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Summary. Let a smooth curve be given by a function r = f(ϕ) in po-
lar coordinate system in the plane, and let R be a uniformly distributed
random variable on the interval [a1L, a2L] with some a2 > a1 > 0 and
a large L > 0. Ya. G. Sinai has conjectured that given some real num-
bers c2 > c1, the number of lattice points in the domain between the curves
(

R +
c1

R

)

f(ϕ) and
(

R +
c2

R

)

f(ϕ) is asymptotically Poisson distributed for

“good” functions f(·). We cannot prove this conjecture, but we show that
if a probability measure with some nice properties is given on the space of
smooth functions, then almost all functions with respect to this measure
satisfy Sinai’s conjecture. This is an improvement of an earlier result of
Sinai [9], and actually the proof also contains many ideas of that paper.

1. Introduction

Let us consider a curve on the two-dimensional Euclidean space R
2 which is

given by the equation r = f(ϕ), 0 ≤ ϕ ≤ θ, with some 0 < θ ≤ 2π in polar
coordinate system, where f(·) > 0 is a continuous Lipschitz one function on

[0, θ]. Given some non-zero point x = (x1, x2) ∈ R
2 let |x| =

√

x2
1 + x2

2 denote
its absolute value and ϕ(x) the angle between the vectors (1, 0) and x = (x1, x2).
Let us fix two real numbers c2 > c1 and define for all sufficiently large R > 0

(we need that R +
c1

R
> 0) the domain

OR = OR(f) =
{

x ∈ R
2, 0 ≤ ϕ((x)) ≤ θ,

(

R +
c1

R

)

f(ϕ(x)) < |x| <
(

R +
c2

R

)

f(ϕ(x))
}

.
(1.1)

Simple calculation shows that the area of the domain OR is

(

1 +
c1 + c2

2R2

)

(c2 − c1)

∫ θ

0

f2(ϕ) dϕ.

We are interested in the number of lattice points in OR, i.e. in the cardinality
of the set OR ∩Z

2, where Z
2 denotes the points in R

2 with integer coordinates,
if R is a uniformly distributed random variable in an interval [a1L, a2L]. Here
a2 > a1 > 0 are fixed positive numbers, and the parameter L > 0 is large. More
precisely, we are interested in the limiting behaviour of the number of lattice
points in this domain if L → ∞. Ya. G. Sinai has formulated the conjecture
that for “typical” nice curves the distribution of the cardinality of this set tends
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to the Poisson distribution with parameter λ = (c2 − c1)
∫ θ

0
f2(ϕ) dϕ. There is

no explicitly defined curve for which we can verify the above conjecture. On
the other hand, we can show that if a probability measure is given on the set
of continuous Lipschitz one functions with some nice properties, then almost
all functions with respect to this measure satisfy Sinai’s conjecture. This is
a strengthening of a result of Sinai in paper [9], and actually the proof also
depends heavily on the ideas of this paper. To formulate our result first we
introduce the following notion:

Definition of Property A. A probability measure P on the set of continuous
Lipschitz one functions f(ϕ), 0 < ϕ < θ, satisfies Property A if

1.) There are some positive numbers 0 < b1 < b2 and b3 > 0 such that almost
all functions f(ϕ), 0 < ϕ < θ, with respect to the measure P satisfy the
inequality b1 < f(ϕ) < b2 and |f(ϕ1) − f(ϕ2)| < b3|ϕ1 − ϕ2| for all 0 ≤
ϕ1 < ϕ2 ≤ θ.

2.) Let us fix some integer k ≥ 2 and 0 ≤ ϕ1 < ϕ2 < · · · < ϕk ≤ θ. The
random vector (f(ϕ1), . . . , f(ϕk)) has a density function

pk(x1, . . . , xk|ϕ1, . . . , ϕk)

which satisfies the following properties:

2a.)

pk(x1, . . . , xk|ϕ1, . . . , ϕk) < Ck

k
∏

i=2

|ϕi − ϕi−1|
−τ

with some τ < 2 and Ck depending only on k.

2b.) The density function pk(x1, . . . , xk|ϕ1, . . . , ϕk), 0 ≤ ϕ1 < ϕ2 < · · · <
ϕk ≤ θ is a differentiable function of its 2k arguments x1, . . . , xk and
ϕ1, . . . , ϕk, and it satisfies the inequality

∣

∣

∣

∣

∂

∂xj
pk(x1, . . . , xk|ϕ1, . . . , ϕk)

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂ϕj
pk(x1, . . . , xk|ϕ1, . . . , ϕk)

∣

∣

∣

∣



















< Ck

k
∏

i=2

|ϕi − ϕi−1|
−Dk

for all j = 1, . . . , k with some Ck > 0 and Dk > 0 depending only
on k.

We shall prove the following

Theorem. Let P be a probability measure with Property A on the space of
continuous functions on the interval [0, θ], and let R be a uniformly distributed
random variable on the interval [a1L, a2L] with some a2 > a1 > 0 and a param-
eter L > 0. Given some function f(·) on [0, θ], consider the set OR(f) defined
by formula (1.1). Let ξL = ξL(f) denote the number of lattice points in OR(f),
i.e. the cardinality of the set OR(f) ∩ Z

2. Then for almost all functions f with
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respect to the measure P the random variables ξL tend in distribution to the

Poisson distribution with parameter λ = (c2 − c1)
∫ θ

0
f2(ϕ) dϕ as L → ∞.

Sinai proved in [9] a weaker version of this result. He proved that if the
function f(·) is chosen randomly and independently of the radius R with respect
to some probability distribution with nice properties, then the distribution of
the number of lattice points tends to a mixture of Poisson distributions with
different parameters. Sinai expressed the conditions on the distribution of the
functions f in a form slightly different from ours, with the help of certain condi-
tional density functions. Let us remark that our conditions are less restrictive,
and this is important in such applications as for instance the example given in
Section 2.

Most ideas of this work came from paper [9]. The most important step of
the proof, the formulation of the Proposition can be traced in a hidden way
in [9], and even the Proposition’s proof contains several ideas of that paper.
The proof of the Proposition is based on the estimate of the second moments of
a certain random variable. For Sinai, to prove his weaker result, it was enough
to estimate the first moment of a similar random variable. But he also remarked
that the higher moments of such variables can be estimated similarly, although
some additional technical difficulties appear.

Problems about the number of lattice points have been investigated for a
long time in number theory and probabilistic number theory. See e.g. [8] for
a classical treatment, [6] for the investigation of number of lattice points in a
large circle with random centre or [5] for a modern treatment of the problem.
Recently, this problem got even greater importance because of some questions
in physics. We are interested in the behaviour of the spectrum of an opera-
tor in a quantum system. In particular, we would like to understand whether
the quantization of a completely integrable classical mechanical system (which
has nice trajectories) gives a different type of spectrum than that of a hyper-
bolic system with chaotic behaviour. There are certain conjectures about this
problem. It is believed that the local behaviour of the spectrum is similar to
the realizations of a Poisson process in the case of the quantum counterpart of
a “typical” completely integrable system, and the spectrum satisfies Wigner’s
semicircle law in the case of quantization of hyperbolic systems. Actually, the
situation is much more complex. We do not want to discuss this problem in
detail, because this is not the subject of the present paper, and we are rather
far from its good understanding.

The investigation of the spectrum of certain quantum systems leads to the
problem about the number of lattice points in a given domain. An example for
completely integrable systems whose quantization leads to such a problem is
the free motion of a particle on a periodic rotation surface. (More precisely, we
make a factorization of the surface with respect to the period. In such a way
we get the motion of a particle on a compact surface resembling to a torus.)
The quantization of this model leads to the problem about the eigenvalues
of the Laplace–Beltrami operator on this surface. These eigenvalues can be
calculated with a sufficiently good accuracy by means of the so-called quasi-
classical approximation. (See papers [2] and [10]). Then the problem about the
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number of eigenvalues in an interval leads to the problem of counting the number
of lattice points in a domain in R

2 whose boundary is determined through the
rotation surface and the interval. (See [2] or [10]). We are interested both in
the local and global behaviour of the spectrum.

The local behaviour of the spectrum, the number of eigenvalues in a ran-
domly chosen interval of fixed constant length, leads to the probabilistic problem
investigated in this paper. This is the reason why Sinai formulated his conjec-
ture. We cannot prove this conjecture for any explicitly given curve. Our aim
was to show that it holds for typical curves. In the special case of circle, which
corresponds to the spectrum of the Laplace operator on the torus [0, 1]× [0, 1],
this conjecture does not hold. (See Problem 1 in Section 2.) Sinai’s conjecture
implies that the number of eigenvalues of the Laplace operator on a generic
rotation surface is asymptotically Poissonian in a randomly chosen interval of
constant length.

The global behaviour of the spectrum, the number of eigenvalues in a large
interval [0, L] leads to problems more intensively investigated in classical number
theory, namely to the number of lattice points in a large domain. Here again,
we are interested in the behaviour of generic curves. An investigation in this
direction is done in paper [7].

Other physical models lead to other number theoretical problems. We
mention in this direction paper [3] and the references in it, where the physi-
cal problem the authors considered led to the investigation of the number of
lattice points in a large circle with random center. This problem was studied
by means of computer simulation. Both the local and global behaviour of the
spectrum was investigated. The computer simulations indicate a Poissonian
local behaviour of this model too. A good description of the global behaviour
of the spectrum of this model is still an open question.

The theorem formulated above also has the following generalization:

Theorem′. For all m = (m1,m2) ∈ Z
2 define, with the help of a function f

and a random variable R, the (random) mapping

F = F (R, f) : m →

(

ϕ(m), R

(

|m|

f(ϕ(m))
− R

))

, m ∈ Z
2

and the random field

P = {F ((m1,m2)); (m1,m2) ∈ Z
2}.

If R is a uniformly distributed random variable on an interval [a1L, a2L], then
for almost all functions f with respect to a probability measure P with Prop-
erty A the finite dimensional distributions of the random field P tend to that
of a Poisson process on [0, θ] × [−∞,∞] with counting measure f 2(ϕ) dϕ dx as
L → ∞. This convergence means that for any K ≥ 1 and disjoint rectangles
[dj , d̄j ]× [ej , ēj ] ⊂ [0, θ]× [−∞,∞], j = 1, . . . ,K, the number of points in these
rectangles tend to independent Poissonian random variables with parameters

λj = (ēj − ej)
∫ d̄j

dj
f2(ϕ) dϕ, j = 1, . . . ,K.
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Theorem ′ states in particular that the distribution of the number of lattice
points which are mapped by the transformation F to the rectangle [0, θ]×[c1, c2]

tends to the Poisson distribution with parameter λ = (c2 − c1)
∫ θ

0
f2(ϕ) dϕ. In

such a way it contains the statement of the Theorem as a special case. The
proof of Theorem ′ is based on the same ideas as the proof of the Theorem. But
since it is technically complicated we omit it.

2. Some remarks about the Theorem

The conditions of the Theorem can be slightly weakened. The following version
of the Theorem may be useful in certain applications.

Stronger version of the Theorem. The Theorem and Theorem ′ remain
valid if Part 1.) of Property A is replaced by the following weaker condition 1.′)

1.′) There are some positive numbers 0 < b1 < b2 such that almost all functions
f(ϕ), 0 < ϕ < θ, with respect to the measure P satisfy the inequality
b1 < f(ϕ) < b2 and

P

(

sup
0≤ϕ1<ϕ2≤θ

|f(ϕ1) − f(ϕ2)|

|ϕ1 − ϕ2|
> x

)

≤ Ke−λx (2.1)

for all x > 0 with some K > 0 and λ > 0.

At the end of this paper we briefly explain the modifications needed in the
proof of this stronger version of the Theorem.

We discuss the content of Property A and give the following example:

Remark 1. Let W (t) = W (t, ω) be a Wiener process, and define the process
B(ϕ) = B(ϕ, ω) =

∫ ϕ

0
W (t, ω) dt. Then the Theorem holds for almost all trajec-

tories of the process B(ϕ, ω) if a sufficiently big constant is added to it. More ex-
plicitly, B(ϕ, ω)+C(ω) satisfies the Theorem if C(ω) > −min0≤ϕ≤θ B(ϕ, ω)+c
with some positive constant c, i.e. the distribution of the number of lattice points
in OR(B(ϕ, ω) + C(ω)) tends to the Poisson distribution with parameter

(c2 − c1)

∫

(B(ϕ, ω) + C(ω))2 dϕ

if R is uniformly distributed in the interval [a1L, a2L] with some a2 > a1 > 0,
and L → ∞.

We briefly explain the proof of Remark 1 with the help of the Stronger
version of the Theorem.

Introduce the sigma algebra Fϕ = {F(W (s)), s ≤ ϕ}. Then the process
(B(ϕ, ω),Fϕ) is a Gaussian Markov process. We show that B(ϕ, ω) satisfies
Part 2) of Property A with τ = 3

2 . For this aim fix the parameters ϕ1, . . . , ϕk

and the values W (ϕ1) = y1, . . . , W (ϕk) = yk. We calculate the conditional
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density function of the random vector (B(ϕ1), . . . , B(ϕk)) under this condition.
It equals

p
(y1,...,yk)
k (x1, . . . , xk|ϕ1, . . . , ϕk) = py1

1 (x1|ϕ1)
k
∏

i=2

p(yi−1,yi)(xi|ϕi−1, ϕi, xi−1),

where p(yi−1,yi)(xi|ϕi−1, ϕi, xi−1) is the conditional density function of B(ϕi)
under the condition B(ϕi−1) = xi−1, W (ϕi−1) = yi−1 and W (ϕi) = yi, and
py1

1 (x1|ϕ1) is the conditional density of B(ϕ1) under the condition W (ϕ1) = y1.
These conditional density functions are Gaussian with expectation xi−1 +(ϕi −

ϕi−1)
yi−1 + yi

2
and variance

D(ϕi−1, ϕi) =

∫ ϕi

ϕi−1

∫ ϕi

ϕi−1

(min(s, t) − ϕi−1)(ϕi − max(s, t)) ds dt

= O
(

|ϕi − ϕi−1|
3
)

for i ≥ 2, and the density of py1

1 (x1|ϕ1) can be written down similarly. Part 2) of
Property A can be proved with the help of the above formulas after integration
with respect to the conditions W (ϕs) = ys, s = 1, . . . , k. (The appearance of
the parameter τ = 3/2 can also be explained with the help of the observation
that B(ϕ) and T−3/2B(Tϕ) have the same distribution.) But the distribution
of B(ϕ) does not satisfy Part 1) of Property A, since although the derivative
B′(ϕ, ω) = W (ϕ, ω) is bounded, this bound depends on ω.

A natural way to overcome this difficulty is to make a conditioning of the
process W (t) by the condition {sup |W (t)| < A} with some A > 0 or to consider
the process W̄ (t) which is the reflected Wiener process W (t) with reflective
barriers −A and A, then to integrate this process and apply the Theorem for
the integrated process, (more precisely for the integrated process +A′, with
some A′ > A). Then we can exploit that the probability of the event that this
new process agrees with B(ϕ) tends to 1 as A → ∞. To carry out this program
we should prove that the distribution of this new process satisfies Property A.
This statement is probably true, but we cannot check Part 2b) of Property A.
Hence we choose a slightly different approach.

Define the function hA(t),

hA(t) =

{

t − 4kA if (4k − 1)A ≤ t < (4k + 1)A, k = 0,±1, . . .

(4k + 2)A − t if (4k + 1)A ≤ t < (4k + 3)A, k = 0,±1, . . .

and the random process B1(ϕ) = hA(B(ϕ)). (The process B1(ϕ) is actually
the process B(ϕ) after reflection with reflective barriers −A and A.) Then the
process B1(ϕ) + A′ with A′ > A satisfies Property A if Part 1) is replaced by
its weaker version Part 1′). Part 2) of Property A can be checked in this case,
since the density function appearing in it can be written down explicitly. It is
not difficult to show that Part 1′) of Property A holds, since

sup
0≤ϕ1<ϕ2≤θ

|B1(ϕ1) − B1(ϕ2)|

|ϕ1 − ϕ2|
≤ sup

0≤ϕ≤θ
|W (t)|.
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Then we get the proof of Remark 1 by letting A tend to infinity.

Although the technically most difficult part in the proof of Remark 1 was
to check Part 2b), actually the most restrictive condition of Property A is
Part 2a), especially the restriction τ < 2. It has the following content. For
fixed 0 ≤ ϕ1 < ϕ2 < · · · < ϕk the density function of the random vector
(f(ϕ1), . . . , f(ϕk)) is a bounded function with a bound that may depend on
ϕ1, . . . , ϕk. Since b1 < f(ϕ1) < b2 and |f(ϕi) − f(ϕi−1)| < b3|ϕi − ϕi−1| for
i = 2, . . . , k, hence the density function can differ from zero only on a set of

Lebesgue measure (b2 − b1)b
k−1
3

k
∏

i=2

(ϕi − ϕi−1). Hence

sup
x1,...,xk

pk(x1, . . . , xk|ϕ1, . . . , ϕk) ≥
const.

k
∏

i=2

(ϕi − ϕi−1)

.

The upper bound imposed in Part 2a) of Property A on this density function
is a power of τ < 2 of this lower estimate. It also gives a lower bound on the
Lebesgue measure of the set where the density function

pk(x1, . . . , xk|ϕ1, . . . , ϕk)

is not zero. The requirement that the trajectory f(ϕ) is chosen “sufficiently
randomly” is hidden in this condition. It is also connected with the smoothness
properties of the functions f(ϕ). We do not want to discuss this question in
detail, we only prove the following Remark 2, which also indicates the limits of
applicability of the Theorem.

Remark 2. Let a probability measure P on the space of continuous functions
satisfy Property A or its weaker version. Then the set of all twice differentiable
functions with bounded second derivatives has zero P probability.

To prove Remark 2 it is enough to show that

P

(

lim
h→0

sup
0≤ϕ≤θ−2h

∣

∣

∣

∣

f(ϕ) + f(ϕ + 2h) − 2f(ϕ + h)

h2

∣

∣

∣

∣

= ∞

)

= 1, (2.2)

because twice differentiable functions with finite second derivatives do not sat-
isfy this relation. To prove (2.2) fix some 0 ≤ ϕ ≤ θ − 2h, K > 0 and integer

k >
τ + 1

2 − τ
, define the event

Ah = Ah(k, ϕ,K)

=

{

sup
1≤j≤k

∣

∣

∣

∣

f(ϕ + jh) + f(ϕ + (j + 2)h) − 2f(ϕ + (j + 1)h))

h2

∣

∣

∣

∣

< K

}

and estimate its probability.
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Observe that

sup p(x1, . . . , xk+2|ϕ + h, ϕ + 2h, . . . , ϕ + (k + 2)h) ≤ Ck+2h
−(k+1)τ ,

by Part 2a) of Property A. Hence

P (Ah) ≤ const.h−(k+1)τλ(Bh)

with

Bh = Bh(k) = {(x1, . . . , xk+2), b1 ≤ x1, x2 ≤ b2,

|xj + xj+2 − 2xj+1| < Kh2, j = 1, . . . , k},

where λ(·) denotes Lebesgue measure. We have

λ(Bh(k)) = (b2 − b1)
2(2Kh2)k,

since for fixed x1, . . . , xj the point xj+1 is in an interval of length 2Kh2 for
j = 2, . . . , k + 1. Hence,

P (Ah) ≤ const.h2k−(k+1)τ ≤ const.h → 0 as h → 0,

where the const. may depend on K. Hence we get that

P

(

lim
h→0

sup
0≤ϕ≤θ−2h

∣

∣

∣

∣

f(ϕ) + f(ϕ + 2h) − 2f(ϕ + h)

h2

∣

∣

∣

∣

≤ K

)

= 0.

Since this relation holds for all K > 0, hence relation (2.2) and Remark 2 holds.

We finish these remarks by posing two open problems.

Problem 1. Give explicit curves which satisfy the Theorem. In particular, let
us consider the ellipses given by the equations x2 + ay2 = 1 with some a > 0.
Is it true that these ellipses satisfy Sinai’s conjecture for almost all a > 0? The
circle, i.e. the ellipsis with a = 1 does not satisfy it. In this case f(ϕ) = 1,
and the problem leads to the following number theoretical question. Let r(n)
denote the number of integer solutions of the equation k2 + l2 = n. What can
be said about the distribution of the number theoretical function r(n)?

For the sake of simplicity, let us consider only the case when c2 − c1 <

1/2. Then the interval
[

R +
c1

R
,R +

c2

R

]

contains the square root of only one

integer n, and the number of lattice points in OR equals r(n) with this integer n.
On the other hand, the probability that this interval contains the square root
of a fixed integer n is less than const.L−2 if R is uniformly distributed on the
interval [a1L, a2L]. The behaviour of the function r(n) is fairly well-known.
(See e.g. [4].) For our purposes it is enough to know that r(n) = 0 if the prime
factorization of n contains a prime factor of the form 4k + 3 on an odd power.
We also know that the density of the integers satisfying this property is one.
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The above facts imply that in the case of circle the probability that OR contains
no lattice point tends to one as L → ∞. A more detailed analysis also shows
that the conditional probability of the event that the number of lattice points
in OR tends to infinity is almost one under the condition that OR is not empty.
On the other hand, some computer simulations suggest that this is a degenerate
case, and almost all ellipses satisfy Sinai’s conjecture (see [1]).

Problem 2. Prove the Theorem for almost all functions with respect to such
probability measures which contain very smooth (e.g. analytic) functions with
positive probability.

3. Reduction of the proof of the Theorem

In the proof we apply a version of the method of moments. Let us first show
that if a sequence of random variables ξL satisfies the relation

E

(

ξL

k

)

→
λk

k!
for all k = 1, 2, . . . , (3.1)

as L → ∞, then this sequence tends in distribution to the Poisson distribution
with parameter λ. To prove this, let us observe that if ξ is a Poisson distributed
random variable with parameter λ, then

E

(

ξ

k

)

=

∞
∑

n=k

λn

n!
e−λ

(

n

k

)

= e−λ
∞
∑

n=k

λn

k!(n − k)!
=

λk

k!
e−λ

∞
∑

n=0

λn

n!
=

λk

k!
.

The moment Eξk
L can be expressed as a linear combination of the quantities

E

(

ξL

p

)

, 0 ≤ p ≤ k. Hence if formula (3.1) holds, then Eξk
L tends to the k-

th moment of a Poisson distributed random variable with parameter λ. But
if all moments of a sequence of random variables converge to the moments
of a Poisson distribution with parameter λ, then this sequence converges in
distribution to the Poisson law with parameter λ.

We have chosen this approach, because the following identity holds: For
all functions f

(

ξL(f,R)

k

)

=
∑

{m1,...,mk}∈Z2k

χ ({ms ∈ OR(f), for all s = 1, . . . , k}) .

Here χ(A) denotes the indicator function of the event A. The summation is
taken for such k-tuples of lattice points where all points m1, . . . , mk are dif-
ferent, and two k-tuples are identified if they contain the same lattice points,
only in different order. Hence, for all functions f

E

(

ξL(f,R)

k

)

=
∑

{m1,...,mk}∈Z2k

Eχ ({ms ∈ OR(f) for all s = 1, . . . , k}) , (3.2)
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where expectation is taken for a random variable R which is uniformly dis-
tributed in the interval [a1L, a2L]. We can handle the terms in the sum (3.2),
but only in the case when the differences between the angles ϕ(ms), s = 1, . . . , k,
are not too small. Hence, first we reduce the proof of the Theorem to the inves-
tigation of a sum where only such terms appear. To formulate this statement
more explicitly we need some notations. First we explain the strategy of our
proof.

We shall split the domain OR(f) by means of small sectors Dj and put even
smaller buffer zones Cj between them. We shall prove that the contribution of
the sectors Cj is negligible. This is the content of Lemma 1. We can show with
the help of Lemma 2 that the probability of the event that there is some Dj

which contains two lattice points in OR(f) tends to zero. This is a rareness type
argument, typical in the proof of Poissonian limit theorems. In our approach
however, we need a stronger statement. We shall drop all k-tuples which have
two points in the same sector Dj with some j and count only the remaining k-
tuples all of whose elements are in OR(f). We show that only a negligible error
is committed in this way. This is the content of formula (3.3), and the reduction
of the Theorem to this statement is done by means of Lemma 3. The hard step
in the proof of the Theorem is the verification of formula (3.3). It states that
some moment type expression behaves so as if the number of lattice points of
OR in different sectors Dj were independent. There is no such independence in
our model, but we shall prove a Proposition which can be considered as a law of
large numbers type result (such results are related to some sort of independence)
and which implies the Theorem.

In these Lemmas and in the Proposition the random radius R does not ap-
pear. These results formulate some properties which almost all functions with
respect to a probability measure with Property A satisfy. Lemma 1 is excep-
tional in this respect. (The random radius R appears in it, but it formulates
a property which all positive continouus Lipschitz one functions satisfy.) We
shall show that a function with these properties satisfies Sinai’s conjecture.

Put

0 = ϕ0(n) < ϕ1(n) < · · · < ϕ2p+1(n) ≤ θ < ϕ2p+2(n), (p = p(n))

in such a way that

ϕ2j+1 − ϕ2j = (log n)−α, j = 0, 1, . . . , p,

ϕ2j+2 − ϕ2j+1 = (log n)−β , j = 0, 1, . . . , p − 1,

and ϕ2p+2 − ϕ2p+1 < (log n)−α

with some α < β and α >
2

2 − τ
, where τ is the same number which appears

in Part 2a) of Property A. (For the sake of simpler notations in the sequel we



Poisson Law for the Number of Lattice Points 11

denote by log logarithm with base 2.) Clearly, p(n) < 2π(log n)α. Define also
the sets

Cj = Cj(n) = {x ∈ R
2, An < |x| < Bn, ϕ2j+1 < ϕ(x) < ϕ2j+2},

Dj = Dj(n) = {x ∈ R
2, An < |x| < Bn, ϕ2j < ϕ(x) < ϕ2j+1},

j = 0, . . . , p(n).

In the definition of the sets Cj(n) and Dj(n) we choose A > 0 as sufficiently
small, B > 0 as sufficiently large fixed constants.

For all continuous Lipschitz one functions f(·), integers k = 1, 2, . . . , and
n > 0 we define the random variable (depending on R)

ζn(k, f,R) =
∑

0≤j1<···<jk≤p(n)
∑

ms∈Djs (n)∩Z
2

s=1,...,k

χ ({ms ∈ OR(f) for all s = 1, . . . , k})

and the number

EL(k, f) = Eζ2n(k, f,R),

where the integer n is determined by the relation 2n < L < 2n+1, n = 1, 2, . . . ,
and the sign of expectation E means again expectation for the random vari-
able R, distributed uniformly in the interval [a1L, a2L]. We shall prove that if
f(·) is chosen randomly with respect to a probability measure satisfying Prop-
erty A, then

lim
L→∞

EL(f, k) =
λ(f)k

k!
for all k = 1, 2, . . . for almost all f (3.3)

with λ(f) = (c2 − c1)
∫ θ

0
f2(ϕ) dϕ. First we show with the help of three lemmas

to be proved in Section 5 that formula (3.3) implies the Theorem. Let us
formulate these lemmas. We introduce the following notation. Given a finite or
countable set A, let |A| denote its cardinality.

Lemma 1. Let f(ϕ), 0 ≤ ϕ ≤ θ, be an arbitrary continuous Lipschitz one
function such that a < f(ϕ) < b with some 0 < a < b < ∞ for all 0 ≤ ϕ ≤ θ,
and R = RL a uniformly distributed random variable on the interval [a1L, a2L].
Let 2n ≤ L < 2n+1, and define the random variables

η
(1)
L = η

(1)
L (f) =

∣

∣

∣

∣

∣

∣







m; m ∈

p(2n)
⋃

j=0

Cj(2
n) ∩ Z

2 ∩ OR(f)







∣

∣

∣

∣

∣

∣

.

Then η
(1)
L ⇒ 0 as L → ∞, where ⇒ means convergence in probability.
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Lemma 2. Let P be a probability measure with Property A on the space of
continuous Lipschitz one functions. For arbitrary K > 0 and function f(·)
define the sets An(f), n = 1, 2, . . . ,

An(f) =

{

(m, m̄), m ∈ Z
2, m̄ ∈ Z

2, m 6= m̄,

m ∈ Dj(n), m̄ ∈ Dj(n) for some 0 ≤ j ≤ p(n),
∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<
K

n

}

.

For almost all functions f(·) with respect to the measure P the relation

|A2n(f)| <
22n

nα(2−τ)/2
if n > n(f)

holds.

The following Lemma 3 is a generalization of Lemma 2.

Lemma 3. Let the conditions of Lemma 2 be satisfied. For arbitrary K > 0,
k = 0, 1, . . . and function f(·) define the sets Bn,k(f), n = 1, 2, . . .

Bn,k(f) =

{

(m, m̄,m1, . . . ,mk), m ∈ Z
2, m̄ ∈ Z

2, ms ∈ Z
2 for 1 ≤ s ≤ k,

m ∈ Dj(n), m̄ ∈ Dj(n), with some 0 ≤ j ≤ p(n),

all lattice points m, m̄ and ms, s = 1, . . . , k are different,
∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<
K

n
,

∣

∣

∣

∣

|m|

f(ϕ(m))
−

|ms|

f(ϕ(ms))

∣

∣

∣

∣

<
K

n
, 1 ≤ s ≤ k

}

.

For almost all functions f(·) with respect to the measure P the relation

|B2n,k(f)| < Ck
22n

nα(2−τ)/2
if n > n(f, k)

holds with some Ck > 0.

Given some L > 1, introduce the integer n such that 2n ≤ L < 2n+1, and
define the random variables

ξ
(1)
L = ξ

(1)
L (f,R) = the number of m ∈ Z

2 such that m ∈ OR(f) ∩

p(2n)
⋃

j=0

Dj(2
n)

and

ξ
(2)
L = ξ

(2)
L (f,R) = the number of indices j

such that ∃ m ∈ Z
2 ∩ OR(f) ∩ Dj(2

n).
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We claim that if the function f(·) is chosen randomly with respect to a proba-
bility measure P with Property A, then

ξ
(1)
L (f,R) − ξL(f,R) ⇒ 0 as L → ∞, (3.4)

and
ξ
(2)
L (f,R) − ξL(f,R) ⇒ 0 as L → ∞. (3.4′)

for almost all f(·).

If m ∈ OR, then m ∈
p(2n)
⋃

j=0

Cj(2
n)∪

p(2n)
⋃

j=0

Dj(2
n) if the constants A and B in

the definition of Cj and Dj are appropriately chosen, since a1L < R < a2L, and
the function f is bounded away both from zero and infinity. Hence Lemma 1
implies (3.4). To prove (3.4′) observe that

∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<

∣

∣

∣

∣

|m|

f(ϕ(m))
− R

∣

∣

∣

∣

+

∣

∣

∣

∣

|m̄|

f(ϕ(m̄))
− R

∣

∣

∣

∣

<
K

2n

if m, m̄ ∈ OR. Hence the random variable

ηn = ηn(f) =
∣

∣{(m, m̄), m, m̄ ∈ Z
2, (m, m̄) ∈ A2n(f), m ∈ OR}

∣

∣

satisfies the relation
∣

∣

∣
ξ
(1)
L − ξ

(2)
L

∣

∣

∣
< ηn.

To prove (3.4′) it is enough to show that ηn ⇒ 0. To show this, first we
remark that for all positive continuous Lipschitz one functions f(·)

sup
m

P (m ∈ OR(f)) < const.2−2n

if R is uniformly distributed in the interval [a1L, a2L], and 2n ≤ L < 2n+1.
Then Lemma 2 yields that

Eηn <
22n

nα(2−τ)/2
sup
m

P (m ∈ OR(f)) < const.nα(τ−2)/2 → 0.

Hence to prove the Theorem it is enough to show that

E

(

ξ
(2)
L (f,R)

k

)

→
λk

k!
for almost all f(·) as L → ∞. (3.5)

We prove that Lemma 3 and formula (3.3) imply this relation. For this aim we
introduce the random variables

ζ(1)
n (k, f,R) =

∣

∣

∣{(m, m̄,m1, . . . ,mk), (m, m̄,m1, . . . ,mk) ∈ Bn,k(f),

ms ∈

p(n)
⋃

j=1

Dj , m, m̄,ms ∈ OR(f), s = 1, . . . , k}
∣

∣

∣
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and verify the relation

ζ2n(k, f,R) − ζ
(1)
2n (k − 1, f, R) ≤

(

ξ
(2)
L (f,R)

k

)

≤ ζ2n(k, f,R) for k = 1, 2, . . . .

(3.6)

Indeed, if a k-tuple Dj1 , . . . , Djk
is such that |Djs

∩OR(f)| = ps ≥ 1 for all
s = 1, . . . , k, then it is counted once in the middle term of (3.6), p1 · · · pk ≥ 1

times at the right-hand side and p1 · · · pk

(

1 −
k
∑

s=1

ps − 1

2

)

≤ 1 times at the

left-hand side of (3.6). Taking expectation in (3.6) we get that

EL(f,R) − Eζ
(1)
2n (k − 1, f, R) ≤ E

(

ξ
(2)
L (f,R)

k

)

≤ EL(f,R) for k = 1, 2, . . .

with 2n ≤ L < 2n+1. Hence to reduce the proof of the Theorem to formula
(3.3) it is enough to show that

Eζ
(1)
2n (k − 1, f, R) → 0 if L → ∞ for almost all f and k = 1, 2, . . . ,

where expectation is taken with respect to the random variable R which is
uniformly distributed in the interval [a1L, a2L], and 2n ≤ L < 2n+1. This
relation holds, because Lemma 3 implies that

Eζ
(1)
2n (k, f,R) ≤ Ck

22n

nα(2−τ)/2
sup

m∈Z2

P (m ∈ OR(f)) ≤ const.n−α(2−τ)/2

if n > n(f, k).
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4. Proof of the Theorem with the help of some Lemmas

The hardest part of the proof is the justification of formula (3.3). It is based on
a Proposition, which will be formulated below. To do this, first we introduce
some notations. Define the intervals

Ip(f,m, δ) =

[

pδ

|m|
f(ϕ(m)),

(p + 1)δ

|m|
f(ϕ(m))

]

,

δ = δn = (log n)−η, p = 0,±1, . . . ,±
D

δ
, m ∈ Z

2

and

Ĩz = Ĩz(n) =

[

zn

(log n)η̃
,
(z + 1)n

(log n)η̃

]

, Ā(log n)η̃ < z < B̄(log n)η̃,

where D, Ā and B̄ are appropriate positive integers, and η > 0 and η̃ > 0 are
also appropriately chosen. We define with their help the sets

Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)

=

{

(m1, . . . ,mk), ms ∈ Djs
∩ Z

2, s = 1, . . . , k,

|m1| ∈ Ĩz(n),

|ms|

f(ϕ(ms))
−

|m1|

f(ϕ(m1))
∈ Ips

(f,m1, δn), s = 2, . . . , k,

}

.

(4.1)

Put

Sn,k =

{

(j1, . . . , jk, p2, . . . , pk, z), 0 ≤ j1 < j2 < · · · < jk ≤ p(n),

|ps| <
D

δn
, s = 2, . . . , k, Ā(log n)η̃ < z < B̄(log n)η̃

}

.

(All numbers j1, . . . , jk, p2, . . . , pk and z in the definition of Sn,k are integers.)
Now we formulate the following Proposition.

Proposition. Let a continuous Lipschitz one function f(·) be chosen randomly
with respect to a probability measure with Property A. Then for almost all func-
tions f(·) and all k ≥ 1 the relation

lim
n→∞

sup
(j1,...,jk,p2,...,pk,z)∈S2n,k

[

|Mk,2n(f, j1, . . . , jk, p2, . . . , pk, z)|

z22nn−kα−(k−1)η−2η̃

−
k
∏

s=2

f2(ϕ2js
)

]

= 0

holds with probability one if n takes integer values.
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To explain the content of the Proposition define, for fixed k, n and arbitrary
integers j1, . . . , jk, p2, . . . , pk and z, the set

X(f) = X(f, k, n, j1, . . . , jk, p2, . . . , pk, z)

=

{

(x1, . . . , xk), xs ∈ Djs
, s = 1, . . . , k, |x1| ∈ Ĩz(n),

|xs|

f(ϕ(xs))
−

|x1|

f(ϕ(x1))
∈ Ips

(f, |x1|, δn), s = 2, . . . , k

}

.

Some calculation shows that the volume of the set X(f) asymptotically equals

zn2(log n)−2η̃−α
k
∏

s=2

δn(log n)−αf2(ϕ2js
)

= zn2(log n)−2η̃−kα−(k−1)η
k
∏

s=2

f2(ϕ2js
).

The Proposition states that for almost all functions f(·) with respect to a prob-
ability measure with Property A the number of lattice points in the sets X(f)
is asymptotically equal to the volume of these sets, at least for an exponentially
rare subsequence of indices, n = 2l, l = 1, 2, . . . .

The Proposition is useful for the following reason: We split the set of
all k-tuples m = (m1, . . . ,mk) which give a contribution to the expression
ζ2n(k, f,R) into relatively few classes Mk,2n (their number is a power of n if L
is of order 2n). As the subsequent calculation will show, each k-tuple from a
class Mk,2n gives contribution one to the sum ζ2n(k, f) with almost the same
probability whose asymptotic value can be given explicitly. This is so, because
a k-tuple gives a contribution one to this sum if the random radius R falls in
the intersection of k intervals, and we know the length and relative position of
these intervals with a sufficiently good accuracy if we know which class Mk,2n

this k-tuple belongs to. The Proposition gives the asymptotic size of the sets
Mk,2n . Hence, we can estimate the expected value of EL(k, f) = Eζ2n(k, f,R)
by multipying the cardinality of Mk,2n with the probability that the points
from a k-tuple of this class fall into OR(f) and then by summing up for all
classes. In such a way we can prove formula (3.3).

The following heuristic argument may explain why the subsequent calcu-
lation yields the desired result. We consider the following auxiliary problem.
Let us have a Poisson process, independent of a uniformly distributed random
variable R in an interval [a1L, a2L]. Give the limit distribution of the number
of points ζ(L) of this Poisson process in the domain OR(f) if L → ∞, and
OR(f) is defined in formula (1.1). It is not difficult to see that this limit is
Poissonian with the same parameter λ which appeared in Theorem 1. Indeed,
the conditional distribution of ζ(L) under the condition of prescribed R is Pois-
sonian with a parameter (the area of OR(f)) which tends to λ as R → ∞. We

also have E

(

ζL

k

)

→
λk

k!
. This expectation could have been calculated in a
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more complicated way by means of sets defined analogously to the sets Mk,n

in (4.1). The only difference in the definition is that now we count the number
of points of the underlying Poisson process instead of lattice points in the same

domain. Then E

(

ζL

k

)

equals asymptotically the sum of the expected value of

the cardinality of these sets multiplied with the probability of the event that
all points of a given k-tuple from this set is in OR(f). (These probabilities are
asymptotically the same for all k-tuples from a prescribed class.) What we do
in the subsequent calculation is to show that our model imitates the previous
one, and EL(k, f) can be approximated by the same sum (disregarding some

negligible error terms) as E

(

ζL

k

)

in the auxiliary model. Hence this sum has

the right asymptotics. This program can be carried out if we know that the
asymptotic cardinality of the sets Mk,n is the same as that of the analogous
sets in the auxiliary model. But this is the content of the Proposition.

Let us consider the elements of a class Mk,n

(m1, . . . ,mk) ∈ Mk,n(j1, . . . , jk, p2, . . . , pk, z)

with a fixed (j1, . . . , jk, p2, . . . , pk, z) ∈ Sn,k. Then

ms ∈ OR(f) for all s = 1, . . . , k (4.2)

if and only if

R −
|m1|

f(ϕ(m1))
∈ [A(m1, . . . ,mk), B(m1, . . . ,mk)] (4.3)

with some A(m1, . . . ,mk) and B(m1, . . . ,mk). The endpoints of this interval
satisfy the relation

A(m1, . . . ,mk)

=
(log n)η̃f(ϕ2j1)

zn
max{−c2, max

2≤s≤k
−c2 + psδn} + O

(

(log n)−ω

n

)

B(m1, . . . ,mk)

=
(log n)η̃f(ϕ2j1)

zn
min{−c1, min

2≤s≤k
−c1 + psδn} + O

(

(log n)−ω

n

)

,

(4.3′)

where ω = min{η, η̃, α}. In the case A(m1, . . . ,mk) ≥ B(m1, . . . ,mk) the
interval defined in (4.3) is empty. The O(·) in (4.3′) is uniform for

(j1, . . . , jk, p2, . . . , pk, z) ∈ Sn,k.

We remark that the main term in (4.3′) is of order
1

n
, since z is of order

(log n)η̃. Hence the O(·) term in this formula is a negligible error. This also
means that the length of the interval where R has to fall to satisfy relation
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(4.2) is asymptotically the same for all k-tuples from a fixed class Mk,n. This

interval is centered around the point
|m1|

f(ϕ(m1))
, which place strongly depends

on which k-tuple in Mk,n is considered. But this holds only for the position
and not the length of the interval.

Let us first remark that (4.2) holds if and only if R satisfies the relation

R +
c1

R
≤

|ms|

fϕ(ms))
≤ R +

c2

R
for all s = 1, . . . , k. (4.4)

The left-hand side and right-hand side of (4.4) are monotone functions of R if
R is sufficiently large. Hence R is in the intersection of k intervals if L > L0

with some fixed threshold L0. Therefore (4.3) holds.

If m1 ∈ OR(f), then

1

R
=

f(ϕ(|m1|))

|m1|
+ O

(

1

n2

)

, (4.5)

and if (4.2) holds, then for all

(m1, . . . ,mk) ∈ Mk,n(j1, . . . , jk, p2, . . . , pk, z)

the relations

f(ϕ(m1))

|m1|
=

(log n)η̃f(ϕ2j1)

zn
+ r1 (4.5′)

|ms|

f(ϕ(ms))
=

|m1|

f(ϕ(m1))
+

psδn(log n)η̃f(ϕ2j1)

zn
+ rs for 2 ≤ s ≤ k

(4.5′′)

hold with some rs, 1 ≤ s ≤ k, less than const.
(log n)−ω

n
. Hence, if ms ∈ OR(f),

s = 1, . . . , k, then by (4.4)

R +
c1(log n)η̃f(ϕ2j1)

zn
+ r̄1 ≤

|m1|

f(ϕ(m1))
≤ R +

c2(log n)η̃f(ϕ2j1)

zn
+ r̃1

and

R +
c1(log n)η̃f(ϕ2j1)

zn
+ r̄s ≤

|m1|

f(ϕ(m1))
+

psδn(log n)η̃f(ϕ2j1)

zn

≤ R +
c2(log n)η̃f(ϕ2j1)

zn
+ r̃s

for 2 ≤ s ≤ k with r̄s < const.
(log n)−ω

n
and r̃s < const.

(log n)−ω

n
, s = 1, . . . , k.

These relations imply that

A(m1, . . . ,mk) >
(log n)η̃f(ϕ2j1)

zn
max{−c2, max

2≤s≤k
−c2 + psδn} − K

(log n)−ω

n

B(m1, . . . ,mk) <
(log n)η̃f(ϕ2j1)

zn
min{−c1, min

2≤s≤k
−c1 + psδn} + K

(log n)−ω

n
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with an appropriate K > 0. To complete the proof of (4.3′) we have to show
that (4.4) holds if (m1, . . . ,mk) ∈ Mk,n(j1, . . . , jk, p2, . . . , pk, z) and

(log n)η̃f(ϕ2j1)

zn
max{−c2, max

2≤s≤k
−c2 + psδn} + K

(log n)−ω

n

< R −
|m1|

f(ϕ(m1))

<
(log n)η̃f(ϕ2j1)

zn
min{−c1, min

2≤s≤k
−c1 + psδn} − K

(log n)−ω

n
.

with a sufficiently large K > 0. Under these conditions relations (4.5)–(4.5′′)
hold again, and they imply together with the last relation that

R +
c1

R
<

|m1|

f(ϕ(m1))
+

(log n)η̃f(ϕ2j1)

zn
(−c1 + psδn)

+ c1
(log n)η̃f(ϕ2j1)

zn
−

K

2

(log n)−ω

n
<

|ms|

f(ϕ(ms))

for all s = 1, . . . , k. The other inequality in relation (4.4) can be proved simi-
larly.

We can write

EL(k, f) =
∑

0≤j1<j2<···<jk≤p(2n)

B̄nη̃

∑

z=Ānη̃

BL(f, j1, . . . , jk, z) (4.6)

with

BL(f, j1, . . . , jk, z) =
∑

|ps|<Dnη

s=2,...,k
∑

(m1,...,mk)∈Mk,2n (j1,...,jk,p2,...,pk,z)

E(χ{ms ∈ OR(f) for all s = 1, . . . , k}),

(4.6′)
where the dependence on L is present, since R is uniformly distributed in the
interval [a1L, a2L]. (We recall that 2n ≤ L < 2n+1.) To see the validity of the
above relations one has to observe that the condition ps < Dnη is not a real
restriction in formula (4.6′), since the expectation of all events

{χ(ms ∈ OR(f) for all s = 1, . . . , k}

is considered in it which are non-empty if the constants Ā, B̄ and D are suf-
ficiently large. We want to estimate the terms BL(f, j1, . . . , jk, z). Let us first
observe that

BL(f, j1, . . . , jk, z) = 0
if z >

a2Lnη̃

2n
f(ϕ2j1)(1 + Kn−ω)

or z <
a1Lnη̃

2n
f(ϕ2j1)(1 − Kn−ω),

(4.7)
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with some appropriate K > 0, since by formulas (4.3) and (4.3′) (with their
application for 2n) the event ms ∈ OR(f) can occur in this case only for such
R which are outside of the interval [a1L, a2L]. To estimate BL in other cases
introduce the quantities

K+
n (j1, . . . , jk, p2, . . . , pk, z)

= sup
(m1,...,mk)∈Mk,2n (j1,...,jk,p2,...,pk,z)

E{χ(ms ∈ OR(f) for all s = 1, . . . , k},

K−
n (j1, . . . , jk, p2, . . . , pk, z)

= inf
(m1,...,mk)∈Mk,2n (j1,...,jk,p2,...,pk,z)

E{χ(ms ∈ OR(f) for all s = 1, . . . , k},

Because of the Proposition we have

(1 − εn)z22nn−kα−(k−1)η−2η̃
k
∏

s=2

f2(ϕ2js
)

∑

|ps|<Dnη

s=2,...,k

K−
n (j1, . . . , jk, p2, . . . , pk, z) ≤ BL(f, j1, . . . , jk, z)

≤ (1 + εn)z22nn−kα−(k−1)η−2η̃
k
∏

s=2

f2(ϕ2js
)

∑

|ps|<Dnη

s=2,...,k

K+
n (j1, . . . , jk, p2, . . . , pk, z)

(4.8)

for almost all functions f(·) with respect to a probability measure with Prop-
erty A, where εn → 0 uniformly for (j1, . . . , jk, p2, . . . , pk, z) ∈ Sk,2n as n → ∞.
Introduce also the following notation: Given some interval A = [a, b], integers
p2, . . . , pk and some number 0 < ∆ < 1, define the interval

A(p2, . . . , pk,∆) = [a, b] ∩
k
⋂

s=2

[a + ps∆(b − a), b + ps∆(b − a)],

and let `(A(p2, . . . , pk,∆)) denote its length. It follows from formula (4.3) and
(4.3′) (with their application for 2n) that

K+
n (j1, . . . , jk, p2, . . . , pk, z) =

1

(a2 − a1)L

[

`(A(p2, . . . , pk,∆)) + O(2−nn−ω)
]

K−
n (j1, . . . , jk, p2, . . . , pk, z) =

1

(a2 − a1)L

[

`(A(p2, . . . , pk,∆)) + O(2−nn−ω)
]

(4.9)

with A = [a, b], a = −c2
f(ϕ2j1)n

η̃

z2n
, b = −c1

f(ϕ2j1)n
η̃

z2n
and ∆ =

n−η

c2 − c1
if

(m1, . . . ,mk) ∈ Mk,2n(j1, . . . , jk, p2, . . . , pk, z),
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and if
a1Lnη̃

2n
f(ϕ2j1)(1 + Kn−ω) < z <

a2Lnη̃

2n
f(ϕ2j1)(1−Kn−ω). We have to

observe that in this case the interval of R for which ms ∈ OR(f), s = 1, . . . , k,
is contained in [a1L, a2L]. Moreover, the right-hand side of the first line in
formula (4.9) is an upper bound for K+

n for arbitrary z.

We need the following Lemma 4, which is a version of Lemma 3 in [9].

Lemma 4. Let an interval A = [a, b] and some number 0 < ∆ < 1 be given.
Then, using the notation introduced above, the relation

∑

−∞<ps<∞
s=2,...,k

`(A(p2, . . . , pk,∆)) = (b − a)∆1−k + O
(

(b − a)∆2−k
)

holds.

Since only those terms `(A(p2, . . . , pk,∆)) are non-zero in the sum ap-
pearing in Lemma 4 for which |ps| < const.∆−1, 2 ≤ s ≤ k, and there are
only const.∆1−k such terms, hence the following estimate holds. By Lemma 4
and (4.9)

∑

|ps|<Dnη

s=2,...,k

K±
n (j1, . . . , jk, p2, . . . , pk, z)

=
(c2 − c1)

knη̃+(k−1)ηf(ϕ2j1)

L(a2 − a1)2nz

(

1 + O(n−ω)
)

and by (4.8)

BL(f, j1, . . . , jk, z) = (1 + εn)
2n(c2 − c1)

kn−η̃−kαf(ϕ2j1)

L(a2 − a1)

k
∏

s=2

f2(ϕ2js
) (4.10)

with some εn = εn(j1, . . . , jk, z) → 0 uniformly for all

a1Lnη̃

2n
f(ϕ2j1)(1 + Kn−ω) < z <

a2Lnη̃

2n
f(ϕ2j1)(1 − Kn−ω)

and 0 ≤ j1 < · · · < jk ≤ p(2n),

for almost all functions f(·). Moreover, the right-hand side of (4.10) is an upper
bound for all z. Hence (4.7), (4.10) and (4.6) imply that

EL(k, f) = (c2 − c1)
k

∑

0≤j1<j2<···<jk≤p(2n)

(1 + εn)

a2
L
2n f(ϕ2j1 )nη̃

∑

z=a1
L
2n f(ϕ2j1 )nη̃

2nn−η̃

L(a2 − a1)
f(ϕ2j1)n

−α
k
∏

s=2

f2(ϕ2js
)n−α

= (1 + ε′n)(c2 − c1)
k

∑

0≤j1<j2<···<jk≤p(2n)

k
∏

s=1

f2(ϕ2js
)n−α

(4.11)
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for almost all functions f(·) with some εn → 0 and ε′n → 0. The right-hand
side of (4.11) tends to the integral

(c2 − c1)
k

k!

∫ θ

0

· · ·

∫ θ

0

f2(ϕ1) · · · f
2(ϕk) dϕ1 . . . dϕk

=
(c2 − c1)

k

k!

(

∫ θ

0

f2(ϕ) dϕ

)k

,

as n → ∞. These relations imply that the limit of EL(k, f) is
λ(f)k

k!
for all

k ≥ 1 for almost all functions f(·). Hence relation (3.3) and the Theorem hold.

5. Proof of the Lemmas

Proof of Lemma 1. The cardinality of the set
p(2n)
⋃

j=0

Cj(2
n) ∩ Z

2 is less than

const.22n(n−α + nα−β). Hence

Eη
(1)
L ≤ const.22n(n−α + nα−β) max

2nA≤|m|≤2nB
P (m ∈ OR(f))

≤ const.(n−α + nα−β),
(5.1)

since in the case m ∈ OR(f) for 2nA ≤ |m| ≤ 2nB the variable R must be in
an interval of length const.2−n. Its probability is less than const.2−2n if R is
uniformly distributed in the interval [a1L, a2L] with 2n ≤ L < 2n+1. Relation
(5.1) implies Lemma 1. ¤

Proof of Lemma 2. For fixed m ∈ Z
2 define the set

Am
n (f) = {m̄, (m, m̄) ∈ An(f)}.

We claim that

E|Am
n (f)| < const.(log n)α(τ−2) if An < |m| < Bn. (5.2)

First we show that (5.2) implies Lemma 2. Indeed, it follows from (5.2) that

E|An(f)| < const.n2(log n)α(τ−2),

hence

P

(

|A2n(f)| >
22n

nα(2−τ)/2

)

≤ const.n−α(2−τ)/2.

Since
∑

n−α(2−τ)/2 < ∞, the last relation together with the Borel–Cantelli
lemma imply Lemma 2.
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To prove (5.2) fix some small number a > 0 and introduce the sectors

Us = Us,n(m) =

{

x ∈ R
2,

as

n
≤ ϕ(x) − ϕ(m) <

a(s + 1)

n

}

,

s = 0,±1,±2, . . .

We show that for m̄ ∈ Am
n (f) ∩Us there exists some K̄ = K̄(K,A,B, b1, b2, b3)

such that
∣

∣|m̄| − |m|
∣

∣ < aK̄(|s| + 1).

Indeed, in this case

∣

∣|m̄| − |m|
∣

∣ <
Kf(ϕ(m̄))

n
+

|f(ϕ(m̄)) − f(ϕ(m))|

f(ϕ(m))
|m|

<
K ′

n
+ K ′′ a(|s| + 1)

n
|m| < aK̄(|s| + 1)

by the Lipschitz one property of the functions f(·) we are considering and the
fact that |m| is of order n. The set

Ūs = Us ∩
{∣

∣|m̄| − |m|
∣

∣ ≤ aK̄(|s| + 1)
}

has no more than const.(|s| + 1) elements, and the sets Ū0 and Ū−1 are empty
if An ≤ |m| ≤ Bn. The first statement is clear, and the second one holds for
the following reason. If there is some m̄ ∈ Ū0 or m̄ ∈ Ū−1, and m, m̄ are lattice
points, then

1 ≤ |m − m̄|2 = (|m| − |m̄|)2 + 2|m||m̄|
(

1 − cos(ϕ(m) − ϕ(m̄))
)

and
∣

∣|m| − |m̄|
∣

∣ ≤ aK̄.

Since |m| > An, |m̄| > An, the above relations imply that

1 ≤ 2A2n2
(

1 − cos
a

n

)

+ a2K̄2 ≤ (3A2 + K̄)a2 if n > n0.

But this is impossible if a > 0 is sufficiently small, hence Ū0 and Ū−1 are empty.

We can write

E |Am
n (f)| ≤ const.

n
(log n)α
∑

s=1

s sup
m∈Ūs∩Ū−s−1

P

(∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<
K̄

n

)

.

(5.3)
To estimate the above sum observe that by Part 2a) of Property A the prob-

ability density of the random vector (f(ϕ(m)), f(ϕ(m̄))) is less than
(n

s

)τ

if

m̄ ∈ Ūs ∪ Ū−s−1, and the Lebesgue measure of the set

{

(

f(ϕ(m)), f(ϕ(m̄))
)

, b1 < f(ϕ(m)) < b2,

∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<
K

n

}
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is less than const.n−2, since m and m̄ are of order n. Hence,

P

(∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<
K

n

)

≤
const.

n2

(n

s

)τ

if m ∈ Z
2 ∩ Ūs ∩ Ū−s−1,

and (5.3) implies that

E |Am
n (f)| ≤ const.

n
(log n)α
∑

s=1

nτ−2

sτ−1
≤ const.(log n)α(τ−2),

as we claimed. Lemma 2 is proved. ¤

Proof of Lemma 3. The proof of Lemma 3 is similar to that of Lemma 2. For
all m ∈ Z

2 define the set

Bm
n,k(f) = {(m̄,m1, . . . ,mk), (m, m̄,m1, . . . ,mk) ∈ Bn,k(f)}

Similarly to Lemma 2, to prove Lemma 3 it is enough to show that

E|Bm
n,k(f)| < const.(log n)α(τ−2) if An < |m| < Bn. (5.4)

To prove formula (5.4), let us introduce for all integers s1, . . . , sk and s̄ the set

U(s1, . . . , sk, s̄) =
{

(m̄,m1, . . . ,mk), mj ∈ Ujp
, 1 ≤ j ≤ k, m̄ ∈ Us̄

}

,

where Us is the same as in the proof of Lemma 2. Let s∗1 ≤ s∗2 ≤ · · · ≤ s∗k+2 be
the monotone ordering of the numbers s1, . . . , sk, s̄ and 0, and let m′

1, . . . ,m
′
k+2

be the monotone ordering of the lattice points m1, . . . ,mk,m, m̄ by their angles,
i.e. let ϕ(m′

1) < ϕ(m′
2) < · · · < ϕ(m′

k+2). Put s′j = s∗j+1 − s∗j for 1 ≤ j ≤ k + 1.
Introduce the set

Ū(s1, . . . , sk, s̄) =

{

(m̄,m1, . . . ,mk) ∈ U(s1, . . . , sk, s̄),

∣

∣|m′
j+1| − |m′

j |
∣

∣ < aK̄(s′j + 1), j = 1, . . . , k + 1

}

.

We get, similarly to the argument in the proof of Lemma 2 that

U(s1, . . . , sk, s̄) ∩ Bm
n,k(f) ⊂ Ū(s1, . . . , sk, s̄),

Ū(s1, . . . , sk, s̄) = ∅ if s′j = 0 for some 1 ≤ j ≤ k + 1

and

|Ū(s1, . . . , sk, s̄)| < const.
k+1
∏

j=1

s′j .
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Let us also observe that we have to consider only such sequences s′j , 1 ≤ j ≤

k + 1, for which min1≤j≤k+1 s′j ≤ n(log n)−α, since |ϕ(m)−ϕ(m̄)| ≤ (log n)−α.
A similar argument to that in Lemma 2 gives that

sup
(m̄,m1,...,mk)∈Ū(s1,...,sk,s̄)

P

(∣

∣

∣

∣

|m|

f(ϕ(m))
−

|m̄|

f(ϕ(m̄))

∣

∣

∣

∣

<
K

n
,

∣

∣

∣

∣

|m|

f(ϕ(m))
−

|ms|

f(ϕ(ms))

∣

∣

∣

∣

<
K

n
, 1 ≤ s ≤ k

)

≤ const.n−2k−2
k+1
∏

j=1

(

n

s′j

)τ

.

(5.5)

Indeed, we have to integrate a density function bounded by const.
k+1
∏

j=1

(

n

s′j

)τ

on a set of Lebesgue measure const.n−2k−2 to calculate a probability term
appearing in (5.5). The above estimates yield that

E|Bm
n,k(f)| < const.

∑

1≤s′

j≤n, for all 1≤j≤k+1

sj≤
n

(log n)α for some j

k+1
∏

j=1

1

n

(

n

s′j

)τ−1

≤ const.

(

n
∑

s=1

1

n

(n

s

)τ−1
)k n

(log n)α
∑

s=1

1

n

(n

s

)τ−1

≤ const.(log n)α(τ−2).

Lemma 3 is proved. ¤

Proof of Lemma 4. The relation

(∆(b − a))(k−1)
∑

−∞<ps<∞
s=2,...,k

`(A(p2, . . . , pk,∆))

=

∫

λ
(a,b)
k (x2, . . . , xk) dx2 . . . dxk + O (∆(b − a))

(5.6)

holds with

λ
(a,b)
k (x2, . . . , xk) = λ

(

[a, b] ∩
k
⋂

s=2

[a + xs, b + xs]

)

,

where λ(·) denotes Lebesgue measure. This relation holds, since the left-hand
side of (5.6) is an approximating sum of the integral at the right-hand side,
and O (∆(b − a)) is the error of the approximation. To complete the proof of
Lemma 4 it is enough to show that

Jk(a, b) =

∫

λ
(a,b)
k (x2, . . . , xk) dx2 . . . dxk = (b − a)k. (5.7)
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To prove (5.7) observe that

λ
(a,b)
k (x2, . . . , xk−1, xk) + λ

(a,b)
k (x2, . . . , xk−1, xk + (b − a))

= λ
(a,b)
k−1 (x2, . . . , xk−1) if xk ∈ [a − b, 0]

and
λ

(a,b)
k (x2, . . . , xk−1, xk) = 0 if |xk| > b − a

Hence,

Jk(a, b) =

∫

{a−b<xk<0}

[

λ
(a,b)
k (x2, . . . , xk) + λ

(a,b)
k (x2, . . . , xk + (b − a))

]

dx2 . . . dxk

= (b − a)

∫

λ
(a,b)
k−1 (x2, . . . , xk−1) dx2 . . . dxk−1 = (b − a)Jk−1(a, b)

The last relation implies (5.7) by induction. Lemma 4 is proved. ¤

6. Reduction of the proof of the Proposition

Let us introduce the following notation:

Hn(f, j1, . . . , jk) =

∫ ϕ2j1+1

ϕ2j1

1 dϕ

k
∏

s=2

∫ ϕ2js+1

ϕ2js

f2(ϕ) dϕ

We shall prove that

E

[

|Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)|

−

(

z + 1
2

)

n2δk−1
n

(log n)2η̃
Hn(f, j1, . . . , jk)

]2

<
CMn4

(log n)M

(6.1)

for all (j1, . . . , jk, p2, . . . , pk, z) ∈ Sn,k and arbitrarily large M > 0.

We make some comments about the content of formula (6.1). The second
term at the left-hand side is an estimate of the volume of the domain in R

2k

where the k-tuples from Mk,n must fall. This is a better approximation of this
volume than that given in the discussion after the formulation of the Proposi-
tion. The second moment of |Mk,n| is of order n4 divided by some power of
log n which depends on the parameters η, η̃ and α appearing in the definition
of Mk,n. The expression at the left-hand side of (6.1) is much smaller, since in
its estimate on the right-hand side we can divide by an arbitrary large power
of log n. Such an estimate holds only if the second term at the left-hand side is
appropriately chosen, i.e. if the volume of the domain where the points of Mk,n

must fall is computed with a sufficiently good accuracy. Let us also remark that
we have only gained a logarithmic factor on a large negative power by making
an appropriate centering of |Mk,n| on the left-hand side of (6.1).
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First we show that formula (6.1) implies the Proposition. For this aim we
introduce the events

An(j1, . . . , jk, p2, . . . , pk, z) =

{

f(·),

∣

∣

∣

∣

|Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)|

−

(

z + 1
2

)

n2δk−1
n

(log n)2η̃
Hn(f, j1, . . . , jk)

∣

∣

∣

∣

>
n2

(log n)M/3

}

in the space of continuous functions. By (6.1)

P (An(j1, . . . , jk, p2, . . . , pk, z)) <
const.

(log n)M/3
,

and since M > 0 can be chosen arbitrary large

∞
∑

n=1

∑

0≤j1<j2<···<jk≤p(2n)

∑

|ps|<Dδn

s=2,...,k

Bnη̃

∑

z=Anη̃

P (A2n(j1, . . . , jk, p2, . . . , pk, z)) < ∞

(6.2)

Among the events

A2n(j1, . . . , jk, p2, . . . , pk, z)

for some (j1, . . . , jk, p2, . . . , pk, z) ∈ S2n,k only finitely many one will occur
with probability one by the Borel–Cantelli lemma and relation (6.2). On the
other hand, because of the continuity properties of the functions f(·) we are
considering, and since z has a value of order nη̃ the relation

(

z +
1

2

)

H2n(f, j1, . . . , jk) = zn−kα
k
∏

s=2

f2(ϕ2js
)
(

1 + O(n−α + n−η̃)
)

holds. The last relation together with the fact that only finitely many events
A2n occur with probability one imply the Proposition.

Relation (6.1) follows from the following two lemmas:

Lemma 5. For arbitrary M > 0 and (j1, . . . , jk, p2, . . . , pk, z) ∈ Sn,k we have

E
{

|Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)|2
}

=

(

z + 1
2

)2
n4δ

2(k−1)
n

(log n)4η̃
E
{

Hn(f, j1, . . . , jk)2
}

+ O

(

n4

(log n)M

)

,

where the O(·) is uniform in j1, . . . , jk, p2, . . . , pk and z.
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Lemma 6. For arbitrary M > 0 and (j1, . . . , jk, p2, . . . , pk, z) ∈ Sn,k we have

E|Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)|Hn(f, j1, . . . , jk)

=

(

z + 1
2

)

n2δ
(k−1)
n

(log n)2η̃
E
{

Hn(f, j1, . . . , jk)2
}

+ O

(

n2

(log n)M

)

,

where the O(·) is uniform in j1, . . . , jk, p2, . . . , pk and z.

First we give an informal explanation about the proof of Lemmas 5 and 6.
The second moment at the left-hand side of the formula in Lemma 5 can
be expressed as the sum of the probabilities that two pairs of k-tuples m =
(m1, . . . ,mk) and m̄ = (m̄1, . . . , m̄k) fall simultaneously into the set Mk,n.
This statement is expressed in formula (6.4). All terms in this sum can be writ-
ten as an integral of the density function (introduced in Part 2 of the definition
of Property A)

p2k(x1, . . . , xk, xk+1, . . . , x2k|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k)) (6.3)

of the random vector f(ϕ(m1)), . . . , f(ϕ(mk)), f(ϕ(m̄1)), . . . , f(ϕ(m̄k)). The
sum of these integrals can be considered as the approximating sum of an inte-
gral in an appropriate domain. As the subsequent calculation will show, this
integral equals the main term of the right-hand side of the formula in Lemma 5.
Lemma 5 gives a bound on the error which is committed when the integral
expressing EH2

n multiplied with the constant appearing in Lemma 5 is replaced
by the sum by which we expressed the left-hand side.

This error is small, because by Part 2b) of Property A the density function
(6.3) depends continuously on its arguments x1, . . . , x2k and ϕ(m1), . . . , ϕ(mk),
ϕ(m̄1), . . . , ϕ(m̄k). But this property supplies a good estimate only if all differ-
ences between the angles ϕ(ms) and ϕ(m̄s) are not too small. The difference
between ϕ(ms) and ϕ(ms′) or ϕ(m̄s′) is bigger than log n−β , if s 6= s′ because
of the existence of the buffer zones Cj , and the same statement holds for ϕ(m̄s).
But ϕ(ms)−ϕ(m̄s) can be very small. Hence we fix some large positive number
γ and split the sum (6.4) which expresses Mk,n into two parts. The first sum
contains all pairs such that |ϕ(ms)−ϕ(m̄s)| > log n−γ with some fixed γ > 0 for
all s = 1, . . . , k. This sum can be approximated by an appropriate integral very
well because of Part 2b) of Property A, and this is the content of Lemma 7B.
The remaining sum can be bounded sufficiently well for our purposes because
of Part 2a) of Property A, and this is done in Lemma 7A. The integral ap-
pearing in Lemma 7B is not equal to the main term at the right-hand side of
the formula in Lemma 5, because the domain of integration was diminished by
not taking all terms in the sum (6.4). But we show with the help of formula
(6.11) that this change of domain of integration causes only a negligible error.
These estimates together imply Lemma 5. The proof of Lemma 6 is analogous.
Here Lemmas 8B and 8A give the estimate of the main and the error term if
we split the sum expressing the left-hand side of the formula in Lemma 6 in an
appropriate way.
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To carry out the above program we introduce for fixed numbers k, j1,
. . . , jk, p2, . . . , pk and z the notation Mn = Mk,n(f, j1, . . . , jk, p2, . . . , pk, z),
where Mk,n was defined in (4.1). Let Z = Zk denote the set

Z = Zk = {m = (m1, . . . ,mk), ms ∈ Z
2 for all s = 1, . . . , k},

and put
Fn = Mn ×Mn.

Clearly,

E
{

|Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)|2
}

=
∑

m∈Z

∑

m̄∈Z

P ((m, m̄) ∈ Fn). (6.4)

To prove Lemma 5 we have to estimate the sum at the right-hand side of (6.4).
We shall split this sum into two parts and handle differently those pairs (m, m̄),
m = (m1, . . . ,mk) and m̄ = (m̄1, . . . , m̄k), for which |ϕ(ms) − ϕ(m̄s)| is very
small for some 1 ≤ s ≤ k and those pairs for which all these differences are
not too small. To formulate this statement in a more explicit way we introduce
some notations.

Let us fix some very large γ > 0 which may depend on k, but not on n or
on j1, . . . , jk, p2, . . . , pk and z. (This number will be chosen much bigger than
α, β, η and η̃.) Define the set

Gn = {(t1, . . . , tk, t̄1, . . . , t̄k), ts, t̄s ∈ R
1,

ϕ2js
≤ ts, t̄s < ϕ2js+1, s = 1, . . . , k},

and split it into two disjoint sets G
(1)
n and G

(2)
n in the following way: For

ϕ2js
≤ t < ϕ2js+1 define `(t), 0 ≤ `(t) < nγ−α as the integer l for which

ϕ2js
+ ln−γ ≤ t < ϕ2js

+ (l + 1)n−γ . Put

G(1)
n = {(t1, . . . , tk, t̄1, . . . , t̄k) ∈ Gn, |`(ts) − `(t̄s)| > 1 for all 1 ≤ s ≤ k}

and

G(2)
n = {(t1, . . . , tk, t̄1, . . . , t̄k) ∈ Gn, |`(ts) − `(t̄s)| ≤ 1 for some 1 ≤ s ≤ k}.

Clearly,
Gn = G(1)

n ∪ G(2)
n .

Given some measurable B ⊂ R
2k define the integral

I(B) =

∫

(t1,...,tk,t̄1,...,t̄k)∈B

(x1,...,xk,x̄1,...,x̄k)∈R
2k

x2
2 · · ·x

2
kx̄2

2 · · · x̄
2
k

p(x1, . . . , xk, x̄1, . . . , x̄k|t1, . . . , tk, t̄1, . . . , t̄k)

dx1 . . . dxk dx̄1 . . . dx̄k dt1 . . . dtk dt̄1 . . . dt̄k

(6.5)
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Since for fixed (t1, . . . , tk, t̄1, . . . , t̄k)
∫

(x1,...,xk,x̄1,...,x̄k)∈R2k

x2
2 · · ·x

2
kx̄2

2 · · · x̄
2
k

p(x1, . . . , xk, x̄1, . . . , x̄k|t1, . . . , tk, t̄1, . . . , t̄k)

dx1 . . . dxk dx̄1 . . . dx̄k

= Ef2(t2) · · · f
2(tk)f2(t̄2) · · · f

2(t̄k),

(6.6)

hence
E
{

Hn(f, j1, . . . , jk)2
}

= I(Gn) = I(G(1)
n ) + I(G(2)

n ). (6.7)

Let us also observe that since the right-hand side of (6.6) is bounded, hence
(6.5) and (6.6) imply that

I(B) ≤ const.λ(B), (6.8)

where λ(B) denotes the Lebesgue measure of the set B in R
2k.

We split the set Fn into two disjoint sets F1
n and F2

n in the following way:

F1
n = {(m, m̄) = ((m1, . . . ,mk), (m̄1, . . . , m̄k)) ∈ Fn;

(ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k)) ∈ G(1)
n },

F2
n = {(m, m̄) = ((m1, . . . ,mk), (m̄1, . . . , m̄k)) ∈ Fn;

(ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k)) ∈ G(2)
n }.

Put
I(F1

n) =
∑

m∈Z

∑

m̄∈Z

P ((m, m̄) ∈ F1
n) (6.9)

and
I(F2

n) =
∑

m∈Z

∑

m̄∈Z

P ((m, m̄) ∈ F2
n). (6.9′)

Then we have

E
{

|Mk,n(f, j1, . . . , jk, p2, . . . , pk, z)|2
}

= I(F1
n) + I(F2

n). (6.10)

It follows from (6.8) and the observation that λ(G
(2)
n ) < const.(log n)−γ

that for sufficiently large γ = γ(M,k)

I(G(2)
n ) < const.(log n)−γ < const.(log n)−M . (6.11)

Lemma 5 follows from formulas (6.7), (6.10), (6.11) and the following Lem-
mas 7A and 7B.

Lemma 7A. If γ = γ(M,k) is sufficiently large, then

I(F2
n) < const.n4(log n)−M

for arbitrarily large M > 0.
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Lemma 7B. For all γ > 0

∣

∣

∣

∣

∣

I(F1
n) −

n4
(

z + 1
2

)2
δ
2(k−1)
n

log n4η̃
I(G(1)

n )

∣

∣

∣

∣

∣

< const.n3(log n)K

with some appropriate K = K(γ) > 0.

(In our problem the upper bound const.n3(log n)K in Lemma 7B can be
replaced by the weaker estimate n4(log n)−M with a sufficiently large M > 0.)

We reduce the proof of Lemma 6, similarly to Lemma 5, to two Lemmas 8A
and 8B. To formulate them we introduce the following quantities. Given some
m = (m1, . . . ,mk) ∈ Z = Zk define the sets

G(i)
n (m) =

{

(t1, . . . , tk) ∈ R
k, (ϕ(m1), . . . , ϕ(mk), t1, . . . , tk) ∈ G(i)

n

}

and the integrals

J (G(i)
n (m)) = J (G(i)

n (m), f) =

∫

(t1,...,tk)∈G
(i)
n (m)

f2(t2) · · · f
2(tk) dt1 . . . dtk

for i = 1, 2.

The identity

EMk,n(f, j1, . . . , jk, p2, . . . , pk, z)Hn(f, j1, . . . , jk)

=
∑

m∈Z

Eχ(m ∈ Mn)J (G(1)
n (m)) + Eχ(m ∈ Mn)J (G(2)

n (m)), (6.12)

holds. Hence Lemma 6 follows from formulas (6.7), (6.11), (6.12) and the
following lemmas.

Lemma 8A. If γ = γ(M,k) is sufficiently large, then

∑

m∈Z

Eχ(m ∈ Mn)J (G(2)
n (m)) < const.n2(log n)−M

for arbitrarily large M > 0.

Lemma 8B. For all γ > 0

∣

∣

∣

∣

∣

∑

m∈Z

Eχ(m ∈ Mn)J (G(1)
n (m)) −

n2
(

z + 1
2

)

δ
(k−1)
n

log n2η̃
I(G(1)

n )

∣

∣

∣

∣

∣

< const.n(log n)K

with some appropriate K = K(γ) > 0.
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7. Proof of Lemmas 7A and 8A

Proof of Lemma 7A. Fix the numbers j1, . . . , jk. Let us split the sets Djs
into

smaller sectors Us,l, l = 1, . . . ,
n

(log n)α
defined by the formula

Us,l =

{

x : x ∈ Djs
, ϕ2js

+
l − 1

n
≤ ϕ(x) < ϕ2js

+
l

n

}

.

Fix some positive number K > 0, and define the set

B(l1, . . . , lk, l̄1, . . . , l̄k) = B(l1, . . . , lk, l̄1, . . . , l̄k, j1, . . . , jk, f)

=

{

(m, m̄) = ((m1, . . . ,mk), (m̄1, . . . , m̄k)) ∈ Z × Z,

ms ∈ Us,ls , m̄s ∈ Us,l̄s , s = 1, . . . , k,
∣

∣

∣

∣

|m1|

f(ϕ(m1))
−

|ms|

f(ϕ(ms))

∣

∣

∣

∣

<
K

n
,

∣

∣

∣

∣

|m̄1|

f(ϕ(m̄1))
−

|m̄s|

f(ϕ(m̄s))

∣

∣

∣

∣

<
K

n
, s = 2, . . . , k

}

.

Introduce the random variables

ζ(l1, . . . , lk, l̄1, . . . , l̄k) = |B(l1, . . . , lk, l̄1, . . . , l̄k)|.

The estimate

I(F2
n) ≤

∑

0≤ls,l̄s≤
n

(log n)α for all s=1,...,k,

|ls−l̄s|≤
2n

(log n)γ for some 1≤s≤k

Eζ(l1, . . . , lk, l̄1, . . . , l̄k) (7.1)

holds. We prove some bounds on the expressions Eζ(l1, . . . , lk, l̄1, . . . , l̄k). The
cases when |ls − l̄s| > 1 for all s = 1, . . . , k and when |ls − l̄s| ≤ 1 for some
1 ≤ s ≤ k will be handled differently. First remark that all sets Us,l contain
less than const.n lattice points. We also show that

∣

∣

∣

∣

|m̄s| − |ms| + |m1|
f(ϕ(ms))

f(ϕ(m1))
− |m̄1|

f(ϕ(ms))

f(ϕ(m̄1))

∣

∣

∣

∣

< const.(|ls − l̄s| + 1)

for all s = 2, . . . , k, if (m, m̄) ∈ B(l1, . . . , lk, l̄1, . . . , l̄k)

(7.2)

holds with m = (m1, . . . ,mk) and m̄ = (m̄1, . . . , m̄k).

Indeed, we have

∣

∣

∣

∣

|ms| − |m1|
f(ϕ(ms))

f(ϕ(m1))
− |m̄s| + |m̄1|

f(ϕ(m̄s))

f(ϕ(m̄1))

∣

∣

∣

∣

<
K̄

n

and
∣

∣

∣

∣

|m̄1|
f(ϕ(m̄s))

f(ϕ(m̄1))
− |m̄1|

f(ϕ(ms))

f(ϕ(m̄1))

∣

∣

∣

∣

< const.(|ls − l̄s| + 1),
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since the function f(·) is Lipschitz one. The last two relations imply (7.2).

The inequalities
∣

∣

∣

∣

f(ϕ(ms)) −
|ms|

|m1|
f(ϕ(m1))

∣

∣

∣

∣

<
C

n2

∣

∣

∣

∣

f(ϕ(m̄s)) −
|m̄s|

|m̄1|
f(ϕ(m̄1))

∣

∣

∣

∣

<
C

n2

s = 2, . . . , k (7.3)

are also valid if (m, m̄) ∈ B(l1, . . . , lk, l̄1, . . . , l̄k). Let us fix l1, . . . , lk and
l̄1, . . . , l̄k. Take some m = (m1, . . . ,mk) and m̄ in such a way that ms ∈ Us,ls ,
s = 1, . . . , k, and m̄ ∈ U1,l̄1 respectively. Introduce

B
m,m̄(l1, . . . , lk, l̄1, . . . , l̄k) = {m̄ = (m̄1, . . . , m̄k),

(m, m̄) ∈ B(l1, . . . , lk, l̄1, . . . , l̄k), m̄ = m̄1}

and
ζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k) = |Bm,m̄(l1, . . . , lk, l̄1, . . . , l̄k)|.

We estimate the expected value of ζm,m̄. First we consider the case when
|ls − l̄s| > 1 for all s = 1, . . . , k.

Fix the values of f(ϕ(m1)), . . . , f(ϕ(mk)) and f(ϕ(m̄1)) and estimate con-
ditional expectation

E(ζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k) |

f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1).

Because of (7.2) we can determine with the help of the values of f(ϕ(m1)),

. . . , f(ϕ(mk)) and f(ϕ(m̄1)) a set consisting of at most const.
k
∏

s=2
|ls−l̄s| vectors

m̄ in such a way that only the vectors (m, m̄) with these m̄ can be in the set

B
m,m̄(l1, . . . , lk, l̄1, . . . , l̄k).

Let us estimate the conditional probability of the event that such a vector m̄

really belongs to this set.

The conditional density of the random vector f(ϕ(m̄2)), . . . , f(ϕ(m̄k)) with
respect to the condition f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1

can be bounded by

C(log n)(k−1)βτ

k
∏

s=1

(

n

|ls − l̄s|

)τ

p(x1, . . . , xk, x̄1|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1))
. (7.4)

We shall show that this conditional density function has the above estimate
for all f(ϕ(m̄2)) = x̄2, . . . , f(ϕ(m̄k)) = x̄k. Relation (7.4) follows from the
inequality

p(x1, . . . , xk, x̄1, . . . , x̄k|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k))

< C(log n)(k−1)βτ
k
∏

s=1

(

n

|ls − l̄s|

)τ

.



34 Péter Major

The last inequality holds because of Part 2b) of Property A and the following

observations: |ϕ(ms) − ϕ(m̄s)| >
|ls − l̄s| − 1

n
, and all other terms |ϕ(ms) −

ϕ(ms′)|, |ϕ(m̄s) − ϕ(ms′)| and |ϕ(m̄s) − ϕ(m̄s′)| which appear in the upper
bound of the density we are considering are greater than (log n)−β . (This
statement holds, because there is a sector Cj between these points.)

We claim that

P (m̄ ∈ B
m,m̄(l1, . . . , lk, l̄1, . . . , l̄k)|

f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1)

< C(log n)(k−1)βτ

n−2k+2
k
∏

s=1

(

n

|ls − l̄s|

)τ

p(x1, . . . , xk, x̄1|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1))
,

(7.5)

and the conditional expectation of ζm,m̄ satisfies the inequality

E
(

ζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k)|

f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1

)

< C(log n)(k−1)βτ

n−2k+2
k
∏

s=1

(

n

|ls − l̄s|

)τ k
∏

s=2

|ls − l̄s|

p(x1, . . . , xk, x̄1|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1))
.

(7.5′)

Indeed, to calculate the conditional probability in (7.5) we have to integrate
the conditional density which was bounded in (7.4) with respect to the variables
x̄2, . . . , x̄k by the Lebesgue measure on an appropriate set. But by the second
line of formula (7.3) this set is contained in the set

{∣

∣

∣

∣

x̄s −
|m̄s|

|m̄1|
x1

∣

∣

∣

∣

<
C

n2
, s = 2, . . . , k

}

which is a set with Lebesgue measure less than const.n−2k+2. This fact together
with our bound on the conditional density imply the bound on the conditional
density, and the estimate on the conditional expectation is obtained if we remark

that it is the sum of the conditional probability of at most const.
k
∏

s=2
|ls − l̄s|

terms.

Finally we show that

Eζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k) < C(log n)(k−1)βτn3−3k
k
∏

s=1

(

n

|ls − l̄s|

)τ−1

for all pairs (m, m̄).

(7.6)

To prove (7.6) we make the following observations: The expectation of ζm,m̄

can be obtained by integrating the left-hand side of (7.5′) with respect to the
measure

p(x1, . . . , xk, x̄1|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1)) dx1 . . . dxk dx̄1
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on a subset of

A =

{

(x1, . . . , xk, x̄1), c1 ≤ x1 ≤ c2,

∣

∣

∣

∣

xs −
|ms|

|m1|
x1

∣

∣

∣

∣

<
C

n2
, s = 2, . . . , k, and |x1 − x̄1| <

C|l1 − l̄1|

n

}

,

where C > 0 is some appropriate constant. The first inequalities in the defini-
tion of the set A appeared because of the definition of B(l1, . . . , lk, l̄1, . . . , l̄k),
and the last one, since

|f(ϕ(m̄1)) − f(ϕ(m1))| ≤ b3|ϕ(m̄1) − ϕ(m1)| ≤ 2b3
|l1 − l̄1|

n
,

because of the Lipschitz one property of the function f(·). Now formula (7.6)
follows from (7.5′) and the fact that the Lebesgue measure of the set A is less
than const.n1−2k|l1 − l̄1|.

Let us now consider the case when there are p ≥ 1 indices s such that
|ls − l̄s| ≤ 1. We claim that in this case

Eζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k) < C(log n)(k−1)βτn−3k+p+3−ε
∏′

(

n

|ls − l̄s|

)τ−1

for all pairs (m, m̄).

(7.6′)

with ε =
2 − τ

τ
, where

∏′
denotes product with indices s ∈ V with

V = {s; 1 ≤ s ≤ k and |ls − l̄s| ≥ 2}.

We prove (7.6′) with some refinement of the proof of (7.6). We may assume
that 1 /∈ V , i.e. |l1 − l̄1| ≤ 1 with the help of the following observation. The set
B(l1, . . . , lk, l̄1, . . . , l̄k) becomes smaller if we make an arbitrary permutation of
the indices s and choose K/2 instead of K in its definition. On the other hand,
the order of the angles ϕ(ms) has no importance in the subsequent arguments.
We shall consider the following two cases separately:

a) |ϕ(m1) − ϕ(m̄1)| > n−1−ε,

b) |ϕ(m1) − ϕ(m̄1)| ≤ n−1−ε.

In case a) we bound the conditional expectation of ζm,m̄ under the condi-
tion f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1 similarly to the already
investigated case. Because of (7.2) we can determine a set of vectors m̄ with
cardinality const.

∏′ |ls− l̄s| in such a way that only the pairs (m, m̄) with these
m̄ can be in the set B

m̄,m̄(l1, . . . , lk, l̄1, . . . , l̄k). Arguing similarly as before, with
the difference that now the conditional density of the vector (ϕ(f(m̄s)), s ∈ V )
is estimated, we get that

E(ζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k)|

f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1)

<

C(log n)(k−1)βτn−2k+2p
∏′

(

n

|ls − l̄s|

)τ

|ls − l̄s|

p(x1, . . . , xk, x̄1|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1))
|ϕ(m1) − ϕ(m̄1)|

−τ .
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Now we get similarly to the previous case by integrating the conditional expec-
tation with respect to the distribution of the condition

f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk, f(ϕ(m̄1)) = x̄1

that

Eζm,m̄(l1, . . . , lk, l̄1, . . . , l̄k) < C(log n)(k−1)βτn2−3k+p

∏′
(

n

|ls − l̄s|

)τ−1

|ϕ(m1) − ϕ(m̄1)|
1−τ

for all pairs (m, m̄).

We only have to observe that in the present case the Lebesgue measure of the
set where we integrate the conditional expectation is less than

const.n−2k+2|ϕ(m1) − ϕ(m̄1)|.

Indeed, it is contained in a set defined analogously to the set A defined in the
previous case, only the last inequality in its definition must be replaced with
the inequality |x1− x̄1| < C|ϕ(m1)−ϕ(m̄1)|. This estimate implies (7.6′), since
|ϕ(m1) − ϕ(m̄1)|

1−τ > n1−ε in case a).

In case b) we show that

E(ζm,m̄
(

l1, . . . , lk, l̄1, . . . , l̄k)|f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk

)

< C(log n)(k−1)βτ

n−2k+2p+1−ε
∏′

(

n

|ls − l̄s|

)τ

|ls − l̄s|

p(x1, . . . , xk|ϕ(m1), . . . , ϕ(mk))
.

(7.7)

In this case we estimate the conditional expectation when the value of
f(ϕ(m̄1)) is not prescribed in the condition. Nevertheless, the value of f(ϕ(m̄1))
can be determined by means of the conditioning terms appearing at the left-
hand side of (7.7) with a precision of const.n−1−ε because of the Lipschitz
one property of the function f(·). Hence we can determine, with the help
of relation (7.2), const.

∏′ |ls − l̄s| elements m̄ in such a way that under the
conditioning at the left-hand side of (7.7) the event

(m, m̄) ∈ B
m,m̄(l1, . . . , lk, l̄1, . . . , l̄k)

can take place only with these elements m̄.

To prove relation (7.7) we remark that the conditional density function of
the vector {f(ϕ(m̄s)) = x̄s, s ∈ V } with respect to the condition

{f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk}

is bounded by

C(log n)(k−1)βτ

∏′
(

n

|ls − l̄s|

)τ

p(x1, . . . , xk|ϕ(m1), . . . , ϕ(mk))
, (7.8)
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and for any B
m,m̄

P (m̄ ∈ B
m,m̄(l1, . . . , lk, l̄1, . . . , l̄k)|f(ϕ(m1)) = x1, . . . , f(ϕ(mk)) = xk)

< C(log n)(k−1)βτ

n−2k+2p+1−ε
∏′

(

n

|ls − l̄s|

)τ

p(x1, . . . , xk|ϕ(m1), . . . , ϕ(mk))
.

(7.8′)

The estimate (7.8′) follows from the estimate (7.8) on the conditional den-
sity and the following observation. To calculate the conditional probability of
the event m̄ ∈ B

m,m̄(l1, . . . , lk, l̄1, . . . , l̄k) one has to integrate the conditional
density bounded by formula (7.8) on the set

A∗ = A∗(x) =

{

(x̄s, s ∈ V ),

∣

∣

∣

∣

x̄s −
|m̄s|

|m̄s∗ |
x̄s∗

∣

∣

∣

∣

<
C

n2
,

for all s ∈ V and

∣

∣

∣

∣

x̄s∗ −
|m̄s∗ |

|m̄1|
x1

∣

∣

∣

∣

< Cn−1−ε

}

with an appropriate constant C > 0 and arbitrary s∗ ∈ V . (We may assume
that V is non-empty, i.e. p < k. In the case p = k relation (7.8′) obviously
holds, since the right-hand side of (7.8′) in this case is more than n1−ε divided
by a power of log n. To see this, observe that the denominator in (7.8′) is less
than a power of log n.) The last inequality may be imposed in the definition of
A∗, because

∣

∣

∣

∣

xs∗ −
|m̄s∗ |

|m̄1|
x1

∣

∣

∣

∣

<

∣

∣

∣

∣

x̄s∗ −
|m̄s∗ |

|m̄1|
x̄1

∣

∣

∣

∣

+
|m̄s∗ |

|m̄1|
|x̄1 − x1| < Cn−1−ε

in case b). Now (7.8′) follows from the bound in (7.8) and the fact that the
Lebesgue measure of the set A∗ is less than const.n−2k+2p+1−ε. Relation (7.8′)
implies (7.7), since there are

∏′ |ls − l̄s| possibilities for choosing m̄. Formula
(7.6′) follows from (7.7) and the observation that we have to integrate the
conditional expectation on a subset of the set

{

(x1, . . . , xk), c1 ≤ x1 ≤ c2,

∣

∣

∣

∣

xs −
|ms|

|m1|
x1

∣

∣

∣

∣

<
C

n2
, s = 2, . . . , k,

}

,

which is a set of Lebesgue measure less than const.n−2k+2.

Since m = (m1, . . . ,mk) and m̄ can be chosen with their coordinates ms

in prescribed sectors Us,l in const.nk+1 ways, formulas (7.6) and (7.6′) imply
that

Eζ(l1, . . . , lk, l̄1, . . . , l̄k) < C(log n)(k−1)βτn4−2k
k
∏

s=1

(

n

|ls − l̄s|

)τ−1

if |ls − l̄s| > 1 for all s = 1, . . . , k (7.9)

< C(log n)(k−1)βτn4−2k+p−ε
∏′

(

n

|ls − l̄s|

)τ−1

if there are p ≥ 1 indices s such that |ls − l̄s| ≤ 1
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Let us remark that for all l̃ the equation ls− l̄s = l̃ has less than n solutions.
Hence relations (7.1) and (7.9) imply that

I(F2
n) ≤ C(log n)(k−1)βτ

(

∑(0)
+

k
∑

p=1

∑(p)

)

with
∑(0)

= n4−k
∑

1<|l̃s|≤
n

(log n)α , s=1,...,k

|l̃s|<
n

(log n)γ for some 1≤s≤k

k
∏

s=1

(

n

l̃s

)τ−1

and
∑(p)

= n4−k+p−ε
∑

1<|l̃s|≤
n

(log n)α , s=1,...,k−p

k−p
∏

s=1

(

n

l̃s

)τ−1

.

We have

∑(0)
≤ const.n4−k





n
(log n)α
∑

p=1

(

n

p

)τ−1




k−1 n
(log n)γ
∑

p=1

(

n

p

)τ−1

≤ const.n4(log n)−γ(2−τ)

and

∑(p)
≤ const.n4−k+p−ε





n
(log n)α
∑

p=1

(

n

p

)τ−1




k−p

< const.n4−ε

for 1 ≤ p ≤ k. Hence

I(F2
n) ≤ C(log n)(k−1)βτn4

(

log n−(2−τ)γ + n−ε
)

≤ n4(log n)−M

if γ > 0 is sufficiently large. Lemma 7A is proved. ¤

Proof of Lemma 8A. Since An < |ms| < Bn for all s = 1, . . . , k if m =
(m1, . . . ,mk), and there are less than const.n2k vectors m ∈ Z satisfying this
condition, it is enough to show that

Eχ(m ∈ Mn)J (G(2)
n (m)) < const.n−2k+2(log n)−M

for all m ∈ Z if γ > γ(M,k)
(7.10)

to prove Lemma 8A. Let us introduce the notation t̄s = ϕ(ms)), s = 1, . . . , k.
We can rewrite the expression in formula (7.10) in the following form:

Eχ(m ∈ Mn)J (G(2)
n (m)) =

∫

(x̄1,...,x̄k)∈D

(x1,...,xk)∈R
k

(t1,...,tk)∈G(2)
n (m)

x2
2 · · ·x

2
k

p(x1, . . . , xk, x̄1, . . . , x̄k|t1, . . . , tk, t̄1, . . . , t̄k)

dt1 . . . dtk dx1 . . . dxk dx̄1 . . . dx̄k
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with

D =

{

(x̄1, . . . , x̄k), x1 ∈ Iz,

∣

∣

∣

∣

|ms|

x̄s
−

|m1|

x̄1

∣

∣

∣

∣

∈ Ipjs

}

.

Let us first fix t1, . . . , tk and x̄1, . . . , x̄k, and integrate with respect to the vari-
ables x1, . . . , xk. Because of the Lipschitz one property of the function f(·), the
density p(·|·) is concentrated on the set |xi − x̄i| ≤ b3|ti − t̄i|, and |xi| < b2.
Hence we get after integration with respect to the variables x1, . . . , xk that

Eχ(m ∈ Mn)J (G(2)
n (m)) < const.

∫

(x̄1,...,x̄k)∈D

(t1,...,tk)∈G(2)
n (m)

k
∏

s=1

|ts − t̄s|

sup
x1,...,xk

p(x1, . . . , xk, x̄1, . . . , x̄k|t1, . . . , tk, t̄1, . . . , t̄k)

dt1 . . . dtk dx̄1 . . . dx̄k.

Then integrating with respect to the variables x̄s, s = 1, . . . , k and exploiting
that the Lebesgue measure of D is less than n−2k+2 (this is so, because for fixed
x̄1, x̄s is in an interval of length const.n−2 for all s = 2, . . . , k if (x̄1, . . . , x̄k) ∈ D)
we get that

Eχ(m ∈ Mn)J (G(2)
n (m)) < const.n−2k+2

∫

(t1,...,tk)∈G
(2)
n (m)

k
∏

s=1

|ts − t̄s|

sup
x1,...,xk
x̄1,...,x̄k

p(x1, . . . , xk, x̄1, . . . , x̄k|t1, . . . , tk, t̄1, . . . , t̄k) dt1 . . . dtk.

(7.11)

Part 2a) of Property A implies that

p(x1, . . . , xk, x̄1, . . . , x̄k|t1, . . . , tk, t̄1, . . . , t̄k)

≤
2k
∏

s=2

|π(ts) − π(ts−1)|
−τ ≤ C(log n)(k−1)βτ

k
∏

s=2

|ts − t̄s|
−τ ,

(7.12)

where {π(t1), . . . , π(t2k)} is the monotone ordering of the numbers t1, . . . , tk,
t̄1, . . . , t̄k. The last inequality in (7.12) holds, because |ts − ts′ |, |ts − t̄s′ | and
|t̄s − t̄s′ | are greater than (log n)−β if s 6= s′. (There is a sector Cj between
them.) Relations (7.11) and (7.12) imply that

Eχ(m ∈ Mn)J (G(2)
n (m)) < const.n−2k+2C(log n)(k−1)βτ

∫

(t1,...,tk)∈G
(1)
n (m)

k
∏

s−1

|ts − t̄s|
1−τdt1 . . . dtk.

Since min |ts − t̄s| < (log n)−γ by the definition of the set G
(2)
n (m), the last

inequality implies that

Eχ(m ∈ Mn)J (G(2)
n (m)) < const.n−2k+2(log n)−M ,

if γ > γ(k,M). Lemma 8A is proved. ¤
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8. The proof of Lemmas 7B and 8B

Proof of Lemma 7B. Let us first observe that

|p(x̃1, . . . , x̃2k|t̃1, . . . , t̃2k) − p(x1, . . . , x2k|t1, . . . , t2k)| < const.
(log n)K

n

if (t1, . . . t2k) ∈ G(1)
n , and |x̃s − xs| <

C

n
, |t̃s − ts| <

C

n
, s = 1, . . . , 2k

(8.1)
with some K = K(γ,C). This statement follows from Part 2b) of Property

A and the fact that π(ts) − π(ts−1) > (log n)−γ , if (t1, . . . , t2k) ∈ G
(1)
n . (Here

π(ts), s = 1, . . . , 2k, denotes again the monotone ordering of the sequence ts,
s = 1, . . . , 2k.)

The relation m = (m1, . . . ,mk) ∈ Mn holds if and only if

f(ϕ(ms)) ∈ I (m1,ms, f(ϕ(m1)))

=









|ms|

|m1|

f(ϕ(m1))
+

(pjs
+ 1)δn

|m1|
f(ϕ(m1))

,
|ms|

|m1|

f(ϕ(m1))
+

pjs
δn

|m1|
f(ϕ(m1))









,

s = 2, . . . , k, ϕ(ms) ∈ [ϕ2js
, ϕ2js+1], s = 1, . . . , k,

and |m1| ∈ Ĩz (8.2)

Since Ān < |m1| < B̄n and 0 < b1 < f(ϕ(m1)) < b2 < ∞, hence the
interval I(m1,ms, f(ϕ(m1))) can be non-empty only if |ms| is of order n for all
s = 1, . . . , n. Using this fact, we get with the help of standard calculation that

I (m1,ms, f(ϕ(m1)))

=

[

|ms|

|m1|
f(ϕ(m1)) − (pjs

+ 1)δn
|ms|

|m1|3
f3(ϕ(m1)) + O

(

1

n4

)

,

|ms|

|m1|
f(ϕ(m1)) − pjs

δn
|ms|

|m1|3
f3(ϕ(m1)) + O

(

1

n4

)]

.

We claim that

P ((m, m̄) ∈ F1
n)

=

∫

p

(

x,
|m2|

|m1|
x, . . . ,

|mk|

|m1|
x, x̄,

|m̄2|

|m̄1|
x̄, . . . ,

|m̄k|

|m̄1|
x̄

∣

∣

∣

∣

∣

∣

∣

∣

ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k)

)

(8.3)

x3(k−1)x̄3(k−1) dx dx̄δ2(k−1)
n

k
∏

s=2

|ms||m̄s|

|m1|3|m̄1|3
+ O

(

(log n)K

n4k−3

)

if (ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k)) ∈ G
(1)
n and |m1|, |m̄1| ∈ Ĩz. Other-

wise, this probability equals zero. Indeed, we get the above probability by
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fixing first the values f(ϕ(m1)) = x and f(ϕ(m̄1)) = x̄, integrating the density
function

p(x, y2, . . . , yk, x̄, ȳ2, . . . , ȳk|ϕ(m1), . . . , ϕ(mk), ϕ(m̄1), . . . , ϕ(m̄k))

on the set

(y2, . . . , yk, ȳ2, . . . , ȳk)

∈ I (m1,m2, x) × · · · × I(m1,mk, x) × I(m̄1, m̄2, x̄) × · · · × I(m̄1, m̄k, x̄)

and then integrating with respect to x and x̄.

It follows from (8.1) and the definition of the interval I(m1,ms, f(ϕ(m1)))

that we commit an error of order O

(

(log n)K

n4k−3

)

by substituting the argument

ys by
|ms|

|m1|
x and ȳs by

|m̄s|

|m̄1|
x̄, the length of the intervals I(m1,ms, x) and

I(m̄1, m̄s, x̄) by δn
|ms|

|m1|3
x3 and δn

|m̄s|

|m̄1|3
x̄3 when integrating with fixed x and

x̄. (Observe that we may assume that b1 ≤ x, x̄ ≤ b2, otherwise the density
function p(·|·) equals zero. Let us also observe that the density p(·|·) in the
integrand of (8.3) is less than a power of log n, because of Part 2a) of Property A
and the fact that the difference between the angles ϕ(ms) and ϕ(m̄s) is greater
than (log n)−γ . We need this observation to show that the approximation of
the length of the intervals I(m1,ms, x) and I(m̄1, m̄s, x̄) we have made causes

an error of order O

(

(log n)K

n4k−2

)

.) In such a way we get formula (8.3).

Fix some m ∈ Dj1 ∩ Z
2 and m̄ ∈ Dj1 ∩ Z

2. Relations (8.1) and (8.3) imply
that

∑(m,m̄)
P
(

(m, m̄) ∈ F1
n

)

= δ2(k−1)
n

∫

{ϕ(m1),ϕ(y2),...,ϕ(yk),ϕ(m̄1),ϕ(ȳ2),...,ϕ(ȳk)}∈G
(1)
n

|y2||ȳ2| . . . |yk||ȳk|

p
(

x, |y2|, . . . , |yk|, x̄, |ȳ2|, . . . , |ȳk|
∣

∣

∣

∣ϕ(m), ϕ(y2), . . . , ϕ(yk), ϕ(m̄), ϕ(ȳ2), . . . , ϕ(ȳk)
)

dy2 dȳ2 . . . dyk dȳk dx dx̄ + O

(

(log n)K

n

)

(8.4)

where ys, ȳs ∈ R
2, for s = 2, . . . , k, x, x̄ ∈ R

1 and
∑

(m,m̄) denotes summation
for such pairs (m, m̄) ∈ F1

n, m = (m1, . . . ,mk), m̄ = (m̄1, . . . , m̄k) for which
m1 = m and m̄1 = m̄. (We remark that the dependence of the last integral on
m and m̄ appears only in the dependence of the density function p(·|·) on ϕ(m)
and ϕ(m̄).)

Indeed, let us estimate each term of the sum at the left-hand side of (8.4)
with the help of the integral (8.3). Let us fix the values x and x̄ in these
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integrals, and consider the sum of the integrands at the right-hand side of (8.3).
This is an approximating sum of the integral on the right-hand side of (8.4) with

fixed (x and x̄) on a lattice of span

[

0,
x

|m1|

]2(k−1)

×

[

0,
x̄

|m̄1|

]2(k−1)

, and the

difference between the sum and the approximating integral is O

(

(log n)K

n

)

by

formula (8.1). Then integrating with respect to the arguments x and x̄ we get
formula (8.4).

Summing up relation (8.4) for m and m̄ we get with the help of relation
(8.1) that

I(F1
n) = δ2(k−1)

n

n4

(log n)4η̃

∫

{(x,y1,...,yk,x̄,ȳ1,...,ȳk)∈Dk}

|y2||ȳ2| . . . |yk||ȳk|

p
(

x, |y2|, . . . , |yk|, x̄, |ȳ2|, . . . , |ȳk|
∣

∣ϕ(y1), . . . , ϕ(yk), ϕ(ȳ1), . . . , ϕ(ȳk)
)

dy1 . . . dȳk dx dx̄ + O
(

n3(log n)K
)

,
(8.5)

where the set Dk is defined as

Dk =

{

(x, y1, . . . , yk, x̄, ȳ1, . . . , ȳk), x, x̄ ∈ R
1, ys, ȳs ∈ R

2, s = 1, . . . , k

(ϕ(y1), . . . , ϕ(yk), ϕ(ȳ1), . . . , ϕ(ȳk)) ∈ G(1)
n , |y1|, |ȳ1| ∈ [z, z + 1]

}

.

Here we exploit that I(F1
n) is the sum of the expressions at the left-hand

side of formula (8.4), and
(log n)4η̃

n4
times the sum of the integrals at the right-

hand side of (8.4) is an approximating sum of the integral at the right-hand

side in (8.5) on a lattice of span

[

0,
(log n)η̃

n

]4

. Rewriting the integral in (8.5)

in polar coordinate system, i.e. making the change of variables rs = |ys|,
ϕs = ϕ(ys) and r̄s = |ȳs|, ϕ̄s = ϕ(ȳs) for all s = 1, . . . , k and then integrating
with respect to r1 and r̄1 we get that

I(F1
n) = δ2(k−1)

n

n4

(log n)4η̃

(

z +
1

2

)2

I(G(1)
n ) + O

(

n3(log n)K
)

.

The last relation implies Lemma 7B. ¤

The proof of Theorem 8B is similar, hence we only give a brief sketch of it.
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We get, arguing similarly to the proof of formula (8.3) that

Eχ(m ∈ Mn)J (G(2)
n (m))

=

∫

x∈R
1 (y1,...,yk)∈R

k

(t̄2,...,t̄k)∈J (G(2)
n (m))

p

(

x,
|m2|

|m1|
x, . . . ,

|mk|

|m1|
x, |ȳ1|, |ȳ2|, . . . , |ȳk|

∣

∣

∣

∣

ϕ(m1), . . . , ϕ(mk), t̄1, . . . , t̄k

)

x3(k−1)|ȳ2|
2 . . . |ȳk|

2 dx dȳ1 . . . , dȳk

dt1 . . . dtk δ(k−1)
n

k
∏

s=2

|ms|

|m1|3
+ O

(

(log n)K

n2k−1

)

To prove Theorem 8B first we sum up this formula for all m = (m1, . . . ,mk)
with prescribed m1 then for m1 and observe that these sums approximate well
certain integrals. In such a way we get formulas analogous to (8.4) and (8.5).
Then rewriting the formula analogous to formula (8.5) in polar coordinate sys-
tem (in the variables corresponding to the points m) we get Theorem 8B.

9. On the proof of the Stronger version of the Theorem

We have used Part 1) of Property A in the proof of Lemmas 7A, 8A and in
Lemmas 2 and 3. If only its weaker version Part 1′) is satisfied, then the
following observations help us to prove the Theorem.

If the estimate |f(ϕ2) − f(ϕ1)| ≤ D|ϕ2 − ϕ1| log n holds with some D > 0
instead of the inequality |f(ϕ2) − f(ϕ1| ≤ const.|ϕ2 − ϕ1|, then the bounds
we get are worse with a multiplying factor which is a power of log n. Such
estimates are appropriate in the proofs of Lemmas 7A and 8A, if the exponent
γ is chosen sufficiently large in them. Hence we make the following approach.
Let us consider the event

F (D,n) =

{

sup
0≤ϕ1<ϕ2≤θ

|f(ϕ1) − f(ϕ2)|

|ϕ1 − ϕ2|
< D log n

}

,

where D = D(k) may depend on the number k appearing in Lemmas 7A and
8A. We get the necessary bound on this set and show that the contribution of
the complementary set is negligible.

In Lemma 7A we have to bound the sum (6.9′). There are only const.n2k

non-zero terms in this sum, and each of them can be bounded well by means
of formula (2.1) on the complementary set of F (D,n). Hence, it is enough to
estimate the sum

∑

m∈Z

∑

m̄∈Z

P
(

{(m, m̄) ∈ F2
n} ∩ F (D,n)

)

with sufficiently large D > 0. The estimates given in the proof of Section 7 work
in this case too, the only difference is that now an additional multiplying factor
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(log n)2k appears. But this term causes no problem if γ > 0 is chosen sufficiently
large. The same argument works in the proof of Lemma 8A and Lemma 2, but
in the proof of Lemma 3 we have to be more careful. The problem which arises
in this case is that although α can be chosen large in the definition of the sets
Dj(n), but it cannot depend on the number k appearing in this lemma. We
have to bound the expression in formula (5.4) more carefully. Actually, it is
enough to bound the expression

E|Bm
n,k(f)|χ(F ′(εk, Dk)) (9.1)

with some appropriate εk > 0 and Dk > 0, where

F ′(ε,D) =

{

f ; sup
0≤ϕ1<ϕ2≤θ

(log n)ε ≤
|f(ϕ1) − f(ϕ2)|

|ϕ1 − ϕ2|
< D log n

}

,

The estimate on the complementary set of F ′can be done by modifying the
argument of the proof in the same way as it was done in the case of Lemma 7A.

We estimate the expression in (9.1) with the help of the Schwarz inequality
and the following observation:

∣

∣Bm
n,k(f)

∣

∣

2
<

(

2k + 2

k + 1

) 2k+1
∑

s=k

∣

∣Bm
n,s(f)

∣

∣ . (9.2)

The estimate (9.2) holds, since at the left-hand side we have counted the number
of pairs (m̄,m1, . . . ,mk) ∈ Bm

n,k(f) and (m̄′,m′
1, . . . ,m

′
k) ∈ Bm

n,k(f), the union

of these two sets is contained in one of the sets Bm
n,s(f), and at most

(

2k + 2

k + 1

)

different pairs can give the same union.

In such a way we get the inequality

E|Bm
n,k(f)|χ(F ′(εk, Dk) <

[

(

2k + 2

k + 1

) 2k+1
∑

s=k

E
(∣

∣Bm
n,s(f)

∣

∣χ(F ′(εk, Dk)
)

]1/2

P

(

sup
0≤ϕ1<ϕ2≤θ

|f(ϕ1) − f(ϕ2)|

|ϕ1 − ϕ2|
> (log n)εk

)1/2

< const.(log n)k+1 exp {−λ(log n)εk} .

The right-hand side estimate of the last inequality holds. Indeed, the argument
of the proof of Lemma 3 yields that the first term of the right-hand side is an

upper bound on the sum of expectations, since
|f(ϕ1) − f(ϕ2)|

|ϕ1 − ϕ2|
< Dk log n

on the set F ′(εk, Dk). On the other hand, formula (2.1) gives the bound
exp{−λ(log n)εk} on the probability in the middle term. Since this is the dom-
inating term in the expression at the right-hand side, we have got a sufficiently
good upper bound on the expression (9.1). In such a way we can prove Lemma 4
under the weaker condition Part 1′) instead of Part 1) in Property A.
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