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Abstract

We take a class of functions F with polynomial covering numbers on a mea-
surable space (X, X) together with a sequence of independent, identically

distributed X-space valued random variables &1, ... ,&,, and give a good es-
timate on the tail distribution of sup ) f(§;) if the expected values E|f(&)|
feF j=1

are very small for all f € F. In a subsequent paper [5] we give a sharp bound
for the supremum of normalized sums of i.i.d. random variables in a more
general case. But the proof of that estimate is based on the results in this
work.
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1. Introduction.

This work is part of a more general investigation about the supremum of
(normalized) sums of bounded, independent and identically distributed ran-
dom variables if the class of random variables whose sums we investigate have
some nice properties. It turned out that it is useful to investigate first the
case when the expectations of the absolute values of these random variables
are very small, and this is the subject of the present paper. In paper [5] we
shall get good estimates in the general case when the expectations of these
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absolute values may be relatively large with the help of the main result in
this paper.

First I recall the notion of uniform covering numbers and classes of func-
tions with polynomial covering numbers, since they play an important role in
our investigation. Then I formulate the main result of this paper, and make
some comments that may help in understanding its content.

Definition of uniform covering numbers with respect to L;-norm.
Let a measurable space (X, X) be given together with a class of measur-
able, real valued functions F on this space. The uniform covering number
of this class of functions at level €, ¢ > 0, with respect to the L;-norm is
supN (e, F, Li(v)), where the supremum is taken for all probability mea-

sures v on the space (X,X), and N(e, F,Li(v)) is the smallest integer
m for which there exist some functions f; € F, 1 < j < m, such that
min [ |f — fj|ldv<eforall f € F.

1<5<m

Definition of a class of functions with polynomially increasing cov-
ering numbers. We say that a class of functions F has polynomially in-
creasing covering numbers with parameter D and exponent L if the inequality

supN (e, F, Li(v)) < De* (1)

holds for all 0 < & < 1 with the number sup N (e, F, L1(v)) introduced in the
previous definition.
The main result of this work is the following Theorem 1.

Theorem 1. Let F be a finite or countable class of functions on a measurable
space (X, X) which has polynomially increasing covering numbers with some
parameter D > 1 and exponent L > 1, and sup\f( ) <1 forall f € F.

Let &, ... ,&, n > 2, be a sequence of mdependent and identically distributed
random vamables with values in the space (X, X) with a distribution p, and
assume that the inequality [ |f(z)|u(dz) < p holds for all f € F with a

mumber 0 < p < 020 Put S,(f) = Sulf)(En- -1 &) = 32 F(&) for all
j=1
f € F. The inequality

P <sup |Sn(f)| > u> < Dp®*  for all u > 41L (2)
fer
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holds with some universal constant 1 > C' > 0. We can choose e.g. C' =

I introduce an example that may help in understanding better the content
of Theorem 1. In particular, it gives some hints why a condition of the type
u > C'L had to be imposed in formula (2). (We imposed this condition with
C =41)

Let us take a set X = {x1,...,zx} with a large number N together with
the uniform distribution p on it, i.e. let p(z;) = & for all 1 < j < N,
and define the following class of function F on X. Fix a positive integer
L, and let the class of functions F consist of the indicator functions of all
subsets of X containing no more than L points. Let us fix a number n, and
choose for all numbers j = 1,...,n a point of the set X choosing each point
with the same probability % independently of each other. Let {; denote the
element of X we chose at the j-th time. In such a way we defined a sequence
of independent random variables &, ..., &, on X with distribution u, and a
class of functions F consisting of non-negative functions bounded by 1 such
that [ f(z)u(dr) < £ for all f € F. Let us introduce the random sums

Sn(f) =" f(&) for all f € F. We shall estimate first the probability P, =
j=1

P (sup Su(f) > n) and then the probability P,, = P (sup Sn(f) > u) for
fer feF
u<n.

It is not difficult to see that P, = 1ifn < L, and P, < (]X) (&) < Clpr—t
with p = % if n > L, where C' is a universal constant. The number C' can be
chosen as a constant for which the inequality p? < CPp! holds for all positive
integers p. We can choose for instance C' = 4. In the proof of the above
estimate we may exploit that X has (]Z ) subsets containing exactly L points,

and the event sup S,(f) > n may occur only if there is a subset of X of
ferF
cardinality L which contains all points &, 1 < j < n. Also the estimate

P,, < (Z) P, < CEn*pu~L holds, because the event sup S, (f) > u can only
feF
occur if there are some indices 1 < j; < j» < -+- < j, < n such that all

points §;,, 1 < s < u, are contained in a subset of X of cardinality L. The
probability of such an event is P, for all sequences 1 < j; < jo < --- < j, < n,
and there are (Z) such sequences.

We show that if N > n?°! and n > 41L, then the above model satisfies
the conditions of Theorem 1, and compare the bound we got for P, ,, in our
previous calculation with the estimate of Theorem 1 in this example. We



shall apply Theorem 1 for the class of functions F consisting of the indicator
functions of all subsets containing at most L points of a set X. To apply
Theorem 1 I show that the above defined F is a class of functions with poly-
nomially increasing covering numbers with exponent L and an appropriate
parameter D. Then we can apply the estimate of Theorem 1 for the prob-
ability P, ,. To check the above stated property of F I recall the definition
of Vapnik-Cervonenkis classes together with a classical result about their
properties.

Definition of Vapnik—Cervonenkis classes. Let a set X be given, and let
us select a class D of subsets of this set X. We call D a Vapnik—Cervonenkis
class if there exist two real numbers B and K such that for all positive
integers n and subsets S(n) = {z1,...,2,} C X of cardinality n of the set
X the collection of sets of the form S(n)N D, D € D, contains no more than
Bn® subsets of S(n). We call B the parameter and K the exponent of this
Vapnik-Cervonenkis class.

It is not difficult to see that the subsets of a set X containing at most
L points constitute a Vapnik-Cervonenkis class with exponent K = L and
an appropriate parameter B. (Some calculation shows that we can choose
B =12) Trecall a classical result (see e.g. [7] Chapter 2, 25 Approximation
Lemma) by which the indicator functions of the sets in a Vapnik-Cervonenkis
class constitute a class of functions with polynomially increasing covering
numbers. (Actually the work [7] uses a slightly different terminology, and
it presents a more general result.) In the book [7] it is proved that if the
parameter and exponent of a Vapnik—Cervonenkis class are B and K, then
the class of functions consisting of its indicator functions has polynomially
increasing covering numbers with parameter D = max(B?, ng) and exponent
L = 2K with an appropriate constant ny = no(K). Moreover, it is not
difficult to see by slightly modifying the proof that this exponent can be
chosen as L = (1 + ¢)K and an appropriate parameter D = D(K, L,¢) for
arbitrary € > 0. Actually there are some improved versions of this result
that supply slightly better estimates for this parameter and exponent (see
2] or [8] Theorem 2.6.4), but this improvement does not play an important
role in our considerations.

The above argument shows that the class of functions F considered in the
above example has polynomially increasing covering numbers with exponent
2L and an appropriate parameter D. Its exponent can be chosen even as
(1 + ¢)L with an appropriate parameter D(e) for all € > 0. This means in
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particular that Theorem 1 can be applied to estimate the probability P,
if the numbers L, N and n are appropriately chosen. It can be proved that
both Theorem 1 and our previous argument provide an estimate of the form
P,, < p* with a universal constant 0 < a < 1, only the parameter « is
different in these two estimates. (Observe that p = £ > [ f(z)u(dz) for all
f € F in this example.). To see that we proved such an estimate for P, ,
which implies the inequality P,, < p** under the conditions of Theorem 1
observe that p*~% < p20%/41 and n* < p=%/2%_ Moreover, it can be seen that
if we are not interested in the value of the universal parameter «, then this
estimate is sharp. I also remark that we can give a useful estimate for P,,
in this example (and not only the trivial bound P, , < 1) only if u > L.
The main content of Theorem 1 is that a similar picture arises if the
supremum of the sums we consider is defined with the help of an arbitrary
class of functions with polynomially increasing covering numbers. Namely,
Theorem 1 states that if F is a class of functions with polynomially increasing
covering numbers with some exponent L and parameter D that satisfies some
natural conditions, then there are universal constants 0 < a < 1, C; > 1 and
C5 > 0 such that P (sup Su(f) > u) < Dp~*if n > C1L and p < n~¢.

feF
Here we applied the notations of Theorem 1. We also gave an explicit value

for these universal parameters in Theorem 1, but we did not try to find
a really good choice. It might be interesting to show on the basis of the
calculation of the present paper that we can choose C; = 1+ ¢ or a =
1 — ¢ with arbitrary small ¢ > 0 if the remaining universal constants are
appropriately chosen.

As the above considered example shows the estimate of Theorem 1 holds
only if u > C'L with a number C' > 1. The other condition of Theorem 1 by
which p < n~% with a sufficiently large number Cy > 0 can be weakened.
Actually this is the topic of paper [5] which is a continuation of the present
work. In paper [5] I shall consider such classes of functions F with polyno-
mially increasing covering numbers for which the parameter p considered in
Theorem 1 can be relatively large. On the other hand, in [5] we shall con-
sider only such classes of functions F whose elements have the ‘normalizing
property’ [ f(xz)u(dz) = 0 for all f € F. In the present work we did not
impose such a normalization condition, because in the case p < n™® with
some « > 1 the lack of normalization has a negligible effect.

Theorem 1 will be proved with the help of Theorem 1A formulated below.



After its formulation I shall explain that Theorem 1A can be considered as
a special case of Theorem 1.

Theorem 1A. Let X = {x1,...,xn} be a finite set of N elements, and let
X be the o-algebra consisting of all subsets of X. Let u denote the uniform
distribution on X, i.e. let u(A) = |_]<1[| for all sets A C X, where |A| denotes
the cardinality of the set A. Let F be a class of functions with polynomially
increasing covering numbers with some parameter D > 1 and exponent L > 1
on the measumble space (X, X) such that 0 < f(x) <1 for all x € X and
feF, and [ f(z)u(dx) < & for all f € F with some p > 0 which satisfies
the inequality p < mm(lolow L 20).

For the sake of a simpler argument we shall assume that the number N
has the special form N = 28Ny with some integer k > 0 and a number Ny that
satisfies the inequality < p‘3/2 < No < 1p7%2. (Actually we could choose an
arbitrary number N > 5 p_3/ 2 in Theorem 1A, but this special choice of N
makes our argument simpler.)

Introduce for all numbers p = 1,2,... the p-fold direct product X? of the
space X together with the p-fold product measure i, of the uniform distribu-
tion u on X, i.e. let each sequence @ = (z,,,.. S Ts,), T, € X, 1< <p,
have the weight up(x(p)) W with respect to the measure i,.

Given a function f € F and a positive integer p let us define the set
B,(f) C X? for all p > 2 by the formula

B,(f) = {z® = (Tsp, .0 T, ) P e X7, flzs;) =1 foralll <j<p},
(3)

B, = Bp(f) = U Bp(f)- (4)

feFr

and put

If p>2L and p < p~ /10 then there exist some universal constants Cy > 0
and 1 > Cy > 0 such that

tp(By) = pp(Bp(F)) < OlDPCQP- (5)

We can choose for instance Cy =2 and Cy =

In Theorem 1A we considered a special case of the problem discussed
in Theorem 1. We took a space of the form X = {zy,...,zy} with the
uniform distribution p on it, and considered a class of functions with polyno-
mially increasing covering numbers and some additional special properties.



If we apply Theorem 1 with the choice p = n, then the event B,(F) defined

in (4) agrees with the event sup S, (f) > n, and formula (5) implies the esti-
fer

mate (2) with the special choice u = n for the system X, F, u considered in
Theorem 1A.

It may be worth mentioning that in Theorem 1A we considered a class
of functions F which contains functions f with the property 0 < f < 1,
while the event B,(F) whose probability we have estimated depended only
on the sets where these functions f take value 1. Hence the event B,(F)
would not change if we replaced all functions f € F by the smaller functions
[-I{f=1y, where Iy denotes the indicator function of the set {z: f(x) = 1}.
Nevertheless, it was useful to formulate the result in the form as we did,
because by replacing the functions f by f - I{;—;; we may get such a class of
functions which has not polynomially increasing covering numbers. We shall
prove Theorem 1 with the help of Theorem 1A formulated in the present
form.

In Section 2 I make some remarks and discuss some examples which may
explain the motivation behind the investigation of this paper. Theorem 1A
will be proved by means an appropriate induction procedure in Section 3.
Theorem 1 will be proved in Section 4 with the help of Theorem 1A and a
good approximation.

2. A discussion of the results in this paper.

To understand the results of this work it may be useful to consider the
following problem. Let us have a finite set X = {z1,...,2y} with large
cardinality N and a class F of subsets of X which is a Vapnik-Cervonenkis
class with some parameter B > 1 and exponent K > 1, and such that all sets
A € F contain no more than pN points, where p is a relatively small number,
say p < min (555, (2K) 7). Let us choose n points from the set X randomly
and independently from each other so that at each step we choose every point
of X with the same probability % Let n > aK with an appropriately chosen
sufficiently large but fixed universal constant «. Give a good estimate on the
probability that one of the sets A € F contains each one of the n selected
points.

This probability is very small, and it can be well bounded by means of
Theorem 1A. Indeed, if we define the class of functions F which contains

the indicator functions of the sets in F, then F is a class of functions with



polynomially increasing covering numbers which satisfies the conditions of
Theorem 1A, and the probability we want to estimate equals the probability
of the event B,(F) defined in (4) with p = n. Hence Theorem 1A gives the
estimate C;Bp®?" with some universal constants C; > 0 and Cy > 0 for the
probability we want to estimate.

Theorem 1 can be useful in the solution of the following generalized ver-
sion of the previous problem. Let us consider the same class of functions
F as before, and choose randomly n points from the set X independently
of each other by the uniform distribution, and let us assume this time that
p < n /20 Let us bound the probability of the event that one of the sets
A € F contains at least oK elements from the randomly chosen n points,
where « is a sufficiently large fixed number, and K is the exponent of the
Vapnik-Cervonenkis class F. This probability can be estimated similarly to
the previous case, only we have to apply Theorem 1 instead of Theorem 1A.
We get the estimate Bp®“X with a universal constant C.

Similar problems can be solved with the help of results which give a good
bound on the probability at the left-hand side of formula (2) if F is a class of
functions with polynomially increasing kernel functions, and the inequality
[ f(z)p(dx) < p holds for all functions f € F with a small number p. (The
measure p in this formula is the distribution of the random variables which
take part in the definition of the quantity S, (f) appearing in Theorem 1.) I
know some results in the literature in this direction, but they do not provide a
good estimate in the previous problems. In particular, they do not show that
the above considered probabilities are very small even in such cases when we
consider relatively short sequences of selected points in the first problem or
we are looking for such a set A € F in the second problem which contains
only relatively few elements from the random sequence we have selected. (We
may get good estimates if the sequence we consider has a length n > aK
or we are looking for a set A € F containing at least oK points of our
sequence. Here a > 0 is a universal constant, and K is the exponent of the
Vapnik-Cervonenkis class.) The earlier results I know about do not give a
good estimate in these problems, because they provide a sharp estimate in
formula (2) of Theorem 1 only if the parameter p in it is relatively large.

In this paper I gave a good estimate in Theorem 1 if the parameter p in it
is very small, namely if the inequality p < n72° holds. I am also interested
in the question what can be told if this condition is dropped. This is the
subject of my paper [5]. T also discuss some examples in that paper which
show that its estimates are sharp, and I compare them with the results of
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some earlier works. The proofs in [5] are based on Theorem 1 of this work.
But since the arguments of the two papers are essentially different I decided
to handle them separately.

I wrote that the parameter p in Theorem 1 must be small. But actually
the condition p < n~2% imposed on it provides a relatively large bound. In
the proof of the generalized version of Theorem 1 in paper [5] I shall adapt
one of the main ideas in the Vapnik—Cervonenkis theory. I try to reduce the
estimation of the probability we are interested in to the estimation of the
probability of relatively few events that can be simply bounded. Relatively
few events means in this context that their number is only a polynomially,
and not e.g. an exponentially increasing function of the sample size n. I shall
be able to carry out such a program, since the parameter p in Theorem 1 is
bounded by a (negative) power of the sample size n. This is the reason why it
is important that we can apply Theorem 1 with relatively large parameters p.

I finish this section by some comments on the terminology of this paper.
I applied the notion of classes of functions with polynomially increasing cov-
ering numbers. I introduced the same notion in my work [4] under the name
‘Li-dense classes of functions’. I changed this name to make reference to the
closely related notion of uniform covering numbers which was introduced in
the literature at several places, see e.g. [1], [6] or [8]. I used the terminology
Vapnik-Cervonenkis classes in a non-standard way. Usually one calls a class
C of subsets of a set X a Vapnik—Cervonenkis class of dimension d if d is
the largest integer such that for all subsets D of X containing d elements
its intersections with the sets of C contain all subsets of D. (See e.g. [1].)
An important combinatorial result called the Sauer lemma implies that a
Vapnik-Cervonenkis class of dimension d is a Vapnik-Cervonenkis class with
exponent K = d and parameter B = (£)? by our terminology. (On the other
hand, if a class of sets is a Vapnik—Cervonenkis class with exponent K and
parameter B by our terminology, then it is a Vapnikaervongnkis class of
dimension d < d, if d is such a number for which BdX < 2?.) Hence we
may also speak of Vapnik-Cervonenkis classes with given exponent and pa-
rameter. I prefer this terminology, because it expresses the most important
property of Vapnik-Cervonenkis classes, and it indicates the similarity of this
notion with the notion of classes of functions with polynomially increasing
covering numbers.



3. The proof of Theorem 1A.

Theorem 1A will be proved by means of induction with respect to the
parameter k (appearing in the definition of the size N of the set X'). The first
result of this section, Lemma 3.1, formulates a result similar to Theorem 1A
in the special case when the set X, where the functions f are defined contains
relatively few points. We need it to start our induction procedure.

Lemma 3.1. Let us fix a number p, 0 < p < 1, and a set X = {z1,...,xn,},
with Ny < %p*:g/z points together with a class of functions F defined on X
which satisfies the following weakened version of the property having poly-
nomially increasing covering numbers with some parameter D > 1 and ex-
ponent L > 1. N(e, F,Li(u)) < De7t for all 0 < & < 1, where u is the
uniform distribution on X, and N'(g,F, L1(n)) was introduced in the defini-
tion of uniform covering numbers. Let us also assume that [ f(z)dp(z) < p
and f(z) >0 for all f € F and v € X. Let us consider an integer p > 2L,
and the set B, = B,(F) C X? introduced in formula (4) together with the
uniform measure [, on the p-fold product X® of the space X. The inequality

1p(Bp) < Dpp/4 (6)
holds.
Proof of Lemma 3.1. Let us choose a set of functions fi,..., fs, f; € F for
all 1 < j < s, with cardinality s < D(2Ny)¥ such that for all f € F there is a
function f;, 1 < j < s, for which the inequality [ |f(z) — f;(z)|p(dz) < ﬁ
holds. If [ |f(z) — fij(x)|u(dz) < ﬁ, then |f(z) — f;j(z)] < 5 forall z € X
This follows from the inequality N%)|f(:v) — fi(@)| < [1f(x) = fi(z)|p(dx) <
sw for all z € X. As a consequence, {z: f(z) = 1} C {z: f;(z) > 3} for
such a pair of functions f and f;, and

B, = Bp(F) = U Bp(f)

fer
s

1
C U {(a;tl,...,xtp):fj(xtk) > 5 forall 1 <k gp}.
j=1
Besides, we have for each 7, 1 < j <,

foralllgkgp}

2
= (n{oesi = 3) <o



Hence the relations p > 2L and Ny < %p*3/ 2 imply that
o(B,) < s(20)° < D(2No)"'*(2p)" < Dy
O

In our inductive proof we also need a result presented in Lemma 3.2. It
is a version of the following heuristic statement.

Let us consider a class of functions F on a finite set X with polyno-
mially increasing covering numbers which consists of non-negative functions
bounded by 1, and take the supremum of the integrals [ f(z)u(dz) of all
functions f € F with respect to the uniform distribution @ on X. Let the
cardinality of the set X be 2N, where the number N is of the form N = A2*
with some positive integers A and k, and let the above supremum of integrals
be bounded by a number py;. Then there is a number py, slightly larger than
pr+1 with the following property. For most subsets Y C X with cardinality
N the supremum of the integrals of the restrictions of the functions f € F
to the set Y with respect to the uniform distribution on Y can be bounded

by pr.

Lemma 3.2. Let us define two sequences of numbers

k—1 -1
3
Ny, = 2"No,  and Pk:PH<1+W> . k=12, py=p,

=0 J
(7)
with the help of some starting numbers Ny and p which satisfy the relations
p < min(q55, L) and %p‘iﬁ/z < Ny < %p_?’/z. Let us fix an integer k > 0,
and a set X = {x1,..., 095, } with Njyy = 2Ny = Ng2¥ elements, and
consider a class of functions F defined on the set X which has polynomially
increasing covering numbers with parameter D > 1 and exponent L > 1 and

satisfies the inequality 0 < f(x) < 1 for all points x € X and functions
Ngy1

feF. Put Rp(f) = >, f(z;), and assume that the class of functions F
j=1

also satisfies the condition Ryi1(f) < Ngy1prsr for all f € F. Let us define
the quantity Ry (f) = >, f(z;) for all functions f € F and sets Y C X.

;€Y
The following Statement (a) holds.

(a) The number of sets Y C X such that |Y| = N, and sup Ry (f) > Nypx

feF
18 less than (2]<>;’“)Dexp {_ﬁgk/%p—l/zo}.
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Proof of lemma 3.2. Let us fix a partition of X = {z1,...,2zan,} to two
point subsets {x;,, ), },. .., {Zjn _1s Tjoy, } together with a sequence of i.i.d.
random variables e1,. .., ey, with distribution P(g; = 1) = P(g; = —-1) =1
for all 1 <1 < Nj. Let us define with their help the ‘randomized sum’

Ue(f) =D e (fwjn,) — fla) (8)

for all f € F.
Let us observe that for all f € F the inequality

222 )
P(Uk(f) > 22) S exp — z < efz /2Nkpk+1 (9)

fz’fl<f<xml> |

holds for all z > 0 by the Hoeffding inequality (see e.g. [7] Appendix B) and
the inequality

Ny 2Ng
D (F@j) = F@))? <2 f(2)* < 2Ria(f) <ANgpra. (10)
=1 Jj=1

(In formula (10) we exploit the condition 0 < f(z) < 1 which implies that

fl))? < f(z5).)
Define the (random) set

W:Vk(€1,...,8]\/k): U {$j2171}u U {xjm}‘

l:g=1 l:g1=—1

With such a notation we can write

w: Z f(xs) > Nipprgr + 2

seVi(e1(w),..., aNk(w))
C quw: Z flzs) > Benlf) + 2z p = {w: Up(f)(w) > 2z}.

2
SEVi(£1 (W), ey, (W)

12



Hence

P W Z f([l?s) > Nkpk:+1 + z < 6_22/2Nkpk+1 (11)

SEVk(El(w),~~~,€Nk (w))

for all z > 0 by relation (9).
I claim that relation (11) implies the following Statement (b).

(b) For all f € F and z > 0 the number of sets V' C X such that |V| = Ng,

and > f(x) > Ngpri1 + 2 is less than or equal to (2]<[V:)e—z2/2NkPk+l.
zeV

Indeed, it follows from relation (11) that for a fixed partition of the set X
to two point subsets the number of those subsets V' C X which contain
exactly one point from each element of this partition, (and as a consequence

contain exactly Ny points), and > f(xs) > Ngpgy1 + 2 is less than or equal
seV

to 2Nee==*/2Nipei1 . We get an upper bound for the quantity considered in
statement (b) by summing up the number of sets V' with these properties for
all partitions of X to two point subsets, and taking into account how many
times we counted each set V' in this procedure. The number of the partitions

of X to two point subsets equals (2N —1)(2N,—3) ---3-1 = 21%1\%) » and each

partition provides at most 2Vke=="/2NPk+1 gets V with the desired properties.
All sets V' were counted Ni!-times in this calculation. (The multiciplicity
by which a set V, |V]| = N, was counted in the above calculation agrees
with the number of those partitions of X to two point subsets which have
the property that all of their elements contain a fixed element of V.) These
considerations imply Statement (b).

Given a number 0 < u < 1 there exist s < Du~* functions fi,..., fs
in F such that for all f € F and sets ¥ C X one of the functions f;,

1 < j < s, satisfies the inequality Z |fi(x) — f(z)] < Z \fi(z) — f(z)| <

ulNgpy1. We get this relation by explmtmg that F is a class of functions
which has polynomially increasing covering numbers with parameter D and
exponent L if we apply inequality (1) to estimate N (e, F, L1(p)) with the
uniform distribution p on X instead of supN(e, F, Li1(v)). This has the

consequence that if Y f(x) > Nypry1+2+2uNy forsomeY C X and f € F,
zcY
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then there exists some index 1 < j < s such that > f;(z) > Ngprt1 + 2
zeY
with the same set Y C X. Hence Statement (b) implies that the number of

sets Y such that |Y| = Ny and > f(z) > Nigprs1 + 2 + 2ulN, with some

€Y
f € Fis less than or equal to s - e=="/2Nkphs1 (%{Xj) = Du Le = /2Neprn (2157\26)
Put z = Ngpriq - N,;l/g and u = Nik With such a choice we get that

the number of sets Y C X such that |Y| = Ny and sup Ry (f) > Nipe+1(1 +
feF

3Nk_1/8) = Nipi is less than

18\ L 1/8\ L
D Nk/ G*N;f/4pk+1/2 <2Nk) _ (QNk> D 2k/8N0/ 6*23k/4N03/4Pk+1/2_
Pht1 Ny, Ny, Pht1

(12
It follows from the definition of pj that % p < pri1 < p, and we also have L <
p~1/?0 because of the condition imposed on the number p. These relations
together with the condition %Gp*?’/Q < Ny < ép*3/2 of Lemma 3.2 enable us
to bound the expression in (12) from above by

—~1/20 B
e_CZQSk/4p 1/8

2N,
< Nk) D (Cl2k/8p—19/16)p
k

2N
< <Nk)DeXp {_032k/20p—1/20}
k

with appropriate constants C', Cy, and C3. One can choose e.g. C3 = ﬁ,
and this implies Statement (a). (In the last step of this estimation we have
exploited that for a small number p > 0 and all positive integers k the

—(Cp23k/4,)—1/8 —19/16)971/20

term e is much smaller than the reciprocal of (012’“/ 8p

which is of order exp {—const. p~ V2 (k + log %)}) O

Remark. It may be worth remarking that the most important part of Lemma
3.2, relation (9) or its consequence (11) can be considered as a weakened
version of Lemma 3 in [3], and even its proof is based on the ideas worked
out there. In formula (9) a random sum denoted by Uy (f) was estimated by
means of the Hoeffding inequality. To get this estimate we had to bound the
variance of the random variable Ui (f), and this was done in formula (10).
In Lemma 3 of [3] a similar random sum was investigated, but in that case a
good asymptotic formula and not only an upper bound was proved for the tail
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distribution of the random sum. In the proof of that result a sharp version
of the central limit theorem was applied instead of the Hoeffding inequality,
and we needed a good asymptotic formula and not only a good upper bound
for the variance of the random sum we investigated. The proof of the good
asymptotic formula for this variance was the hardest part in the proof of
Lemma 3 in [3].

Proof of Theorem 1A. Let us fix some numbers Ny, p and L which satisfy the
conditions of Lemma 3.2. Take an integer k£ > 0, define the numbers Ny and
pr by formula (7), consider a space X = {z1,...,zy, } with Ny elements and a
class of functions F on it which has polynomially increasing covering numbers
with parameter D > 1 and exponent L > 1, and it has the properties that
if feF,then0< f(z) <1lforallz € X, and [ f(z)u(dx) < py with the
uniform distribution g on X. Fix an integer p such that p > 2L, p < p~ /100,
and let us also consider the sets B,(f), f € F, and B, = B,(F) introduced
in formulas (3) and (4). They consist of sequences z?) = (zy,,...,z5,) € X?
with some nice properties. Let V(p, p, No, k) = Vb r(p, p, No, k) denote the
supremum of the cardinality of the sets B,(F) if the supremum is taken for
all possible sets X and class of functions F with the above properties (with
parameters Ny and py).
I claim that

V(p, p, No, k) < CuDNFpP/* for all k =0,1,2,... (13)
with
k .
Cr=]J1+27p). (14)
j=0

Relation (13) will be proved by means of induction with respect to k. Its
validity for £ = 0 follows from Lemma 3.1. Let us assume that it holds for
some k, take a set X with cardinality Ni,; = 2N together with a class of
functions F which satisfies the above conditions with the parameters D, L,
P, prr1 and Ni.q, and let us give a good bound on the cardinality of the
set By(F) defined in (3) and (4) in this case. To calculate the number of
sequences z?) = (z,,,...,z,) € X? which belong to the set B,(F) let us
take all sets Y C X with cardinality |Y'| = N, let us bound the number of
those sequences () € B,(F) for which also the property z®) € Y? holds,
and let us sum up these numbers for all sets Y C X such that |Y| = Nj.
Then take into account how many times we counted a sequence x?) in this
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summation. I claim that we get the following estimate in such a way:

2Nk)
( 1 .
IB,(F)| < DN,’;(QJQ—’;)) (okpp/4 +exp {—mgk/zop 1/20}> (15)

N

with the coefficient C} defined in (14).

To prove relation (15) let us first observe that if F is a class of functions
on the set X which has polynomially increasing covering numbers with pa-
rameter D and exponent L, and we restrict the domain where the functions
of F are defined to a smaller set Y C X then the class of functions we obtain
in such a way remains a class of functions which has polynomially increasing
covering numbers with the same parameter D and exponent L. Hence if we fix
a set Y with cardinality |Y'| = Ny for which the property sup Ry (f) < Nipx

feF

holds (with the quantity Ry (f) introduced in the formulation of Lemma 3.2),
then the number of those sequences x® for which ® € B,(F) NY? can be
bounded by our induction hypothesis by Cy Ny DpP/*. We shall bound the
number of the sequences z?) € B,(F) N Y? for the remaining sets Y with
cardinality |Y| = Ny by the trivial upper bound N¢, but the number of such
sets Y is less than (ng)DeXp{ 1002k/20p*1/20} because of Lemma 3.2 and
the condition Rx(f) = Nit1 [ fdp < Nys1prsr for all f € F. This yields
the upper bound Cy N¥ DpP/* (2N’“) + N} (ZN’“)Dexp {—% 2k/20 p~ 2} for the
sum we get by summing up the number of sequences z® € YP N B,(F)
for all subsets with |Y| = Ny elements. To prove (15) we st111 have to take
into account how many times we counted the sequences z(P) € B,(F) in this
summation. If all coordinates of a sequence zP) € B,(F) are different, then

we counted it (QJJV\;’“__;’) = (2]\][\‘;1:7’) -times, because to find a set Y, |Y| = Ny,

containing the elements of this sequence z”) we have to extend these points
with Ny — p new points from the remaining 2N, — p points of X. If some
coordinates of a sequence () may agree, then we counted this sequence
with greater multiplicity. Indeed, if the sequence z®) contains p’ < p dif-
ferent elements, then we counted it (QN]’QIZP /) > (2]\][\’;]:1’ )—times. The above
considerations imply (15).

To prove relation (13) with the help of (15) let us observe that under the

conditions of Theorem 1A (in particular, we have &~ < 16p%2, p? < p=1/50 <
LoV 2Ny —p) = N = 28Ny for all k = 0,1,2,... with a sufficiently
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small p > 0)

wr () 2NN = 1) (2N —pt 1)
k(”}i’;}:”) k Ne(Np—1)--+(Ny —p+1)
1 2 p—1
= N? 1+ — 1+—)---(1+—)
2
p —(k+1) 4/3 1
<N+1eXp{2k+—1N0} Niyi€? 7 < Nig (1"’52 (k+1)P) 5
and

1 ~ 1 - p, 1
S T I {‘W"’mp s o}

< Gyt 32 ()
with the coefficient C}, defined in (14). These estimates together with (15)
imply (13) for parameter k + 1.

It is not difficult to prove Theorem 1A with the help of relation (13). To
do this let us observe that p, > £ and C <2 for all £ = 0,1,2,.... Hence
taking a class of functions F on a set X with cardinality Ny with some & > 0
Which satisfies the conditions of Theorem 1A we can write (by exploiting that
J flz)pu(dr) < & < pg) the estimate

MP(BP(‘F)) = Nk_p|Bp(]:)| S Nk_pv(papa NOak) S 2Dpp/4

by relation (13). O

4. The proof of Theorem 1.

First we prove a special case of Theorem 1 in Lemma 4.1. Here we take
a class of functions F on a finite set X of cardinality 2* with some integer k,
and p is the uniform distribution on X.

Lemma 4.1. Let us consider a finite set X = {x1,..., w0} with N = 2F
elements together with a class of functions F on X which has monotone
increasing covering numbers with some parameter D > 1 and exponent L > 1,
and it contains functions f € F with the properties 0 < f(x) < 1 for all
r € X and [ f(zx)p(dx) < p with some 0 < p < 1. Here p denotes the
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uniform distribution on X . Let us take the n-fold direct product X™ of X with
some number n > 2, and define the function S,(f)(v,, ..., xs,) = > f(z,)
=1

‘77
for all (zs,,...,2s,) € X" and f € F. Let us assume that p < 2n=2 and
N = 2% > p=2. Then the set B,(u) C X" defined as

B, (u) = {(9351,---,!Bsn)1 sup Sp(f)(xsy, .-, xs,) > u} (16)

fer

satisfies the inequality
fin(Bn(w)) < 2Dp"*  for all u > 40L, (17)

where i, denotes the uniform distribution on X™.

Proof of Lemma 4.1 Let us define for all functions f € F and integers
j, 1 < j < R, where R is defined by the relation n < 2% < 2n, the
functions fU)(x) = min(277, f(z)) and fY(z) = 27fV(z), + € X. Put
Fi={f9: fe F}and F; = {f¥: f € F}. One can simply check that if
F is a class of functions which has polynomially increasing covering numbers
with parameter D and exponent L, then F; is a class of functions which
has polynomially increasing covering numbers with parameter D and expo-
nent L, while F; is a class of functions which has polynomially increasing
covering numbers with parameter D2/ and exponent L. We can also state
that [ fU(z)u(dr) < p, and [ fO(2)u(dz) < 27p for all f € F.

Let us define for all f € F and 1 < j < R the following function H;(f)
on X™:

H;(f)(xs,,--.,2s,) = the number of such indices [ for which f¥(z,) = 1.

We can write
R
Sn(f)(Tsys .-y xs,) Z 2"TH (f) (ys -y 2s,) + 1

for all f € F. This formula implies the inequality

R
sup S, (f)(zsy,- -, xs,) SZ 21 JsupH sy, xs,) + 1,
feF =1 feF
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and the relation

{(xsl, ooy s, )t SUp S (f)(Tsys vy T, ) > u}

ferFr

R
Supfe]—'Hj(f>($S1>"'ax3n) (U—l) —j/2
CU{(mSl,...,xsn): — > 27725
j=1 -1 V2 -1

Hence

fin(Bn(u)) < Zun(Dn(%J')) (18)

for the sets B, (u) defined in (16) and

feF
, 1<j<R

Dy (u,j) = {(%1, sy s ) sup Hi(f)(wgy, .o s,) > \/52_ 1(u _ 1)23‘/2} ’

We can prove Lemma 4.1 with the help of relation (18) if we give a good
estimate on the measures i, (D,(u,j)). This can be done with the help of
Theorem 1A.

Indeed, the set D, (u,j) consists of such sequences (zs,,...,zs ) € X"
which have a subsequence (z, , ...z, ) witht = t(j) = (V2L (y—1)27/%) 41
elements, where [-] denotes integer part, with the property that there is a
function f € F such that the function f;(-) defined with its help equals 1 in
all coordinates of this subsequence. More explicitly,

Dy (u, j) = U (U {(@sys - 25, ) f(j)(:bsll) =1,... f(j)(x&t) = 1})
{11yl }C{1,n} \FEF
(19)
with ¢ = t(5) = Y31 (u — 1)27/%) + 1.

The outside union in (19) consists of (,

i
dinality of the sequences (x1,...,z,) in the (i]r)mer union can be bounded by
means of Theorem 1A for each term if it is applied with p = #(j), in the space
X consisting of N = 2% = Ny2* points, for the class of functions F; which is
a class of functions which has polynomially increasing covering numbers with
parameter D2/% and exponent L. Moreover, the functions fU) € F; satisfy

the inequality [ f9)(z)u(dz) < 27p. This means that under the conditions

) < n'U) terms, and the car-
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of Lemma 4.1 we can apply Theorem 1A for the class of functions F; with
parameter p = p; = 277 p instead of p. (We have to check that all conditions
of Theorem 1A hold with p = p and p = ¢(j). In particular, we can state
that p = 27t1p < L729 since p < 2n72%0, 2/ < 2n, and since we estimate
the probability in formula (17) only under the condition u > 40L, and this
probability is zero if u > n. Hence we may assume that 40L < u < n. We
chose the term N, in the application of Theorem 1A as Ny = 2% with kg
defined by the relation -=p %% < 2k < 15-3/2 and k = k — ko. Observe
that 2 < 15732 < p=2 < N)
We will prove with the help of the above relations the inequality
Hn(Dn(l%])) _ ’Dnji;fz .])| < 2nt(j)D2jL(2j+1p)t(j)/4

< 2D(8n°p)t0)/* < 2Dpt0)/5 < p v/, (20)
To get the first estimate in the second line of formula (20) observe that under
the condition of Lemma 4.1 @(u — 1) > 4L, hence 27F < 2127/ <
2t0)/4 and by the definition of the number R we have

(2j+1)t(j)/4 < (23+1)t(j)/4 < (4n)t(j)/4'

1/200

We imposed the condition n < (%) , and this implies the second inequality.

Finally ¢(j) > % (In the last inequality a j = 1 parameter is the worst case.)
Relation (17) follows from (18) and (20). O

Now we turn to the proof of the main result of this paper.

Proof of Theorem 1. We may assume that all functions f € F are non-
negative, i.e. 0 < f(z) <1 for all f € F and z € X, because we can replace
the function f by its absolute value |f|, and apply the result for this new
class of functions which also satisfies the conditions of Theorem 1. Next I
show that we also may assume that the class of functions F contains only
finitely many functions, and it satisfies the same conditions as the original
class of function F with the only difference that we assume that F is a class
of functions which has polynomially increasing covering numbers with the
same exponent L but with parameter 27D instead of D.
Indeed, if a number is an upper bound for the probability

P (sup Sn(f) > u) for all finite subsets F' C F, then it is also an upper
feF
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bound for P (sup Sn(f) > u) Besides, the conditions of Theorem 1 remain
feFr

valid if F is replaced by an arbitrary class of functions 7/ C F with a small
modification. Namely, we can state that F’ is a class of functions which
has polynomially increasing covering numbers with exponent L but with a
possibly different parameter D = 2UD. (We had to change the parameter
D of a class of functions F' C F with polynomially increasing covering
numbers, because although we can choose a sequence of functions fi,..., f,
with m < De™F elements which is an e-dense set in F with respect to the
Ly(v) norm with a probability measure v, and f; € F, but these functions
may be not contained in F’. To overcome this difficulty we choose a sequence
fis-- o, fm with m < 28 De~" elements such that 1r<r;i<nmf \f — fildv < § for

all functions f € F'. We may also assume that for all these functions f;
there is a function f € F’ whose distance from f; in the L;(v) norm is less
than or equal to 5, since we can drop those functions f; which do not have
this property. Then we replace those functions f; for which f; ¢ F' by a
function f € F’ such that [ |f — f;|dv < §. In such a way we get an e-dense
subclass of ' with m < 22De~l elements in the L(v) norm.)

In the next step I show that we may restrict our attention to the case when
the functions of the class of functions F (consisting of finitely many functions)
take only finitely many values. For this goal first I split up the interval [0, 1]
into n subintervals of the following form: B; = (%, %], 2 < j<mn,and
B, =0, %] (We defined the function B; in a slightly different way in order
to guarantee that the point zero is also contained in some set B;.) Then
given a class of function F on a set X that contains finitely many functions
fi,-.., [r we define the following sets A(s(1),...,s(R)) € X (depending
on F):

A(s(1),...,s(R)) = {x: fi(x) € By, foralll<yj< R},

where 1 < s(j) <nforall1<j<R.

In such a way the sets A(s(1),...,s(R)) make up a partition of the set
X. Actually, for the sake of a simpler argument we shall diminish a bit the
set X, by defining it as the union of those sets A(s(1),...,s(R)) for which
w(A(s(1),...,s(R))) > 0 with the measure p appearing in Theorem 1. This
restriction will cause no problem in our later considerations.

We shall define new functions f](x), 1 < 7 < R, by means of the partition
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of X to the sets A(s(1),...,s(R)) by the formula

fi(z) M(A&;m,...,s(R))) ’

We have | f;(z) — f;(z)] < Lforall1<j<nandzeX. Hence

1<j<R, ifzeA(s(),... s(R)).

sup (Sa(;) — sn@))' <1

1<j<R
for almost all sequences & (w),. .., &, (w), and as a consequence
P< sup Sn(fj)>u—|—1> SP( sup Sn(f])>u> (21)
1<G<R 1<j<R

Let us also observe that the class of functions F = {f;, 1 < j < R} also
satisfies the conditions of Theorem 1, i.e. [ f;(x)u(dz) < pforalll < j < R,
and F is a class of functions which has polynomially increasing covering
numbers with parameter D = 2D and exponent L. (The conditions on the
numbers n and p clearly remain valid.)

The first relation follows from the identity [ f;(z)u(dz) = [ fi(z)u(dx)
which holds because of the identities

.....

for all sets A(s(1),...,s(R)).

To prove that F has polynomially increasing covering numbers with pa-
rameter 2D and exponent L let us introduce for all probability measures
v the probability measure 7 = ©(r) which is defined by the property that
for all (measurable) sets A(s(1),...,s(R)) and B C A(s(1),...,s(R)) the

identity 7(B) = M(B)% holds. Because of the special form of the

functions f] if a set of functions ]:"57,; c Fis an e-dense subset of F in the
L1(7) norm, then it is also a e-dense subset of F in the Li(r) norm. (In the

proof of this statement we exploit that

U(A(s(1),...,s(R))) = v(A(s(1),...,s(R)))

for all sets A(s(1),...,s(R)), and it depends only on the value of a measure
v on the sets A(s(1),...,s(R)) whether a set of functions {f,..., f} C F
is an e-dense subset of F in the L;(v) norm.)

,,,,,
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Hence it is enough to prove the existence of an e-dense subset ]?,; of Fin
the L (7) norm with cardinality bounded by De~L only with respect to such
measures 7 which can be written in the form 7 = 7(v) with some probability
measure v. In this case the relation we want to check follows from the fact
that the original class of functions F has polynomially increasing covering
numbers with parameter 2X°D and exponent L, (we apply this property for
the measure 7(v)) and the inequality

15 = Frdit) < [ 15 - rlan)

holds for all pairs f;, f; € F and probability measure v. This inequality
holds, since

/ F@) - H@ldw@ < [ 5(0) = (@) do (o))
A(s(1),...,s(R)) )

for all sets A(s(1),...,s(R)).
I claim that for all £ > 1 we can define such a ‘discretized’ probability

measure fi on the g-algebra X} with atoms A(s(1),...,s(R)) in the space
X for which
Fie(A(s(1), ..., s(R)) = u(A(s(1),...,s(R)))| < 27, (22)
and the probability i, has the property that for all sets A(s(1),...,s(R))
Ar(A(s(1),...,s(R))) = a(A(s(1), ..., s(R))2™ (23)

with a non-negative integer a(A(s(1),...,s(R))). (To find such a probability
measure i let us list the sets A( (1),...,s(R)) as By,.. BQ, and define

the measure fi;, by the relation Z fix(By) = B.27Fif (B, —1)2F < Z pr(By) <

B,27F with a positive integer ﬁs We assume this relation for all 1 < s<Q.)
Clearly,

P< sup Sy (f;) > u) = lim Py, ( sup Sy (f;) > u) (24)

1<j<R k—o0 1<j<R

for all u > 0, where P;, means that we consider the probability of the same
event as at the left-hand side of the identity, but this time we take i.i.d.
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random variables i, . . ., &, with distribution fi; (on the o-algebra generated
by the atoms A(s(1),...,s(R))) in the definition of the random variables
Su(f5)-

We shall bound the probabilities at the right-hand side in formula (24)
for all large indices k by means of Lemma 4.1. This will be done with the
help of the following construction. Take a space X=2X,= {z1,T9,...,Tor}
with 2* elements and with the uniform distribution ¢ = p® on its points.
Let us fix a partition of X consisting of some sets A(s(1),...,s(R)) with
a(A(s(1),...,s(R))) elements. The number a(-) was introduced in (23).

Let us define the functions f;(z) = fj(k)(x), 1 <j <R, ze X, by the

formula, f;(z) = W) 1 < j <R, ifze A(s(1),...,s(R)). Take the n-fold

direct product X™ of X together with the uniform distribution My = m(zk)

on it and the functions S,(f;)(z,,...,2,) = S filzy,), 1 < j < R, if
i=1

(24,,...,x,) € X" on the space X”. I claim that

P, (Sup Sn<fj)>u> (25)

1<G<R

= i ({(l'tl,...,xtn): sup Su(f)(2ers .. w0,) > u}) < 2Dp"/*

1<j<R

with D = 2LD if k > ko(n, R) with some index kq(n, R) and u > 40L.

The identity in formula (25) holds, since the joint distribution of the
random vectors S,(f;)(&1,...,&,), 1 < j < R, where &,...,&, are inde-
pendent random variables with distribution ji; and of the random vectors

Sn(f;k))(xtl, .o, 2,), 1 < 7 < R, where the distribution of (zy,,...,2,) €

Xmis /AZ“), agree. To prove the last inequality of (25) it is enough to check that
for all sufficiently large numbers k the class of functions F = {f Tyeees fR}
on the space X = X satisfies the conditions of Lemma 4.1. Namely, F
has polynomially increasing covering numbers with parameter D = 2¥D and
exponent L, and [ f;k) (z)p(dz) < pwith anumber g < 272 for all f; € F.

We have to explain why F is a class of functions on X with polynomially
increasing covering numbers. Let us observe that since the functions f] are
constant on the sets A(s(1),...,s(R)) we have to take into consideration
only the values 7(A(s(1),...,s(R)) of the measures ¥ on the space X when
we want to show that F has polynomially increasing covering numbers with
parameter D = 28D and exponent L.
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To do it let us correspond to all measures 7 on X the measure 7 on
X defined by the relation 7(A(s(1),...,s(R))) = D(A(s(1),...,s(R))) for
all sets A(s(1),...,s(R)). Then we get that if a class of functions F.; =

{fis,---, fi.,} is an is an e-dense class of F with respect to the L;(#) norm,
then the class of function F.; = {f,, ..., fi.} is an e-dense class with respect

to the Li(7) norm. This implies that F has such polynomially covering
numbers as we claimed.

On the other hand, ffj(k)(x = [ f;(x)fn( dz), and

lim /fj x) i ( dx) /fj (dr) < p<n 2

k—o0

because of formula (22), and this implies that [ f;k) (z)p(dx) < (1+52)p for
large parameters k. Since under the conditions of Theorem 1 p = (1—{—10%2) p <
2n 2% for large enough parameters k, hence we can apply Lemma 4.1 with
this p in the estimation of the probabilities in formula (25). Since we can
restrict our attention to the case u < n we have p%/?® < 2p%? for large
enough k and we get the inequality part of formula (25) from Lemma 4.1.

Under the conditions of Theorem 1 relations (25), (24), (21), and the
reduction of the investigation of the supremum to the case when the set of
test functions F is replaced by its finite subsets imply that

P (sup Sn(f) > u+ 1) < 2EFIDp/ if 4 > 40L.
fer

Theorem 1 follows from this relation.

Indeed, we can rewrite what this inequality means if the number u + 1
is replaced by the number u on its left-hand side. In such a way we get
that under the conditions of Theorem 1 the probability of the left-hand side
in formula (2) can be bounded by 2L+1Dp=1/% = CDp/0 with C =
2L+1=1/254+u/50 - (We replaced the condition u > 40L by u > 41L in (2). This
enabled us to work with w instead of u+1 in this estimate.) To complete the
proof of Theorem 1, it is enough to show that C' < 1 under its conditions.
This inequality holds, since C' < nt+1pu/100 < 2L 5u/100 if > 2 4y > 4, and
L > 1. If also the relations p < n 2%, and v > L hold, then C' < n*t=% < 1.
O
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