability 1 (3.2) 

On the other hand it follows from (3.1) that M Z < k  s for all sufficiently large 
k. Thus (3.2) implies that 

zt (n) L -- e 
log 2n > 6 ~  for infinitely many n with probability 1. 
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We have shown that 

p ( ~ 4  <l im sup log 2~(n)n =<L]=l/ (3.3) 

Let c((n) denote the number of points visited exactly once by the random walk 
Slog,, $1 +log,,---, S,. Then le(n)-c((n)] < logn,  hence 

c~(n) ,. ~ ' ( n )  
P lim sup ~ = u m  sup log2~ ) --- 1. 

~'(n) 
On the other hand the zero- one law can be applied for log2~ , and this implies 
that 

lo~f~  = sup 

L 
with some 0 < C < o o .  But it follows from (3.3) that ~ < C < L .  Theorem 1 is 
proved. 

Remark 1. There is some constant C > 0 (indepent of n) such that 

C 
P(cffn)>k)<~ for all k =  1,2, ... (3.4) 

Relation (3.4) immediately follows from the inequality 

E ~(n) < C. 
But 

n 

gc~(n)= ~ P(Sje~4. )=4 ~ P(DI(j))P(D2(j))<=C 
j = l  j = l  

by relations (2.6) and (2.6)'. (Some calculation would show that for arbitrary 
~>0  C = 2 + e  can be chosen in (3.4) if n>n(e).) 

Remark 2. It is not difficult to see that 

and 

lim P(sup Sk~4.) = �89 (3.5) 
n~oo k<=n 

lira P( inf  S k e d . )  = �89 (3.5)' 
n ~  k~_. 

Indeed, let j=j(n) denote the first place of maximum of the random walk 
$1, $2, ..., S,. Then we have 

P(sup Ske Sd, t sup Sk = S i, S~> Sl for l <j)  
k ~ n  k~_n 

=P(Sj+I-Sj<O . . . .  , S n - S j < O I S j §  . . . .  , S . - S j ~ O )  ----~1 (3.6) 
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if n - - j  ~ oo. (See, e.g. formula (3.5) in Chap. III of [3]. We cannot write identity 
at the end of formula (3.6), because n - j  can be odd.) Since lim P(n-j(n)--.oe) 

n --* oo 

= 1, hence (3.6) implies (3.5). The proof  of (3.5)' is the same. Relations (3.5) 
and (3.5)' mean that sup Sk and inf Sk belong to d ,  with positive probability. 

k < n  k < n  

On the other hand we cannot decide whether the probability of the event that 
d .  contains points different fi'om the maximum and minimum tends to zero 
or not. 

Remark 3. It would be interesting to know whether our results hold (with possi- 
bly different constants) for more general random walks. We think that the answer 
is in the affirmative, but our proofs exploited the simple geometric structure 
of this random walk. 

Remark 4. Let e(p, n) denote the number of points visited exactly p times by 
the random walk So, $1 . . . .  , S,. Erd6s and R6vOsz also posed the following 
question- Let p(n) be some "nice"  function. For  which function f(n) is 

(p(n), n) 
lira sup f(n~--= C with a non-trivial constant C, 0 < C <  oo ? In the case p(n) 

=1 f(n)=logZn. The analogue of Theorems 1 and 2 can be proved for p(n) 
=const .  with some extrawork, but actually in the same way as for p (n )= l .  
The solution of the problem for p(n)~oo requires some new ideas. The natural 
approach would be again to give a good estimate on the probability 
P(e(p(n), n)>x , )  for certain x, ,  but this seems to be a rather hard problem. 

p(n) 
We expect that the cases p(n)<const~/n  and ~ - - - , o o  are essentially different, 

v -  
because typically a point is visited up to time n less than const. ]fn times. 

Remark 5. Let L(t, x) denote the local time of a Wiener process at the point 
x and at the time t. It would be interesting to know whether the results analogous 
to Theorems 1 and 2 are also valid for the local time of a Wiener process, 
i.e. whether the relations 

2{x;~<L(t,x)<l}=c)=l 
P lim sup log a t 

and 
K K 

t-z-~<P(2{x, ~<=L(t, x)<= 1} > K  log 2 t)=< t -~+~ 

hold for sufficiently large t for all 0 < :~ < 1 with some appropriate 0 < C < oo 
and 0 < L < oo, where 2 {- } denotes the Lebesque measure. 

Remark 6. One would like to know the explicit value of the constant L appearing 
in Theorem 2 and Lemma 3. It can be expressed with the help of the proof 
of Lemma 3 as a complicated integral which we cannot handle. On the other 
hand E. Csfiki explained an argument to the author which shows that L= �88  
Define 

P2k.2,=P(So=O, $2 ,=2k ,  0 < S j < 2 k  for 1 <j<2n--1) 
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and 

Then, by Lemma 3 

P2n = ~ P2k, 2n 
k = O  

L 
Pzn =2~n (1 + o(1)) (3.7) 

On the other hand it is proved (see, e.g. formulas (3.6) and (3.7 in [2])) 
that for all k > i 

zk 1-- W W k I - -~/1- -Z 2 
n=l p2k'2n - - I + w  1--W 2k for 0 < z < l  with W = l + ] / l _ z 2 .  

Summing up these identities for all k__> 1 we get that for 

f ( z ) =  ~ pznz n, f ( z ) - - l - - w  ~ W k 
n=l lq-W l__W2k, O < z < l  (3.8) 

k = l  

It follows from (3.7) that 
f ( z )  L 

lira = ---- (3.9) 
z~l log(1--z z) 2 

On the other hand we show with the help of (3.8) that 

f ( z )  1 
lim - -  (3.9)' 
z-~l 1og(1--z 2) 8 

A comparison of (3.9) and (3.9)' yields that L = �88 We can write 

Then 

hence 

,  (l_w 
f ( z ) =  I + W k ~ I  2 ~ +  I ~ W  k=l 1 - - ~ k  wk=f~(z)+f2(z)  

1 1 2 l ~ - - Z  2 
f~(Z)= - -  l og ( I - -w)=  log 

2(1 +W) 2(1 +W) I + ] / I + z  2 

1 
- 2(1+w) (�89 +1/1 +z2)), 

lim fl  (z) 1 
~-.1 log(1--z 2) 8" 

On the other hand for z < 1 

1--w 1 = (w2k-l - -1)- '}- (w2k-2--1)+. . .+(W--1)  <--l--w, 
1--W ak 2k 2k(l~-w-q-.~[+wS-k---~) -- 
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hence 

and 

These relations imply (3.9). 

IA(z)l~(1-w) ~ wk<l, 
k = l  

lin] A(z) 
1 log(l-z2) =0" 

M. P6ter 
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