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1. Introduction

In this work the following problem will be investigated: Fix a positive integer n, consider
n independent, identically distributed random variables ξ1, . . . , ξn on a measurable space
(X,X ) with some distribution µ and define their empirical distribution µn together with
its normalization

√
n(µn−µ). Take a function f(x1, . . . , xk) of k variables on the k-fold

product (Xk,X k) of the space (X,X ), introduce also the k-th power of the normalized
empirical measure

√
n(µn − µ) on the space (Xk,X k) and define the integral of the

function f with respect to this signed product measure. This integral is a random
variable, and for all u > 0 we want to give a good estimate on the probability that
it is larger than u. More precisely, we take the integrals not on the whole space, we
omit the diagonals xs = xs′ , 1 ≤ s, s′ ≤ k, s 6= s′, of the space Xk from the domain of
integration. Such a modification of the integral seems to be natural.

We shall also be interested in the following generalized version of the above problem.
Let us have a nice class of functions F of k variables on the product space (Xk,X k)
and consider the integral of all functions of this class with respect to the k-fold direct
product of our normalized empirical measure. Give a good estimate on the probability
that the supremum of these integrals is larger than some number u > 0.

The reader may ask why the above problems deserve a closer study. I found them
important, because they may help to solve some important problems in probability
theory and mathematical statistics. I met such problems when tried to adapt the method
of proof about the Gaussian limit behaviour of the maximum likelihood estimate to
some other problems. In the original problem the asymptotic behaviour of the solution
of the so-called maximum likelihood equation has to be investigated. The study of this
equation is hard in its original form. But by making an appropriate Taylor expansion
of the function whose root we are looking for and throwing away its higher order terms
we get an approximation whose behaviour can be simply understood. So to describe
the limit behaviour of the maximum likelihood estimate it suffices to show that this
approximation causes only a negligible error.

One would try to apply a similar procedure in more difficult situations. I met some
non-parametric maximum likelihood problems, for instance the description of the limit
behaviour of the so-called Kaplan–Meyer product limit estimate when such an approach
could be applied. But in those problems it was harder to justify that the simplifying
approximation causes only a negligible error. To show this the solution of the above
mentioned problems were needed. In the non-parametric maximum likelihood estimate
problems I met the estimation of multiple (random) integrals played a role similar to
the estimation of the coefficients in the Taylor expansion in the study of the maximum
likelihood estimate. Although I could apply this approach only in some special cases, I
believe that it works in very general situations. But it demands some further work to
show this.
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The problem suggested in this work is interesting and non-trivial even in the special
case k = 1. The solution of the problem in this case leads to some interesting, non-
trivial generalization of the fundamental theorem of the mathematical statistics about
the difference of the empirical and real distribution of a large sample.

The above mentioned problems have a natural counterpart about the behaviour of
so-called U -statistics, a fairly popular subject in probability theory. The investigation
of multiple random integrals and U -statistics are closely related, and it turned out that
it is useful to consider them simultaneously. Hence both subjects will be discussed in
this work.

Let us try to get some feeling what kind of results we can expect. It is useful
to observe that for large sample size n the normalized empirical measure

√
n(µn − µ)

behaves similarly to a Gaussian random measure. This suggests that in the problems
we are interested in similar results should hold as in the case of multiple Gaussian
integrals. Hence we may expect that the tail behaviour of the distribution of a k-fold
random integral with respect to a normalized empirical measure is similar to that of the
k-th power of a Gaussian random variable with expectation zero and an appropriate
variance. Moreover, a similar estimate should hold for the supremum of random integrals
of a class of functions under not too restrictive conditions. We may also hope that the
methods of the theory of multiple Gaussian integrals can be adapted to the investigation
of our problems.

The above belief is essentially correct, but there is an essential difference between
the behaviour of multiple Gaussian integrals and multiple integrals with respect to a
normalized empirical measure. If the variance of a multiple integral with respect to a
normalized empirical measure is small, what turns out to be equivalent to the small L2-
norm of the function we are integrating, then the behaviour of this integral is different
from that of multiple Gaussian integrals with the same variance. In this case the effect
of some irregularities of the normalized empirical distribution turns out to be non-
negligible, and no good Gaussian approximation holds any longer. Hence some new
methods have to be worked out and the hardest problems in our study appear at this
point.

The precise formulation of the results will be contained in the main part of the work.
Besides their proof I also try to explain the main ideas behind them and the notions
introduced in their investigation. This work contains some new results, and also the
proof of some already rather classical theorems is presented. To make the picture behind
the problems more understandable I also discuss their Gaussian counterpart.

The proofs apply results from different parts of the probability theory. Papers in-
vestigating similar results refer to works dealing with quite different subjects, and this
makes their reading rather hard. To overcome this difficulty I tried to work out the de-
tails and to present a self-contained discussion even at the price of a longer text. Thus
I wrote down (in the main text or in the Appendix) the proof of many interesting and
basic results, like results about Vapnik–Červonenkis classes, about U -statistics and their
decomposition to sums of so-called degenerate U -statistics, logarithmic Sobolev inequal-
ities, Borell’s inequality about homogeneous polynomials of Rademacher functions, etc.
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I tried to give such an exposition where different parts of the problem are explained as
independently of other as possible, and they can be understood in themselves.

This work was explained at the probability seminar of the University Debrecen
(Hungary).

2. Motivation of the investigation. Discussion of some problems

Here I try to show by means of some examples why the solution of the problems men-
tioned in the introduction may be useful in the study of some important probabilistic
problems. I try to give a good picture about the main ideas but do not work out all
details. Actually, the elaboration of some details omitted would demand hard work.
But as the discussion of this section is quite independent of the rest of the paper, these
omissions cause no problem in understanding the subsequent part.

I start with a short discussion of the maximum likelihood estimate in the simplest
case. We study the following problem. Let us have a class of density functions f(x, ϑ)
on the real line depending on a parameter ϑ ∈ R1 and observe a sequence of indepen-
dent random variables ξ1(ω), . . . , ξn(ω) with a density function f(x, ϑ0), where ϑ0 is an
unknown parameter we want to estimate with the help of the above sequence of random
variables.

We can carry out this estimation with the help of the maximum likelihood method.
It suggests to choose the estimate ϑ̂n = ϑ̂n(ξ1, . . . , ξn) of the parameter ϑ0 as the number
where the density function of the random vector (ξ1, . . . , ξn), i.e. the product

n
∏

k=1

f(ξk, ϑ) = exp

{

n
∑

k=1

log f(ξk, ϑ)

}

takes its maximum. This point can be found as the solution of the so-called maximum
likelihood equation

n
∑

k=1

∂

∂ϑ
log f(ξk, ϑ) = 0. (2.1)

We are interested in the asymptotic behaviour of the random variable ϑ̂n − ϑ0, where
ϑ̂n is the (appropriate) solution of the equation (2.1).

The direct study of this equation is rather hard, but a Taylor expansion of the
expression at the left-hand side of (2.1) around the (unknown) point ϑ0 helps to give

a good and simple approximation of ϑ̂n, and it enables us to describe the asymptotic
behaviour of ϑ̂n − ϑ0.

This Taylor expansion yields that

n
∑

k=1

∂

∂ϑ
log f(ξk, ϑ̂n) =

n
∑

k=1

∂
∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)

+ (ϑ̂n − ϑ0)

(

n
∑

k=1

(

∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

))

+O
(

n(ϑ̂n − ϑ0)
2
)
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=

n
∑

k=1

(

ηk + ζk(ϑ̂n − ϑ0)
)

+O
(

n(ϑ̂n − ϑ0)
2
)

, (2.2)

where

ηk =
∂
∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)
and ζk =

∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

for k = 1, . . . , n. We want to understand the asymptotic behaviour of the (random)
expression on the right-hand side of (2.2). The relation

Eηk =

∫ ∂
∂ϑf(x, ϑ0)

f(x, ϑ0)
f(x, ϑ0) dx =

∂

∂ϑ

∫

f(x, ϑ0) dx = 0

holds, since
∫

f(x, ϑ) dx = 1 for all ϑ, and differentiating this relation we get the last

identity. Similarly, Eη2k = −Eζk =
∫ ( ∂

∂ϑ f(x,ϑ0))
2

f(x,ϑ0)
dx > 0, k = 1, . . . , n. Hence by the

central limit theorem χn = 1√
n

n
∑

k=1

ηk is asymptotically normal with expectation zero

and variance I2 =
∫ ( ∂

∂ϑ f(x,ϑ0))
2

f(x,ϑ0)
dx > 0. In the statistics literature this number I is

called the Fisher information. By the laws of large numbers 1
n

n
∑

k=1

ζk ∼ −I2.

Thus relation (2.2) suggests the approximation ϑ̃n = −

n
∑

k=1

ηk

n
∑

k=1

ζk

of the maximum-

likelihood estimate ϑ̂n, and
√
n(ϑ̃n − ϑ0) is asymptotically normal with expectation

zero and variance I2. The random variable ϑ̃n is not a solution of the equation (2.1),
the value of the expression at the left-hand side is of order O(n(ϑ̃n − ϑ0)

2) = O(1) in
this point. On the other hand, the derivative of the function at the left-hand side is
large in this point, it is greater than const.n with some const. > 0. This implies that
the maximum-likelihood equation has a solution ϑ̂n such that ϑ̂n − ϑ̃n = O

(

1
n

)

. This

has the consequence that
√
n(ϑ̂n−ϑ0) and

√
n(ϑ̃n−ϑ0) have the same asymptotic limit

behaviour.

The previous method can be summarized in the following way: Take a simpler
linearized version of the expression we want to estimate by means of an appropriate
Taylor expansion, describe the limit distribution of this linearized version and show
that the linearization causes only a negligible error.

We want to show that such a method also works in more difficult situations. But
in some cases it is harder to show that the error we have committed by replacing the
original expression by a simpler linearized version is negligible, and to do this we need
the solution of the problems mentioned in the introduction. We shall present such an
example by studying a fairly popular model of the mathematical statistics, the so-called
Kaplan–Meyer method for the estimation of the empirical distribution function with
the help of censored data.
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The following problem is considered. Let (Xi, Zi), i = 1, . . . , n, be a sequence
of independent, identically distributed random vectors such that the components Xi

and Zi are also independent with distribution functions F (x) and G(x). We want to
estimate the distribution function F of the random variables Xi, but we cannot observe
the variables Xi, only the random variables Yi = min(Xi, Zi) and δi = I(Xi ≤ Zi). In
other words, we want to solve the following problem. There are certain objects whose
lifetime Xi are independent and F distributed. But we cannot observe this lifetime Xi,
because after a time Zi the observation must be stopped. We also know whether the
real lifetime Xi or the censoring variable Zi was observed. We make n independent
experiments and want to estimate with their help the distribution function F .

Kaplan and Meyer, on the basis of some maximum-likelihood estimation type con-
siderations, proposed the following so-called product limit estimator Sn(u) to estimate
the unknown survival function S = 1− F :

1− Fn(u) = Sn(u) =























n
∏

i=1

(

N(Yi)

N(Yi) + 1

)I(Yi≤u,δi=1)

if u ≤ max(Y1, . . . , Yn)

0 if u ≥ max(Y1, . . . , Yn), δn = 1,

undefined if u ≥ max(Y1, . . . , Yn), δn = 0,
(2.3)

where

N(t) = #{Yi, Yi > t, 1 ≤ i ≤ n} =
n
∑

i=1

I(Yi > t).

We want to show that the above estimate (2.3) is really good. For this goal we
shall approximate the random variables Sn(u) by some appropriate random variables.
To do this first we introduce some notations.

Put
H(u) = P (Yi ≤ u) = 1− H̄(u),

H̃(u) = P (Yi ≤ u, δi = 1), ˜̃H(u) = P (Yi ≤ u, δi = 0)
(2.4)

and

Hn(u) =
1

n

n
∑

i=1

I(Yi ≤ u)

H̃n(u) =
1

n

n
∑

i=1

I(Yi ≤ u, δi = 1), ˜̃Hn(u) =
1

n

n
∑

i=1

I(Yi ≤ u, δi = 0).

(2.5)

Clearly H(u) = H̃(u) + ˜̃H(u) and Hn(u) = H̃n(u) +
˜̃Hn(u). We shall estimate Fn(u)−

F (u) for u ∈ (−∞, T ] if

1−H(T ) > δ with some fixed δ > 0. (2.6)

Condition (2.6) implies that there are more than δ
2n sample points Yj larger than T

with probability almost 1. It has exponentially small probability that this is not the
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case. This observation helps to show in the subsequent calculations that some events
have negligibly small probability.

We introduce the so-called cumulative hazard function and its empirical version

Λ(u) = − log(1− F (u)), Λn(u) = − log(1− Fn(u)). (2.7)

Since Fn(u) − F (u) = exp(−Λ(u)) (1− exp(Λ(u)− Λn(u))) a simple Taylor expansion
yields

Fn(u)− F (u) = (1− F (u)) (Λn(u)− Λ(u)) +R1(u), (2.8)

and it is easy to see that R1(u) = O
(

Λ(u)− Λn(u))
2
)

. It follows from the subsequent

estimations that Λ(u)−Λn(u) = O(n−1/2), thus nR1(u) = O(1). Hence it is enough to
investigate the term Λn(u). We shall show that Λn(u) has an expansion with Λ(u) as the
main term plus n−1/2 a term which is a linear functional of an appropriate normalized
empirical distribution function plus an error term of order O(n−1).

From (2.3) it is obvious that

Λn(u) = −
n
∑

i=1

I(Yi ≤ u, δi = 1) log

(

1− 1

1 +N(Yi)

)

.

We can get rid of the unpleasant logarithmic function in this formula by means of
the relation − log(1− x) = x+O(x2) for small x which yields that

Λn(u) =

n
∑

i=1

I(Yi ≤ u, δi = 1)

N(Yi)
+R2(u) = Λ̃n(u) +R2(u), (2.9)

and the error term nR2(u) is exponentially small.

The expression Λ̃n(u) is still inappropriate for our purposes. Since the denominators

N(Yi) =
n
∑

j=1

I(Yj > Yi) are dependent for different indices i we cannot see directly the

limit behaviour of Λ̃n(u).

We try to approximate Λ̃n(u) by a simpler expression. A natural approach would
be to approximate the terms N(Yi) in it by their conditional expectation (n−1)H̄(Yi) =
(n− 1)(1−H(Yi)) = E(N(Yi)|Yi). This is a too rough ‘first order’ approximation, but
the following ‘second order approximation’ will be sufficient for our goals. Put

N(Yi) =
n
∑

j=1

I(Yj > Yi) = nH̄(Yi)









1 +

n
∑

j=1

I(Yj > Yi)− nH̄(Yi)

nH̄(Yi)









and express the terms 1
N(Yi)

in the sum defining Λ̃n by means of the relation 1
1+z =

∞
∑

k=0

(−1)kzk = 1− z + ε(z) with the choice z =

n
∑

j=1

I(Yj>Yi)−nH̄(Yi)

nH̄(Yi)
. As |ε(z)| < 2z2 for
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|z| < 1
2 we get that

Λ̃n(u) =
n
∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)











1 +
∞
∑

k=1









−

n
∑

j=1

I(Yj > Yi)− nH̄(Yi)

nH̄(Yi)









k









=

n
∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)









1−

n
∑

j=1

I(Yj > Yi)− nH̄(Yi)

nH̄(Yi)









+R3(u)
(2.10)

= 2A(u)−B(u) +R3(u),

where

A(u) = A(n, u) =
n
∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)

and

B(u) = B(n, u) =

n
∑

i=1

n
∑

j=1

I(Yi ≤ u, δi = 1)I(Yj > Yi)

n2H̄2(Yi)
.

It can be proved by means of standard methods that nR3(u) is exponentially small.
Thus from (2.9) and (2.10) we get that

Λn(u) = 2A(u)−B(u) + negligible error. (2.11)

This means that to solve our problem we have to describe the asymptotic behaviour
of the random variables A(u) and B(u). We can get a better insight into their behaviour
by rewriting the sum A(u) as an integral with respect to an empirical measure and the
double sum B(u) as a two-fold integral with respect empirical measures. These integrals
can be rewritten as sums of random integrals with respect to normalized empirical
measures and deterministic measures. In such a way we get a representation of Λn(u)
in the form of a sum whose terms can be well understood.

Let us write

A(u) =

∫ +∞

−∞

I(y ≤ u)

1−H(y)
dH̃n(y),

B(u) =

∫ +∞

−∞

∫ +∞

−∞

I(y ≤ u)I(x > y)

(1−H(y))
2 dHn(x)dH̃n(y).

To rewrite the term B(u) in a form better for our purposes observe that

Hn(x)H̃n(y) = H(x)H̃(y) +H(x)(H̃n(y)− H̃(y)) + (Hn(x)−H(x))H̃(y)

+ (Hn(x)−H(x))(H̃n(y)− H̃(y)).
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Hence it can be written in the form B(u) = B1(u) +B2(u) +B3(u) +B4(u), where

B1(u) =

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1−H(y))
2 dH(x) dH̃(y) ,

B2(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1−H(y))
2 dH(x) d

(√
n(H̃n(y)− H̃(y))

)

,

B3(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1−H(y))
2 d
(√
n (Hn(x)−H(x))

)

dH̃(y) ,

B4(u) =
1

n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1−H(y))
2 d
(√
n (Hn(x)−H(x))

)

d
(√

n(H̃n(y)− H̃(y))
)

.

In the above decomposition of B(u) the term B1 is a deterministic function, B2, B3 are
linear functionals of empirical processes and B4 is a nonlinear functional of empirical
processes. The deterministic term B1(u) can be calculated explicitly. Indeed,

B1(u) =

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1−H(y))
2 dH(x)dH̃(y) =

∫ u

−∞

dH̃(y)

1−H(y)
.

Then the relations H̃(u) =
∫ u

−∞ (1−G(t)) dF (t) and 1 − H = (1 − F )(1 − G) imply
that

B1(u) =

∫ u

−∞

dF (y)

1− F (y)
= − log(1− F (u)) = Λ(u). (2.12)

Observe that

A(u) =

∫ u

−∞

d H̃n(y)

1−H(y)

=

∫ u

−∞

dH̃(y)

1−H(y)
+

1√
n

∫ u

−∞

d
(√

n(H̃n(y)− H̃(y))
)

1−H(y)

= B1(u) +B2(u).

(2.13)

From relation (2.11) using (2.12) and (2.13) it follows that

Λn(u)− Λ(u) = B2(u)−B3(u)−B4(u) + negligible error. (2.14)

Integrating B2 and B3 in the variable x and then integrating by parts B2 we get that

B2(u) =
1√
n

∫ u

−∞

d
(√

n(H̃n(y)− H̃(y))
)

1−H(y)

=

√
n
(

H̃n(u)− H̃(u)
)

√
n(1−H(u))

− 1√
n

∫ u

−∞

√
n(H̃n(y)− H̃(y))

(1−H(y))
2 dH(y)

B3(u) =
1√
n

∫ u

−∞

√
n (Hn(y)−H(y))

(1−H(y))
2 dH̃(y).
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Using the above forms of B2 and B3, (2.12) we can write

√
n (Λn(u)− Λ(u)) =

√
n
(

H̃n(u)− H̃(u)
)

1−H(u)
−
∫ u

−∞

√
n(H̃n(y)− H̃(y))

(1−H(y))
2 dH(y)

+

∫ u

−∞

√
n (Hn(y)−H(y))

(1−H(y))
2 dH̃(y)

−√
nB4(u) + negligible error.

(2.15)

Formula (2.15) almost agrees with the statement we wanted to prove. Here we expressed
the normalized error

√
n (Λn(u)− Λ(u)) as a sum of linear functionals of normalized

empirical measures plus some negligible error terms and the error term
√
nB4(u). So to

get a complete proof it is enough to show that
√
nB4(u) also yields a negligible error. But

B4(u) is a double integral of a bounded function (here we apply again formula (2.6)) with
respect to a normalized empirical measure. Hence to bound this term we need a good
estimate of multiple stochastic integrals (with multiplicity 2) and this is just the problem
formulated in the introduction. The estimate we need here follows from Theorem 8.1
of the present work. Let us remark that the problem discussed here corresponds to the
estimation of the coefficient of the second term in the Taylor expansion considered in
the study of the maximum likelihood estimation. One may worry a little bit how to
bound B4(u) with the help of estimations of double stochastic integrals, since in the
definition of B4(u) we integrate by different normalized empirical processes in the two
coordinates. But this is a not too difficult technical problem, it can be simply overcome
for instance by rewriting the integral as a double integral with respect to the empirical

process
(√

n (Hn(x)−H(x)) ,
√
n
(

H̃n(y)− H̃(y)
))

in the space R2.

By working out the details of the above calculation we get that the linear functional
B2(u)−B3(u) of normalized empirical processes yields a good estimate on the expression√
n(Λn(u) − Λ(u)) for a fixed parameter u. But we want to prove somewhat more, we

want to get an estimate uniform in the parameter u, i.e. to show that even the random
variable sup

u≤T
|√n(Λn(u)− Λ(u))−B2(u) +B3(u)| is small. This can be done by making

estimates uniform in the parameter u in all steps of the above calculation. There appears
only one difficulty when trying to carry out this program. Namely, we need an estimate
on sup

u
|B4(u)|, i.e. we have to bound the supremum of multiple random integrals with

respect to a normalized random measure for a nice class of kernel functions. This can
be done, but at this point the second problem mentioned in the introduction appears.
This difficulty can be overcome by means of Theorem 8.2 of this work.

Thus we can find the limit behaviour of the Kaplan–Meyer estimate by means of
an appropriate expansion. The steps of this investigation are fairly standard, the only
hard part is the solution of the problems mentioned in the introduction. We expect that
such a method also works in much more general situation. This may justify a detailed
study of the problems considered in this work.

I finish this section with a remark of Richard Gill he made in a personal conversation
after my talk on this subject at a conference. He told that this approach had given a
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complete proof about the limit behaviour of this estimate, but it had exploited the
explicit formula given in the Kaplan–Meyer estimate. He missed the application of an
argument based on the non-parametric maximum likelihood character of this estimate.
This was a completely justified remark, since if we do not restrict our attention to
this problem, but try to generalize it to general non-parametric maximum likelihood
estimates, then we have to understand how the maximum likelihood character can be
exploited. I believe that this can be done, but it demands further studies.

3. Some estimates about sums of independent random variables

We need some results about the distribution of sums of independent random variables
bounded by a constant with probability one. Later only the results about sums of
independent and identically distributed variables will be interesting for us, but since
these results can be generalized without any effort to sums of not necessarily identically
distributed random variables here we shall drop the condition about the identical dis-
tribution of the summands. We are interested in the question when these estimates give
such a good bound as the central limit theorem suggests, and what can be told if this
is not the case. More explicitly, we consider the following problem: Let X1, . . . , Xn be
independent random variables EXj = 0, VarXj = σ2

j , 1 ≤ j ≤ n, and take the random

sum Sn =
n
∑

j=1

Xj and its variance VarSn = V 2
n =

n
∑

j=1

σ2
j . We want to get a good bound

on the probability P (Sn > xVn). The central limit theorem would suggest that under
general conditions an upper bound of the order 1−Φ(x) should hold for this probability
where Φ(x) denotes the standard normal distribution function. Since the standard nor-

mal distribution function satisfies the inequality
(

1
x − 1

x3

)

e−x2/2
√
2π

< 1−Φ(x) < 1
x
e−x2/2
√
2π

for all x > 0 it is natural to ask when the probability P (Sn > xVn) is comparable with

the value e−x2/2. More generally, we say that we have a Gaussian type estimate for the
probability P (Sn > xVn) if it can be bounded by e−Cx2

with some constant C separated
from zero.

First we discuss Bernstein’s inequality which tells for which values x the probability
P (Sn > xVn) satisfies a Gaussian type estimate. Such an estimate holds (for sums
of random variables bounded by 1) if x ≤ const.Vn. For x ≥ const.Vn Bernstein’s
inequality yields almost no improvement if we have a better bound on the variance Vn
of the sum Sn. Another estimate, Bennett’s inequality yields a slight improvement,
and as an example presented before this result shows it cannot be essentially improved
without imposing some additional conditions. The main difficulties we meet in this
paper are closely related to the weakness of the estimates we have for the probability of
the event that a sum of independent random variables is larger than some value when
this probability does not satisfy a Gaussian type estimate because of the small variance
of the sum.

Let us formulate Bernstein’s inequality. In its usual formulation a real number M
is introduced and it is assumed that the terms in the sum we investigate are bounded
by this number. But since the problem can be simply reduced to the special caseM = 1
we shall only deal with this special case.
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Theorem 3.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent random
variables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2

j = EX2
j , 1 ≤ j ≤ n,

Sn =
n
∑

j=1

Xj and V 2
n = VarSn =

n
∑

j=1

σ2
j . Then

P (Sn > xVn) ≤ exp







− x2

2
(

1 + 1
3

x
Vn

)







for all x > 0. (3.1)

Proof of Theorem 3.1. Let us give a good bound on the exponential moments EetSn

for some appropriate parameters t > 0. We can write EetXj =
∞
∑

k=0

tk

k!EX
k
j ≤ 1 +

t2σ2
j

2

(

1 +
∞
∑

k=1

2tk

(k+2)!

)

≤ 1 +
t2σ2

j

2

(

1 +
∞
∑

k=1

3−ktk
)

= 1 +
t2σ2

j

2
1

1− t
3

≤ exp
{

t2σ2
j

2
1

1− t
3

}

if

0 ≤ t < 3. Hence EetSn =
n
∏

j=1

EetXj ≤ exp
{

t2V 2
n

2
1

1− t
3

}

for 0 ≤ t < 3.

The above relation implies that

P (Sn > xVn) = P (etSn > etxVn) ≤ EetSne−txVn ≤ exp

{

t2V 2
n

2

1

1− t
3

− txVn

}

if 0 ≤ t < 3. Choose the number t in this inequality as the solution of the equation
t2V 2

n
1

1− t
3

= txVn, i.e. put t =
x

Vn+
x
3
. Then 0 ≤ t < 3, and we get that P (Sn > xVn) ≤

e−txVn/2 = exp

{

− x2

2(1+ 1
3

x
Vn

)

}

.

If the random variables X1, . . . , Xn satisfy the conditions of the Bernstein inequal-
ity then also the random variables −X1, . . . ,−Xn satisfy them. By applying the above

result in both cases we get that P (|Sn| > xVn) ≤ 2 exp

{

− x2

2(1+ 1
3

x
Vn

)

}

under the condi-

tions of the Bernstein inequality.

Bernstein’s inequality states that for all ε > 0 there is some sufficiently small
number α(ε) > 0 such that in the case x

Vn
< α(ε) P (Sn > xVn) ≤ e−(1−ε)x2/2. Besides,

for all fixed numbers A > 0 there is some constant C = C(A) > 0 such that in the

case x
Vn

< A the inequality P (Sn > xVn) ≤ e−Cx2

holds. This can be interpreted as a
Gaussian type estimate for the probability P (Sn > xVn).

On the other hand, if x
Vn

is very large, then the Bernstein inequality yields a
much worse estimate. The next example shows that this is not because of its weakness.
There are sequences of independent, identically distributed random variablesX1, . . . , Xn

bounded by one and with expectation zero such that with the notations Sn =
n
∑

j=1

Xj ,

σ2 = EX2
j , V

2
n =

∑

j=1

EX2
j = nσ2 the probability P (Sn > xVn) is relatively large if x

Vn

is large, it is much larger than the value suggested by the normal approximation. This
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example will be interesting for us mainly for the sake of some orientation. Hence I do
not try to formulate it in such a general form as it could be done or to give the best
possible constants in it. The method of proof shows that a wide class of examples could
be constructed with similar properties. In the following discussion it will be convenient
to replace the number x by y = xVn =

√
nσx.

Example 3.2. Let us fix some positive integer n, real numbers y ≥ 200 and 1 > σ2 > 0
such that n > 16y > 64nσ2. Put V 2

n = nσ2 and take a sequence of independent,
identically distributed random variables X1, . . . , Xn such that P (Xj = 1) = P (Xj =

−1) = σ2

2 , and P (Xj = 0) = 1 − σ2. Put Sn =
n
∑

j=1

Xj. Then ESn = 0, VarSn = V 2
n ,

and

P (Sn > y) > A exp

{

−By log y

V 2
n

}

with some universal constants A > 0 and B > 0. We can choose for instance A = 1
2 ,

B = 22
5 in this inequality.

Here I shall give a proof of the statement of Example 3.2. Let me remark that in
the work [23] I gave a simpler and more elementary proof of this result under the name
Example 2.4.

Proof of the statement of Example 3.2. In the proof some ideas of the large deviation

theory will be applied. Let us introduce the measure µ, µ({1}) = µ({−1}) = σ2

2 ,
µ({0}) = 1−σ2 on the real line, which is actually the distribution of the random variables

Xj , together with its conjugates µt, µt( dx) = etx

σ2

2 (et+e−t)+1−σ2
µ( dx), x ∈ R1, for all

real numbers t. Let µ(n) denote the n-fold convolution of the measure µ and µ
(n)
t the

n-fold convolution of the measure µt with itself. Then P (Sn > y) = µ(n)((y,∞)), and it
is not difficult to see (and it is a well-known fact in the theory of large deviations) that

µ(n)(A) =
(

σ2

2 (et + e−t) + 1− σ2
)n
∫

A
e−tuµ

(n)
t ( du) for all measurable sets A ⊂ R1.

Let us consider the above defined measures µt and µ
(n)
t with t = log 4y

nσ2 . I claim

that µ
(n)
t ([y, 115 y]) ≥ 1

2 . To show this let us consider n independent µt distributed, in-
dependent random variables ξ1, . . . , ξn, and estimate their expected value and variance.

We have Eξj =
σ2

2 (et−e−t)
σ2

2 (et+e−t)+1−σ2
for all 1 ≤ j ≤ n, and since 1 ≤ σ2

2 (et+e−t)+1−σ2 ≤
1 + σ2et = 1 + 4 y

n ≤ 5
4 , and besides, we get with the help of the estimate e−t =

ete−2t = et
(

nσ2

4y

)2

≤ 1
4e

t the inequality 3
2
y
n = 3

8σ
2et ≤ σ2

2 (et − e−t) ≤ σ2

2 e
t = 2 y

n ,

hence 6
5
y
n ≤ Eξj ≤ 2 y

n . Similarly, Var ξj ≤ Eξ2j =
σ2

2 (et+e−t)
σ2

2 (et+e−t)+1−σ2
≤ 4 y

n . The

above estimates together with the Chebishev inequality imply that µ
(n)
t ([y, 115 y]) =

P

(

y ≤
n
∑

j=1

ξj ≤ 11
5 y

)

≥ 1− P

(∣

∣

∣

∣

∣

n
∑

j=1

(ξj − Eξj)

∣

∣

∣

∣

∣

> y
5

)

≥ 1− 100y
y2 ≥ 1

2 . This inequality
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together with the relation between the measures µ(n) and µ
(n)
t imply that

P (Sn > y) = µ(n)([y,∞]) ≥ µ(n)

([

y,
11

5
y

])

=

(

σ2

2
(et + e−t) + 1− σ2

)n
11y/5
∫

y

e−tuµ
(n)
t ( du) ≥ e−11ty/5µ

(n)
t

([

y,
11

5
y

])

≥ 1

2
e−11ty/5 =

1

2
exp

{

−11

5
y log

4y

V 2
n

}

≥ 1

2
exp

{

−22

5
y log

y

V 2
n

}

.

In the case y > V 2
n the Bernstein inequality yields the estimate P (Sn > y) ≤ e−αy

with some universal constant α > 0, while the above example shows that we can expect
at most an additional logarithmic factor in the exponent of the upper bound in an
improvement of this estimate. The following result, called Bennett’s inequality shows
that such an improvement is really possible.

Theorem 3.3 (Bennett’s inequality). Let X1, . . . , Xn be independent random vari-

ables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2
j = EX2

j , 1 ≤ j ≤ n, Sn =
n
∑

j=1

Xj

and V 2
n = VarSn =

n
∑

j=1

σ2
j . Then

P (Sn > y) ≤ exp

{

−V 2
n

[(

1 +
y

V 2
n

)

log

(

1 +
y

V 2
n

)

− y

V 2
n

]}

for all y > 0. (3.2)

As a consequence, for all ε > 0 there exists some B = B(ε) > 0 such that

P (Sn > y) ≤ exp

{

−(1− ε)y log
y

V 2
n

}

if y > BV 2
n , (3.3)

and there exists some positive constant K > 0 such that

P (Sn > y) ≤ exp

{

−Ky log y

V 2
n

}

if y > 2V 2
n . (3.4)

Proof of Theorem 3.3. We have

EetXj =

∞
∑

k=0

tk

k!
EXk

j ≤ 1 + σ2
j

∞
∑

k=2

tk

k!
= 1 + σ2

j

(

et − 1− t
)

≤ eσ
2
j (e

t−1−t), 1 ≤ j ≤ n,

and EetSn ≤ eV
2
n (et−1−t) for all t ≥ 0. Hence P (Sn > y) ≤ e−tyEetSn ≤ e−ty+V 2

n (et−1−t)

for all t ≥ 0. We get relation (3.2) from this inequality with the choice t = log
(

1 + y
V 2
n

)

.
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(This is the place of minimum of the function −ty + V 2
n (e

t − 1 − t) for fixed y in the
parameter t.)

Relation (3.2) and the observation lim
u→∞

(u+1) log(u+1)−u
u log u = 1 with the choice u = y

V 2
n

imply formula (3.3). Because of relation (3.3) to prove formula (3.4) it is enough to check
it for 2 ≤ y

V 2
n

≤ B with some sufficiently large constant B > 0. In this case relation

(3.4) follows directly from formula (3.2). This can be seen for instance by observing

that the expression
V 2
n

[(

1+ y

V 2
n

)

log

(

1+ y

V 2
n

)

− y

V 2
n

]

y log y

V 2
n

is a continuous and positive function

of the variable y
V 2
n

in the interval 2 ≤ y
V 2
n

≤ B, hence its minimum in this interval is

strictly positive.

Let us make a short comparison between Bernstein’s and Bennett’s inequality.
Both results deal with the estimation of the probability P (Sn > y), and their proofs
are also very similar. In both cases first an estimate is given for the moment generating
functions Rj(t) = EetXj of the summands Xj . In Bennett’s inequality a better esti-
mate is given for them. (The worst case we have to handle is when P (Xj = 1) = εj ,

P
(

Xj = − ej
1−εj

)

= 1 − εj , and εj +
ε2j

1−εj
= σ2

j . In this case the proof of Bennett’s

inequality contains an almost optimal estimate, while the estimate in Bernstein’s in-
equality is weaker. In this estimate we are satisfied to give a good estimate for the first
three coefficients in the Taylor expansion of the function Rj(t).) With the help of this
estimate a bound is given on the probability we are interested in which depends on the
parameter t. In the proof of Bennett’s inequality this parameter t is chosen optimally,
while in Bernstein’s inequality only an asymptotically optimal choice is taken. As a
consequence, Bennett’s inequality yields a sharper estimate. Actually Bernstein’s in-
equality can be deduced from it. On the other hand, Bernstein’s inequality gives a good,
‘visible’ bound for the probability P (Sn > y) for not too large values of the number y
which suffices for our purposes, while the magnitude of the estimate given by Bennett’s
inequality for small y cannot be directly seen. For large y Bennett’s yields a better
estimate, but this improvement seems to have a smaller importance.

I finish this section with another estimate due to Hoeffding which later will be
useful for us when we want to carry out certain symmetrization arguments.

Theorem 3.4 (Hoeffding’s inequality). Let ε1, . . . , εn be independent random vari-
ables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and let a1, . . . , an be arbitrary real

numbers. Put V =
n
∑

j=1

ajεj. Then

P (V > y) ≤ exp

{

− y2

2
∑n

j=1 a
2
j

}

for all y > 0. (3.5)

Remark: Clearly EV = 0 and VarV =
n
∑

j=1

a2j , hence Hoeffding’s inequality yields such
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an estimate for P (V > y) which the central limit theorem suggests. This estimate holds
for all real numbers a1, . . . , an.

Remark 2: If we consider the Rademacher functions rk(x), rk(x) = 1 if (2j − 1)2−k ≤
x < 2j2−k and rk(x) = −1 if 2(j − 1)2−k ≤ x < (2j − 1)2−k, 1 ≤ j ≤ 2k, for all
k = 1, 2, . . . , as random variables on the probability space Ω = [0, 1] with the Borel σ-
algebra and the Lebesgue measure as probability measure on the interval [0, 1], then they
are independent random variables with the same distribution as the random variables
ε1, . . . , εn considered in Theorem 3.4. Therefore such results which deal with random
variables of this type are also called results about Rademacher functions in the literature.
At some points we shall also use this terminology.

Proof of Theorem 3.4. Let us give a good bound on the exponential moment EetV

for all t > 0. We have EetV =
n
∏

j=1

Eetajεj =
n
∏

j=1

(eajt+e−ajt)
2 , and

(eajt+e−ajt)
2 =

∞
∑

k=0

a2k
j

(2k)! t
2k ≤

∞
∑

k=0

(ajt)
2k

2kk!
= ea

2
j t

2/2, since (2k)! ≥ 2kk! for all k ≥ 0. This implies

that EetV ≤ exp

{

t2

2

n
∑

j=1

a2j

}

. Hence P (V > y) ≤ exp

{

−ty + t2

2

n
∑

j=1

a2j

}

, and we get

relation (3.5) with the choice t = y

(

n
∑

j=1

a2j

)−1

.

4. On the supremum of a nice class of partial sums

This section contains a result about the behaviour of the supremum of random integrals
with respect to a normalized empirical measure in the special case when only one-fold
integrals are considered. First we present an equivalent version of it about the supremum
of a nice class of sums of independent, identically distributed random variables. We also
discuss some natural problems related to them. In particular, we are interested in the
question how restrictive the conditions of these results are. Also the natural Gaussian
counterpart of these results will be given, but the proofs are postponed to a later section.

To formulate our results first we introduce the following notion.

Definition of Lp-dense classes of functions. Let us have a measurable space (Y,Y)
and a set G of Y measurable real valued functions on this space. We call G an Lp-
dense class of functions, 1 ≤ p < ∞, with parameter D and exponent L if for all
numbers 1 ≥ ε > 0 and probability measures ν on the space (Y,Y) there exists a finite
ε-dense subset Gε,ν = {g1, . . . , gm} ⊂ G in the space Lp(Y,Y, ν) consisting of m ≤ Dε−L

elements, i.e. there exists such a set Gε,ν ⊂ G for which inf
gj∈Gε,ν

∫

|g − gj |p dν < εp for

all functions g ∈ G. (Here the set Gε,ν may depend on the measure ν, but its cardinality
is bounded by a number depending only on ε.)

Now we formulate the following
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Theorem 4.1. Let us have a sequence of iid. random variables ξ1, . . . , ξn, n ≥ 2, taking
values on a measurable space (X,X ) with some distribution µ together with an L2-dense
class F of functions of countable cardinality with some parameter D and exponent L ≥ 1
on the space (X,X ) which satisfies the conditions

‖f‖∞ = sup
x∈X

|f(x)| ≤ 1, for all f ∈ F (4.1)

‖f‖22 =

∫

f2(x)µ( dx) ≤ σ2 for all f ∈ F (4.2)

with some constant σ > 0, and

∫

f(x)µ( dx) = 0 for all f ∈ F (4.3)

Define the normalized partial sums Sn(f) =
1√
n

n
∑

k=1

f(ξk) for all f ∈ F and introduce

the number β = max
(

logD
logn , 0

)

, where D is the parameter of the L2-dense class F .

There exist some constants C > 0, α > 0 and M > 0 such that the supremum of
the normalized random sums Sn(f), f ∈ F , satisfies the inequality

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ CD exp

{

−α
(u

σ

)2
}

if
√
nσ2 ≥ u ≥

√
M(L+ β)3/4σ log1/2

2

σ
,

(4.4)

with the number β defined in this theorem, and the numbers D and L in formula (4.4)
agree with the parameter and exponent of the L2-dense class F .

The condition about the countable cardinality of F can be weakened. For this goal
we introduce the notion of countable approximability. For the sake of later applications
it will be formulated more generally than needed in the present context.

Definition of countably approximable classes of random variables. Let a class
of random variables U(f), f ∈ F , indexed by a class of functions on a measure space
(Y,Y) be given. We say that this class of random variables U(f), f ∈ F , is countably
approximable if there is a countable subset F ′ ⊂ F such that for all numbers u > 0 the
sets A(u) = {ω : sup

f∈F
|U(f)(ω)| ≥ u} and B(u) = {ω : sup

f∈F ′

|U(f)(ω)| ≥ u} satisfy the

identity P (A(u) \B(u)) = 0.

Clearly, B(u) ⊂ A(u). In the above definition we demanded that for all u > 0 the
set B(u) should be almost as large as A(u). The following corollary of Theorem 4.1
holds.

Corollary of Theorem 4.1. Let a class of functions F satisfy the conditions of
Theorem 4.1 with the only exception that instead of the condition about the countable
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cardinality of F it is assumed that the class of random variables Sn(f), f ∈ F , is
countably approximable. Then the random variables Sn(f), f ∈ F , satisfy relation (4.4).

This corollary can be simply proved, we only have to apply Theorem 4.1 for the
class F ′. To do this we have to show that if F is an L2-dense class with some parameter
D and exponent L, and F ′ ⊂ F , then F ′ is also an L2-dense class with the same
exponent L, only with a possibly different parameter D′.

To prove this statement let us choose for all numbers 1 ≥ ε > 0 and probability

measures ν on (Y,Y) some functions f1, . . . , fm ∈ F with m ≤ D
(

ε
2

)−L
elements, such

that the sets Dj =
{

f :
∫

|f − fj |2 dν ≤
(

ε
2

)2
}

satisfy the relation
m
⋃

j=1

Dj = Y . For

all sets Dj for which Dj ∩ F ′ is non-empty choose a function f ′j ∈ Dj ∩ F ′. In such a

way we get a collection of functions f ′j from the class F ′ containing at most 2LDε−L

elements which satisfies the condition imposed for L2-dense classes with exponent L
and parameter 2LD for this number ε and measure ν.

Given a sequence of independent µ distributed random variables ξ1, . . . , ξn taking
values on (X,X ) let us introduce their empirical distribution on (X,X ) as

µn(A)(ω) =
1

n
# {j : 1 ≤ j ≤ n, ξj(ω) ∈ A} , A ∈ X , (4.5)

and define for all measurable (and integrable) functions f the (random) integral

Jn(f) = Jn,1(f) =
√
n

∫

f(x)(µn( dx)− µ( dx)). (4.6)

Clearly Jn(f) =
1√
n

n
∑

j=1

(f(ξj)−Ef(ξj)) = Sn(f̄) with f̄(x) = f(x)−
∫

f(x)µ( dx).

It is not difficult to see that sup
x∈X

|f̄(x)| ≤ 2 if sup
x∈X

|f(x)| ≤ 1,
∫

f̄(x)µ( dx) = 0,
∫

f̄2(x)µ( dx) ≤
∫

f2(x)µ( dx), if F is an L2-dense class of functions with param-
eter D and exponent L, then the class of functions F̄ consisting of the functions
f̄(x) = f(x) −

∫

f(x)µ( dx), f ∈ F , is an L2-dense class of functions with parame-

ter 2LD and exponent L, since
∫

(f̄ − ḡ)2 dµ ≤ ε if f, g ∈ F , and
∫

(f − g)2 dµ ≤
(

ε
2

)2
.

Hence Theorem 4.1 implies the following result which can be considered as its version
reformulated for integrals with respect to normalized empirical measures.

Theorem 4.1′. Let us have a sequence of iid. random variables ξ1, . . . , ξn, n ≥ 2, with
distribution µ on a measurable space (X,X ) together with some class of functions F
on this space which satisfy the conditions of Theorem 4.1 with the possible exception of
condition (4.3). Then the estimate (4.4) remains valid if we replace the random sums
Sn(f) in it by the random integrals Jn(f) defined in (4.6). Moreover, similarly to the
corollary of Theorem 4.1, the countable cardinality of the set F can be replaced by the
condition that the class of random variables Jn(f), f ∈ F , is countably approximable.
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All finite dimensional distributions of the set of random variables Sn(f), f ∈ F ,
converge to a Gaussian field Z(f), f ∈ F , as n → ∞ with expectation EZ(f) = 0
and correlation EZ(f)Z(g) =

∫

f(x)g(x)µ( dx), f, g ∈ F . (Here and in the subsequent
part of the paper a collection of random variables indexed by some set of parameters
will be called a Gaussian field if for all finite subsets of these parameters the random
variables indexed by this finite set are jointly Gaussian.) Hence we can expect that
the random variables of a Gaussian field with such properties satisfy a result similar to
Proposition 4.1. The following result can be considered as the Gaussian counterpart of
Theorem 4.1.

Theorem 4.2. Let us fix some probability measure µ on a measurable space (X,X )
together with a countable set F of square integrable functions with respect to the measure
µ such that there exists a parameter D > 0 and exponent L ≥ 1 with the following
property: For all ε > 0 there exist m ≤ Dε−L functions fj = fj(ε) ∈ F , 1 ≤ j ≤ m,
such that for all f ∈ F inf

1≤j≤m

∫

(fj(x) − f(x))2µ( dx) < ε2. Let us also assume that

the class of functions F satisfies condition (4.2) with some 1 ≥ σ > 0. Let us consider
a Gaussian field Z(f), f ∈ F , such that EZ(f) = 0, EZ(f)Z(g) =

∫

f(x)g(x)µ( dx),
f, g ∈ F .

Then there exist some constants C > 0 andM > 0 (for instance C = 4 andM = 16
can be chosen) such that the inequality

P

(

sup
f∈F

|Z(f)| ≥ u

)

≤ C(D + 1) exp

{

− 1

256

(u

σ

)2
}

if u ≥ML1/2σ log1/2
2

σ
(4.7)

holds with the parameter D and exponent L introduced in this theorem.

In the inequalities of the above results I did not try to find the best possible
universal constants. One could choose for instance the coefficient 1−ε

2 with arbitrary
small ε > 0 instead of the coefficient 1

256 in the exponent at the right-hand side of
formula (4.7) if the other universal constants C > 0 and M > 0 are chosen sufficiently
large in this inequality. This means that in the bound (4.7) we can get an estimate with
an almost as good exponential term as in the estimate of the probability P (Z(f) > u)
for a single Gaussian random variable Z(f) with EZ(f) = 0, VarZ(f) = σ2. Similarly,
the constant α > 0 can be chosen as α = 1−ε

2 with arbitrary small ε > 0 in formula
(4.4).

The condition about the countable cardinality of the set F in Theorem 4.2 could be
weakened similarly to Theorem 4.1. But here I omit the discussion of this question, since
Theorem 4.2 was only introduced for the sake of a comparison between the Gaussian
and non-Gaussian case. An essential difference between Theorems 4.1 and 4.2 is that in
Theorem 4.1 the condition was imposed that the class of functions F has to be L2-dense,
while in Theorem 4.2 only a weaker version of this property was needed. In that result
we only demanded that there exists a relatively small subset of F dense in the L2(µ)
norm. It may demand some explanation why the L2-density property was imposed in
Theorem 4.1, a property where also such probability measures ν are considered which
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seem to have no relation to the original problem. But as we shall see, the proof of
Theorem 4.1 contains a conditioning argument where new conditional measures appear
and the L2-density property is needed to work with them. One would also like to know
some results which enable us to check when this condition holds. In the next section
we shall discuss a popular notion, the notion of Vapnik–Červonenkis classes and show
that a Vapnik–Červonenkis class of functions bounded by 1 is L2-dense.

Another difference between Theorems 4.1 and 4.2 is that the conditions of formula
(4.4) contain the upper bound nσ2 >

√
nu, and no such condition is imposed in formula

(4.7). This difference can be simply explained, since as we have seen in Section 3 in
the case nσ2 = Var (

√
nSn) ≪

√
nu we can guarantee only a weak non-Gaussian type

estimate for the single probabilities P (
√
nSn(f) >

√
nu), f ∈ F . It has a similar reason

why condition (4.1) about the supremum of the functions f ∈ F appeared in Theorems
4.1 and 4.1′, and no such condition was needed in Theorem 4.2.

The lower bounds for the level u were imposed in formulas (4.4) and (4.7) because
of a similar reason. To understand why such a condition is needed in formula (4.7) let
us consider the following example. Take a Wiener process W (t), 0 ≤ t ≤ 1, define the
functions fs,t(·) on the interval [0, 1] by the formula fs,t(u) = 1 if s ≤ u ≤ t, fs,t(u) = 0
if 0 ≤ u < s or t < u ≤ 1, and put Z(fs,t) =

∫

fs,t(u)W ( du) = W (t) −W (s). Given
some σ > 0 let us consider the class of functions Fσ = {fs,t :

∫

f2s,t(u) du = t − s ≤
σ2, s and t are rational numbers}. It is not difficult to see that the above example sat-

isfies the conditions of Theorem 4.2. It is natural to expect that P

(

sup
f∈Fσ

Z(f) > u

)

≤

e−const. (u/σ)2 . However, this relation does not hold if u = u(σ) < (1 − ε)
√
2σ log1/2 1

σ

with some ε > 0. In such cases P

(

sup
f∈Fσ

Z(f) > u

)

→ 1, as σ → 0. This can be

proved relatively simply with the help of the estimate P (Z(fs,t) > u(σ)) ≥ const.σ1−ε

if |t− s| = σ2 and the independence of the random integrals Z(fs,t) if the functions fs,t
are indexed by such pairs (s, t) for which the intervals (s, t) are disjoint. This means

that in this example formula (4.7) holds only under the condition u ≥Mσ log1/2 1
σ with

M =
√
2.

Some additional work would show that a similar picture arises in the model where
we consider the integrals Jn(fs,t) of the functions from the same the class Fσ with respect
to the normalized empirical measure of a sample of size n with uniform distribution on
the interval [0, 1] instead of a Wiener process. In this example we have to impose the

condition
√
nu ≥ M

√
nσ log1/2 1

σ with M =
√
2 for the validity of relation (4.4). At a

heuristic level it is clear that in the case of a class F with a large exponent L we have to
put a larger coefficient of

√
nσ log1/2 2

σ in the condition of formula (4.4) for the validity
of Theorem 4.1 or 4.1′, and a similar statement can be told about the condition (4.7)
in Theorem 4.2. (I did not try to find the best possible coefficients in the conditions of
relations (4.4) and (4.7), they could be improved considerably.)

In Theorem 4.1 (and in its version 4.1′) it was demanded that the class of functions
F should be countable. Later this condition was replaced by a weaker condition about
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countable approximability. By restricting our attention to countable or countably ap-
proximable classes we could avoid some unpleasant measure theoretical problems which
would have arisen if we had worked with the supremum of non-countable number of
random variables which may be non-measurable. There are some papers where possibly
non-measurable models are also considered with the help of some rather deep results
of the analysis and measure theory. Actually, the problem we met here is the natural
analog of an important problem in the theory of the stochastic processes about the
smoothness property of the trajectories of an appropriate version of a stochastic process
which we can get by exploiting our freedom to change all random variables on a set of
probability zero.

The study of the problem in this work is simpler in one respect. Here the set of
random variables Sn(f)(ω) or Jn(f)(ω), f ∈ F , are constructed directly with the help
of the underlying random variables ξ1(ω), . . . , ξn(ω) for all ω ∈ Ω separately. We are
interested in when the sets of random variables constructed in this way are countably
approximable, i.e. we are not looking for a possibly different, better version of them
with the same finite dimensional distributions. In the next simple Lemma 4.3 we give
a sufficient condition for countable approximability. Its condition can be interpreted as
a smoothness type condition for the trajectories of a stochastic process indexed by the
functions f ∈ F .

Lemma 4.3. Let a class of random variables U(f), f ∈ F , indexed by some set F of
functions on a space (Y,Y) be given. If there exists a countable subset F ′ ⊂ F of the set
F such that the sets A(u) = {ω : sup

f∈F
|U(f)(ω)| ≥ u} and B(u) = {ω : sup

f∈F ′

|U(f)(ω)| ≥

u} introduced for all u > 0 in the definition of countable approximability satisfy the
relation A(u) ⊂ B(u − ε) for all u > ε > 0, then the class of random variables U(f),
f ∈ F , is countably approximable.

The above property holds if for all f ∈ F , ε > 0 and ω ∈ Ω there exists a function
f̄ = f̄(f, ε, ω) ∈ F ′ such that |U(f̄)(ω)| ≥ |U(f)(ω)| − ε.

Proof of Lemma 4.3. If A(u) ⊂ B(u − ε) for all ε > 0, then P ∗(A(U) \ B(u)) ≤
lim
ε→0

P (B(u−ε)\B(u)) = 0, where P ∗(X) denotes the outer measure of a not necessarily

measurable set X ⊂ Ω, since
⋂

ε→0
B(u− ε) = B(u), and this is what we had to prove. If

ω ∈ A(u), then for all ε > 0 there exists some f = f(ω) ∈ F such that |U(f)(ω)| > u− ε
2 .

If there exists some f̄ = f̄(f, ε2 , ω), f ∈ F ′ such that |U(f̄)(ω)| ≥ |Uf(ω)| − ε
2 , then

|U(f̄)(ω)| > u− ε, and ω ∈ B(u− ε). This means that A(u) ⊂ B(u− ε).

The question about countable approximability also appears in the case of multiple
random integrals. To avoid some repetition we prove a result which also covers such
cases. For this goal first we introduce the notion of multiple integrals with respect to a
normalized empirical measure.

Given a measurable function f(x1, . . . , xk) on the k-fold product space (Xk,X k)
and a sequence of independent random variables ξ1, . . . , ξn with some distribution µ on
the space (X,X ) define the integral Jn,k(f) of the function f with respect to the k-fold
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product of the normalized empirical measure µn introduced in (4.5) by the formula

Jn,k(f) =
nk/2

k!

∫ ′
f(x1, . . . , xk)(µn( dx1)− µ( dx1)) . . . (µn( dxk)− µ( dxk)),

where the prime in
∫ ′

means that the diagonals xj = xl, 1 ≤ j < l ≤ k,

are omitted from the domain of integration. (4.8)

Lemma 4.3 enables us to prove that certain classes of random variables Jn,k(f), f ∈
F , indexed by some set of functions f ∈ F of k variables are countably approximable.
I present an example which is very important in certain applications.

Let us consider the case when X = Rs, the s-dimensional Euclidean space with
some s ≥ 1, and given some u = (u(1), . . . , u(s)) ∈ Rs, v = (v(1), . . . , v(s)) ∈ Rs such that
u ≤ v, i.e. u(j) ≤ v(j) for all 1 ≤ j ≤ s, let B(u, v) denote the s-dimensional rectangle
B(u, v) = {z : u ≤ z ≤ v}. Let us fix some function f(x1, . . . , xk), sup |f(x1, . . . , xk)| ≤
1, on the space (Xk,X k) = (Rks,Bks), where Bt denotes the Borel σ-algebra on the
Euclidean space Rt together with some probability measure µ on (Rs,Bs). For all
vectors (u1, . . . , uk), (v1, . . . , vk) such that uj , vj ∈ Rs and uj ≤ vj , 1 ≤ j ≤ k, let
us define the function fu1,...,uk,v1,...,vk which equals the function f on the rectangle
[u1, v1]× · · · [uk, vk], and it is zero outside of this rectangle.

Let us consider a sequence of i.i.d. random variables ξ1, . . . , ξn taking value in the
space (Rs,Bs) with distribution µ and define the empirical measure µn and random
integrals Jn,k(fu1,...,uk,v1,...,vk) by formulas (4.5) and (4.8), for all vectors (u1, . . . , uk),
(v1, . . . , vk) such that uj , vj ∈ Rs and uj ≤ vj , 1 ≤ j ≤ k, with the above defined
functions fu1,...,uk,v1,...,vk . The following result will be proved.

Lemma 4.4. Let us take n iid. random variables ξ1, . . . , ξn with values in the space
(Rs,Bs). Let us define with the help of their distribution µ and the empirical distribution
µn determined by them the class of random variables Jn,k(fu1,...,uk,v1,...,vk) introduced
in formula (4.8), where the class of kernel functions F in these integrals consists of all
functions fu1,...,uk,v1,...,vk ∈ (Rsk,Bsk), uj , vj ∈ Rs, uj ≤ vj, 1 ≤ j ≤ k, defined in the
last but one paragraph. This class of random variables Jn,k(f), f ∈ F , is countably
approximable.

Proof of Lemma 4.4. We shall prove that the definition of countable approximabil-
ity is satisfied in this model if the class of functions F ′ consists of those functions
fu1,...,uk,v1,...,vk , uj ≤ vj , 1 ≤ j ≤ k, for which all coordinates of the vectors uj and vj
are rational numbers.

Given some function fu1,...,uk,v1,...,vk , a real number 1 > ε > 0 and ω ∈ Ω let us
choose a function fū1,...,ūk,v̄1,...,v̄k ∈ F ′ determined with some vectors ūj = ūj(ε, ω),
v̄j = v̄j(ε, ω) 1 ≤ j ≤ k, with rational coordinates ūj ≤ uj < vj ≤ v̄j such that the sets
Kj = B(ūj , v̄j) \B(uj , vj) satisfy the relations µ(Kj) ≤ ε2−2k+1n−k/2, and ξl(ω) /∈ Kj

for all j = 1, . . . , k and l = 1, . . . , n. Let us show that

|Jn,k(fū1,...,ūk,v̄1,...,v̄k)(ω)− Jn,k(fu1,...,uk,v1,...,vk)(ω)| ≤ ε. (4.9)
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Lemma 4.3 (with the choice U(f) = Jn,k(f)) and relation (4.9) imply Lemma 4.4.

Relation (4.9) holds, since the expression in it can be written as the sum of the 2k−1
integrals of the function f with respect to the k-fold product of the measure

√
n(µn−µ)

on the domains D1 × · · · ×Dk with the omission of the diagonals xj = xj̄ , 1 ≤ j, ̄ ≤ k,
j 6= ̄, where Dj is either the set Kj or B(uj , vj) and Dj = Kj for at least one index j.
It is enough to show that the absolute value of all these integrals is less than ε2−k. This
follows from the observations that |f(x1, . . . , xk)| ≤ 1,

√
n(µn − µ)(Kj) = −√

nµ(Kj),
µ(Kj) ≤ ε2−2k+1n−k/2, and the total variation of the signed measure

√
n(µn − µ)

(restricted to the set B(uj , vj)) is less than 2
√
n.

Let us discuss the relation of the results in this section to an important result,
the so-called fundamental theorem of the mathematical statistics. In that problem a
sequence of independent random variables ξ1(ω), . . . , ξn(ω) is considered with distribu-
tion function F (x), the empirical distribution function Fn(x) = Fn(x, ω) =

1
n#{j : 1 ≤

j ≤ n, ξj(ω) < x} is introduced, and the difference Fn(x) − F (x) is considered. This
result states that sup

x
|Fn(x)− F (x)| tends to zero with probability one.

Observe that sup
x

|Fn(x)−F (x)| = n−1/2 sup
f∈F

|Jn(f)|, where F consists of the func-

tions fx(·), x ∈ R1, defined by the relation fx(u) = 1 if u < x, and fx(u) = 0 if u ≥ x.

Theorem 4.1′ yields an estimate for the probabilities P

(

sup
f∈F

|Jn(f)| > u

)

. We have

seen that the above class of functions F is countably approximable. The results of the
next section imply that this class of functions is also L2-dense. Otherwise it is not
difficult to check this property directly. Hence we can apply Theorem 4.1 to the above

defined class of functions with σ = 1, and it yields that P

(

n−1/2 sup
f∈F

|Jn(f)| > u

)

≤

e−Cnu2

if 1 ≥ u ≥ C̄n−1/2 with some universal constants C > 0 and C̄ > 0. (The
condition 1 ≥ u can actually be dropped.) The application of this estimate for the
numbers ε > 0 together with the Borel-Cantelli lemma imply the fundamental theorem
of the mathematical statistics.

In short, the results of this section yield more information about the closeness the
empirical distribution function Fn and distribution function F than the fundamental
theorem of the mathematical statistics. Moreover, since these results can also be applied
for other classes of functions they yield useful information about the closeness of the
probability measure µ and empirical measure µn.
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5. Vapnik–Červonenkis classes and L2-dense classes of functions

In this section the most important notions and results will be presented about Vapnik–
Červonenkis classes, and it will be explained how they help to show in some important
cases that certain classes of functions are L2-dense. Some proofs are put in the Ap-
pendix.

First I recall the following notions.

Definition of Vapnik-Červonenkis classes of sets and functions. Let a set S be
given, and let us select a class D consisting of certain subsets of this set S. We call D
a Vapnik–Červonenkis class if there exist two real numbers B and K such that for all
positive integers n and subsets S0(n) = {x1, . . . , xn} ⊂ S of cardinality n of the set S
the collection of sets of the form S0(n)∩D, D ∈ D, contains no more than BnK subsets
of S0(n). We shall call B the parameter and K the exponent of this Vapnik–Červonenkis
class.

A class of real valued functions F on a space (Y,Y) is called a Vapnik–Červonenkis
class if the collection of graphs of these functions is a Vapnik–Červonenkis class, i.e. if
the sets A(f) = {(y, t) : y ∈ Y, min(0, f(y)) ≤ t ≤ max(0, f(y))}, f ∈ F , constitute a
Vapnik–Červonenkis class of subsets of the product space S = Y ×R1.

The following result which was first proved by Sauer is of fundamental importance
in the theory of Vapnik–Červonenkis classes. Its proof is given in the Appendix.

Theorem 5.1 (Sauer’s lemma). Let a set S be given together with a class D of subsets
of this set S. Fix some subset S0 = S0(n) of the set S containing n point and consider
the class of subsets D(S0) = {S0 ∩D : D ∈ D} of S0 consisting of the intersections of
the set S0 with the elements of the class D. If there is some positive integer k such that
all subsets F ⊂ S0 of cardinality k have at least one “hidden” subset not contained in
the collection of sets D(S0, F ) = {F ∩ B; B ∈ D(S0)}, then D(S0) contains at most
(

n
0

)

+
(

n
1

)

+ · · ·+
(

n
k−1

)

subsets of S.

Theorem 5.1 has the remarkable consequence that if there exists some integer k
such that for all subsets S0(k) of cardinality k of the set S the number of sets of the
form S0(k)∩D, D ∈ D, is less than 2k, (i.e. not all subsets of S0(k) can be represented
in this form,) then S0(n)∩D has at most

(

n
0

)

+
(

n
1

)

+ · · ·+
(

n
k−1

)

elements for all subsets
S0(n) of the set S with n ≥ k elements, since in this case the conditions of Theorem 5.1
hold for all n ≥ k and subset S0(n) ⊂ S of S of cardinality n and this number k.
This means that in this case D is a Vapnik-Červonenkis class. It can be proved that
(

n
0

)

+
(

n
1

)

+ · · · +
(

n
k−1

)

≤ 1.5 nk−1

(k−1)! if n ≥ k + 1, and this relation enables us to give

an explicit estimate on the exponent and parameter of this Vapnik–Červonenkis class.
Hence we have to check a seemingly much weaker property to show that a class of
subsets of a set S is a Vapnik–Červonenkis class. Moreover, Theorem 5.1 implies that
there are two cases. Either there is some set S0(n) of cardinality n for all integers n
such that D(S0(n)) contains all subsets of S0(n) or sup

S0⊂S,|S0|=n

|D(S0)| tends to infinity

in polynomial order as n → ∞, where |S0| and |D(S0)| denotes the cardinality of S0

and D(S0).
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The upper bound given for |D(S0)| in Theorem 5.1 appears in a natural way. If
D(S0) consists of the subsets of S0 of cardinality less than or equal to k − 1, then the
above sum equals |D(S0)|. In such a case the conditions of Theorem 5.1 are satisfied,
and the proof of Theorem 5.1 shows that this is the extreme case, this is the largest
class of sets S0(n) ∩ D satisfying Theorem 5.1.

The following Theorem 5.2, an important result of Richard Dudley, states that a
Vapnik–Červonenkis class of functions bounded by 1 is an L1-dense class of functions.

Theorem 5.2. Let f(y), f ∈ F , be a Vapnik–Červonenkis class of real valued functions
on some measurable space (Y,Y) such that sup

y∈Y
|f(y)| ≤ 1 for all f ∈ F . Then F is an

L1-dense class of functions on (Y,Y). More explicitly, if F is a Vapnik–Červonenkis
class with parameter B ≥ 1 and exponent K > 0, then it is an L1-dense class with
exponent L = 2K and parameter D = CB2(4K)2K with some universal constant C > 0.

Proof of Theorem 5.2. Let us fix some probability measure ν on (Y,Y) and a real
number 1 ≥ ε > 0. We are going to show that the cardinality of any finite set D(ε, ν) =
{f1, . . . , fM} ⊂ F such that

∫

|fj −fk| dν ≥ ε if j 6= k, fj , fk ∈ D(ε, ν) has a cardinality
M ≤ Dε−L with some D > 0 and L > 0. This implies that F is an L1-dense class
with parameter D and exponent L. Indeed, let us take a maximal subset D̄(ε, ν) =
{f1, . . . , fM} such that the L1(ν) distance of any two functions in this subset is at
least ε. Maximality means in this context that no function fM+1 can be attached to
D̄(ε, ν) without violating this condition. If we show that M ≤ Dε−L, then this means
that D̄(ε, ν) is an ε-dense subset of F in the space Lp(Y,Y, ν) with no more than Dε−L

elements.

In the estimation of the cardinalityM of D(ε, ν) we exploit the Vapnik–Červonenkis
class property of F in the following way. Let us choose relatively few p points (yl, tl),
yl ∈ Y , −1 ≤ tl ≤ 1, 1 ≤ l ≤ p, in the space (Y × [−1, 1]) in such a way that the
set S0(p) = {(yl, tl), 1 ≤ l ≤ p} and graphs A(fj) = {(y, t) : y ∈ Y, min(0, fj(y)) ≤
t ≤ max(0, fj(y))}, f ∈ F , fj ∈ D(ε, ν) have the property that all sets A(fj) ∩ S0(p),
1 ≤ j ≤ M , are different. Then the Vapnik–Červonenkis class property of F implies
that M ≤ BpK . Hence if we can construct a set S0(p) with the above property with a
relatively small number p, then we get a useful estimate on M . Such a set S0(p) will be
given by means of the following random construction.

Let us choose the p points (yl, tl), 1 ≤ l ≤ p, of the (random) set S0(p) indepen-
dently of each other in such a way that the coordinate yl is chosen with distribution
ν on (Y,Y) and the coordinate tl with uniform distribution on the interval [−1, 1]
independently of yl. (The number p will be chosen later.) Let us fix some indices
1 ≤ j, k ≤M and estimate the probability that the sets A(fj)∩S0(p) and A(fk)∩S0(p)
agree, where A(f) denotes the graph of the function f . Consider the symmetric differ-
ence A(fj)∆A(fk) of the sets A(fj) and A(fk). The sets A(fj)∩S0(p) and A(fk)∩S0(p)
agree if and only if (yl, tl) /∈ A(fj)∆A(fk) for all (yl, tl) ∈ S0(p). Let us observe that for a
fixed l P ((yl, tl) ∈ A(fj)∆A(fk)) =

1
2 (ν×λ)(A(fj)∆A(fk)) = 1

2

∫

|fj−fk| dν ≥ ε
2 , where

λ denotes the Lebesgue measure. This implies that the probability that A(fj) ∩ S0(p)
and A(fk) ∩ S0(p) agree can be bounded from above by

(

1− ε
2

)p ≤ e−pε/2. Hence the
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probability that all sets A(fj) ∩ S0(p) are different is greater than 1 −
(

M
2

)

e−pε/2 ≥
1 − M2

2 e−pε/2. Choose p such that 7
4e

pε/2 > e(p+1)ε/2 > M2 ≥ epε/2. Then the above
probability is greater than 1

8 , and there exists some set S0(p) with the desired property.

The inequalities M ≤ BpK and M2 ≥ epε/2 imply that M ≥ eεM
1/K/4B1/K

, i.e.
logM1/K

M1/K ≥ ε
4KB1/K . As logM1/K

M1/K ≤ CM−1/2K for M ≥ 1 with some universal constant
C > 0, this estimate implies that Theorem 5.2 holds with the exponent L and parameter
D given in its formulation.

Let us observe that if F is an L1-dense class of functions on a measure space (Y,Y)
with some exponent L and parameter D, and also the inequality sup

y∈Y
|f(y)| ≤ 1 holds

for all f ∈ F , then F is an L2-dense class of functions with exponent 2L and parameter
D2L. Indeed, if we fix some measure ν on (Y,Y) together with a number 1 ≥ ε > 0, and

D(ε, ν) = {f1, . . . , fM} is an ε2

2 -dense set of F in the space L1(Y,Y, ν), M ≤ 2LDε−2L

then for any f ∈ F we can choose some fj ∈ D(ε, ν) such that
∫

(f − fj)
2 dν ≤

2
∫

|f − fj | dν ≤ ε2. This means that F is really an L2-dense class with the given
exponent and parameter.

It is not easy to check whether a collection of subsets D of a set S is a Vapnik–
Červonenkis class even with the help of Theorem 5.1. Therefore the following Theo-
rem 5.3 which enables us to construct many non-trivial Vapnik–Červonenkis classes is
of special interest. Its proof is also put in the Appendix.

Theorem 5.3. Let us consider a k-dimensional subspace Gk of the linear space of real
valued functions defined on a set S, and define the level-set A(g) = {s : s ∈ S, g(s) ≥ 0}
for all functions g ∈ Gk. Take the class of subsets D = {A(g) : g ∈ Gk} of the set
S consisting of the above introduced level sets. All subsets S0 = S0(k + 1) ⊂ S of
cardinality k + 1 has a “hidden” subset which is not contained in the class of subsets
D(S0) = {S0 ∩ D : D ∈ D} of S0 introduced in Theorem 5.1. By Theorem 5.1 this
property implies that the class of sets D is a Vapnik–Červonenkis class.

Theorem 5.3 enables us to construct many interesting Vapnik–Červonenkis classes.
Thus for instance the class of all half-spaces in a Euclidean space, the class of all
ellipses in the plane, or more generally the level sets of k-order algebraic functions with
a fixed number k constitute a Vapnik–Červonenkis class. It can be proved that if C
and D are Vapnik–Červonenkis classes of subsets of a set S, then also their intersection
C ∩ D = {C ∩ D : C ∈ C, D ∈ D}, their union C ∪ D = {C ∪ D : C ∈ C, D ∈ D} and
complementers Cc = {S \C : C ∈ C} are Vapnik–Červonenkis classes. These results are
less important for us and their proofs will be omitted. We are interested in Vapnik–
Červonenkis classes not for their own sake. We are going to study L2-dense classes
of functions, and Vapnik–Červonenkis classes make possible to find some examples.
Indeed, Theorem 5.2 implies that if D is a Vapnik–Červonenkis class of subsets of a set
S, then their indicator functions constitute an L1-dense, hence also an L2-dense class
of functions. Then the results of Lemma 5.4 formulated below enable us to construct
new L2-dense class of functions. The description of L2-dense classes of functions are
interesting for us, because they appear in the conditions of the results in Section 4.
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Lemma 5.4. Let G be an L2-dense class of functions on some space (Y,Y) whose
absolute values are bounded by one, and let f be a function on (Y,Y) also with absolute
value bounded by one. Then f ·G = {f ·g : g ∈ G} is also an L2-dense class of functions.
Let G1 and G2 be two L2-dense classes of functions on some space (Y,Y) whose absolute
values are bounded by one. Then the classes of functions G1+G2 = {g1+g2 : g1 ∈ G1, g2 ∈
G2}, G1 · G2 = {g1g2 : g1 ∈ G1, g2 ∈ G2}, min(G1,G2) = {min(g1, g2) : g1 ∈ G1, g2 ∈ G2},
max(G1,G2) = {max(g1, g2) : g1 ∈ G1, g2 ∈ G2} are also L2-dense. If G is an L2-dense
class of functions, and G′ ⊂ G, then G′ is also an L2-dense class.

The proof of Lemma 5.4 is rather straightforward. One has to observe for instance that
if g1, ḡ1 ∈ G1, g2, ḡ2 ∈ G2 then |min(g1, g2)−min(ḡ1, ḡ2)| ≤ |g1− ḡ1)|+ |g2− ḡ2|, hence if
g1,1, . . . , g1,M1 is an ε

2 -dense subset of G1 and g2,1, . . . , g2,M2 is an ε
2 -dense subset of G2 in

the space L2(Y,Y, ν) with some probability measure ν, then the functions min(g1,j , g2,k),
1 ≤ j ≤ M1, 1 ≤ k ≤ M2 constitute an ε-dense subset of min(G1,G2) in L2(Y,Y, ν).
The last statement of Lemma 5.4 is proved after the Corollary of Theorem 4.1. The
details are left to the reader.

The above results enable us to find some interesting classes of L2-dense classes of
functions. In particular, the indicator functions of Vapnik-Červonenkis class of sets is
an L2-dense class of functions, and then Lemma 5.4 enables us to construct new classes
of L2-dense classes of functions with their help. It is not difficult to see with the help
of these results for instance that the random variables considered in Lemma 4.4 are not
only countably approximable, but the class of functions fu1,...,uk,v1,...,vk taking part in
their definition is L2-dense.

6. The proof of Theorems 4.1 and 4.2 on the supremum of random sums

This section contains the proof of some results which can be proved by means of a
simple but useful method, the so-called chaining argument. This method enables us to
prove Theorem 4.2 completely, but it only helps to reduce Theorem 4.1 to a slightly
simpler statement presented in Proposition 6.1. We also formulate another result in
Proposition 6.2 and show that these two propositions together imply Theorem 4.1. The
proof of Proposition 6.2 which is based on a symmetrization argument is left to the
next section. The method of proof of Theorem 4.2 does not suffice in itself to prove
Theorem 4.1, because we have relatively weak estimates about the distribution of sums
of independent random variables with small variances. This does not allow to follow
the chaining argument in the proof of Theorem 4.1 up to the end, we have to stop at a
point. In such a way we only get a seemingly weak result, but as it turns out this is the
result we need to cover that part of Theorem 4.1 which cannot be handled by means
of the symmetrization method applied in the proof of Proposition 6.2. First we prove
Theorem 4.2.

Proof of Theorem 4.2. Let us list the elements of F as {f0, f1, . . . } = F , and choose
for all p = 0, 1, 2, . . . a set of functions Fp = {fa(p,1), . . . , fa(p,mp)} ⊂ F with mp ≤
(D+1) 22pLσ−L elements in such a way that inf

1≤j≤mp

∫

(f − fa(p,j))
2 dµ ≤ 2−4pσ2 for all

f ∈ F , and fp ∈ Fp. For all indices a(p, j) of the functions in Fp, p = 1, 2, . . . , define a
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predecessor a(p−1, j′) from the indices of the set of functions Fp−1 in such a way that the
functions fa(p,j) and fa(p−1),j′) satisfy the relation

∫

(f(p,j)−f(p−1,j′))
2 dµ ≤ 2−4(p−1)σ2.

With the help of the behaviour of the standard normal distribution function we can write
the estimates

P (A(p, j)) = P
(

|Z(fa(p,j))− Z(fa(p−1,j′))| ≥ 2−(1+p)u
)

≤ 2 exp

{

− 2−2(p+1)u2

2 · 2−4(p−1)σ2

}

= 2 exp

{

− 22pu2

128σ2

}

1 ≤ j ≤ mp, p = 1, 2, . . . ,

and

P (B(j)) = P
(

|Z(fa(0,j))| ≥
u

2

)

≤ exp

{

− u2

8σ2

}

, 1 ≤ j ≤ m0.

The above estimates together with the relation
∞
⋃

p=0
Fp = F which implies that

{|Z(f)| ≥ u} ⊂
∞
⋃

p=1

mp
⋃

j=1

A(p, j) ∪
m0
⋃

s=1
B(s) for all f ∈ F yield that

P

(

sup
f∈F

|Z(f)| ≥ u

)

≤ P





∞
⋃

p=1

mp
⋃

j=1

A(p, j) ∪
m0
⋃

s=1

B(s)





≤
∞
∑

p=1

mp
∑

j=1

P (A(p, j)) +

m0
∑

s=1

P (B(s))

≤
∞
∑

p=1

2(D + 1)22pLσ−L exp

{

− 22pu2

128σ2

}

+ 2(D + 1)σ−L exp

{

− u2

8σ2

}

.

If u ≥ML1/2σ log 2
σ with M ≥ 16 (and L ≥ 1), then

22pLσ−L exp

{

− 22pu2

256σ2

}

≤
(

1

2

)−2pL

σ−L
(σ

2

)22pM2L/256

≤ 2−pL ≤ 2−p

for all p = 0, 1 . . . , hence the previous inequality implies that

P

(

sup
f∈F

|Z(f)| ≥ u

)

≤ 2(D + 1)

∞
∑

p=0

2−p exp

{

− 22pu2

256σ2

}

= 4(D + 1) exp

{

− u2

256σ2

}

.

Theorem 4.2 is proved.

With the appropriate choice of the bound of the integrals in the definition of the
sets Fp in the proof of Theorem 4.2 and some more calculation it can be proved that the
coefficient 1

256 in the exponent of the right-hand side (4.7) can be replaced by 1−ε
2 with
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arbitrary small ε > 0 if the remaining constants in this estimate are chosen sufficiently
large.

The proof of Theorem 4.2 was based on the fact that sufficiently good estimates
can be given on the probabilities P (|Z(f)−Z(g)| > u) for all f, g ∈ F and u > 0. In the
case of Theorem 4.1 we only have a weaker estimate for the corresponding probabilities,
we cannot give a good estimate on the distribution of the difference Sn(f)−Sn(g) if its
variance is small. As a consequence the chaining argument supplies only a weaker result
in this case. This result will be given in Proposition 6.1, where the supremum of the
normalized random sums Sn(f) is estimated on a relatively dense subset of the class of
functions f ∈ F in the L2(µ) norm. We present another result in Proposition 6.2 which
will be proved in the next section and show that Theorem 4.1 follows from these two
results.

Before the formulation of Proposition 6.1 I recall an estimate which is a simple

consequence of Bernstein’s inequality: If Sn(f) =
1√
n

n
∑

j=1

f(ξj) is the normalized sum of

independent, identically random variables, P (|f(ξ1)| ≤ 1) = 1, Ef(ξ1) = 0, Ef(ξ1)
2 ≤

σ2, then there exists some constant α > 0 such that

P (|Sn(f)| > u) ≤ 2e−αu2/σ2

if 0 < u <
√
nσ2. (6.1)

We can choose α = 3
8 in this estimate, and also could present a slightly more general

version of it, but such additional information would not give a real help.

Proposition 6.1. Let us have a countable L2-dense class of functions F with parameter
D and exponent L, L ≥ 1, on a measurable space (X,X ) whose elements satisfy the
conditions (4.1), (4.2) and (4.3) with some probability measure µ on (X,X ) and real
number 0 < σ ≤ 1. Take a sequence of independent µ-distributed random variables

ξ1, . . . , ξn, n ≥ 2, define the random sums Sn(f) = 1√
n

n
∑

l=1

f(ξl), for all f ∈ F . Let

us fix some number Ā ≥ 2. For all sufficiently large numbers M ≥ M0 = M0(Ā) the

following relation holds: For all numbers u > 0 for which nσ2 ≥
(

u
σ

)2 ≥ ML log 2
σ a

number σ̄ = σ̄(u), 0 ≤ σ̄ ≤ σ ≤ 1, and a collection of functions Fσ̄ = {f1, . . . , fm} ⊂ F
with m ≤ Dσ̄−L elements can be chosen in such a way that the sets Dj = {f : f ∈
F ,
∫

|f − fj |2 dµ ≤ σ̄2}, 1 ≤ j ≤ m, satisfy the relation
m
⋃

j=1

Dj = F , and the normalized

partial sums Sn(f), f ∈ Fσ̄, n ≥ 2, satisfy the inequality

P

(

sup
f∈Fσ̄

|Sn(f)| ≥
u

Ā

)

≤ 4D exp

{

−α
( u

10Āσ

)2
}

if nσ2 ≥
(u

σ

)2

≥ML log
2

σ

(6.2)
with the constants α in formula (6.1) and the exponent L and parameter D of the L2-

dense class F . Besides, also the inequalities 1
4

(

u
Āσ̄

)2 ≥ nσ̄2 ≥ 1
64

(

u
Āσ

)2
and nσ̄2 ≥

M2/3(L+β) logn
1000Ā4/3 hold with β = max

(

logD
logn , 0

)

, provided that also the inequality nσ2 ≥
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(

u
σ

)2 ≥M(L+β)3/2 log 2
σ holds. (We may assume that the sample size n is sufficiently

large, so the set of numbers u for which nσ2 ≥
(

u
σ

)2 ≥M(L+β)3/2 log 2
σ is non-empty.)

Proposition 6.1 helps to reduce the proof of Theorem 4.1 to the case when the
L2 norm of the functions in the class F is bounded by a relatively small number σ̄.
In more detail, the proof of Theorem 4.1 can be reduced to a good estimate on the
distribution of the supremum of random variables sup

f∈Dj

|Sn(f − fj)| for all classes Dj ,

1 ≤ j ≤ m, by means of Proposition 6.1. We also have to know that the number m of
the classes Dj is not too large, otherwise our estimates cannot be useful.

A result formulated in Proposition 6.2 helps us to complete the proof of Theo-
rem 4.1. It contains some parameters, and we have to fit the constants in the estimates
of Propositions 6.1 and 6.2. This was the reason to introduce the rather artificial pa-
rameter Ā ≥ 2 in Proposition 6.1 and to formulate the conditions of inequality (6.2)
with a number M ≥ M0(Ā) instead of a number M0. We want such a formulation of
Proposition 6.1 in which it can achieved for any fixed number A > 0 that the relation
nσ̄2 ≥ A log n holds, where the number σ̄ was defined in the proof of Proposition 6.1.
The last two relations in Proposition 6.1 shows that this is possible if first the number
Ā and then the number M ≥ M0(Ā) is chosen sufficiently large. Now we formulate
Proposition 6.2 and prove Theorem 4.1 with its help.

Proposition 6.2. Let us have a probability measure µ on a measurable space (X,X )
together with a sequence of independent and µ distributed random variables ξ1, . . . , ξn,
n ≥ 2, and a countable, L2-dense class of functions f = f(x) on (X,X ) with some
parameter D and exponent L ≥ 1 which satisfies conditions (4.1), (4.2) and (4.3) with
some σ > 0 such that the inequality nσ2 > K(L + β) log n holds with an appropriate,

sufficiently large universal number K ≥ 3 and β = max
(

0, logD
logn

)

. Then there exists

some universal constant γ > 0 and threshold index A0 > 0 such that the random sums
Sn(f), f ∈ F , introduced in Theorem 4.1 satisfy the inequality

P

(

sup
f∈F

|Sn(f)| ≥ An1/2σ2

)

≤ e−γA1/2nσ2

if A ≥ A0. (6.3)

(A possible choice of the parameters is: K = 4, A0 = 210 · 1016 and γ = 1
2 .)

I did not try to find optimal parameters in formula (6.3). Even the exponent 1
2

of A in the exponent at its right-hand side could be improved. The result of Propo-
sition 6.2 is similar to that of Theorem 4.1. Both of them give an estimate on a

probability of the type P

(

sup
f∈F

|Sn(f)| ≥ u

)

. The essential difference between them

is that in Theorem 4.1 this probability is considered for u ≤ const.n1/2σ2 while in
Proposition 6.2 the case u > const.n1/2σ2 is looked at. Let us observe that this
is the case when no good Gaussian type estimate can be given for the probabili-
ties P (Sn(f) ≥ u), f ∈ F . In this case Bernstein’s inequality yields the bound
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P (Sn(f) > An1/2σ2) = P

(

n
∑

l=1

f(ξl) > xVn

)

< e−const.Anσ2

with x = A
√
nσ and

Vn =
√
nσ for each single function f ∈ F which takes part in the supremum of for-

mula (6.3). The estimate (6.3) yields a slightly weaker estimate for the supremum of
such random variables as it contains the coefficient A1/2 instead of A in the exponent
of the estimate at the right-hand side. But also such a bound will be sufficient for us.

In Proposition 6.2 that situation is considered when the irregularities of the sum-
mands provide a non-negligible contribution to the probabilities P (|Sn(f)| ≥ u), and
the method of proof supplies a good estimate only in this case. This makes natural
to separate the proof Theorem 4.1 to the proof of two different statements given in
Proposition 6.1 and 6.2.

In the proof of Theorem 4.1 Propositions 6.1 will be applied with a sufficiently
large number Ā ≥ 2 and Proposition 6.2 with σ = σ̄ with the number σ̄ defined in
Proposition 6.1 and the classes F = Dj , more precisely the classes of functions F =
{

g−fj
2 : g ∈ Dj

}

introduced in Proposition 6.1, where fj is the function appearing in

the definition of the class of functions Dj . Clearly,

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ P

(

sup
f∈Fσ̄

|Sn(f)| ≥
u

Ā

)

+

m
∑

j=1

P

(

sup
g∈Dj

∣

∣

∣

∣

Sn

(

fj − g

2

)∣

∣

∣

∣

≥
(

1

2
− 1

2Ā

)

u

)

,

(6.4)

where m is the cardinality of the set of functions Fσ̄ appearing in Proposition 6.1. We
want to show that if Ā and then M ≥ M0(Ā) are chosen sufficiently large, then the
second term at the right-hand side can be well bounded by means of Proposition 6.2,
and Theorem 4.1 can be proved by means of this estimate.

Let us choose a number Ā0 in such a way that Ā0 ≥ A0 and γĀ
1/2
0 ≥ 1

K with the
numbers A0, K and γ in Proposition 6.2, put Ā = max(2Ā0, 2), and apply Proposition

6.1 with this number Ā. Then also the inequality
(

u
σ̄

)2 ≥ 4Ā2nσ̄2 ≥ (4Ā0)
2nσ̄2, hence

u ≥ 4Ā0
√
nσ̄2 holds with the number σ̄ in Proposition 6.1. (We assume that such

numbers u are considered which satisfy the condition nσ2 ≥
(

u
σ

)2 ≥M(L+ β)3/2 log 2
σ

imposed in Proposition 6.1.) Choose such a number M ≥ M0(Ā) in Proposition 6.1
(which also can be chosen as the numberM in formula (4.4) of Theorem 4.1) which also

satisfies the inequality M2/3(L+β) logn
1000Ā4/3 ≥ K(L+β) log n with the number K appearing in

the conditions of Proposition 6.2. With such a choice we also have nσ̄2 ≥ K(L+β) log n.

Since
(

1
2 − 1

2Ā

)

u ≥ u
4 ≥ Ā0

√
nσ̄2 and Ā0 ≥ A0 Propositions 6.2 yields the estima-

tion

P

(

sup
g∈Dj

∣

∣

∣

∣

Sn

(

fj − g

2

)∣

∣

∣

∣

≥
(

1

2
− 1

2Ā

)

u

)

≤ P

(

sup
g∈Dj

∣

∣

∣

∣

Sn

(

fj − g

2

)∣

∣

∣

∣

≥ Ā0

√
nσ̄2

)

≤ e−γĀ
1/2
0 nσ̄2

for all 1 ≤ j ≤ m,
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(observe that the set of functions
fj−g

2 , g ∈ Dj is an L2-dense class with parameter D
and exponent L), hence Proposition 6.1 and formula 6.4 imply that

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ 4D exp

{

−α
( u

10Āσ

)2
}

+Dσ̄−Le−γĀ
1/2
0 nσ̄2

. (6.5)

To get the result of Theorem 4.1 from inequality (6.5) we have to replace its second
term at the right-hand side with a more appropriate expression where, in particular,
we get rid of the coefficient σ̄−L. The condition nσ̄2 ≥ K(L + β) log n implies that

σ̄ ≥ n−1/2, and by our choice of Ā0 we have γĀ
1/2
0 nσ̄2 ≥ 1

Knσ̄
2 ≥ L log n ≥ 2L log 1

σ̄ ,

i.e. σ̄−L ≤ eγĀ
1/2
0 nσ̄2/2. By the estimates of Proposition 6.1 nσ̄2 ≥ 1

64

(

u
Āσ

)2
. The above

relations imply that σ̄−Le−γĀ
1/2
0 nσ̄2 ≤ e−γĀ

1/2
0 nσ̄2/2 ≤ exp

{

− γ
128 Ā

1/2
0 Ā−2

(

u
σ

)2
}

. Then

relation (6.5) gives that

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ 4D exp

{

− α

(10Ā)2

(u

σ

)2
}

+D exp

{

− γ

128
Ā

1/2
0 Ā−2

(u

σ

)2
}

,

and this estimate implies Theorem 4.1.

Proof of Proposition 6.1. Let us list the members of F , as f1, f2, . . . , and choose for all
p = 0, 1, 2, . . . a set Fp = {fa(p,1), . . . , fa(p,mp)} ⊂ F with mp ≤ D 22pLσ−L elements in
such a way that inf

1≤j≤mp

∫

(f−fa(p,j))2 dµ ≤ 2−4pσ2 for all f ∈ F . For all indices a(p, j),

p = 1, 2, . . . , 1 ≤ j ≤ mp, choose a predecessor a(p− 1, j′), j′ = j′(p, j), 1 ≤ j′ ≤ mp−1,
in such a way that the functions fa(p,j) and fa(p−1,j′) satisfy the relation

∫

|fa(p,j) −
fa(p−1,j′)|2 dµ ≤ σ22−4(p−1). Then we have

∫

(

fa(p,j)−fa(p−1,j′)

2

)2

dµ ≤ 4σ22−4p and

sup
xj∈X, 1≤j≤k

∣

∣

∣

fa(p,j)(x1,...,xk)−fa(p−1,j′)(x1,...,xk)

2

∣

∣

∣
≤ 1. Relation (6.1) yields that

P (A(p, j)) = P

(

1

2
|Sn(fa(p,j) − fa(p−1,j′))| ≥

2−(1+p)u

2Ā

)

≤ 2 exp

{

−α
(

2pu

8Āσ

)2
}

if 4nσ22−4p ≥
(

2pu

8Āσ

)2

, 1 ≤ j ≤ mp, p = 1, 2, . . . , (6.6)

and

P (B(s)) = P
(

|Sn(f0,s)| ≥
u

2Ā

)

≤ 2 exp

{

−α
( u

2Āσ

)2
}

, 1 ≤ s ≤ m0,

if nσ2 ≥
( u

2Āσ

)2

.

(6.7)

Choose the integer number R, R ≥ 0, in such a way that 26(R+1)

256

(

u
Āσ

)2 ≥ nσ2 ≥
26R

256

(

u
Āσ

)2
, define σ̄2 = 2−4Rσ2 and Fσ̄ = FR. (As nσ2 ≥

(

u
σ

)2
and Ā ≥ 2 by our
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conditions, there exists such a positive number R. The number R was chosen as the
largest number p for which relation (6.6) holds.) Then the cardinality m of the set Fσ̄

equals mR ≤ D22Rσ−L = Dσ̄−L, and the sets Dj are Dj = {f : f ∈ F ,
∫

(fa(R,j) −
f)2 dµ ≤ 2−4Rσ2}, 1 ≤ j ≤ mR, hence

m
⋃

j=1

Dj = F . Besides, the number R was chosen

in such a way that the inequalities (6.6) and (6.7) can be applied for 1 ≤ p ≤ R. Hence
the definition of the predecessor of an index (p, j) implies that

P

(

sup
f∈Fσ̄

|Sn(f)| ≥
u

Ā

)

≤ P





R
⋃

p=1

mp
⋃

j=1

A(p, j) ∪
m0
⋃

s=1

B(s)





≤
R
∑

p=1

mp
∑

j=1

P (A(p, j)) +

m0
∑

s=1

P (B(s)) ≤
∞
∑

p=1

2D 22pLσ−L exp

{

−α
(

2pu

8Āσ

)2
}

+ 2Dσ−L exp

{

−α
( u

2Āσ

)2
}

.

If the relation
(

u
σ

)2 ≥ ML log 2
σ holds with a sufficiently large constant M (depending

on Ā), then the inequalities

22pLσ−L exp

{

−α
(

2pu

8Āσ

)2
}

≤ 2−p exp

{

−α
(

2pu

10Āσ

)2
}

hold for all p = 1, 2, . . . , and

σ−L exp

{

−α
( u

2Āσ

)2
}

≤ exp

{

−α
( u

10Āσ

)2
}

.

Hence the previous estimate implies that

P

(

sup
f∈Fσ̄

|Sn(f)| ≥
u

Ā

)

≤
∞
∑

p=1

2D2−p exp

{

−α
(

2pu

10Āσ

)2
}

+ 2D exp

{

−α
( u

10Āσ

)2
}

≤ 4D exp

{

−α
( u

10Āσ

)2
}

,

and relation (6.2) holds. We have

2−4R · 2
6R

256

( u

Āσ

)2

≤ nσ̄2 = 2−4Rnσ2 ≤ 2−4R · 2
6(R+1)

256

( u

Āσ

)2

=
1

4
· 22R

( u

Āσ

)2

,

hence

1

64

( u

Āσ

)2

≤ nσ̄2 ≤ 1

4
·
(σ

σ̄

)( u

Āσ

)2

=
1

4
·
( σ̄

σ

)( u

Āσ̄

)2

≤ 1

4

( u

Āσ̄

)2

,
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as we have claimed. It remained to show that nσ̄2 ≥ M2/3(L+β) logn
1000Ā4/3 .

This inequality clearly holds under the conditions of Proposition 6.1 if σ ≤ n−1/3,

since in this case log 2
σ ≥ logn

3 , and nσ̄2 ≥ 1
64

(

u
Āσ

)2 ≥ 1
64 Ā

−2M(L + β)3/2 log 2
σ ≥

Ā−2

192 M(L + β) log n ≥ M2/3(L+β) logn
1000Ā4/3 if M ≥ M0(Ā) with a sufficiently large number

M0(Ā).

If σ ≥ n−1/3, then we apply that the inequality 26R
(

u
Āσ

)2 ≤ 256nσ2 implies

that 2−4R ≥ 2−16/3

[
(

u
Āσ

)2

nσ2

]2/3

, and nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3 (nσ2)1/3
(

u
σ

)4/3
. Since

nσ2 ≥ n1/3 and (uσ )
2 ≥ M

3 (L+ β)3/2, these estimates yield that

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/3

(u

σ

)4/3

≥ Ā−4/3

50
n1/9

(

M

3

)2/3

(L+ β) ≥ M2/3(L+ β) log n

1000Ā4/3
.

7. The completion of the proof of Theorem 4.1

In this section we prove Proposition 6.2 by which the proof of Theorem 4.1 is completed.
First a symmetrization lemma is proved, and then with the help of this result and a
conditioning argument the proof of Proposition 6.2 is reduced to the estimation of a
probability which can be bounded by means of the Hoeffding inequality formulated in
Theorem 3.4. Such an approach makes possible to prove Proposition 6.2.

First I formulate the symmetrization lemma we shall apply.

Lemma 7.1 (Symmetrization Lemma). Let Zn and Z̄n, n = 1, 2, . . . , be two
sequences of random variables independent of each other, and let the random variables
Z̄n, n = 1, 2, . . . , satisfy the inequality

P (|Z̄n| ≤ α) ≥ β for all n = 1, 2, . . . (7.1)

with some numbers α ≥ 0 and β ≥ 0. Then

P

(

sup
1≤n<∞

|Zn| > α+ u

)

≤ 1

β
P

(

sup
1≤n<∞

|Zn − Z̄n| > u

)

for all u > 0.

Proof of Lemma 7.1. Put τ = min{n : |Zn| > α + u} if there exists such an index n,
and τ = 0 otherwise. Then the event {τ = n} is independent of the sequence of random
variables Z̄1, Z̄2, . . . for all n = 1, 2, . . . , and because of this independence

P ({τ = n}) ≤ 1

β
P ({τ = n} ∩ {|Z̄n| ≤ α}) ≤ 1

β
P ({τ = n} ∩ {|Zn − Z̄n| > u})
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for all n = 1, 2, . . . . Hence

P

(

sup
1≤n<∞

|Zn| > α+ u

)

=
∞
∑

n=1

P (τ = n) ≤ 1

β

∞
∑

n=1

P ({τ = n} ∩ {|Zn − Z̄n| > u})

≤ 1

β
P

(

sup
1≤n<∞

|Zn − Z̄n| > u

)

.

Lemma 7.1 is proved.

We shall apply the following consequence Lemma 7.2 of the symmetrization lemma.

Lemma 7.2. Let us fix a countable class of functions F on a measurable space (X,X )
together with a real number 0 < σ < 1. Consider a sequence of independent, identically
distributed X-valued random variables ξ1, . . . , ξn such that Ef(ξ1) = 0, Ef2(ξ1) ≤ σ2

for all f ∈ F together with another sequence ε1, . . . , εn of independent random variables
with distribution P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, independent also of the
random sequence ξ1, . . . , ξn. Then

P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

∣

≥ An1/2σ2





≤ 4P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

3
n1/2σ2



 if A ≥ 3
√
2√
nσ

.

(7.2)

Proof of Lemma 7.2. Let us construct an independent copy ξ̄1, . . . , ξ̄n of the sequence
ξ1, . . . , ξn in such a way that all three sequences ξ1, . . . , ξn, ξ̄1, . . . , ξ̄n and ε1, . . . , εn

are independent. Define the random variables Sn(f) = 1√
n

n
∑

j=1

f(ξj) and S̄n(f) =

1√
n

n
∑

j=1

f(ξ̄j) for all f ∈ F . The inequality

P

(

sup
f∈F

|Sn(f)| > A
√
nσ2

)

≤ 2P

(

sup
f∈F

|Sn(f)− S̄n(f)| >
2

3
A
√
nσ2

)

. (7.3)

follows from Lemma 7.1 if we apply it for the countable sets Zn(f) = Sn(f) and Z̄n(f) =
S̄n(f), f ∈ F , of random variables and x = 2

3A
√
nσ2, α = 1

3A
√
nσ2, since the fields

Sn(f) and S̄n(f) are independent, and P (|S̄n(f)| ≤ α) > 1
2 for all f ∈ F . Indeed, α =

1
3A

√
nσ2 ≥

√
2σ, ES̄n(f)

2 ≤ σ2, thus Chebishev’s inequality implies that P (|S̄n(f)| ≤
α) ≥ P (|S̄n(f)| ≤

√
2σ) ≥ 1

2 for all f ∈ F .

Let us observe that the random field

Sn(f)− S̄n(f) =
1√
n

n
∑

j=1

(

f(ξj)− f(ξ̄j)
)

, f ∈ F , (7.4)
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and its randomization

1√
n

n
∑

j=1

εj
(

f(ξj)− f(ξ̄j)
)

, f ∈ F , (7.4′)

have the same distribution. Indeed, even the conditional distribution of (7.4′) under
the condition that the values of the εj-s are prescribed agrees with the distribution
of (7.4) for all possible values of the εj-s. This follows from the observation that the
distribution of the field (7.4) does not change if we exchange the random variables ξj and
ξ̄j for certain indices j, and this corresponds to considering the conditional distribution
of the field in (7.4′) under the condition that εj = −1 for these indices j, and εj = 1
for the remaining ones.

The above relation together with formula (7.3) imply that

P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

∣

≥ An1/2σ2





≤ 2P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εj
[

f(ξj)− f̄(ξj)
]

∣

∣

∣

∣

∣

∣

≥ 2

3
An1/2σ2





≤ 2P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

3
n1/2σ2





+ 2P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξ̄j)

∣

∣

∣

∣

∣

∣

≥ A

3
n1/2σ2





= 4P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

3
n1/2σ2



 .

Lemma 7.2 is proved.

Let me briefly explain the approach to the proof of Proposition 6.2. We have to es-

timate a probability of the form P

(

n−1/2 sup
f∈F

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

> u

)

, and by Lemma 7.2 this

can be replaced by the estimation of the probability P

(

n−1/2 sup
f∈F

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

> u
3

)

with some independent random variables εj , P (εj = 1) = P (εj = −1) = 1
2 , j = 1, . . . , n,

which are also independent of the random variables ξj . We shall bound the conditional
probability of the event appearing in this modified problem under the condition that
the values of the random variables ξj are prescribed. This can be done with the help
of Hoeffding’s inequality formulated in Theorem 3.4 and the L2-density property of the
class of functions F we consider. By working out the details we are led to the estimation
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of the probability P

(

n−1/2 sup
f∈F ′

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

> u1+α

)

with some new nice L2-dense class

of bounded functions F ′ and some number α > 0. This problem is very similar to the
original one, but it is simpler, since the number u is replaced by a larger number u1+α

in it. By repeating this argument successively, in finitely many steps we get the proof
of Proposition 6.2.

The above sketched argument suggests a backward induction procedure to prove
Proposition 6.2. To carry out such a program first we introduce a property we want to
prove.

Definition of good tail behaviour for a class of normalized random sums.
Let us fix some measurable space (X,X ) and a probability measure µ on it together
with some integer n ≥ 2 and real number σ > 0, and consider some class F of functions
f(x) on the space (X,X ). Take a sequence of independent µ distributed random variables

ξ1, . . . , ξn, and define with its help the normalized random sums Sn(f) =
1√
n

n
∑

j=1

f(ξj),

f ∈ F . Given some real number T > 0 we say that the set of normalized random sums
Sn(f) determined by the class of functions F has a good tail behaviour at level T (with
parameters n and σ2 which we shall fix in the sequel) if the inequality

P

(

sup
f∈F

|Sn(f)| ≥ A
√
nσ2

)

≤ exp
{

−A1/2nσ2
}

(7.5)

holds for all numbers A > T .

Now we formulate Proposition 7.3 and show that Proposition 6.2 follows from it.

Proposition 7.3. Let us fix a positive integer n ≥ 2, a real number σ > 0 and a
probability measure µ on a measurable space (X,X ) together with a countable L2-dense
class F of functions f = f(x) on the space (X,X ) with some prescribed exponent L ≥ 1
and parameter D. Let us also assume that all functions f ∈ F satisfy the conditions
sup
x∈X

|f(x)| ≤ 1
4 ,
∫

f2(x)µ( dx) ≤ σ2, and nσ2 > K(L+ β) log n with a sufficiently large

fixed number K and β = max
(

logD
logn , 0

)

.

If there is a number T > 1 such that for all classes of functions F which satisfy

the above conditions the class of normalized random sums Sn(f) = 1√
n

n
∑

j=1

f(ξj), f ∈
F , defined with the help of a sequence of independent µ distributed random variables
ξ1, . . . , ξn have a good tail behaviour at level T , then there is a universal constant Ā0

such that the number T̄ = T 3/4 also have this property provided that T ≥ Ā0. We can
choose for instance Ā0 = 64 · 1012 and K = 1.

Proposition 6.2 simply follows from Proposition 7.3. To show this let us first observe
that the class of normalized random sums Sn(f), f ∈ F , has a good tail behaviour at
level T0 = 1

4σ2 if the class of functions F satisfies the conditions of Proposition 7.3.
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Indeed, in this case P

(

sup
f∈F

|Sn(f)| ≥ A
√
nσ2

)

≤ P

(

sup
f∈F

|Sn(f)| >
√
n
4

)

= 0 for all

A > T0. Then the repetitive application of Proposition 7.3 yields that the class of

random sums Sn(f) has a good tail behaviour at all levels T ≥ T
(3/4)j

0 if T
(3/4)j

0 ≥ Ā0,

hence for T = Ā
4/3
0 if the class of functions F satisfies the conditions of Proposition 7.3.

If the class of functions f ∈ F satisfies the conditions of Proposition 6.2, then the class

of functions F̄ =
{

f̄ = f
4 : f ∈ F

}

satisfies the conditions of Proposition 7.2, (actually

with σ̄ = σ
4 , and a better parameter D for the class F), hence the class of functions

Sn(f̄), f̄ ∈ F̄ , has a good tail behaviour at level T = Ā
4/3
0 . This implies that the original

class of functions F satisfy formula (6.3) in Proposition 6.2 with 4K, A0 = 4Ā
4/3
0 and

γ = 1
2 , and this is what we had to show.

The proof of Proposition 7.3. Fix a class of functions F which satisfies the conditions
of Proposition 7.3 together with two independent sequences ξ1, . . . , ξn and ε1, . . . , εn of
independent random variables, where ξj is µ-distributed, P (εj = 1) = P (εj = −1) = 1

2 ,
1 ≤ j ≤ n, and investigate the conditional probability

P (f,A|ξ1, . . . , ξn) = P





1√
n

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

6

√
nσ2

∣

∣

∣

∣

∣

∣

ξ1, . . . , ξn





for all functions f ∈ F , A ≥ T and values (ξ1, . . . , ξn) in the condition. By the Hoeffding
inequality presented in Theorem 3.4

P (f,A|ξ1, . . . , ξn) ≤ 2 exp

{

−
1
36A

2nσ4

2S̄2(f, ξ1, . . . , ξn)

}

(7.6)

with

S̄2(f, x1, . . . , xn) =
1

n

n
∑

j=1

f2(xj), f ∈ F .

Let us introduce the set

H = H(A) =

{

(x1, . . . , xn) : sup
f∈F

S̄2(f, x1, . . . , xn) ≥
(

1 +A4/3
)

σ2

}

. (7.7)

I claim that
P ((ξ1, . . . , ξn) ∈ H) ≤ e−A2/3nσ2

if A ≥ T. (7.7′)

(The set H plays the role of the small exceptional set, where we cannot provide a good
estimate for P (f,A|ξ1, . . . , ξn) for some f ∈ F .)

To prove relation (7.7′) let us consider the functions f̄ = f̄(f), f̄(x) = f2(x) −
∫

f2(x)µ( dx), and introduce the class of functions F ′ = {f̄(f) : f ∈ F}. Let us show
that the class of functions F ′ satisfies the conditions of Proposition 7.3, hence the
estimate (7.5) holds for the class of functions F ′ if A ≥ T 4/3.
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The relation
∫

f̄(x)µ( dx) = 0 clearly holds. The condition sup |f̄(x)| ≤ 1
8 <

1
4 also

holds if sup |f(x)| ≤ 1
4 , and

∫

f̄2(x)µ( dx) ≤
∫

f4(x)µ( dx) ≤ 1
16

∫

f2(x)µ( dx) ≤ σ2

16 <
σ2 if f ∈ F . It remained to show that F ′ is an L2-dense class with exponent L and
parameter D.

To show this observe that
∫

(f̄(x) − ḡ(x))2ρ( dx) ≤ 2
∫

(f2(x) − g2(x))2ρ( dx) +
2
∫

(f2(x)− g2(x))2µ( dx) ≤ 2(sup(|f(x)|+ |g(x)|)2
(∫

(f(x)− g(x))2(ρ( dx) + µ( dx)
)

≤
∫

(f(x) − g(x))2ρ̄( dx) for all f, g ∈ F , f̄ = f̄(f), ḡ = ḡ(g) and probability measure ρ,
where ρ̄ = ρ+µ

2 . This means that if {f1, . . . , fm} is an ε-dense subset of F in the space
L2(X,X , ρ̄), then {f̄1, . . . , f̄m} is an ε-dense subset of F ′ in the space L2(X,X , ρ), and
not only F , but also F ′ is an L2-dense class with exponent L and parameter D.

We get by applying the inductive hypothesis of Proposition 7.3 for the number
A4/3 ≥ T 4/3 and the class of functions F ′ that

P ((ξ1, . . . , ξn) ∈ H) = P



sup
f∈F





1

n

n
∑

j=1

f̄(ξj) +
1

n

n
∑

j=1

Ef2(ξj)



 ≥
(

1 +A4/3
)

σ2





≤ P



sup
f̄∈F̄

1√
n

n
∑

j=1

f̄(ξj) ≥ A4/3n1/2σ2



 ≤ e−A2/3nσ2

,

i.e. relation (7.7′) holds.

Formula (7.6) and the definition of the set H given in (7.7) yield the estimate

P (f,A|ξ1, . . . , ξn) ≤ 2e−A2/3nσ2/144 if (ξ1, . . . , ξn) /∈ H (7.8)

for all f ∈ F and A ≥ T ≥ 1. (Here we used the estimate 1 + A4/3 ≤ 2A4/3.) Let us
introduce the conditional probability

P (F , A|ξ1, . . . , ξn) = P



 sup
f∈F

1√
n

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

3

√
nσ2

∣

∣

∣

∣

∣

∣

ξ1, . . . , ξn





for all (ξ1, . . . , ξn) and A ≥ T . We shall estimate this conditional probability with the
help of relation (7.8) if (ξ1, . . . , ξn) /∈ H. Given some set of n points (x1, . . . , xn) in the
space (X,X ) let us introduce the measure ν = ν(x1, . . . , xn) on (X,X ) in such a way that
ν is concentrated in the points x1, . . . , xn, and ν({xj}) = 1

n . If
∫

f2(x)ν( dx) ≤ δ2 for

a function f , then

∣

∣

∣

∣

∣

1√
n

n
∑

j=1

εjf(xj)

∣

∣

∣

∣

∣

≤ n1/2
∫

|f(x)|ν( dx) ≤ n1/2δ. Since the condition

nσ2 ≥ K(L+ β) log n in Proposition 7.3 also implies that nσ2 ≥ 1 (if the constant K is
chosen sufficiently large), the above estimate implies that if f and g are two functions

such that
∫

(f − g)2ν( dx) ≤ δ2 with δ = A
6n , then

∣

∣

∣

∣

∣

1√
n

n
∑

j=1

εjf(xj)− 1√
n

n
∑

j=1

εjg(xj)

∣

∣

∣

∣

∣

≤
A

6
√
n
≤ A

6

√
nσ2.
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Let us fix some (random) point (ξ1, . . . , ξn) /∈ H, consider the measure ν =
ν(ξ1, . . . , ξn) corresponding to it and choose a δ̄-dense subset {f1, . . . , fm} of F in the
space L2(X,X , ν) with δ̄ = 1

6n ≤ δ = A
6n , whose cardinality m satisfies the inequal-

ity m ≤ Dδ̄−L. This is possible because of the L2-dense property of the class F .
(This is the point where the L2-dense property of the class of functions F is ex-

ploited in its full strength.) The above facts imply that if 1√
n

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

≥ A
3

√
nσ2

for some function f ∈ F , then 1√
n

∣

∣

∣

∣

∣

n
∑

j=1

εjfl(ξj)

∣

∣

∣

∣

∣

≥ A
6

√
nσ2 for some function fl of

the δ̄-dense subset {f1, . . . , fm} of F with the fixed point (ξ1, . . . , ξn) /∈ H. Hence

P (F , A|ξ1, . . . , ξn) ≤
m
∑

l=1

P (fl, A|ξ1, . . . , ξn) with these functions f1, . . . , fm, and rela-

tion (7.8) yields that

P (F , A|ξ1, . . . , ξn) ≤ 2D(6n)Le−A2/3nσ2/144 if (ξ1, . . . , ξn) /∈ H and A ≥ T.

This inequality together with Lemma 7.2 (under the restriction that A ≥ Ā0 ≥ 3
√
2√

nσ
≥

3
√
2) and estimate (7.7′) imply that

P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

∣

≥ An1/2σ2



 ≤ 4P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

3
n1/2σ2





≤ 8D(6n)Le−A2/3nσ2/144 + 4e−A2/3nσ2

if A ≥ T.

(7.9)

By the condition nσ2 ≥ K(L+ β) log n = KL log n+K log(max(D, 1)), hence the first
term at the right-hand side of (7.9) can be bounded as

8D(6n)Le−A2/3nσ2/144

≤ e−A1/2nσ2 · 8D6LnL(1−A1/2/3) max(D, 1)−A1/2/3 ≤ 1
2e

−A1/2nσ2

if A ≥ T ≥ Ā0 ≥ 64 · 1012 and K ≥ 1. (With such parameters A2/3

144 − A1/2 ≤ 1
3A

1/2.)

With such a choice of the parameters the inequality 3
√
2√

nσ
≤ 3

√
2√

K log 2
≤ Ā0 ≤ A, needed

for the validity of relation (7.2), also holds. The second term at the right-hand side of

(7.9) be bounded as 4e−A2/3nσ2 ≤ 1
2e

−A1/2nσ2

. with the above choice of the numbers
Ā0 and K.

By the above calculation formula (7.9) yields the inequality

P





1√
n
sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

∣

≥ An1/2σ2



 ≤ e−A1/2nσ2

if A ≥ T , and the constants Ā0 and K are chosen sufficiently large, for instance Ā0 =
64 · 1012 and K = 1 is an appropriate choice.
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8. Formulation of the main results of this work

This section contains the main results of this work about multiple stochastic integrals
and their supremum. Section 4 contains these results in the special case of one-fold
integrals together with their version about the supremum of appropriate classes of nor-
malized sums of independent and identically distributed random variables with zero
expectation. (See Theorem 4.1 and 4.1′ and their comparison.) The results about mul-
tiple stochastic integrals also have a similar version, and they will be also presented.
Here the role of sums of independent, and identically distributed random variables are
taken by degenerate U -statistics of independent and identically distributed random vari-
ables. The condition that the U -statistics have to be degenerate plays the a role similar
to the condition about the zero expectation of the summands when the independent
sum versions of the one-fold integral results are considered. The basic notions about
U -statistics needed to understand the results will also be explained. The proof of the
equivalence of the results about multiple integrals and U -statistics formulated in this
section requires a detailed study of the property of U -statistics, a problem which has a
special interest in itself. This will be the subject of the next section.

We also formulate some results about multiple Wiener–Itô integrals which are nat-
ural analogs of the results about multiple integrals with respect to normalized empirical
measures. But these results are only briefly discussed, because they do not belong to
the main subject of this work, and they demand a more detailed study of multiple
Wiener–Itô integrals. Finally, this section is finished with a the two-dimensional ver-
sion of Example 3.2 which shows that certain conditions of the results discussed here
are really necessary.

Let us consider a sequence of iid. random variables ξ1, . . . , ξn taking values on
a measurable space (X,X ). Let µ denote its distribution, and introduce the empirical
distribution of this sequence defined in (4.5). Given a measurable function f(x1, . . . , xk)
on the k-fold product space (Xk,X k) introduce its integral Jn,k(f) with respect to the
k-fold product of the normalized empirical measure

√
n(µn − µ) defined in formula

(4.8). Here we define the domain of integration by deleting the diagonals xj = xl,
1 ≤ j < l ≤ k, from the k-fold product space (Xk,X k). The following Theorem 8.1
can be considered as the multiple integral version of Bernstein’s inequality formulated
in Theorem 3.1.

Theorem 8.1. Let us take a measurable function f(x1, . . . , xk) on the k-fold prod-
uct (Xk,X k) of a measure space (X,X ) with some k ≥ 1 together with a non-atomic
probability measure µ on (X,X ) and a sequence of iid. random variables ξ1, . . . , ξn with
distribution µ on (X,X ). Let the function f satisfy the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (8.1)

and

‖f‖22 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 (8.2)
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with some constant 0 < σ ≤ 1. There exist some constants C = Ck > 0 and α = αk > 0,
such that the random integral Jn,k(f) defined by formulas (4.5) and (4.8) satisfies the
inequality

P (|Jn,k(f)| > u) ≤ Cmax

(

exp

{

−α
(u

σ

)2/k
}

, exp
{

−α(nu2)1/(k+1)
}

)

(8.3)

for all u > 0. The constants C = Ck > 0 and α = αk > 0 in formula (8.3) depend only
on the parameter k.

Theorem 8.1 can be reformulated in the following equivalent form.

Theorem 8.1′. Under the conditions of Theorem 8.1

P (|Jn,k(f)| > u) ≤ C exp

{

−α
(u

σ

)2/k
}

for all 0 < u ≤ nk/2σk+1 (8.3′)

with the number σ appearing in (8.2) and some universal constants C = Ck > 0,
α = αk > 0, depending only on the multiplicity k of the integral Jn,k(f).

Theorem 8.1 clearly implies Theorem 8.1′, since in the case u ≤ nk/2σk+1 the
first term is larger than the second one in the maximum at the right-hand side of for-
mula (8.3). On the other hand Theorem 8.1′ implies Theorem 8.1 also if u > nk/2σk+1,

since in this case Theorem 8.1′ can be applied with σ̄ =
(

un−k/2
)1/(k+1) ≥ σ. This

yields that P (|Jn,k(f)| > u) ≤ C exp
{

−α
(

u
σ̄

)2/k
}

= C exp
{

−α(nu2)1/(k+1)
}

if u >

nk/2σk+1.

Theorem 8.1 or Theorem 8.1′ state that the tail probability P (|Jn,k(f)| > u)
of the k-fold random integral Jn,k(f) can be bounded similarly to the probability
P (|const.σηk| > u), where η is a random variable with standard normal distribution
and σ is the number appearing in relation (8.2), provided that the level u we consider
is less than nk/2σk+1. (The value of the number σ2 in formula (8.2) is closely related
to the variance of Jn,k(f).) At the end of this section an example is given which shows
that such a condition is really needed in the above results.

Now we formulate Theorem 8.2 which is the generalization of Theorem 4.1 for
multiple integrals. Here we apply the notions of L2-dense classes and countably approx-
imability introduced in Section 4.

Theorem 8.2. Let us have a non-atomic probability measure µ on a measurable space
(X,X ) together with a countable and L2-dense class F of functions f = f(x1, . . . , xk)
of k variables with some parameter D and exponent L, L ≥ 1, on the product space
(Xk,X k) which satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, for all f ∈ F (8.4)
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and

‖f‖22 = Ef2(ξ1, . . . , ξk) =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 for all f ∈ F
(8.5)

with some constant 0 < σ ≤ 1. Then there exist some constants C = C(k) > 0,
α = α(k) > 0 and M = M(k) > 0 depending only on the parameter k such that the
supremum of the random integrals Jn,k(f), f ∈ F , defined by formula (4.8) satisfies the
inequality

P

(

sup
f∈F

|Jn,k(f)| ≥ u

)

≤ CD exp

{

−α
(u

σ

)2/k
}

if nσ2 ≥
(u

σ

)2/k

≥M(L+ β)3/2 log
2

σ
,

(8.6)

where β = max
(

logD
logn , 0

)

and the numbers D and L agree with the parameter and

exponent of the L2-dense class F .

The condition about the countable cardinality of the class F can be replaced by
the weaker condition that the class of random variables Jn,k(f), f ∈ F , is countably
approximable.

To formulate that version of Theorems 8.1 and 8.2 which corresponds to the results
about sums of independent random variables in the case k = 1 let us introduce the
following notions:

Definition of U-statistics. Let us consider a function f = f(x1, . . . , xk) on the
k-th power (Xk,X k) of a space (X,X ) together with a sequence of independent and
identically distributed random variables ξ1, . . . , ξn, n ≥ k, which take their values on
this space (X,X ). The expression

In,k(f) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f (ξl1 , . . . , ξlk) (8.7)

is called a U -statistic of order k with the sequence ξ1, . . . , ξn, and f is called its kernel
function.

To make our later notation non-ambiguous let us also consider functions of the form
f(xu1 , . . . , xuk

), that is let us allow the possibility that the variables of the function f
which take their values in the space (X,X ) are indexed in a general way. In the case of
such an indexation we define

In,k(f) =
1

k!

∑

1≤luj
≤n, j=1,...,k

luj
6=lu′

j
if j 6=j′

f
(

ξlu1
, . . . , ξluk

)

. (8.7′)
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A similar convention will be applied in the definition of decoupled U -statistics introduced
later, and the following definition of degenerate U -statistics and canonical functions can
also be similarly reformulated in the case of general indexation.

The degenerate U -statistics which correspond to sums of identically distributed
random variables with expectation zero constitute an important subclass of the U -
statistics. We define it together with the notion of canonical kernel function which is
closely related to it.

Definition of degenerate U-statistics. A U -statistic In,k(f) of order k with a se-
quence of iid. random variables ξ1, . . . , ξn is called degenerate if its kernel function
f(x1, . . . , xk) satisfies the relation

Ef(ξ1, . . . , ξk|ξ1 = x1, . . . , ξj−1 = xj−1, ξj+1 = xj+1, . . . , ξk = xk) = 0

for all 1 ≤ j ≤ k and xs ∈ X, s 6= j.

Definition of canonical kernel function. A function f(x1, . . . , xk) taking values on
the k-fold product of a measure space (X,X ) is called a canonical function with respect
to a probability measure µ on (X,X ) if

∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0 for all 1 ≤ j ≤ k and xs ∈ X, s 6= j.

(8.8)

It is clear that a U -statistic In,k(f) with kernel function f and independent µ-
distributed random variables ξ1, . . . , ξn is degenerate if and only if its kernel function
is canonical with respect to the probability measure µ. Now we can formulate two
results about U -statistics which are, as we shall see in the next section, equivalent to
Theorems 8.1 and 8.2.

Theorem 8.3. Let us have a measurable function f(x1, . . . , xk) on the k-fold product
(Xk,X k), k ≥ 1, of a measure space (X,X ) with some k ≥ 1 together with a probability
measure µ on (X,X ) and a sequence of iid. random variables ξ1, . . . , ξn with distribu-
tion µ on (X,X ). Let us consider the k-fold U -statistic Ik,n(f) with this sequence of
random variables ξ1, . . . , ξn. Assume that this U -statistic is degenerate, i.e. the kernel
function f(x1, . . . , xk) of this U -statistic is canonical with respect to the measure µ. Let
us also assume that the function f satisfies conditions (8.1) and (8.2) with some number
0 < σ ≤ 1. Then there exist some constants C = Ck > 0 and α = αk > 0 such that the
inequality

P
(

n−k/2|In,k(f)| > u
)

≤ C exp

{

−α
(u

σ

)2/k
}

(8.9)

holds for all 0 < u ≤ nk/2σk+1. The constants C = Ck > 0 and α = αk > 0 depend
only on the parameter k.

Theorem 8.4. Let us have a probability measure µ on a measurable space (X,X )
together with a countable and L2-dense class F of functions f = f(x1, . . . , xk) of k
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variables with some parameter D and exponent L, L ≥ 1, on the product space (Xk,X k)
which satisfies conditions (8.4) and (8.5) with some constant 0 < σ ≤ 1. Besides
these conditions let us assume that for a sequence of independent µ distributed random
variables ξ1, . . . , ξn the U -statistics In,k(f) with this sequence ξ1, . . . , ξn are degenerate
for all f ∈ F , or in an equivalent form all functions f ∈ F are canonical with respect
to the measure µ. Then there exist some constants C = C(k) > 0, α = α(k) > 0 and
M =M(k) > 0 depending only on the parameter k such that the inequality

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ CD exp

{

−α
(u

σ

)2/k
}

if nσ2 ≥
(u

σ

)2/k

≥M(L+ β)3/2 log
2

σ
,

(8.10)

holds, where β = max
(

logD
logn , 0

)

and the number D and L agree with the parameter and

exponent of the L2-dense class F .

The condition about the countable cardinality of the class F can be replaced by the
weaker condition that the class of random variables n−k/2In,k(f), f ∈ F , is countably
approximable.

Let us briefly describe the Gaussian counterpart of the above results. Here some
basic notions and results about multiple Wiener–Itô integrals are applied. But since
the results about these Gaussian fields do not belong to the main subject of this work,
they are mainly interesting for us for the sake of a comparison, most technical details
will be omitted from our discussion.

Let us consider a measurable space (X,X ) together with a non-atomic σ-finite
measure µ on it. Let Zµ be an orthogonal Gaussian random measure with counting
measure µ on (X,X ), i.e. assume that the random variables Zµ(A), A ∈ X , µ(A) < ∞
are defined, they are jointly Gaussian, EZµ(A) = 0 for all A ∈ A, µ(A) < ∞ and
EZµ(A)Zµ(B) = µ(A ∩B) for all A ∈ A, B ∈ A, µ(A) <∞, µ(B) <∞.

Let us observe that these relations imply that if A ∈ X , µ(A) < ∞ and B ∈ X ,
µ(B) < ∞ are disjoint sets, then Zµ(A) and Zµ(B) are independent, and Zµ(A ∪
B) = Zµ(A) + Zµ(B) with probability 1. The last relation follows from the fact that
E(Zµ(A ∪B)− Zµ(A)− Zµ(B))2 = 0 under these conditions.

If f(x1, . . . , xk) is a measurable function on (Xk,X k) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) <∞,

then the multiple Wiener–Itô integral Zµ,k(f) =
1
k!

∫

f(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk)
can be defined, and it satisfies similar estimates as the random integrals Jn,k(f). This
statement will be formulated more explicitly in the following Theorem 8.5.

Theorem 8.5 Let us fix a measurable space (X,X ) together with a σ-finite non-atomic
measure µ on it, and let Zµ be an orthogonal Gaussian random measure with counting
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measure µ on (X,X ). If f(x1, . . . , xk) is a measurable function on (Xk,X k) such that
1
k!

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ <∞, then

P (|Zµ,k(f)| > u) ≤ C exp

{

−α
(u

σ

)2/k
}

(8.11)

for all u > 0 with some constants C = C(k) and α = α(k) depending only on k.

If F is a countable class of functions of k variables on (X,X ) such that
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ ≤ 1 for all f ∈ F ,

and there exist some constant D > 0 and L > 0 such that a subset {f1, . . . , fm} ⊂ F
can be chosen with m ≤ Dε−L elements for which

min
1≤j≤m

∫

(f(x1, . . . , xk)− fj(x1, . . . , xk))
2
µ( dx1) . . . µ( dxk) ≤ ε for all f ∈ F ,

then the inequality

P

(

sup
f∈F

|Zµ,k(f)| > u

)

≤ C(D + 1) exp

{

−α
(u

σ

)2/k
}

if u ≥MLk/2σ logk/2
2

σ

(8.12)
holds with some universal constants C = C(k) > 0, M =M(k) > 0 and α = α(k) > 0.

Since the above result does not belong to the main part of this work, only a sketchy
proof will be presented. Nelson’s inequality, mentioned at the start of this section will
be formulated and proved in the Appendix, and it will be explained how Theorem 8.5
can be proved with its help.

The above results show that multiple integrals with respect to a normalized em-
pirical measure or degenerate U -statistics satisfy some estimates similar to multiple
Wiener–Itô integrals, but they hold under more restrictive conditions. This difference
between multiple integrals with respect to a normalized empirical measure and orthog-
onal Gaussian measures can be explained similarly to some arguments presented in
Section 4 about the one-fold integral case. Here we do not repeat them, we only give an
example similar to Example 3.2 which shows that the condition u ≤ nk/2σk+1 cannot
be dropped from the conditions of Theorem 8.2. For the sake of simplicity we restrict
our attention to the case k = 2.

Example 8.6. Let ξ1, . . . , ξn be a sequence of independent, identically distributed ran-
dom variables taking values on the plane R2 = X such that ξj = (ηj,1, ηj,2), ηj,1 and

ηj,2 are independent, P (ηj,1 = 1) = P (ηj,1 = −1) = σ2

8 , P (ηj,1 = 0) = 1 − σ2

4 ,
P (ηj,2 = 1) = P (ηj,2 = −1) = 1

2 for all 1 ≤ j ≤ n, introduce the function f(x, y) =
f((x1, x2), (y1, y2)) = x1y2 + x2y1, x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2, and define the
U -statistic

In,2(f) =
∑

1≤j,k≤n, j 6=k

(ηj,1ηk,2 + ηk,1ηj,2)
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of order 2 with the above kernel function f and the sequence of independent random
variables ξ1, . . . , ξn. Then In,2(f) is a degenerate U -statistic. If u ≥ B1nσ

3 with some
appropriate constant B1 > 0, B̄−1

2 n ≥ u ≥ B̄2n
−2 with a sufficiently large fixed number

B̄2 > 0 and σ ≥ 1
n , then the estimate

P (n−1In,2(f) > u) ≥ exp
{

−Bn1/3u2/3 log
( u

nσ3

)}

(8.13)

holds with some B > 0.

Remark: The main content of the above example is that in the case k = 2 the condition
u
σ ≤ nσ2 cannot be dropped from Theorem 8.3. Let us observe that in the case u = nσ3

the right-hand side of (8.13) has the same order as Theorem 8.3 suggests. (In this model
∫

f2(x, y)µ( dx)µ( dy) = E(2ηj,1ηj,2)
2 = σ2.) If we consider the probability in (8.13)

at the same level u, but with a much smaller parameter σ2, then the probability at
the right-hand side of (8.13) has a relatively small decrease, and the estimate of Theo-
rem 8.3 does not hold any longer. Let me also remark that under some mild additional
restrictions the estimate (8.13) can be slightly improved, the term log can be replaced by

log2/3 in the exponent of the right-hand side of (8.13). To get this improvement some
more calculation is needed, and the numbers u1 and u2 in the following calculations
have to be replaced by v1 = 8n1/3u2/3 log−1/3

(

u
nσ3

)

and v2 = 1
4n

2/3u1/3 log1/3
(

u
nσ3

)

.

It is simple to check that the U -statistic we considered in the above example is
degenerate because of the independence properties of the model and the relation Eηj,1 =
Eηj,2 = 0. In the proof of the estimate (8.13) we shall apply for one hand the results of
Section 3, in particular Example 3.2 for the sequence ηj,1, j = 1, 2, . . . , n, on the other
hand the following result from the theory of large deviations: If X1, . . . , Xn are iid.
random variables, P (X1 = 1) = P (X1 = −1) = 1

2 , then for any number 0 ≤ α < 1 there

exists some numbers C1 = C1(α) > 0 and C2 = C2(α) > 0 such that P

(

n
∑

j=1

Xj > u

)

≥

C1e
−C2u

2/n for all 0 ≤ u ≤ αn.

Proof of the statement of the example. We can write

P (n−1In,2(f) > u) ≥ P



2





n
∑

j=1

ηj,1









n
∑

j=1

ηj,2



 > 2nu



− P



2

n
∑

j=1

ηj,1ηj,2 > nu



 .

(8.14)
Because of the independence of the random variables ηj,1 and ηj,2 the first probability at
the right-hand side of (8.14) can be bounded from below with the choice v1 = 8n1/3u2/3

and v2 = 1
8n

2/3u1/3 by means of Example 3.2. (The estimate of Example 3.2 can be
applied with the choice y = v1, since by the inequality n

8 ≥ v1 ≥ nσ2 the conditions of
Example 3.2 are satisfied), together with the large-deviation result mentioned after the
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remark. These estimates together yield that

P









n
∑

j=1

ηj,1









n
∑

j=1

ηj,2



 > 2nu



 ≥ P





n
∑

j=1

ηj,1 > v1



P





n
∑

j=1

ηj,2 > v2





≥ exp

{

−B1v1 log
( v1
nσ2

)

−B2
v22
n

}

≥ exp
{

−B3n
1/3u2/3 log

( u

nσ3

)}

with appropriate constants B1 > 0, B2 > 0 and B3 > 0. On the other hand by applying
Bennett’s inequality, more precisely its consequence given in formula (3.4) for the sum
of the random variables Xj = 2ηj,1ηj,2 and y = nu we get the following upper bound
for the second term at the right-hand side of (8.14):

P



2

n
∑

j=1

ηj,1ηj,2 > nu



 ≤ exp
{

−B4nu log
u

σ2

}

≤ exp
{

−2B5n
1/3u2/3 log

( u

nσ3

)}

,

since nu ≥ B̄n1/3u2/3 ≥ B̄nσ2, and the estimate (3.4) is applicable if B̄ is sufficiently
large. The above estimates imply the statement of the example.

9. Some results about U-statistics

This section contains the proof of an important result about U -statistics, the so-called
Hoeffding decomposition theorem which states that all U -statistics can be represented
as a sum of degenerate U -statistics. Let us consider the kernel function of a U -statistic
together with the kernel functions of the U -statistics in its Hoeffding decomposition. It
will also be shown that the L2-norm of the kernel functions of the U -statistics in the Ho-
effding decomposition are bounded by the L2-norm of the kernel function of the original
U -statistic. Besides, if a class of U -statistics is given with an L2-dense class of kernel
functions (with the same underlying sequence of independent and identically distributed
random variables) and the Hoeffding decomposition of all of these U -statistics is taken,
then the kernel functions of the degenerate U -statistics taking part in the Hoeffding de-
composition also constitute an L2-dense class. Another important result of this section
is a decomposition of a k-fold random integral with respect to a normalized empirical
measure to the linear combination of degenerate U -statistics presented in Theorem 9.4.
These results enable us to prove the equivalence of Theorem 8.1 with Theorem 8.3 and
of Theorem 8.2 with Theorem 8.4. They are also useful in the proof of Theorems 8.3
and 8.4.

In the special case k = 1 Hoeffding’s decomposition means that the sum Sn =
n
∑

j=1

ξj

of iid. random variables can be rewritten as Sn =
n
∑

j=1

(ξj − Eξj) +

(

n
∑

j=1

Eξj

)

, i.e. the

sum of independent random variables with zero expectation plus a constant. We may
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consider a constant as a U -statistic of order zero. (For the sake of a simpler terminology
in the sequel let us consider a constant as a degenerate U -statistic of order zero, and
define In,0(c) = c for a constant c.) I wrote down this trivial calculation, because
Hoeffding’s decomposition is actually an adaptation of this procedure to the general
case. To understand this let us see how to adapt this construction in the case k = 2.
In this case we have to consider a sum of the form In,2(f) =

∑

1≤j,k≤n,j 6=k

f(ξj , ξk).

Write f(ξj , ξk) = [f(ξj , ξk) − Ef(ξj , ξk|ξk)] + Ef(ξj , ξk|ξk) = f1(ξj , ξk) + f̄1(ξk) with
f1(ξj , ξk) = f(ξj , ξk) − Ef(ξj , ξk|ξk), and f̄1(ξk) = Ef(ξj , ξk|ξk) to achieve that the
conditional expectation of f1(ξj , ξk) for fixed ξk be zero. Repeating this procedure
for the first coordinate we define f2(ξj , ξk) = f1(ξj , ξk) − Ef1(ξj , ξk|ξj) and f̄2(ξj) =
Ef1(ξj , ξk|ξj). Simple calculation shows that In,2(f2) is a degenerate U -statistics of
order 2, and the identity In,2(f) = In,2(f2)+In,1((n−1)(f̄1−Ef̄1))+In,1((n−1)((f̄2−
Ef̄2)) + n(n− 1)E(f̄1 + f̄2) yields the decomposition of In,2(f) for sums of degenerate
U -statistics.

We get the Hoeffding decomposition by working out the details of the above ar-
gument in the general case. But it is simpler to calculate the appropriate conditional
expectations with the help of the kernel functions of the U -statistics. To carry out such
a program in the study of U -statistics of order k we introduce the following notations.

Let us consider the k-fold product (Xk,X k, µk) of a measure space (X,X , µ) with
some probability measure µ, and define for all integrable functions f(x1, . . . , xk) and
indices 1 ≤ j ≤ k the projection Pjf of the function f to its j-th coordinate as

Pjf(x1, . . . , xj−1, xj+1, . . . , xk) =

∫

f(x1, . . . , xk)µ( dxj), 1 ≤ j ≤ k. (9.1)

Let us also define the operators Qj = I − Pj as Qjf = f − Pjf on the space of
integrable functions on (Xk,X k, µk), 1 ≤ j ≤ k. In the definition (9.1) Pjf is a
function not depending on the coordinate xj , but in the definition of Qj we introduce
the fictive coordinate xj to make the expression Qjf = f − Pjf meaningful. Now we
can formulate the following result.

Theorem 9.1 (Hoeffding decomposition). Let f(x1, . . . , xk) be an integrable func-
tion on the k-fold product space (Xk,X k, µk) of a space (X,X , µ) with a probability
measure µ. It has the decomposition

f =
∑

V⊂{1,...,k}
fV , with fV (xj , j ∈ V ) =





∏

j∈{1,...,k}\V
Pj

∏

j∈V

Qj



 f(x1, . . . , xk)

(9.2)
such that all functions fV , V ⊂ {1, . . . , k}, in (9.2) are canonical with respect to the
probability measure µ, and they depend on the |V | arguments xj, j ∈ V .

Let ξ1, . . . , ξn be a sequence of independent µ distributed random variables, and
consider the U -statistics In,k(f) and In,|V |(fV ) corresponding to the kernel functions f ,
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fV defined in (9.2) and random variables ξ1, . . . , ξn. Then

In,k(f) =
∑

V⊂{1,...,k}
(n− |V |)(n− |V | − 1) · · · (n− k + 1)

|V |!
k!

In,|V |(fV ) (9.3)

is a representation of In,k(f) as a sum of degenerate U -statistics, where |V | denotes the
cardinality of the set V . (The product (n − |V |)(n − |V | − 1) · · · (n − k + 1) is defined
as 1 for V = {1, . . . , k}, i.e. if |V | = k.) This representation is called the Hoeffding
decomposition of In,k(f).

The proof of Theorem 9.1. Write f =
k
∏

j=1

(Pj+Qj)f . By carrying out the multiplications

in this identity and applying the commutativity of the operators Pj and Qj for different
indices j we get formula (9.2). To show that the functions fV in formula (9.2) are canon-
ical let us observe that this property can be rewritten in the form PjfV = 0 (in all coor-
dinates xs, s ∈ V \ {j} if j ∈ V ). Since Pj = P 2

j , and the identity PjQj = Pj − P 2
j = 0

holds for all j ∈ {1, . . . , k} this relation follows from the above mentioned commutativ-

ity of the operators Pj and Qj , as PjfV =

(

∏

s∈{1,...,k}\V
Ps

∏

s∈V \{j}
Qs

)

PjQjf = 0. By

applying the identity (9.2) for all terms f(ξj1 , . . . , ξjk) in the sum defining the U -statistic
In,k(f) and then summing them up we get relation (9.3).

The next result enables us to estimate the kernel functions of the degenerate U -
statistics in the Hoeffding-decomposition of a U -statistic by means of the properties
kernel function of the original U -statistic.

Theorem 9.2. Let f(x1, . . . , xk) be a square integrable function on the k-fold product
space (Xk,X k, µk), and take its decomposition defined in formula (9.2). The inequalities

∫

f2V (xj , j ∈ V )
∏

j∈V

µ( dxj) ≤
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) (9.4)

and
sup

xj , j∈V
|fV (xj , j ∈ V )| ≤ 2|V | sup

xj , 1≤j≤k
|f(x1, . . . , xk)| (9.4′)

hold for all V ⊂ {1, . . . , k}.
Let us consider an L2-dense class F of functions with parameter D and exponent

L on the space (Xk,X k), take the decomposition (9.2) of all functions f ∈ F and define
the classes of functions FV = {2−|V |fV : f ∈ F} for all V ⊂ {1, . . . , k} with the help
of the functions fV taking part in this decomposition. The classes of functions FV are
also L2-dense with the same parameter D and exponent L for all V ⊂ {1, . . . , k}.

Theorem 9.2 is a fairly simple consequence of Proposition 9.3 presented below. To
formulate it first we introduce the following notations:
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Let us consider the product (Y × Z,Y × Z) of two measurable spaces (Y,Y) and
(Z,Z) together with a probability measure µ on (Z,Z) and the operator

Pf(y) = Pµf(y) =

∫

f(y, z)µ( dz), y ∈ Y, z ∈ Z (9.5)

for all measurable functions f on the space Y ×Z for which this integral is finite. Let I
denote the identity operator on the space of functions on Y×Z, i.e. let If(y, z) = f(y, z),
and introduce the operator Q = Qµ = I − P = I − Pµ which maps the functions f on
the space Y × Z to functions on the space Y × Z given by the formula

Qµf(y, z) = (I − Pµ)f(y, z) = f(y, z)− Pµf(y, z) = f(y, z)−
∫

f(y, z)µ( dz),

y ∈ Y, z ∈ Z.

(9.6)

(Here, and in the sequel we shall sometimes identify a function g(y) defined on the space
(Y,Y) with the function ḡ(y, z) = g(y) on the space (Y ×Z,Y ×Z) which actually does
not depend on the coordinate z.) The following result will be proved:

Proposition 9.3. Let us consider the direct product (Y × Z,Y × Z) of two measure
spaces (Y,Y) and (Z,Z) together with a probability measure µ on the space (Z,Z).
Take the transformations Pµ and Qµ defined in formulas (9.5) and (9.6). Given any
probability measure ρ on the space (Y,Y) consider the product measure ρ × µ on (Y ×
Z,Y×Z). Then the transformations Pµ and Qµ, as maps from the space L2(Y ×Z,Y×
Z, µ× ρ) to L2(Y,Y, ρ) and L2(Y ×Z,Y ×Z, ρ×µ) respectively, have a norm less than
or equal to 1, i.e.

∫

Pµf(y)
2ρ( dy) ≤

∫

f(y, z)2ρ( dy)µ( dz), (9.7)

and
∫

Qµf(y, z)
2ρ( dy)µ( dz) ≤

∫

f(y, z)2ρ( dy)µ( dz) (9.8)

for all functions f ∈ L2(Y × Z,Y × Z, ρ× µ).

If F is an L2-dense class of functions f(y, z) in the product space (Y ×Z,Y ×Z),
with parameter D and exponent L, then also the classes Fµ = {Pµf, f ∈ F} and
Gµ = { 1

2Qµf = 1
2 (f −Pµf), f ∈ F} are L2-dense classes with the same exponent L and

parameter D in the spaces (Y,Y) and (Y × Z,Y × Z) respectively.

The following corollary of Proposition 9.3 is formally more general, but it is a simple
consequence of this result. Actually we shall need this corollary.

Corollary of Proposition 9.3. Let us consider the product space (Y1 × Z × Y2,Y1 ×
Z × Y2), a probability measure µ on the space (Z,Z) and define the transformations

Pµf(y1, y2) =

∫

f(y1, z, y2)µ( dz), y1 ∈ Y1, z ∈ Z, y2 ∈ Y2 (9.5′)
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and

Qµf(y1, z, y2) = (I − Pµ)f(y1, z, y2) = f(y1, z, y2)− Pµf(y1, z, y2)

= f(y1, z, y2)−
∫

f(y1, z, y2)µ( dz), y1 ∈ Y1, z ∈ Z, y2 ∈ Y2
(9.6′)

for the measurable functions f on the space Y1 × Z × Y2. Then

∫

Pµf(y1, y2)
2ρ( dy1, dy2) ≤

∫

f(y, z)2(ρ× µ)( dy1, dz, dy2), (9.7′)

for all probability measures ρ on (Y1×Y2,Y1×Y2), where ρ×µ is the product of the prob-
ability measure ρ on (Y1×Y2,Y1×Y2) and µ on (Z,Z), i.e. ρ×µ({y1, z, y2) : (y1, y2) ∈
A, z ∈ B}) = ρ(A)µ(B) for all A ∈ Y1 × Y2, B ∈ Z, and ρ× µ is its unique extension
as a probability measure on (Y1 × Z × Y2,Y1 ×Z × Y2). Also the inequality

∫

Qµf(y1, z, y2)
2ρ( dy1, dy2)µ( dz) ≤

∫

f(y1, z, y2)
2ρ( dy1, dy2)µ( dz) (9.8′)

holds for all functions f ∈ L2(Y × Z,Y × Z, ρ× µ).

If F is an L2-dense class of functions f(y1, z, y2) in the product space (Y1 × Z ×
Y2,Y1×Z×Y2), with parameter D and exponent L, then also the classes Fµ = {Pµf, f ∈
F} and Gµ = { 1

2Qµf = 1
2 (f − Pµf), f ∈ F} are L2-dense classes with exponent L and

parameter D in the spaces (Y1×Y2,Y1×Y2) and (Y1×Z×Y2,Y1×Z×Y2) respectively.

This corollary is a simple consequence of Proposition 9.3 if we apply it with (Y,Y) =
(Y1×Y2,Y1×Y2) and take the natural mapping f((y1, y2), z) → f(y1, z, y2) of a function
from the space (Y ×Z,Y ×Z) to a function on (Y1 ×Z ×Y2,Y1 ×Z ×Y2), and use the
correspondence between the product measure ρ× µ in these spaces.

Proposition 9.3, more precisely its corollary implies Theorem 9.2, since it implies
that the operators Ps, Qs, 1 ≤ s ≤ k, applied in Theorem 9.2 do not increase the L2(µ)
norm of a function f , and it is also clear that the norm of Ps is bounded by 1 the norm
of Qs = I − Ps is bounded by 2 as an operator from L∞ spaces to L∞ spaces. The
corollary of Proposition 9.3 also implies that if F is an L2-dense class of functions with
parameter D and exponent L, then the same property holds for the classes of functions
FPs = {Psf : f ∈ F} and FQs = { 1

2Osf : f ∈ F}, 1 ≤ s ≤ k. These relations together

with the identity fV =

(

∏

s∈V

Ps

∏

s∈{1,...,k}\V
Qs

)

f imply Theorem 9.2.

Proof of Proposition 9.3. The Schwarz inequality yields that Pµ(f)
2 ≤

∫

f(y, z)2µ( dz),
and integrating this inequality with respect to the probability measure ρ( dy) we get
inequality (9.7). Also the inequality

∫

Qµf(y, z)
2ρ(dy)µ(dz) =

∫

[f(y, z)− Pµf(y, z)]
2ρ(du)µ(dz) ≤

∫

f(y, z)2ρ(dy)µ(dz)
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holds, and this is relation (9.8). It follows for instance from the observation that the
functions f(y, z) − Pµf(y, z) and Pµf(y, z) are orthogonal in the space L2(Y × Z,Y ×
Z, ρ× µ).

Let us consider an arbitrary probability measure ρ on the space (Y,Y). To prove
that Fµ is an L2-dense class with parameterD and exponent L we have to findm ≤ DεL

functions fj ∈ Fµ, 1 ≤ j ≤ m, such that inf
1≤j≤m

∫

(fj − f)2 dρ ≤ ε2 for all f ∈ Fµ. But

a similar property holds in the space Y × Z with the probability measure ρ × µ. This
property together with the L2 contraction property of Pµ formulated in (9.7) imply that
Fµ is an L2-dense class.

To prove that Gµ is also L2-dense with parameter D and exponent L we have
to find for all numbers 0 < ε ≤ 1 and probability measures ρ on Y × Z a subset
{g1, . . . , gm} ⊂ Gµ with m ≤ Dε−L elements such that inf

1≤j≤m

∫

(gj − g)2 dρ ≤ ε2 for all

g ∈ Gµ.

Let us consider the probability measure ρ̃ = 1
2 (ρ+ρ̄×µ) on (Y ×Z,Y×Z), where ρ̄ is

the projection of the measure ρ to (Y,Y), i.e. ρ̄(A) = ρ(A×Z) for all A ∈ Y, take a class
of function F0(ε, ρ̃) = {f1, . . . , fm} ∈ F , m ≤ Dε−L such that inf

1≤j≤m

∫

(fj − f)2 dρ̃ ≤ ε2

for all f ∈ F , and put {g1, . . . , gm} = { 1
2Qµf1, . . . ,

1
2Qµfm}. All functions g ∈ Gµ can

be written in the form g = 1
2Qµf with some f ∈ F , and there exists some function fj ∈

F0(ε, ρ̃) such that
∫

(f−fm)2 dρ̃ ≤ ε2. Hence to complete the proof of Proposition 9.3 it
is enough to show that

∫

1
4 (Qµf −Qµf̄)

2 dρ ≤
∫

(f − f̄)2 dρ̃ for all pairs f, f̄ ∈ F . This
inequality holds, since

∫

1
4 (Qµf −Qµf̄)

2 dρ ≤
∫

1
2 (f − f̄)2 dρ+

∫

1
2 (Pµf −Pµf̄)

2 dρ, and
∫

(Pµf −Pµf̄)
2 dρ =

∫

(Pµf −Pµf̄)
2 dρ̄ ≤

∫

(f − f̄)2 d(ρ̄×µ) by formula 9.7. The above
relations imply that

∫

1
4 (Qµf −Qµf̄)2 dρ ≤

∫

(f − f̄)2 1
2d (ρ+ ρ̄× µ) =

∫

(f − f̄)2d ρ̃ as
we have claimed.

Let us turn to the proof of the equivalence of Theorem 8.1′ with 8.3 and of The-
orem 8.2 with 8.4. In Theorems 8.2 and 8.4 we can restrict our attention to the case
when the class of functions F is countable, since the case of countably approximable
classes can be simply reduced to this situation. Let us remark that the integration
with respect to the measure µn − µ in the definition (4.8) of the integral Jn,k(f) means
some kind of normalization, and no such normalization appears in the definition of the
U -statistics In,k(f). This is the cause why degenerate U -statistics had to be considered
in Theorems 8.3 and 8.4. The deduction of these results from Theorems 8.1′ and 8.2 is
fairly simple if the underlying probability measure µ is non-atomic, since in this case the
identity In,k(f) = Jn,k(f) holds for a canonical function with respect to the measure µ.
Let us remark that the non-atomic property of the measure µ is needed in this argument
not only because of the conditions of Theorems 8.1′ and 8.2, but since in the proof of
the above relation we need the identity

∫

f(x1, . . . , xk)µ( dxj) = 0 in the case when the
domain of integration is a set of the form X \ {x1, . . . , xj−1, xj+1, . . . , xk}.

The case of possibly atomic measures µ can be simply reduced to the case of non-
atomic measures by means of the following enlargement of the space (X,X , µ). Let us in-
troduce the product space (X̄, X̄ , µ̄) = (X,X , µ)×([0, 1],B, λ), where B is the σ-algebra
and λ is the Lebesgue measure on [0, 1]. Define the function f̄((x1, u1), . . . , (xk, uk)) =
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f(x1, . . . , xk) on this enlarged space. Then In,k(f) = In,k(f̄), and the measure µ̄ = µ×λ
is non-atomic. Hence we can deduce the estimates of Theorems 8.3 and 8.4 from Theo-
rems 8.1′ and 8.2 by deducing them first for their counterpart in the above constructed
enlarged space and the above defined functions.

The deduction of Theorems 8.1′ and 8.2 from Theorems 8.3 and 8.4 requires more
work. Let us observe that an integral Jn,k(f) can be written as a sum of U -statistics of
different order, and by applying the Hoeffding decomposition for each term in this sum
we can express the integral Jn,k(f) as a sum of degenerate U -statistics. We show that
the coefficients of the degenerate U -statistics in the above representation have relatively
small coefficients. This is the content of the following Theorem 9.4. To make its content
more understandable I formulated its main statement in the case of random integrals
of multiplicity two in a more explicit form.

Theorem 9.4. Let us have a non-atomic measure µ on a measurable space (X,X )
together with a sequence of independent, µ-distributed random variables ξ1, . . . , ξn, and
take a function f(x1, . . . , xk) of k variables on the space (Xk,X k) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) <∞.

Let us consider the empirical distribution function µn of the sequence ξ1, . . . , ξn intro-
duced in (4.5) together with the k-fold random integral Jn,k(f) of the function f defined
in (4.8). The identity

Jn,k(f) =
∑

V⊂{1,...,k}
C(n, k, V )n−|V |/2In,|V |(fV ), (9.9)

holds with the set of (canonical) functions fV (xj , j ∈ V ) (with respect to the measure
µ) defined in formula (9.2) together with some real numbers C(n, k, V ), V ⊂ {1, . . . , k},
where In,|V |(fV ) denotes the (degenerate) U -statistic of order |V | with the random vari-
ables ξ1, . . . , ξn and kernel function fV . The constants C(n, k, V ) in formula (9.9)
satisfy the inequality |C(n, k, V )| ≤ C(k) with some constant C(k) depending only on
the order k of the integral Jn,k(f). The relations lim

n→∞
C(n, k, V ) = C(k, V ) with some

appropriate constant such that 0 ≤ |C(k, V )| < ∞ and C(n, k, {1, . . . , k}) = 1 for
V = {1, . . . , k} also hold.

Remark: Some considerations show that the coefficients C(n, k, V ) in formula (9.9) de-
pend only on the cardinality |V | of the set V , i.e. we can write C(n, k, V ) = C(n, k, |V |).
We shall not need this observation.

Theorems 8.1′ and 8.2 can be simply deduced from Theorems 8.3 and 8.4 respec-
tively with the help of Theorem 9.4. Indeed, to deduce Theorem 8.1′ we can write with
the help of formula 9.9

P (|Jn,k(f)| > u) ≤
∑

V⊂{1,...,k}
P

(

n−|V |/2|In,|V |(fV )| >
u

2kC(k)

)

(9.10)
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with a constant C(k) satisfying the inequality C(n, k, |V |) ≤ C(k) for all coefficients
C(n, k, |V |) in (9.9). Then we get Theorem 8.1′ from Theorem 8.3 and relations (9.4)
and (9.4′) in Theorem 9.2 by which the L2-norm of the functions fV are bounded
by the L2-norm of the function f and the L∞-norm of fV is bounded by the 2|V |-
times the L∞-norm or f if we estimate each term at the right-hand side of (9.10)
by means of Theorem 8.3. Here we may assume that 2kC(k) > 1 and let us first
assume that also the inequality u

2kC(k)σ
≥ 1 holds. In this case we get formula (8.3′)

in Theorem 8.1′ by estimating each term at the right-hand side of (9.10). Observe that

exp

{

−α
(

u
2kC(k)σ

)2/s
}

≤ exp

{

−α
(

u
2kC(k)σ

)2/k
}

for all s ≤ k if u
2kC(k)σ

≥ 1. If

u
2kC(k)σ

≤ 1, then formula (8.3′) holds with a sufficiently large C > 0.

Theorem 8.2 can be similarly deduced from Theorem 8.4 if we observe that re-
lation (9.10) remains valid if we replace |Jn,k(f)| by sup

f∈F
|Jn,k(f)| and |In,|V |(fV )| by

sup
fV ∈FV

|In,|V |(fV )| in it, and the constant M in formula (8.6) of Theorem 8.2 is chosen

sufficiently large. The only difference is that now we have to exploit besides formulas
(9.4) and (9.4′) of Theorem 9.2 the last statement of this result which tells that if F
is an L2-dense class of functions on a space (Xk,X k), then the classes of functions
FV = {2−|V |fV : f ∈ F} are also L2-dense classes of functions for all V ⊂ {1, . . . , k}
with the same exponent and parameter.

In the definition of the random integrals Jn,k(f) we have integrated in all coordi-
nates with respect to the signed measure µn − µ, and this means some kind of normal-
ization. Thus it is not surprising that the tail behaviour of the distribution of Jn,k(f)
is similar to that of certain degenerate U -statistics. Theorem 9.4 formulates such a
relation. Formula (9.9) expresses the random integral Jn,k(f) as a linear combination of
degenerate U -statistics of different order. It is similar to the Hoeffding decomposition
in that respect that the functions fV in formula (9.9) agree with the functions fV ap-
pearing in the Hoeffding decomposition of the U -statistic In,k(f) with kernel function
f . But the coefficients in the expansion (9.9) are small. On the other hand, these coef-
ficients need not disappear. In particular, the expansion (9.9) may contain a non-zero
constant term. In such a case the expected value EJn,k(f) may not equal zero, but it
can be bounded by a number not depending on the sample size n. In the next example
I show that there are really random integrals Jn,k(f) such that EJn,k(f) 6= 0.

Let us choose a sequence of independent random variables ξ1, . . . , ξn with uni-
form distribution on the unit interval, let µn denote its empirical distribution, let
f = f(x, y) denote the indicator function of the unit square, i.e. let f(x, y) = 1 if
0 ≤ x, y ≤ 1, and f(x, y) = 0 otherwise. Let us consider the random integral Jn,2(f) =
n
∫

x 6=y
f(x, y)(µn( dx)− dx)(µn( dy)−dy), and calculate its expected value EJn,2(f). By

adjusting the diagonal x = y to the domain of integration and taking out the contribu-

tion obtained in this way we get that EJn,2(f) = nE(
∫ 1

0
(µn( dx)− µ( dx))

2 −n2 · 1
n2 =

−1. (The last term is the integral of the function f(x, y) on the diagonal x = y with
respect to the product measure µn×µn which equals (µn−µ)×(µn−µ) on the diagonal.)

The above considerations and the proof of Theorem 9.4 indicate that the equivalence
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between Theorems 8.1′ and 8.3 or between Theorems 8.2 and 8.4 is not self-evident. It
is simpler to prove Theorems 8.3 and 8.4 of these theorem pairs about degenerate U -
statistics, and this will be done in this work. On the other hand, Theorems 8.1′ and 8.2
seem to be more appropriate for applications, since here we do not have to restrict our
attention to special, canonical kernel functions.

The proof of Theorem 9.4. Let us first introduce the (random) probability measures
µ(l), 1 ≤ l ≤ n, concentrated in the sample points ξl, i.e. let µ(l)(A) = 1 if ξl ∈ A, and

µ(l)(A) = 0 if ξl /∈ A, A ∈ A. Then µn − µ = 1
n

(

n
∑

l=1

(

µ(l) − µ
)

)

, and formula (4.8) can

be rewritten as

Jn,k(f) =
1

nk/2k!

∑

(l1,...,lk), 1≤lj≤n, 1≤j≤k

∫ ′
f(x1, . . . , xk) (9.11)

(

µ(l1)( dx1)− µ( dx1)
)

. . .
(

µ(lk)( dxk)− µ( dxk)
)

.

To rearrange the above sum in a way more appropriate for us let us introduce the class
of all partitions P = Pk of the set {1, 2, . . . , k}. For a partition P = {R1, . . . , Ru}
u
⋃

j=1

Rj = {1, . . . , k}, Rj ∩ Rl = ∅, 1 ≤ j < l ≤ u, the sets Rj , 1 ≤ j ≤ u, will be called

the components of the partition P . Given a sequence (l1, . . . , lk), 1 ≤ lj ≤ n, 1 ≤ j ≤ k,
of length k let PH(l1, . . . , lk) denote that partition of Pk in which two points s and
t, 1 ≤ s, t ≤ k, belong to the same component if and only if ls = lt. For a partition
P ∈ Pk let us define the set of sequences H(P ) = Hn(P ) as H(P ) = {(l1, . . . , lk) : 1 ≤
lj ≤ n, 1 ≤ j ≤ k, PH(l1, . . . , lk) = P}.

Let us rewrite formula (9.11) in the form

Jn,k(f) =
1

nk/2k!

∑

P∈P

∑

(l1,...,lk) : (l1,...,lk)∈H(P )

∫ ′
f(x1, . . . , xk) (9.12)

(

µ(l1)( dx1)− µ( dx1)
)

. . .
(

µ(lk)( dxk)− µ( dxk)
)

.

Let us remember that the diagonals xs = xt, s 6= t, were omitted from the domain
of integration in the formula defining Jn,k(f). This implies that in the case ls = lt the
measure µ(ls)( dxs)µ

(lt)( dxt) has zero measure in the domain of integration. We have
to understand the cancellation effects caused by this relation. It will be shown that
because of these cancellations the expression in formula (9.12) can be rewritten as a
linear combination of degenerate U -statistics with not too large coefficients. Besides,
it will be seen from the calculations that the same degenerate U -statistics In,|V |(fV )
appear in this representation of Jn,k(f) which were defined in formula (9.2). This
seems to be a natural approach, but the detailed proof demands some rather unpleasant
calculations.

Let us fix some partition P ∈ P and investigate the integrals in the internal sum
at the right-hand side of (9.12) corresponding to the sequences (l1, . . . , lk) ∈ H(P ). For
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the sake of better understanding let us first consider such a partition P ∈ P which
has a component of the form {1, . . . , s} with some s ≥ 2. The products of measures
by which we have to integrate in this case contain a part of length s of the form
(

µ(l)(dx1)− µ(dx1)
)

. . .
(

µ(l)(dxs)− µ(dxs)
)

This part of the product measure can be
rewritten in the domain of integration as

s
∑

j=1

(−1)s−1µ( dx1) . . . µ( dxj−1)µ
(l)( dxj)µ( dxj+1) . . . µ( dxs) + (−1)sµ(dx1) . . . µ(dxs)

=
s
∑

j=1

(−1)s−1µ( dx1) . . . µ( dxj−1)(µ
(l)( dxj)− µ( dxl))µ( dxj+1) . . . µ( dxs)

+ (−1)s−1(s− 1)µ(dx1) . . . µ(dxs). (9.13)

Here we exploit that all other terms of this product disappear in the domain of in-
tegration which does not contain the diagonals. Let us also observe that the term
(−1)s−1(s − 1)µ(dx1) . . . µ(dxj) appears n-times if we sum up for all 1 ≤ l ≤ n. We
have assumed that s ≥ 2, since the case s = 1 is slightly different. In this case only the
term µ(l)(dx1)− µ( dx1) appears, i.e. have to put no additional term consisting only of
(deterministic) measures µ.

More generally, let us fix some partition P = {R1, . . . , Ru}, consider the integral
corresponding to a sequence (l1, . . . , lk) ∈ H(P ) in the internal sum of (9.12), and let us
rewrite it as the sum of integrals with respect to product measures with components of
the form µ(ls)( dxs)−µ( dxs) or µ( dxs), where all measures µ(ls) appearing in a product
measure are different. Such a representation can be given, similarly to the argument
of relation (9.13), only the notations will be more complicated. To write down what
we get first we define a class of subsets T (P ) of the set {1, . . . , k} depending on the
partition P = {R1, . . . , Ru} together with a subclass T̄ (P ) of it. Let T (P ) consist of
all such sets {j1, . . . , ju′} ⊂ {1, . . . , k}, u′ ≤ u, for which all numbers j1, . . . , ju′ belong
to a different component of the partition P . Let T̄ (P ) ⊂ T (P ) consist of those sets
V = {j1, . . . , ju′} ∈ T (P ) which also satisfy the following additional condition: If some
components Rt = {bt}, 1 ≤ t ≤ u, of the partition P consists of only one point, then
the sets V belonging to T̄ (P ) ⊂ T (P ) contain this point bt. With the help of the above
quantities we can write in the case (l1, . . . , lk) ∈ H(P ), similarly to the calculation
in (9.13),

∫ ′
f(x1, . . . , xk)

(

µ(l1)( dx1)− µ( dx1)
)

. . .
(

µ(lk)( dxk)− µ( dxk)
)

(9.14)

=
∑

V ∈T̄ (P )

α(V, P )

∫

f(x1, . . . , xk)
∏

j∈V

(

µ(lj)( dxj)− µ( dxj)
)

∏

j′∈{1,...,k}\V
µ( dxj′)

with some appropriate finite constants α(V, P ). These constants could be calculated
explicitly, but it is enough for us to know that they depend only on the partition P and
the set V ∈ T̄ (P ). (Actually it was important for us to observe that we get a term with
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non-zero coefficient at the right-hand side of (9.14) only for V ∈ T̄ (P ), and the class of
functions T̄ (P ) was introduced because of this reason. This property in the decompo-
sition of the integral (9.14) holds, since in the case of a one-point component Rt = {bt}
of the partition P only the term µ(lbt )( dxbt) − µ( dxbt) appears in the component of
product of measures in (9.14), a component of the form µ( dxbt) is missing.)

Let me remark that at the right-hand side of (9.14) I wrote
∫

instead of integral
∫ ′
, i.e. I did not omit the diagonal from the domain of integration. This is allowed,

since the measure µ is non-atomic, and this also has the consequence that the sample
points ξ1, . . . , ξn are different with probability 1.

Formula (9.14) can be rewritten, by expressing its right-hand side with the help of
the random variables ξl instead of the measures µ(l) as

∫ ′
f(x1, . . . , xk)

(

µ(l1)( dx1)− µ( dx1)
)

. . .
(

µ(lk)( dxk)− µ( dxk)
)

(9.15)

=
∑

V ∈T̄ (P )

α(V, P )









∏

j′∈{1,...,k}\V
Pµ,j′

∏

j∈V

Qµ,j



 f



 (ξlj , j ∈ V ).

Here Qµ,j = I − Pµ,j is the operator Qµ defined in (9.6′), with the choice Y1 which is
the product of the first j − 1 components of Xk, Z is the j-th component and Y2 is
the product of the last k − j components of the product space Xk. The operator Pµ,j′

is the operator Pµ defined in (9.5′) with the choice of Y1 as the product of the first
j′ − 1, Z the j-th component and Y2 as the procuct of the last k − j′ components of
the space Xk. To see why formula (9.15) holds we have to understand that integration
with respect to

(

µ(lj)( dxj)− µ( dxj)
)

means the application of the operator Qµ,j and
then putting the value ξlj in the argument xj , while integration with respect to µ( dxj′)
means the application of the operator Pµ,j′ . Besides, the operators Qµ,j and Pµ,j′ are
exchangeable.

Let us fix some partition P ∈ Pk, a set V ∈ T̄ (P ) and sum up the expressions at
the right-hand side of (9.15) with this set V for all sequences (l1, . . . , lk) ∈ H(P ). We
get that

α(V, P )
∑

(l1,...,lk)∈H(P )





∏

j′∈{1,...,k}\V
Pµ,j′

∏

j∈V

Qµ,j



 f(ξlj , j ∈ V ) = ᾱ(V, P, k, n)In,|V |(fV )

(9.16)
where In,|V | is a U -statistic of order |V | with the kernel function fV (xj , j ∈ V ) =
(

∏

j′∈{1,...,k}\V
Pµ,j′

∏

j∈V

Qµ,j

)

f with our function on f ∈ (Xk,X k), and the coefficients

ᾱ(V, P, k, n) at the right-hand side of (9.16) (which could be calculated explicitly, but
we do not need this formula) satisfy the inequality |ᾱ(V, P, k, n)| ≤ D(k)nβ(P,V ), where
β(P, V ) = u− |V | is the number of those components Rj , 1 ≤ j ≤ u, of the partition P
for which Rj ∩ V = ∅, and the constant D(k) < ∞ depends only on the multiplicity k
of the integral Jn,k(f).
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To understand why ᾱ(V, P, k, n) can be bounded by D(k)nβ(P,V ) let us observe
that if we first fix the coordinates lj , j ∈ V , and sum up for the remaining indices lj′ ,
j′ /∈ V , at the left-hand side of (9.16), then we get the term depending on the variables
ξlj , j ∈ V , in the sum defining the U -statistic In,|V |(fV ) multiplied by ᾱ(V, P, k). To
get a good estimate on ᾱ(V, P, k, n) we have to bound the number of choices for the
non-fixed coordinates lj′ , j

′ /∈ V . For this aim let us consider the class of vectors
(l1, . . . , lk) ∈ H(P ). Two coordinates lj′ and lj′′ must agree if their indices j′ and j′′

belong to the same component of the partition P . Besides, if the number j is contained
in such a component Rt of the partition P for which Rt ∩V 6= ∅, then the coordinate lj
of these vectors is fixed. Hence the value lj′ of those non-fixed coordinates whose indices
j′ belong to the same component Rt of the partition P agree and only such components
Rt have to be considered for which Rt∩V = ∅. This yields the upper bound nβ(P,V ) for
the number of possible choices of the indices lj′ , j

′ /∈ V . A more careful consideration
shows that the finite limit

C(k, V, P ) = lim
n→∞

n−β(P,V )ᾱ(V, P, k, n), |C(k, V, P )| <∞ (9.17)

also exists.

We get by applying relation (9.12) and summing up relation (9.16) first for all
V ∈ T̄ (P ) for a partition P ∈ Pk and then for all P ∈ P that the identity

Jn,k(f) =
∑

V⊂{1,2,...,k}
C(n, k, V )n−|V |/2 1

k!

∑

1≤lj≤n,

lj 6=lj′ if j 6=j′ for j∈V

fV (ξlj , j ∈ V ) (9.18)

holds with the functions

fV (xj , j ∈ V ) =





∏

j∈V

Qµ,j

∏

j′∈{1,...,k}\V
Pµ,j′



 f for all V ⊂ {1, . . . , k} (9.19)

and some coefficients C(n, k, V ). We shall show that these coefficients satisfy the in-
equality |C(n, k, V )| ≤ C(k) with some constant C(k) > 0. Besides, it is not diffi-
cult to see that the identity C(n, k, {1, . . . , k}) = 1 holds. To see that the estimate
|C(n, k, V )| ≤ C(k) really holds, observe that n−|V |/2C(n, k, |V |) can be written as a
sum of finitely many terms, (the number of terms can be bounded by a number de-
pending only on k) such that all of them can be bounded by a number of the form
D(k)n−k/2+β(P,V ) with some partition P and the number β(P, V ) introduced after for-
mula (9.16) with some P ∈ Pk and V ∈ T̄ (P ). Hence it is enough to show that

−k
2 + β(P, V ) ≤ − |V |

2 , i.e. β(P, V ) ≤ k−|V |
2 if V ∈ T̄ (P ). This relation clearly holds,

since β(P, V ) is the number of components of a partition of a set with cardinality less
than or equal to k − |V |, and all components of this partition have a cardinality at
least 2.

Relation (9.18) can be rewritten as Jn,k(f) =
∑

V⊂{1,2,...,k}
C(n, k, V )n−|V |/2In,|V |(fV ),

where In,|V |(fV ) is the U -statistic with the random variables ξ1, . . . , ξn and the kernel
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function fV defined in (9.19) agrees with the function fV defined in (9.2). We have
also seen that the coefficients C(n, k, V ) satisfy the inequality stated in Theorem 9.4.
Relation (9.17) together with the bound on the terms β(P, V ) also imply that the finite
limits lim

n→∞
C(n, k, V ) = C(k, V ) also exist. Theorem 9.4 is proved.

I formulate two corollaries of Theorem 9.4. The first one explains the content of
conditions (8.2) and (8.5) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4. If In,k(f) is a degenerate U -statistic of order k with

some kernel function f , then E
(

n−k/2In,k(f)
)2 ≤ 1

k!

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk),
where µ is the distribution of the random variables taking part in the definition of the
U -statistic In,k(f). Analogously, the k-fold multiple random integral Jk,n(f) satisfies

the inequality E
(

n−k/2Jn,k(f)
)2 ≤ C̄(k)

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) with some
constant C̄(k) depending only on the order k of the integral Jn,k(f).

Proof of Corollary 1 of Theorem 9.4. We have

E(n−k/2In,k(f))
2 =

1

(k!)2nk

∑ ′
Ef(ξl1 , . . . , ξls)f(ξl′1 , . . . , ξl′s),

where the prime in
∑′

means that summation is taken for such pairs of k-tuples
(l1, . . . , lk), (l

′
1, . . . , l

′
k), 1 ≤ lj , l

′
j ≤ n, for which lj 6= lj′ and l

′
j 6= l′j′ if j 6= j′. The de-

generacy of the U -statistic In,k(f) implies that Ef(ξl1 , . . . , ξls)f(ξl′1 , . . . , ξl′s) = 0 if the
two k-tuples (l1, . . . , ls) and (l′1, . . . , l

′
s) differ. This can be seen by taking such an index

lj from the first k-tuple which does not appear in the second one, and by observing that
the conditional expectation of the product we consider equals zero by the degeneracy
condition of the U -statistic under the condition that the value of all random variables
except that of ξlj is fixed in this product. There remains k!n(n − 1) · · · (n − k + 1)

terms in the sum expressing E
(

n−k/2In,k(f)
)2

which may be non-zero, and all of them
can be bounded by

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) because of our conditions and the

Schwarz inequality. These estimates yield the bound given for E
(

n−k/2In,k(f)
)2
.

We can simply get the bound for Jn,k(f) with the help of Theorem 9.4, formula
(9.4) in Theorem 9.4 by which the L2-norm of the functions fV can be bounded by the
L2-norm of the function f and the bound given for the second moment of degenerate
U -statistics n−|V |/2In,|V |(fV ) appearing in the expansion (9.9).

In Corollary 2 the decomposition (9.9) of a random integral Jn,2(f) of order 2 is
described in an explicit way.

Corollary 2 of Theorem 9.4. Let the random integral Jn,2(f) satisfy the conditions
of Theorem 9.4. In this case formula (9.9) can be written in the following explicit form:

Jn,2(f) =
1

n
In,2(f{1,2})−

1

n
In,1(f{1})−

1

n
In,1(f{2})− f∅ (9.9′)
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with the functions

f{1,2}(x, y) = f(x, y)−
∫

f(x, y)µ( dx)−
∫

f(x, y)µ( dy) +

∫

f(x, y)µ( dx)µ( dy),

f{1}(x) =

∫

f(x, y)µ( dy)−
∫

f(x, y)µ( dx)µ( dy),

f{2}(y) =

∫

f(x, y)µ( dx)−
∫

f(x, y)µ( dx)µ( dy)

and f∅ =
∫

f(x, y)µ( dx)µ( dy).

10. The proof of Theorem 8.3 about the distribution of U-statistics

This section contains the proof of Theorem 8.3 about the distribution of degenerate U -
statistics with the help of some results which are interesting in themselves. One of these
results, called Borell’s inequality, gives an estimate on the moments of homogeneous
polynomials of Rademacher functions, another result we need is a symmetrization type
estimate which can be considered as the multivariate version of the more interesting
part of the Marcinkiewicz–Zygmund inequality. Finally there is a third result we apply
which compares the distribution of a U -statistics with the distribution of an appropriate
modification of it. The first two results will be proved in the next section, the third one
in the Appendix.

Theorem 8.3 can be considered as the generalization of Bernstein’s inequality (The-
orem 3.1) for U -statistics. Bernstein’s inequality was proved by means of an estimation
of the moment-generating function of the partial sums of independent and bounded ran-
dom variables. This approach has to be modified in the proof of Theorem 8.3. In such
cases we cannot work well with the moment generating functions, since if the sample
size tends to infinity, then the normalized version of degenerate U -statistics of order k

have a limit distribution F with a tail-behaviour 1− F (x) ≥ e−Cx2/k

with some C > 0
as x → ∞. (This is a relatively well-known result, but we shall not need it in this
work.) This means that a random variable with this limit distribution has no moment
generating function for k ≥ 3. On the other hand, the proof of Theorem 8.3 is relatively
simple, if we have a good estimate also for the high moments of degenerate U -statistics.
Such a moment estimate is formulated in the following

Proposition 10.1. Let us consider a canonical function f = f(x1, . . . , xk) on the
k-fold product (Xk,X k, µk) of a measure space (X,X , µ) together with a sequence of
independent µ distributed random variables and the degenerate U -statistic In,k(f) de-
termined by this sequence of random variables ξ1, . . . , ξn and canonical function f . Let
us also assume that the function f satisfies conditions (8.1) and (8.2) with some num-
ber 0 < σ ≤ 1.

Then there exists some constants C = Ck > 0 such that the moments of the U -
statistic In,k(f) defined in formula (8.7) satisfy the inequality

E

(

∣

∣

∣
n−k/2In,k(f)

∣

∣

∣

2M
)

≤ CM
k MkMσ2M if 1 ≤M ≤ nσ2. (10.1)
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Let us consider the k-th power of a standard normal random variable η and calculate

the asymptotic magnitude of the 2M -th moment E
(

σηk
)2M

of σηk for large M . We

have E
(

σηk
)2M

= 1 · 3 · · · (2kM − 1)σ2M = (2kM)!
2kM (kM)!

σ2M ∼
(

2k
e

)kM
MkMσ2M by the

Stirling formula. This means that the estimate given for the 2M -th moments of a
normalized U -statistics n−k/2In,k(f) in formula (10.1) has the same order as the 2M -th
moment of the random variable const.σηk, at least if 1 ≤M ≤ nσ2. This estimate will
imply Theorem 8.3 which also can be so interpreted that P

(

n−k/2In,k(f) > u
)

can be

bounded by const.P
(

const.σηk > u
)

, at least if 0 < u ≤ nk/2σk+1.

The hard part of the problem is to prove Proposition 10.1. There are methods
to bound the moments of multiple Wiener–Itô integrals, and it is natural to try to
adapt them to the proof of Proposition 10.1. I know of two different methods for
estimating the moments of Wiener–Itô integrals. One of them is the so-called diagram
formula which expresses the product of Wiener–Itô integrals as sums of appropriate new
Wiener–Itô integrals, the other one is called Nelson’s inequality which yields a direct
comparison between the Lp-norms of Wiener–Itô integrals for different parameters p.
Both of them can be adapted to our case, but they demand the solution of several
non-trivial technical problems. The adaptation of Nelson’s inequality seems to be the
less complicated method, and this approach will be followed in this work. There is an
important estimate, called Borell’s inequality which will be applied. This inequality
makes a comparison between the Lp norms of homogeneous polynomials of independent
Rademacher functions for different parameters p. Borell’s inequality in itself will be
not sufficient for us, because we want to estimate more complicated objects. But we
shall formulate and prove some additional results, and they will enable us together with
Borell’s inequality to prove a version of Proposition 10.1 which will be sufficient for our
purposes.

Borell’s inequality will be formulated below, but its proof is postponed to the next
section.

Theorem 10.2 (Borell’s inequality). Let ε1, . . . , εn be independent, identically dis-
tributed random variables P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, fix some real
numbers a(l1, . . . , lk) for all indices (l1, . . . , lk) such that 1 ≤ lj ≤ n, 1 ≤ j ≤ k, and
lj 6= lj′ if j 6= j′, and define the random variable

Z =
1

k!

∑

1≤lj≤n, 1≤j≤k

lj 6=lj′ if j 6=j′

a(l1, . . . , lk)εl1 · · · εlk . (10.2)

The inequality

E|Z|p ≤
(

p− 1

q − 1

)kp/2

(E|Z|q)p/q if 1 < q ≤ p <∞ (10.3)

holds.
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Remark: The most interesting special case of Borell’s inequality is when q = 2, and we
shall consider only this case. Since EZ2 ≤ 1

k!

∑

1≤lj≤n, 1≤j≤k

lj 6=lj′ if j 6=j′

a2(l1, . . . , lk), it yields that

E|Z|p ≤ (p− 1)kp/2











1

k!

∑

1≤lj≤n, 1≤j≤k

lj 6=lj′ if j 6=j′

a2(l1, . . . , lk)











p/2

if 2 ≤ p <∞ (10.4)

We have the estimate written for EZ2
n because

Eεl1 · · · εlka(l1, . . . , lk)εl′1 · · · εl′ka(l
′
1, . . . , l

′
k) = 0

if the sets of arguments {l1, . . . , lk} and {l′1, . . . , l′k} do not agree. In the inequality
written for EZ2

n we have identity if all coefficients a(l1, . . . , lk) are symmetric functions
of their arguments, otherwise we can only write inequality.

Borell’s inequality does not give a direct estimate for the moments EIn,k(f)
2M of

the U -statistics we are interested in. But together with a symmetrization result for-
mulated below it enables us to prove such a recursive estimate between the 2M -th and
4M -th moments of degenerate U -statistics which implies a version of Proposition 10.1
appropriate for our goals. This additional symmetrization result we need can be consid-
ered as a multivariate version of the Marcinkiewicz–Zygmund inequality about indepen-
dent random variables with zero mean. First this symmetrization result will be given.
Then for the sake of a better understanding the Marcinkiewicz–Zygmund inequality will
be recalled, and its relation to the result considered as its multivariate version will be
explained.

To formulate a good multivariate version of the Marcinkiewicz–Zygmund inequality
first we introduce a notion which is called decoupled U -statistics in the literature.

The definition of decoupled and randomized decoupled U-statistics. Let us

have k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence ξ1, . . . , ξn of indepen-

dent and identically distributed random variables taking their values on a measurable
space (X,X ) together with a measurable function f(x1, . . . , xk) on the product space
(Xk,X k) with values in a separable Banach space. Then the decoupled U -statistic de-

termined by the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and kernel function f is

defined by the formula

Īn,k(f) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f
(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)

. (10.5)

Let us have, besides the sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and function f(x1, . . . , xk)

a sequence of independent random variables ε = (ε1, . . . , εn), P (εl = 1) = P (εl =
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−1) = 1
2 , 1 ≤ l ≤ n, which is independent also of the sequences of random variables

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. We define the randomized decoupled U -statistic determined by

the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, the kernel function f and the randomiz-

ing sequence ε1, . . . , εn by the formula

Īn,k(f, ε) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)

. (10.6)

Now a symmetrization result will be formulated which will be applied in the proof
of an appropriate version of Proposition 10.1. This result will be proved in the next
section.

Proposition 10.3. Let ξ1, . . . , ξn be a sequence of i.i.d. random variables which take
their values on a measurable space (X,X ) with some distribution µ, and let f(x1, . . . , xk)
be a canonical function with respect to this measure µ such that E|f(ξ1, . . . , ξk)|p < ∞
with some p ≥ 1. Let us have k independent copies ξ

(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the

sequence ξ1, . . . , ξn with the same distribution, and let ε = (ε1, . . . , εn) be a sequence
of independent random variables, P (εl = 1) = P (εl = −1), 1 ≤ l ≤ n which is also

independent of the sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. The inequality

E|Īn,k(f)|p ≤ 2kpE|Īn,k(f, ε)|p (10.7)

holds for the decoupled U -statistic Īn,k(f) and its randomized version Īn,k(f, ε) defined

in formulas (10.5) and (10.6) by means of the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k,

ε1, . . . , εn and the kernel function f .

In Proposition 10.1 we want to bound the moments of a U -statistic, while in Propo-
sition 10.3 we have an estimate about decoupled U -statistics Īn,k(f). This results deals
with decoupled statistics, because as we shall see, its proof does not work for the original
U -statistics. This causes some difficulties, but they can be overcome with the help of
a result of de la Peña and Montgomery–Smith. It will be formulated more generally
than it is needed in the solution of the present problem to make it applicable also in
the investigations of the subsequent part of the work. For its more general formulation
let us slightly generalize the notion of U -statistics, let us allow also the case when the
kernel function f in formula (8.7) takes its value in a separable Banach space. The
result will be formulated in Theorem 10.4, and it will be proved in the Appendix.

Theorem 10.4. (de la Peña and Montgomery–Smith) Let us consider a sequence
of independent and identically distributed random variables ξ1, . . . , ξn on a measurable

space (X,X ) together with k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. Let us also

have a function f(x1, . . . , xk) on the k-fold product space (Xk,X k) which takes its values
on a separable Banach space B. Define the U -statistic and decoupled U -statistic In,k(f)

and Īn,k(f) with the help of the above random sequences ξ1, . . . , ξn, ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤
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j ≤ k, and kernel function f . Then there exist some constants C̄ = C̄(k) > 0 and
γ = γ(k) > 0 depending only on the order k of the U -statistic such that

P (‖In,k(f)‖ > u) ≤ C̄P
(

‖Īn,k(f)‖ > γu
)

(10.8)

for all u > 0. Here ‖ · ‖ denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functions fs, s = 1, 2, . . . , taking
their values in the same separable Banach-space, then

P

(

sup
1≤s<∞

‖In,k(fs)‖ > u

)

≤ C̄P

(

sup
1≤s<∞

∥

∥Īn,k(fs)
∥

∥ > γu

)

. (10.8′)

We follow the following approach. We shall prove such a version of Proposition 10.1
and Theorem 8.3 where U -statistics are replaced by decoupled U -statistics. The proof of
these results is simpler, because the arguments applied for U -statistics also work for de-
coupled U -statistics, and also Proposition 10.3 can be applied in this case. Theorem 8.3
can be obtained as a consequence of its version we shall prove and Theorem 10.4. More
explicitly, we shall prove the following two results.

Proposition 10.1′. Let the conditions of Proposition 10.1 be satisfied with some se-
quence of iid. µ-distributed random variables ξ1, . . . , ξn on a space (X,X ), a function
f on the product space (Xk,X k) and a number 0 < σ ≤ 1. Take k independent copies

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the random sequence ξ1, . . . , ξn, and define with their help

the decoupled U -statistic In,k(f) defined in (10.5). Then the inequality

E

(

∣

∣

∣
n−k/2Īn,k(f)

∣

∣

∣

2M
)

≤ CM
k MkMσ2M if 1 ≤M ≤ nσ2 (10.1′)

holds with some constant Ck which depends only on the order k of the decoupled U -
statistic.

Theorem 8.3′. Let the conditions of Proposition 8.3 be satisfied with some sequence
of iid. µ-distributed random variables ξ1, . . . , ξn on a space (X,X ), a function f on
the product space (Xk,X k) and a number 0 < σ ≤ 1. Take k independent copies

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the random sequence ξ1, . . . , ξn, and define with their help

the decoupled U -statistic Īn,k(f) defined in (10.5). Then there exist some constants
C = C(k) > 0 and α = α(k) > 0 such that the inequality

P
(

n−k/2|Īn,k(f)| > u
)

≤ C exp

{

−α
(u

σ

)2/k
}

(10.9)

holds for all 0 < u ≤ nk/2σk+1.

It is clear that Theorem 8.3′ together with Theorem 10.4 imply Theorem 8.3. Let
us continue our discussion with an explanation of the content of Proposition 10.3. As
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we have mentioned, it can be considered as a multivariate version of the Marcinkiewicz–
Zygmund inequality which can be formulated in the following way:

Let ξ1, . . . , ξn be independent random variables such that Eξj = 0, 1 ≤ j ≤ n.
Then for all p ≥ 2 there exist some constants 0 < Bp < Cp <∞ such that

BpE

(

n
∑

l=1

ξ2l

)p/2

≤ E

∣

∣

∣

∣

∣

∣

n
∑

j=l

ξl

∣

∣

∣

∣

∣

∣

p

≤ CpE

(

n
∑

l=1

ξ2l

)p/2

. (10.12)

(This inequality also has a generalization for sums of martingale differences.) The really
interesting part of formula (10.12) is his right-hand side part. It is useful, because
the expression at the right-hand side of (10.12) can be well estimated even without
exploiting the independence of the summands. The right-hand side of (10.12) can be
deduced from Borell’s inequality, more explicitly from its consequence (10.4) with k = 1
and the inequality

E

∣

∣

∣

∣

∣

n
∑

l=1

ξl

∣

∣

∣

∣

∣

p

≤ C̄pE

∣

∣

∣

∣

∣

n
∑

l=1

εjξl

∣

∣

∣

∣

∣

p

. (10.12′)

with some C̄p > 0, where ε1, . . . , εn, P (εl = 1) = P (εl = −1) = 1
2 are independent

random variables, independent also of the random sequence ξ1, . . . , ξn. Indeed, formula

(10.4) implies that E

∣

∣

∣

∣

n
∑

l=1

εlξl

∣

∣

∣

∣

p

≤ (p − 1)p/2E

(

n
∑

l=1

ξ2l

)p/2

. Let us also observe that

Proposition 10.3 is a multivariate generalization of formula (10.12′) with the additional
(important) information that it gives a good explicit choice for the coefficient C̄p in it.

We can prove with the help of Borell’s inequality such an inequality which has
similar relation to Proposition 10.3 as the right-hand side inequality in formula (10.12)
to formula (10.12′). We shall give this result in the following corollary, and actually we
shall apply this consequence of Proposition 10.3.

Corollary of Proposition 10.3. Let the conditions of Proposition 10.3 hold with the
additional restriction that the inequality E|f(ξ1, . . . , ξk)|p < ∞ holds with some p ≥ 2
(i.e. p > 1 is not sufficient for us). Then also the inequality

E|Īn,k(f)|p ≤ 2kppkp/2EĪn,k(f
2)p/2 (10.13)

holds.

Proof of the Corollary of Proposition 10.3. Let F denote the σ-algebra generated by

the random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. Then Proposition 10.3 implies that

E|Īn,k(f)|p ≤ 2kpE|Īn,k(f, ε)|p = 2kpE(E(|Īn,k(f, ε)|p|F)).

On the other hand, the consequence of Borell’s inequality formulated in relation (10.4)
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yields that

E(|Īn,k(f, ε)|p|F) = Eε

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ pkp/2











1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f2
(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)











p/2

= pkp/2Īn,k(f
2)p/2,

where Eε means that we fix the values of the random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k

and take expectation with respect to the random variables εj , 1 ≤ j ≤ n. We get, by
taking expectation in the last inequality, that E|Īn,k(f, ε)|p ≤ pkp/2EĪn,k(f

2)p/2. This
inequality together with formula (10.7) imply relation (10.13).

Now we turn to the proof of Proposition 10.1′.

The proof of Proposition 10.1′. We have En−k Īn,k(f)
2 ≤ 1

k!2σ
2 if f is a canonical func-

tion with respect to the probability measure µ, and
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤
σ2, i.e. relation (10.1′) in Proposition 10.1′ holds for M = 1 if Ck ≥ 1

k!2 , because

Ef(ξ
(1)
l1
, . . . , ξ

(k)
lk

)f(ξ
(1)
l′1
, . . . , ξ

(k)
l′
k
) = 0, if lj 6= l′j for some index 1 ≤ j ≤ k,

and Ef2(ξ
(1)
l1
, . . . , ξ

(k)
lk

) ≤ σ2.

First we prove relation (10.1′) in the special case M = 2m with m = 0, 1, . . . if 1 ≤
M ≤ 2nσ2 and the constants Ck are chosen appropriately in (10.1′). We have already
proved this relation for m = 0. We shall prove the inequality E(n−k/2In,k(f)

2M ) ≤
CM

k MkMσ2M for all k = 1, 2, . . . with some appropriate constant Ck > 0 if M = 2m

and M ≤ 2nσ2 by induction with respect to m. In the proof formula (10.13) of the
Corollary of Proposition 10.3 will be applied with the choice p = 2M . This yields the
estimate

E

(

(

n−k/2Īn,k(f)
)2M

)

≤ 22kM (2M)MkE
(

n−k Īn,k(f
2)
)M

. (10.14)

The above inequality is not sufficient in its original form to carry out the inductive
procedure we have in mind, since the function f2 appearing at its right-hand side is not
canonical. But this difficulty can be overcome if we apply the Hoeffding decomposition
(9.2) for the function f2.

This result yields a representation of the form

f2(x1, . . . , xk) =
∑

V⊂{1,...,k}
fV (xs, s ∈ V )
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with some appropriate canonical functions fV (xs, s ∈ V ) with respect to the measure
µ for all V ⊂ {1, . . . , k}. This relation implies that similarly to U -statistics decoupled
U -statistics satisfy the relation

Īn,k(f
2) =

∑

V⊂{1,...,k}
(n− |V |)(n− |V | − 1) · · · (n− k + 1)

|V |!
k!

Īn,|V |(fV ). (10.15)

In Theorem 9.1 the functions fV appearing in formula (10.15) are described explicitly.
(Here again we define the value of the product (n− |V |)(n− |V | − 1) · · · (n− k + 1) as
1 for |V | = k.) We do not need this formula, we only need that by formulas (9.4) and
(9.4′) of Theorem 9.2 the integrals of the square of the functions fV are bounded by
σ2, and these functions are bounded by 2|V | in supremum norm, because the function
f2, similarly to the function f , is bounded by σ in L2(µ)-norm, and it is bounded
by 1 in the supremum norm. The coefficient fV with V = ∅ in the constant term of
the sum at the right-hand side of (10.15) has to be considered separately. It equals
f∅ =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk). This implies that 0 ≤ f∅ ≤ σ2, an estimate
which does not follow directly from Theorem 9.2.

Formula (10.15) and the triangular inequality in LM norm imply the inequality

E(n−k Īn,k(f
2))M ≤



n−k
∑

V⊂{1,...,k}

(

E

(

nk−|V | (|V |)!
k!

In,|V |(fV )

)M
)1/M





M

≤





k
∑

j=0

(

k

j

)

j!

k!
sup

V : V⊂{1,...,k}, |V |=j

(

n−jM/2E(n−j/2Īn,j(fV ))
M
)1/M





M

.

(10.16)

The function 2−j |fV | is bounded by 1 in the supremum norm and by 2−j/2σ ≤ σ
in the L2(µ) norm if |V | = j, 1 ≤ j ≤ k. Our inductive hypothesis implies that the
terms at the right-hand side of (10.16) can be estimated as

n−jM/2E(n−j/2Īn,j(fV ))
M ≤ 2jMC

M/2
j σM

(

M

2

)jM/2

n−jM/2

= (2jCj)
M/2σ2M

(

M

nσ2/j

)jM/2

≤ 2jMC
M/2
j σ2M ,

if |V | = j, 1 ≤ j ≤ k, and M ≤ 2nσ2,

since M
nσ2/j ≤ M

nσ2 ≤ 2 in this case. (Observe that σ2 ≤ 1, since sup |f(x1, . . . , xk)| ≤ 1.)

Besides,
(

k
j

)

j!
k! sup

V : V⊂{1,...,k}, |V |=j

(

E(n−j Īn,j(fV ))
M
)1/M

= f∅
k! ≤ σ2

k! in the case j = 0.

These estimates yield that

E(n−kIn,k(f
2))M ≤ σ2M





k
∑

j=0

2j

(k − j)!
C

1/2
j





M
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if M ≤ 2nσ2, and we choose C0 ≥ 1. By formula (10.14) and this estimate

E(n−k/2Īn,k(f))
2M ≤ 23kMMkME

(

n−k Īn,k(f
2)
)M

≤





k
∑

j=0

23k+j

(k − j)!
C

1/2
j





M

MkMσ2M
(10.17)

if M ≤ 2nσ2. I show that with an appropriate choice of the coefficients Ck (which
may depend only on k but not on M) the above estimate implies the inductive step.
Indeed, we can choose such a sequence Ck, = 0, 1, 2, . . . , with C0 = 1 which satisfies the
inequalities Ck ≥ 1

k! and

k
∑

j=0

23k+j

(k − j)!
C

1/2
j ≤ Ck for all k = 1, 2, . . . (10.18)

Let us choose such a sequence Ck, k = 0, 1, . . . , which satisfies these relations. Then
formula (10.1′) holds for M = 1, and our inductive procedure together with relations
(10.17) and (10.18) imply that it also holds for M ≤ 2nσ2, i.e.

E(n−k/2In,k(f))
2M ≤ CM

k σ2MMkM if M = 2m and M ≤ 2nσ2.

Thus we have proved Proposition 10.1′ in the special case when M = 2m, m =
0, 1, . . . , and M ≤ 2nσ2. To estimate the moment E|n−k/2Īn,k(f)|2M for a general
exponent 1 ≤M ≤ nσ2 (the numberM may be non-integer) let us consider the number
M̄ = M̄(M) of the form M̄ = 2m with some integer m which satisfies the relation
M̄ ≤M < 2M̄ . By applying the already proved part of Proposition 10.1′ for M̄ we can
write

E|n−k/2Īn,k(f)|2M ≤
(

E|n−k/2Īn,k(f)|2M̄
)M/M̄

≤
(

CM̄
k σ2M̄M̄kM̄

)M/M̄

≤ CM
k σ2M (2M)kM = (2kCk)

Mσ2MMkM .

Proposition 10.1′ is proved.

The proof of Theorem 8.3′. By the Markov inequality and Proposition 10.1′

P
(

|n−k/2Īn,k(f)| > u
)

≤ E|n−k/2Īn,k(f)|2M
u2M

≤
(

Ckσ
2Mk

u2

)M

if u > 0 and 1 ≤ M ≤ nσ2. Let us choose M = 1
e

(

u2

Ckσ2

)1/k

. With this choice of the

parameter M we get that

P
(

|n−k/2In,k(f)| > u
)

≤ e−kM = exp

{

−k
e
C

−1/k
k

(u

σ

)2/k
}

(10.19)
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if
√
Cke

k/2σ ≤ u ≤ ek/2
√
Ckn

k/2σk+1. Relation (10.19) implies formula (10.9). Indeed,
formula (10.9) remains valid for

√
Cke

k/2nk/2σk+1 ≤ u ≤ nk/2σk+1 if the constant

kC
−1/k
k e−1 in the exponent at the right-hand side is replaced by α = min(kC

−1/k
k e−1, k),

(here we exploit that P
(

|n−k/2In,k(f)| > u
)

≤ P
(

|n−k/2In,k(f)| >
√
Cke

k/2nk/2σk+1
)

if u ≥ √
Cke

k/2nk/2σk+1), and it holds also for 0 ≤ u ≤ √
Cke

k/2σ if the right-hand side
is multiplied with a sufficiently large constant C.

As we have mentioned, Theorems 8.3′ and Theorem 10.4 together imply Theo-
rem 8.3.

11. Some useful basic results

This section contains the proof of Borell’s inequality and Proposition 10.3 which can be
considered as the multivariate version of the Marcinkiewicz–Zygmund inequality, more
precisely of its more important part.

11 a.) The proof of Borell’s inequality formulated in Theorem 10.2.

Borell’s inequality will be proved as the consequence of the following hypercontractive
inequality for Rademacher functions.

Theorem 11.1. The hypercontractive inequality for Rademacher functions.
Let us consider two copies (X,X , µ) and (Y,Y, ν) = (X,X , µ) of the measure space
(X,X , µ), where X = {−1, 1}, X contains all subsets of X, and µ({1}) = µ({−1}) =
1
2 . Given a real number γ > 0 let us introduce the linear operator Tγ which maps
the real (or complex) valued functions on the space X to the real (or complex) valued
functions on the space Y which is defined by the relations Tγr0 = r0, and Tγr1 = γr1,
where r0(1) = r0(−1) = 1, and r1(1) = 1, r1(−1) = −1. For all n = 1, 2, . . . let
us consider the n-fold product (Xn,Xn, µn) and (Y n,Yn, νn) of the spaces (X,X , µ)
and (Y,Y, ν) together with the n-fold product of the operator Tn

γ of the operator Tγ

acting between these product spaces, (i.e. Tn
γ is the linear transformation for which

Tn
γ (f1(x1) · · · fn(xn)) = Tγf1(x1) · · ·Tγfn(xn) for all products of the functions fs, 1 ≤

s ≤ n, on the space (X,X , µ)). The transformation Tn
γ from the space Lq(X

n,Xn, µn)
to the space Lp(Y

n,Yn, νn) has norm 1 for all n = 1, 2, . . . if 1 < p ≤ q < ∞, and

0 ≤ γ ≤
√

q−1
p−1 .

The name hypercontractive inequality was given to this result because it states not
only that ‖Tn

γf‖q ≤ ‖f‖q for all functions f but also the inequality ‖Tn
γf‖p ≤ ‖f‖q

with some 1 ≤ q < p, while ‖Tn
γf‖q ≤ ‖Tn

γf‖p if 1 ≤ q < p. It is not difficult to see
that the hypercontractive inequality implies Borell’s inequality.

The proof of Borell’s inequality by means of the hypercontractive inequality. Let us
define the function

f(x1, . . . , xn) =
∑

1≤lj≤n, 1≤j≤k

js 6=lj′ if j 6=j′

a(l1, . . . , lk)r1(xl1) · · · r1(xlk)
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on the space (Xn,Xn, µn). Observe that Tn
γf = γkf for this function f and all γ > 0,

and E|Z|p = ‖f‖pp, E|Z|q = ‖f‖qq. Fix some numbers 1 < q ≤ p ≤ ∞ and put

γ =
√

q−1
p−1 . The norm of Tn

γ as a transformation from the space Lq(X
n,Xn, µn) to

the space Lp(Y
n,Yn, νn) is bounded by 1, i.e. ‖Tn

γf‖p = γk‖f‖p ≤ ‖f‖q. The above

relations imply that (E|Z|p)1/p ≤
(

q−1
p−1

)k/2

E|Z|q)1/q in this case, and this is what we

had to show.

The proof of the hypercontractive inequality can be reduced to a simpler statement
by means of the following

Theorem 11.2. Let us consider two pairs of measure spaces (X1,A1, µ1), (Y1,B1, ν1)
and (X2,A2, µ2), (Y2,B2, ν2) together with two linear operators T1 and T2 which map
the space Lq(X1,A1, µ1) to Lp(Y1,B1, ν1) and the space Lq(X2,A2, µ2) to Lp(Y2,B2, ν2)
respectively. Assume that 1 ≤ q ≤ p, and the norm of both operators T1 and T2 is less
than or equal to 1. Then also the norm of their direct product T1 ×T2 which maps the
space Lq(X1 ×X2,A1 × A2, µ1 × µ2) to the space Lp(Y1 × Y2,B1 × B2, ν1 × ν2) is less
than or equal to one.

Proof of Theorem 11.2: We have to show that

∫

Y1×Y2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjT1fj(y1)T2gj(y2)

∣

∣

∣

∣

∣

∣

p

ν1( dy1)ν2( dy2)

≤





∫

X1×X2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)gj(x2)

∣

∣

∣

∣

∣

∣

q

µ1( dx1)µ2( dx2)





p/q (11.1)

for arbitrary index n, real (or complex) numbers cj and functions fj(·) ∈ Lq(X1,A1, µ1)
and gj(·) ∈ Lq(X2,A2, µ2), 1 ≤ j ≤ n, since relation (11.1) is equivalent to the inequality

‖(T1 ×T2)f(y1, y2‖Lp ≤ ‖f(x1, x2)‖Lq for the function f(x1, x2) =
n
∑

j=1

cjfj(x1)gj(x2),

and as functions of the above form are dense in the space Lq(X1×X2,A1×A2, µ1×µ2),
this inequality implies that the norm of T1 ×T2 is bounded by 1.

We get by integrating the left-hand side of (11.1) first by the variable y1 and by
exploiting the condition |T1| ≤ 1 that

∫

Y1×Y2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjT1fj(y1)T2gj(y2)

∣

∣

∣

∣

∣

∣

p

ν1( dy1)ν2( dy2)

≤
∫

Y2





∫

X1

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)T2gj(y2)

∣

∣

∣

∣

∣

∣

q

µ1( dx1)





p/q

ν2( dy2).

(11.2)
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We shall prove and apply the following result. Let a function G(u, v) be given on a
product space (U × V,U × V, ρ1 × ρ2), and let 1 ≤ s <∞. Then

[∫

V

[∫

U

|G(u, v)|ρ1( du)
]s

ρ2( dv)

]1/s

≤
∫

U

[∫

V

|G(u, v)|sρ2( dv)
]1/s

ρ1( du). (11.3)

It is enough to prove this estimate for the following special type of functions G(u, v).
Let us consider a finite partition A1, . . . , Am of the space U , choose for all 1 ≤ j ≤ m
a function Gj(v) on the space (V,V) and put G(u, v) = Gj(v) if u ∈ Aj , 1 ≤ j ≤ m.
Such kind of functions are dense in the Lq(U × V,U × V, ρ1 × ρ2) space, because such
kind of functions are dense in the subspace consisting of functions of the form G(u, v) =
n
∑

j=1

cjfj(u)gj(v). If we prove inequality (11.3) for such special type of functions, then this

inequality can be generalized for general functions G(u, v) by an appropriate limiting
procedure. Its details are left to the reader.

Inequality (11.3) in the special case we consider is equivalent to the triangular
inequality in Ls spaces, s ≥ 1, (also called Minkowski inequality)

∥

∥

∥

∥

∥

∥

m
∑

j=1

ρ1(Aj)|Gj(v)|

∥

∥

∥

∥

∥

∥

s

≤
m
∑

j=1

‖ρ1(Aj)|Gj(v)|‖s,

where ‖f‖s denotes the Ls-norm of a function f in the space (V,V, ρ2).
Indeed,

∥

∥

∥

∥

∥

∥

m
∑

j=1

ρ1(Aj)|Gj(v)|

∥

∥

∥

∥

∥

∥

s

=

∥

∥

∥

∥

∫

U

|G(u, v)|ρ1( du)
∥

∥

∥

∥

s

=

[∫

V

[∫

U

|G(u, v)|ρ1( du)
]s

ρ2( dv)

]1/s

,

and this is the left-hand side of formula (11.3), while

m
∑

j=1

‖ρ1(Aj)|Gj(v)|‖s =
m
∑

j=1

ρ1(Aj)

[∫

V

|Gj(v)|sρ2( dv)
]1/s

=

∫

U

[∫

V

|G(u, v)|sρ2( dv)
]1/s

ρ1( du),

and this is the right-hand side of (11.3).

Using inequality (11.3) in our case on the space (X1 × Y2,A1 × B2, µ1 × ν2) with

the choice s = p
q , U = X1, V = Y2, G(u, v) =

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)T2gj(y2)

∣

∣

∣

∣

∣

q

, ρ1 = µ1, ρ2 = ν2
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we get with the help of formula (11.2) that

∫

Y1×Y2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjT1fj(y1)T2gj(y2)

∣

∣

∣

∣

∣

∣

p

ν1( dy1)ν2( dy2)

≤







∫

X1





∫

Y2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)T2gj(y2)

∣

∣

∣

∣

∣

∣

p

ν2( dy2)





q/p

µ1( dx1)







p/q

.

Then by exploiting that |T2| ≤ 1 we get that





∫

Y2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)T2gj(y2)

∣

∣

∣

∣

∣

∣

p

ν2( dy2)





q/p

≤
∫

X2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)gj(x2)

∣

∣

∣

∣

∣

∣

q

µ2( dx2)

for all x1 ∈ X1, and

∫

Y1×Y2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjT1fj(y1)T2gj(y2)

∣

∣

∣

∣

∣

∣

p

ν1( dy1)ν2( dy2)

≤





∫

X1





∫

X2

∣

∣

∣

∣

∣

∣

n
∑

j=1

cjfj(x1)gj(x2)

∣

∣

∣

∣

∣

∣

q

µ2( dx2)



µ1( dx1)





p/q

.

By the Fubini theorem this inequality is equivalent to relation (11.1).

Theorem 11.2 enables us to reduce the proof of the hypercontractive inequality for
Rademacher functions to the following simpler result.

Theorem 11.3. The reduced form of the hypercontractive inequality for
Rademacher functions. Let ε be a random variable such that P (ε = 1) = P (ε =
−1) = 1

2 . Then the following inequality holds for all real (or complex) numbers a, b,

and numbers 1 ≤ q ≤ p <∞ together with some 0 ≤ γ ≤
√

q−1
p−1 :

E (|a+ γbε|p)1/p ≤ (E|a+ bε|q)1/q (11.4)

Theorems 11.3 and 11.2 really imply Theorem 11.1, because Theorem 11.3 states
the desired result in the special case n = 1, and then by Theorem 11.2 it holds for
arbitrary n.

Even the proof of Theorem 11.3 is far from trivial. On the other hand, Leonhard
Gross has made a deep and interesting investigation in his paper Logarithmic Sobolev
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inequalities (Amer. J. Math. 97, 1061-1083, 1975) which supplies this result as a special
case of a general theory. His approach is based on the following idea. Let us consider
a continuous time Markov process ξ(t), t ≥ 0, with its stationary distribution and a
function f(x) on the state space of this Markov process. We can get good estimates
on the moments E|f(ξ(t))|p if we have an appropriate estimate on the infinitesimal
operator of the Markov process he calls logarithmic Sobolev inequality. In an informal
way this approach can be interpreted as a good estimate of a function by means of its
derivative.

Gross applies a rather hard analysis in his proof, but if we restrict our attention to
that example which leads to the proof of Theorem 11.3, then the most difficult parts of
his study do not appear. Here we shall follow this approach.

Let us define the Markov process ξt describing the movement of a particle on the
state space X = {−1, 1} consisting of two points, where the particle jumps from one
state to the other one after exponential time with parameter λ = 1

2 . This means that the
places of jumps constitute a Poisson process with parameter λ = 1

2 , and the transition
probabilities of this Markov process are

pt(1, 1) = pt(−1,−1) = e−t/2
∞
∑

k=0

1

(2k)!

(

t

2

)2k

,

pt(1,−1) = pt(−1, 1) = e−t/2
∞
∑

k=0

1

(2k + 1)!

(

t

2

)2k+1

.

(The particle remains in the same place after time t if it made an even number of jumps
in the time interval [0, t], and changes his position if it made an odd number of jumps.)
Let us calculate the semigroup Ut, t ≥ 0, of this Markov process, defined as Ut(f)(x) =
E(f(ξ(t))|ξ(0) = x), for all x ∈ X, all functions f defined on X and parameters t ≥ 0

together with the infinitesimal operator of this Markov process Bf(x) = − dUt(f)(x)
dt

∣

∣

∣

t=0
.

The above objects can be simply calculated in this model. Let us introduce the functions
r0(x) and r1(x) on the state space X defined as r0(1) = r0(−1) = 1 and r1(1) = 1,
r1(−1) = −1. Observe that pt(1, 1) − pt(1,−1) = e−t, pt(−1,−1) − pt(−1, 1) = e−t,
hence Utr1(1) = e−tr1(1), Utr1(−1) = e−tr1(−1), i.e. Utr1(x) = e−tr1(x) for all t ≥ 0.
On the other hand, clearly Utr0(x) = r0(x) for all t ≥ 0. All functions f on the state
space X can be written in the form f(x) = a+br1(x) with some appropriate coefficients
a and b, and Ut(a + br1)(x) = a + e−tbr1(x). Clearly B(a + br1)(x) = br1(x). Let
µ, µ(1) = µ(−1) = 1

2 , denote the equilibrium state of the Markov process ξ(t). Put

‖f‖p =
(∫

|f(x)|pµ( dx)
)1/p

=
(

1
2 (|f(1)|p + |f(−1)|p

)1/p
. The following inequality will

be proved, which is the logarithmic Sobolev inequality in the special model considered
here. The notations introduced before will be preserved.

Proposition 11.4. Let us consider a function f(x) = a + br1(x) on the space X =
{−1, 1} with the probability measure µ, µ(1) = µ(−1) = 1

2 , on X such that both a and
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b are real numbers, and a ≥ |b|. Then
∫

fp(x) ln f(x)µ( dx) ≤ p

2(p− 1)

∫

fp−1(x)Bf(x)µ( dx) + ‖f‖pp ln ‖f‖p,

for all 1 < p <∞.

(11.5)

(The letter B in formula (11.5) denotes the infinitesimal operator of the Markov process
we consider.)

The corresponding result in Gross’ paper is slightly more general. It contains such
an estimate which holds for all functions f , i.e. the condition that a and b are real
numbers, and a ≥ |b| in the expansion f = a+ br1 is not needed there. Our restriction
makes the proof simpler, since this implies that the function f(x) is real-valued and
f(x) ≥ 0 both for x = 1 and x = −1. Hence we do not have to work with absolute
values. On the other hand, Proposition 11.4 is sufficient for us also in this restricted
form. Before its proof we show that it implies Theorem 11.3.

The proof of Theorem 11.3 by means of Proposition 11.4. Let us introduce the function
p(t, q) = 1 + (q − 1)e2t for all q > 1, and t ≥ 0. First we prove that

[∫

|Utf(x)|p(t,q)µ( dx)
]1/p(t,q)

≤
[∫

|f(x)|qµ( dx)
]1/q

for all t ≥ 0 (11.6)

and functions f on X. (The general theory helps to find the ‘right’ definition of the

function p(t, q). It is defined as the solution of the differential equation p
2(p−1)

dp(t)
dt = p,

p(0) = q. The coefficient p
2(p−1) in this equation agrees with the coefficient appearing in

the logarithmic Sobolev inequality (11.5).) Let us prove inequality (11.6) first for such
functions f(x) = a+ br1(x) for which a and b are real numbers and a ≥ |b|.

Given a function f(x) = a + br1(x) with a ≥ |b| define the function F (t) =
[∫

(Utf(x))
p(t,q)µ( dx)

]1/p(t,q)
. Observe that Utf(x) = a + be−tr1(x), and a ≥ |b|e−t.

Hence to prove (11.6) it is enough to show that

d‖Ut(f)‖p(t,q)
dt

=
dF (t)

dt
≤ 0 for all t > 0 (11.7)

which means that the function F (t) is monotone decreasing, and in the proof we can
apply the logarithmic Sobolev inequality for the functions ft(x) = Utf(x). We have

dF (t)

dt
= F (t)

[

−p
′(t, q)

p(t, q)
lnF (t) +

p′(t, q)

p(t, q)

∫

Utf(x)
p(t,q) lnUtf(x)µ( dx)

∫

Utf(x)p(t,q)µ( dx)

+

∫

Utf(x)
p(t,q)−1(Utf(x))

′µ(d x)
∫

Utf(x)p(t,q)µ( dx)

]

,

where G(t, ·)′ means partial derivative with respect to the variable t. Since F (t) =

‖Ut(f)‖p(t,q),
∫

Utf(x)
p(t,q)µ( dx) = ‖Ut(f)‖p(t,q)p(t,q), (Utf(x))

′ = −BUtf(x) by the defini-

tion of the operator B,
∫

Utf(x)
p(t,q)−1(Utf(x))

′µ(d x) = −
∫

Utf(x)
p(t,q)−1B(Utf)(x)µ(d x),
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and p(t,q)
p′(t,q) = p(t,q)

2(p(t,q)−1) with our choice of functions, the last formula implies that the

inequality dF (t)
dt ≤ 0 is equivalent to the relation

− ‖Ut(f)‖p(t,q)p(t,q) ln ‖Ut(f)‖+
∫

Utf
p(t,q)(x) lnUtf(x)µ( dx)

− p

2(p− 1)

∫

(Utf)
p(t,q)−1(x)BUtf(x)µ(( dx) ≤ 0.

But this inequality follows from the logarithmic Sobolev inequality if it is applied for
the function Ut(f) with p̄ = p(t, q).

To prove relation (11.6) for a general function f it is enough to check that |Ut(f)| ≤
Ut(|f |), i.e. |Ut(f)(1)| ≤ Ut(|f |)(1) and |Ut(f)(−1)| ≤ Ut(|f |)(−1) for arbitrary function
f and t ≥ 0, since this relation has been already proved for the function |f |. But this
relation simply follows from the following calculation. If f(1) = A, f(−1) = B, then

f(x) = A+B
2 + A−B

2 r1(x), Utf(x) = A+B
2 + e−t A−B

2 r1(x), i.e. Utf(1) = 1+e−t

2 A +
1−e−t

2 B, and Utf(−1) = 1−e−t

2 A+ 1+e−t

2 B, while (Ut|f |)(±1) = 1+e−t

2 |A|+ 1∓e−t

2 |B|.
Let us fix some numbers 1 < p ≤ q < ∞ and apply formula (11.6) for some

function f(x) = a + br1(x) with the number t which is the solution of the equation

p(t, q) = p. Then e−t = γ(p, q) =
√

q−1
p−1 , Ut(a + br1(x)) = a + γ(p, q)r1(x), hence

‖a+ γ(p, q)br1(x)‖p ≤ ‖a+ br1(x)‖q. Given some γ ≤ γp, let us define p̄ as the solution

of the equation γ =
√

q−1
p̄−1 . Then p̄ ≥ p, hence ‖a + γbr1(x)‖p ≤ ‖a + γbr1(x)‖p̄ ≤

‖a + br1(x)‖q, and this relation is equivalent to formula (11.4). Thus Theorem 11.3 is
proved with the help of Proposition 11.4.

The proof of Proposition 11.4. Let us prove relation (11.5) first in the special case p = 2.
We have to show that

∫

Bf · f dµ+
1

2

∫

f2 dµ ln

(∫

f2 dµ

)

−
∫

f2 ln f dµ ≥ 0

for a function of the form f = a+ br1, a ≥ |b|. Since the left-hand side of this inequality
is homogeneous of order 2 it is enough to prove this inequality in the special case
f = 1 + sr1, |s| ≤ 1. In this case the inequality we want to prove can be written as

h(s) = s2 +
1

2
(1 + s2) ln(1 + s2)− 1

2

[

(1 + s)2 ln(1 + s) + (1− s)2 ln(1− s)
]

≥ 0.

Simple calculation shows that h′(s) = 2s+s ln(1+s2)−(1+s) ln(1+s)+(1−s) ln(1−
s), and h′′(s) = 2s2

1+s2 +ln(1+s2)−ln(1−s2) = 2s2

1+s2 −ln 1−s2

1+s2 = 2s2

1+s2 −ln
(

1− 2s2

1+s2

)

≥ 0

for all 0 ≤ s ≤ 1. This means that the function h(s) convex. On the other hand
h(0) = h′(0) = 0. These relations imply that h(s) ≥ 0 for all 0 ≤ s ≤ 1 as we have
claimed.

In the general case p > 1 let us apply inequality (11.5) in the already proven case p =
2 for the function fp/2. We get that p

2

∫

fp(x) ln f(x)µ( dx) ≤
∫

fp/2(x)Bfp/2(x)µ(dx)+
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p
2‖f‖pp ln ‖f‖p. Hence to prove Proposition 11.4 in the general case it is enough to show
that

∫

fp/2(x)Bfp/2(x)µ( dx) ≤ p2

4(p− 1)

∫

fp−1(x)Bf(x)µ( dx)

for a function f(x) = a+ br1(x) such that a ≥ |b|.
The expressions in the last inequality can be simply calculated. As

1

2p/2−1
fp/2(x) =

[

(

a+ b

2

)p/2

+

(

a− b

2

)p/2
]

+

[

(

a+ b

2

)p/2

−
(

a− b

2

)p/2
]

r1(x),

1

2p/2−1
Bfp/2(x) =

[

(

a+ b

2

)p/2

−
(

a− b

2

)p/2
]

r1(x),

and

1

2p−2
fp−1(x) =

[

(

a+ b

2

)p−1

+

(

a− b

2

)p−1
]

+

[

(

a+ b

2

)p−1

−
(

a− b

2

)p−1
]

r1(x)

this inequality, more precisely its version we get by multiplying it by 2−(p−2) can be
rewritten as

[

(

a+ b

2

)p/2

−
(

a− b

2

)p/2
]2

≤ p2

4(p− 1)

[

(

a+ b

2

)p−1

−
(

a− b

2

)p−1
]

(

a+ b

2
− a− b

2

)

or
(∫ v

u

t(p−2)/2 dt

)2

≤
∫ v

u

tp−2 dt ·
∫ v

u

1 dt

with u = a−|b|
2 and v = a+|b|

2 . But the last formula is a simple consequence of the
Schwarz inequality. Proposition 11.4 is proved.

Remark: Theorem 11.3 is sharp in the following sense. The transformation Tγ , Tγ(a+
br1(x)) = a + γbr1(x) as a transformation from the Lq(X,X , µ) space to the space

Lp(X,X , µ) with 1 < q < p has a norm greater then 1 if γ >
√

q−1
p−1 . To see this let

us compare the Lq norm of 1 + δr1(x) with the Lp-norm of Tγr1(x) = 1 + γδr1(x)

for a small parameter δ > 0. We have ‖1 + δr1(x)‖q =
[

1
2 ((1 + δ)q + (1− δ)q)

]1/q
=

[

1 + q(q−1)
2 δ2 +O(δ3)

]1/q

= 1+ q−1
2 δ2+O(δ3). Similarly, ‖1+γδr1(x)‖p = 1+ p−1

2 γ2δ2+

O(δ3), and these relations imply the above remark.
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11 b.) The proof of Proposition 10.3.

Proof of Proposition 10.3. Let us use the notation introduced in the formulation of

Proposition 10.3, and take another k independent copies ξ̄
(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ k, of

the random sequences ξ1, . . . , ξn which are also independent of the sequence ε1, . . . , εn
appearing in the formulation of Proposition 10.3. Let F denote the σ-algebra generated

by the random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and let us introduce the notation

ξ
(j,1)
l = ξ

(j)
l , ξ

(j,−1)
l = ξ̄

(j)
l , 1 ≤ l ≤ n and 1 ≤ j ≤ k. Let Vk denote the set of ±1

sequences of length k, and for a v ∈ Vk let m(v) denote the number of the digits −1 in

the sequence v = (v(1), . . . , v(k)). Observe that E
(

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)∣

∣

∣F
)

= 0 if

the ±1 sequence (v(1), . . . , v(k)) contains at least one coordinate −1, (this is the point
of the proof where we exploit the canonical property of the function f), and

Ef
(

ξ
(1,1)
l1

, . . . , ξ
(k,1)
lk

∣

∣

∣F
)

= f
(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)

for all indices 1 ≤ lj ≤ n, 1 ≤ j ≤ k.

These relations together with the Jensen-inequality for conditional expectations imply
that

|Īn,k(f)|p =

∣

∣

∣

∣

∣

∣

∣

∣

E









1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

∣

∣

∣

∣

∣

∣

∣

∣

F









∣

∣

∣

∣

∣

∣

∣

∣

p

≤ E









∣

∣

∣

∣

∣

∣

∣

∣

1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

∣

∣

∣

∣

∣

∣

∣

∣

p∣
∣

∣

∣

∣

∣

∣

∣

F









.

Hence

E|Īn,k(f)|p ≤ E

∣

∣

∣

∣

∣

∣

∣

∣

1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

∣

∣

∣

∣

∣

∣

∣

∣

p

. (11.8)

Let us introduce the random variables

Ĩn,k(f) =
1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

(11.9)

and

Ĩn,k(f, ε) =
1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

εl1 · · · εlkf
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

. (11.9′)
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Let us recall that the number m(v) in these formula denotes the number of the digits

−1 in the ±1 sequence v of length k, i.e. it counts how many random variables ξ
(j,1)
lj

,

1 ≤ j ≤ k, were replaced by the ‘secondary copy’ ξ
(j,−1)
lj

in the corresponding terms of

the sum in (11.9) or (11.9′).

I claim that the above defined two random variables Ĩn,k(f) and Ĩn,k(f, ε) have the
same distribution. This statement will be formulated in a slightly more general form
which will be useful in the further part of this work.

Lemma 11.5. Let us consider a (non-empty) class of functions F of k variables
f(x1, . . . , xk) on the space (Xk,X k) together with the random variables Ĩn,k(f) and

Ĩn,k(f, ε) defined in formulas (11.9) and (11.9′) for all f ∈ F . The joint distributions

of the set of random variables {Ĩn,k(f); f ∈ F} and {Ĩn,k(f, ε); f ∈ F} agree.

The proof of Lemma 11.5. We even claim that fixing an arbitrary sequence u =
(u(1), . . . , u(n)), u(l) = ±1, 1 ≤ l ≤ n, of length n, the conditional distribution of the
field {Ĩn,k(f, ε); f ∈ F} under the condition that (ε1, . . . , εn) = u = (u(1), . . . , u(n))

agrees with the distribution of the field of {Ĩn,k(f); f ∈ F}.
Indeed, the random variables Ĩn,k(f), f ∈ F , defined in (11.9) are functions of

a random vector consisting of coordinates (ξ
(j)
l , ξ̄

(j)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ), 1 ≤ l ≤ n,

1 ≤ j ≤ k, and the distribution of this random vector does not change if we replace

the coordinates (ξ
(j)
l , ξ̄

(j)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ), by (ξ̄

(j)
l , ξ

(j)
l ) = (ξ

(j,−1)
l , ξ

(j,1)
l ), for those

indices (j, l) for which u(l) = −1 (independently of the value of the parameter j) and
do not modify these random vectors for those coordinates (l, j) for which u(l) = 1.
Replacing the original vector in the definition of the expression Ĩn,k(f) in (11.9) for all
f ∈ F by this modified vector we carry out a measure preserving transformation. On
the other hand, the random field we get in such a way has the same distribution as the
conditional distribution of the random field Ĩn,k(f, ε), f ∈ F , with the elements defined
in (11.9′) under the condition that (ε1, . . . , εn) = u with u = (u(1), . . . , u(n)).

To prove the last statement let us observe that the conditional distribution of the
random field Ĩn,k(f, ε), f ∈ F , under the condition (ε1, . . . , εn) = u is the same as that
of the random field we obtain by putting ul = εl, 1 ≤ l ≤ n, in all coordinates εl of
the random variables Ĩn,k(f, ε). On the other hand, the random variables we get in
such a way agree with the random variables we get by carrying out the above described
transformation for the random variables Ĩn,k(f), only the terms in the sums defining
these random variables are listed in a different order.

Relation (11.8) and the agreement of the distribution of the random variables
Ĩn,k(f) in (11.9) and Ĩn,k(f) (11.9

′) imply that

E|Īn,k(f)|p ≤ E

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

.

(11.10)
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Let us define for all v = (v(1), . . . , v(k)) ∈ Vk the random variable

Īn,k,v(f, ε) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

, v ∈ Vk.

The distribution of the random variables Īn,k,v(f, ε) agree with that of Īn,k(f, ε) intro-
duced in (10.6) for all v ∈ Vk. Hence relation (11.10) implies that

E|Īn,k(f)|p ≤ E

∣

∣

∣

∣

∣

∑

v∈Vk

(−1)m(v)Īn,k,v(ε, f)

∣

∣

∣

∣

∣

p

≤ 2(k−1)p
∑

v∈Vk

E|Īn,k,v(f, ε)|p = 2kpE|Īn,k(f, ε)|p.

Proposition 10.3 is proved.

12. Reduction of the main result in this work

The main result of this paper is Theorem 8.4 or its multiple integral version Theo-
rem 8.2. It can be considered as the multivariate version of Theorem 4.1, and its proof
is also based on a similar argument. Following the method of the proof of Theorem 4.1
first we prove a multivariate version of Proposition 6.1 in Proposition 12.1 and reduce
Theorem 8.4 to a simpler statement formulated in Proposition 12.2.

The hard part of the problem is the proof of Proposition 12.2. In the first step
of its proof we reduce it with the help of Theorem 10.4 (proved by de la Peña and
Montgomery–Smith) to an analogous result formulated in Proposition 12.2′, where the
U -statistics to be investigated are replaced by their decoupled U -statistics counterpart
introduced in Section 10. The proof of this result is simpler, because here we have
more independence. It is based on a symmetrization argument, similar to the proof of
Proposition 6.2. The details of this symmetrization argument will be explained in the
next section. This section contains only an important preliminary result needed in this
argument, a multi-dimensional variant of Hoeffding’s inequality (Theorem 3.4) formu-
lated in Theorem 12.3. It yields an estimate about the distribution of homogeneous
polynomials of Rademacher functions.

The first result of this Section, Proposition 12.1, can be proved in almost the same
way as its simplified version Proposition 6.1. The only essential difference between their
proof is that Bernstein’s inequality applied in the proof of Proposition 6.1 is replaced
now by its multivariate version Theorem 8.3. Theorem 12.1 can be considered as the
result we can get by means of the Theorem 8.3 and the chaining argument. Its main
content, formulated in relation (12.1) states that given a nice class of functions F it
has a subclass Fσ̄ of relatively small cardinality which is also a relatively dense subclass
of F in the L2 norm, and the supremum of the U -statistics with kernel functions from
Fσ̄ can be well bounded. To get an applicable result we also need some estimates on
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the number σ̄ which measures how dense the subclass Fσ̄ in F is. Such estimates are
contained at the end of this Proposition.

In the formulation of Proposition 12.1 we introduce, similarly to Proposition 6.1,
two parameters Ā > 2k and M = M(Ā, k), and this may seem at first sight unnatural.
But the introduction of these parameters turned out to be useful, they help, similarly to
the analogous problem in Section 6 to fit the parameters in Propositions 12.1 and 12.2
as we want to apply them simultaneously.

Proposition 12.1. Let us have the k-fold power (Xk,X k) of a measurable space (X,X )
with some probability measure µ on (X,X ) and a countable L2-dense class F of functions
f(x1, . . . , xk) of k variables on (Xk,X k) with parameter D and exponent L, L ≥ 1, such
that all functions f ∈ F are canonical with respect to the measure µ, and they satisfy
conditions (8.4) and (8.5) with some real number 0 < σ ≤ 1. Take a sequence of
independent µ-distributed random variables ξ1, . . . , ξn, n ≥ max(k, 2), and consider the
(degenerate) U -statistics In,k(f), f ∈ F , defined in formula (8.7). Let us fix some
number Ā ≥ 2k.

For all numbers M = M(k, Ā) which are chosen sufficiently large in dependence
of Ā and k the following relation depending on the numbers Ā and M holds: For all

numbers u > 0 for which nσ2 ≥
(

u
σ

)2/k ≥ML log 2
σ a number σ̄ = σ̄(u), 0 ≤ σ̄ ≤ σ ≤ 1,

and a collection of functions Fσ̄ = {f1, . . . , fm} ⊂ F with m ≤ Dσ̄−L elements can be
chosen in such a way that the sets Dj = {f : f ∈ F ,

∫

|f − fj |2 dµ ≤ σ̄2}, 1 ≤ j ≤ m,

satisfy the relation
m
⋃

j=1

Dj = F , and the (degenerate) U -statistics In,k(f), f ∈ Fσ̄(u),

satisfy the inequality

P

(

sup
f∈Fσ̄(u)

n−k/2|In,k(f)| ≥
u

Ā

)

≤ 2CD exp

{

−α
( u

10Āσ

)2/k
}

if nσ2 ≥
(u

σ

)2/k

≥ML log
2

σ

(12.1)

with the constants α = α(k), C = C(k) appearing in formula (8.9) of Theorem 8.3 and
the exponent L and parameter D of the L2-dense class F .

The inequalities 4
(

u
Āσ̄

)2/k ≥ nσ̄2 ≥ 1
64

(

u
Āσ

)2/k
and nσ̄2 ≥ M2/3(L+β) logn

1000Ā4/3 also

hold, provided that nσ2 ≥
(

u
σ

)2/k ≥M(L+ β)3/2 log 2
σ with β = max

(

logD
n , 0

)

.

Proof of Proposition 12.1. Let us list the elements of the countable set F as f1, f2, . . . .
For all p = 0, 1, 2, . . . let us choose, by exploiting the L2-density property of the class
F , a set Fp = {fa(p,1), . . . , fa(p,mp)} ⊂ F with mp ≤ D 22pLσ−L elements in such a
way that inf

1≤j≤mp

∫

(f − fa(p,j))
2 dµ ≤ 2−4pσ2 for all f ∈ F . For all indices a(j, p),

p = 1, 2, . . . , 1 ≤ j ≤ mp, choose a predecessor a(j′, p− 1), j′ = j′(j, p), 1 ≤ j′ ≤ mp−1,
in such a way that the functions fa(j,p) and fa(j′,p−1) satisfy the relation

∫

|fa(j,p) −
fa(j′,p−1)|2 dµ ≤ σ22−4(p−1). Then we have

∫

(

fa(j,p)−fa(j′,p−1)

2

)2

dµ ≤ 4σ22−4p and
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sup
xj∈X, 1≤j≤k

∣

∣

∣

fa(j,p)(x1,...,xk)−fa(j′,p−1)(x1,...,xk)

2

∣

∣

∣ ≤ 1. Theorem 8.3 yields that

P (A(j, p)) = P

(

n−k/2|In,k(fa(j,p) − fa(j′,p−1))| ≥
2−(1+p)u

Ā

)

≤ C exp

{

−α
(

2pu

8Āσ

)2/k
}

if 4nσ22−4p ≥
(

2pu

8Āσ

)2/k

,

1 ≤ j ≤ mp, p = 1, 2, . . . ,

(12.2)

and

P (B(s)) = P
(

n−k/2|In,k(f0,s)| ≥
u

2Ā

)

≤ C exp

{

−α
( u

2Āσ

)2/k
}

, 1 ≤ s ≤ m,

if nσ2 ≥
( u

2Āσ

)2/k

. (12.3)

Introduce an integer R = R(u), R > 0, which satisfies the relations

2(4+2/k)(R+1)
( u

Āσ

)2/k

≥ 22+6/knσ2 ≥ 2(4+2/k)R
( u

Āσ

)2/k

,

and define σ̄2 = 2−4Rσ2 and Fσ̄ = FR (i.e the class of functions Fp introduced before

with p = R). (As nσ2 ≥
(

u
σ

)2/k
and Ā ≥ 2k by our conditions, there exists such

a positive integer R.) Then the cardinality m of the set Fσ̄ is clearly not greater

than Dσ̄−L, and
m
⋃

j=1

Dj = F . Besides, the number R was chosen in such a way that the

inequalities (12.2) and (12.3) hold for 1 ≤ p ≤ R. Hence the definition of the predecessor
of an index a(j, p) implies that

P

(

sup
f∈Fσ̄

n−k/2|In,k(f)| ≥
u

Ā

)

≤ P





R
⋃

p=1

mp
⋃

j=1

A(j, p) ∪
m
⋃

s=1

B(s)





≤
R
∑

p=1

mp
∑

j=1

P (A(j, p)) +
m
∑

s=1

P (B(s)) ≤
∞
∑

p=1

CD 22pLσ−L exp

{

−α
(

2pu

8Āσ

)2/k
}

+ CDσ−L exp

{

−α
( u

2Āσ

)2/k
}

.

If the condition
(

u
σ

)2/k ≥ ML3/2 log 2
σ holds with a sufficiently large constant M (de-

pending on Ā), then the inequalities

22pLσ−L exp

{

−α
(

2pu

8Āσ

)2/k
}

≤ 2−p exp

{

−α
(

2pu

10Āσ

)2/k
}
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hold for all p = 1, 2, . . . , and

σ−L exp

{

−α
( u

2Āσ

)2/k
}

≤ exp

{

−α
( u

10Āσ

)2/k
}

.

Hence the previous estimate implies that

P

(

sup
f∈Fσ̄

n−k/2|In,k(f)| ≥
u

Ā

)

≤
∞
∑

p=1

CD2−p exp

{

−α
(

2pu

10Āσ

)2/k
}

+ CD exp

{

−α
( u

10Āσ

)2/k
}

≤ 2CD exp

{

−α
( u

10Āσ

)2/k
}

,

and relation (12.1) holds. We have

nσ̄2 = 2−4Rnσ2 ≤ 2−4R · 2(4+2/k)(R+1)−2−6/k
( u

Āσ

)2/k

= 22−4/k · 22R/k
( u

Āσ

)2/k

= 22−4/k ·
(σ

σ̄

)1/k ( u

Āσ

)2/k

= 22−4/k ·
( σ̄

σ

)1/k ( u

Āσ̄

)2/k

,

hence nσ̄2 ≤ 4
(

u
Āσ̄

)2/k
. Besides, as nσ2 ≥ 2(4+2/k)R−2−6/k

(

u
Āσ

)2/k
, R ≥ 1,

nσ̄2 = 2−4Rnσ2 ≥ 2−2−6/k · 22R/k
( u

Āσ

)2/k

≥ 1

64

( u

Āσ

)2/k

.

It remained to show that nσ̄2 ≥ M2/3(L+β) logn
1000Ā4/3 .

This inequality clearly holds under the conditions of Proposition 12.1 if σ ≤ n−1/3,

since in this case log 2
σ ≥ logn

3 , and nσ̄2 ≥ 1
64

(

u
Āσ

)2/k ≥ 1
64 Ā

−2/kM(L + β)3/2 log 2
σ ≥

1
192 Ā

−2/kM(L+ β) log n ≥ M2/3(L+β) logn
1000Ā4/3 if M =M(Ā, k) is chosen sufficiently large.

If σ ≥ n−1/3, then the inequality 2(4+2/k)R
(

u
Āσ

)2/k ≤ 22+6/knσ2 holds. Hence

2−4R ≥ 2−4(2+6/k))/(4+2/k)

[
(

u
Āσ

)2/k

nσ2

]4/(4+2/k)

, and

nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3
(nσ2)1−γ

[

(u

σ

)2/k
]γ

with γ =
4

4 + 2
k

≥ 2

3
.

Since nσ2 ≥ (uσ )
2/k ≥ M

3 (L + β)3/2, and nσ2 ≥ n1/3, the above estimates yield that

(nσ2)1−γ
[

(

u
σ

)2/k
]γ

≥ (nσ2)1/3
[

(

u
σ

)2/k
]2/3

, and nσ̄2 ≥ Ā−4/3

50 (nσ2)1/3
[

(

u
σ

)2/k
]2/3

≥
Ā−4/3

50 n1/9
(

M
3

)2/3
(L+ β) ≥ M2/3(L+β) logn

1000Ā4/3 .

Now we formulate a multivariate analog of Proposition 6.2 in Proposition 12.2 and
show that Propositions 12.1 and 12.2 imply Theorem 8.4.
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Proposition 12.2. Let us have a probability measure µ on a measurable space (X,X )
together with a sequence of independent and µ distributed random variables ξ1, . . . , ξn
and a countable L2-dense class F of canonical kernel functions f = f(x1, . . . , xk) (with
respect to the measure µ) with some parameter D and exponent L on the product space
(Xk,X k) such that all functions f ∈ F satisfy conditions (8.4) and (8.5) with some
0 < σ ≤ 1, and consider the (degenerate) U -statistics In,k(f) with the random sequence
ξ1, . . . , ξn and kernel functions f ∈ F . There exists a sufficiently large constant K =
K(k) together with some numbers C̄ = C̄(k) > 0, γ = γ(k) > 0 and threshold index
A0 = A0(k) > 0 depending only on the order k of the U -statistics such that if nσ2 >

K(L+β) log n with β = max
(

logD
logn , 0

)

, then the degenerate U -statistics In,k(f), f ∈ F ,

satisfy the inequality

P

(

sup
f∈F

|n−k/2In,k(f)| ≥ Ank/2σk+1

)

≤ C̄e−γA1/2knσ2

if A ≥ A0. (12.4)

We shall prove formula (8.10) by applying Proposition 12.2 with the choice σ =
σ̄ = σ̄(u) defined in Proposition 12.1 and the classes F = Dj , more precisely the classes

F =
{

g−fj
2 : g ∈ Dj

}

of functions introduced also in Proposition 12.1, where fj is the

function appearing in the definition of the class of functions Dj . Clearly,

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ P

(

sup
f∈Fσ̄

n−k/2|In,k(f)| ≥
u

Ā

)

+
m
∑

j=1

P

(

sup
g∈Dj

n−k/2

∣

∣

∣

∣

In,k

(

fj − g

2

)∣

∣

∣

∣

≥
(

1

2
− 1

2Ā

)

u

)

,

(12.5)

where m is the cardinality of the set of functions Fσ̄ appearing in Proposition 12.1.
We want to show that if first Ā and then M ≥ M0(Ā) are chosen sufficiently large in
Proposition 12.1, then the second term at the right-hand side of formula (12.5) can be
well bounded by means of Proposition 12.2, and Theorem 8.4 can be proved by means
of this estimate.

To carry out this program let us choose a number Ā0 in such a way that Ā0 ≥ A0

and γĀ
1/2k
0 ≥ 1

K with the numbers A0, K and γ in Proposition 12.2, put Ā =
max(2k+2Ā0, 2

k), and apply Proposition 12.1 with this number Ā. Then by Propo-

sition 12.1 and the choice of the numbers Ā and Ā0 also the inequality
(

u
σ̄

)2/k ≥
Ā2/k

4 nσ̄2 ≥ (4Ā0)
2/knσ̄2 holds, hence u ≥ 4Ā0n

k/2σ̄k+1 with the number σ̄ in Proposi-

tion 12.1. This implies that
(

1
2 − 1

2Ā

)

u ≥ u
4 ≥ Ā0n

k/2σ̄k+1, Ā0 ≥ A0, and by replacing

the expression
(

1
2 − 1

2Ā

)

u by Ā0n
k/2σ̄k+1 in the probabilities of the sum in the second

term at the right-hand side of (12.5) we enlarge them.

The numbers u considered in these estimations satisfy the condition nσ2/k ≥
(

u
σ

)2/k ≥M(L+ β)3/2 log 2
σ imposed in Proposition 12.1 with some appropriately cho-

sen constant M . Choose the number M ≥ M(Ā, k) in Proposition 12.1 (which also
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can be chosen as the number M in formula (8.10) of Theorem 8.4) in such a way

that it also satisfies the inequality M2/3(L+β) logn
1000Ā4/3 ≥ K(L + β) log n with the number

K appearing in the conditions of Proposition 12.2. With such a choice the inequality

nσ̄2 ≥ M2/3(L+β) logn
1000Ā4/3 ≥ K(L + β) log n holds, and Proposition 12.2 can be applied to

bound the terms in the sum at the right-hand side of (12.5). It yields the estimate

P

(

sup
g∈Dj

n−k/2

∣

∣

∣

∣

In,k

(

fj − g

2

)∣

∣

∣

∣

≥
(

1

2
− 1

2Ā

)

u

)

≤ P

(

sup
g∈Dj

n−k/2

∣

∣

∣

∣

In,k

(

fj − g

2

)∣

∣

∣

∣

≥ Ā0n
k/2σ̄k+1

)

≤ C̄e−γĀ
1/2k
0 nσ̄2

for all 1 ≤ j ≤ m. (Observe that the set of functions
fj−g

2 , g ∈ Dj is an L2-dense class
with parameter D and exponent L.) Hence Proposition 12.1 (relation (12.1) together
with the inequality m ≤ Dσ̄−L) and formula 12.4 with A = Ā0 imply that

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ 2CD exp

{

−α
( u

10Āσ

)2/k
}

+ C̄Dσ̄−Le−γĀ
1/2k
0 nσ̄2

.

(12.6)
To get the result of Theorem 8.4 from inequality (12.6) we have to replace its second
term at the right-hand side with a more appropriate expression where, in particular, we
get rid of the coefficient σ̄−L. The condition nσ̄2 ≥ K(L + β) log n implies that σ̄ ≥
n−1/2, and by our choice of Ā0 we have γĀ

1/2k
0 nσ̄2 ≥ 1

Knσ̄
2 ≥ L log n ≥ 2L log 1

σ̄ , i.e.

σ̄−L ≤ eγĀ
1/2k
0 nσ̄2/2. By the estimates of Proposition 12.1 nσ̄2 ≥ 1

64

(

u
Āσ

)2/k
. The above

relations imply that σ̄−Le−γĀ
1/2k
0 nσ̄2 ≤ e−γĀ

1/2k
0 nσ̄2/2 ≤ exp

{

− γ
128 Ā

1/2k
0 Ā−2/k

(

u
σ

)2/k
}

.

Hence relation (12.6) yields that

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ 2CD exp

{

− α

(10Ā)2

(u

σ

)2/k
}

+ C̄D exp

{

− γ

128
Ā

1/2k
0 Ā−2/k

(u

σ

)2/k
}

,

and this estimate implies Theorem 8.4.

Thus to complete the proof of Theorem 8.4 it is enough to prove Proposition 12.2. It
turned out to be useful to apply an approach similar to the proof of Theorem 8.3. In the
proof of Theorem 8.3 first an appropriate counterpart of this result was proved, where
the U -statistics were replaced by their decoupled U -statistics analogs defined in formula
(10.5), and then the desired result was deduced from this estimate and Theorem 10.4.
Similarly, Proposition 12.2 will be deduced from the following result.

Proposition 12.2′. Let a class of functions f ∈ F on the k-fold product (Xk,X k) of
a measurable space (X,X ), a probability measure µ on (X,X ) together with a sequence
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of independent and µ distributed random variables ξ1, . . . , ξn satisfy the conditions of

Proposition 12.2. Let us take k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the

random sequence ξ1, . . . , ξn, and consider the decoupled U -statistics Īn,k(f), f ∈ F ,
defined with their help by formula (10.5). Then there exists a sufficiently large constant
K = K(k) together with some number γ = γ(k) > 0 and threshold index A0 = A0(k) > 0
depending only on the order k of the decoupled U -statistics we consider such that if

nσ2 > K(L + β) log n with β = max
(

logD
logn , 0

)

, then the (degenerate) decoupled U -

statistics Īn,k(f), f ∈ F , satisfy the following version of inequality (12.4):

P

(

sup
f∈F

|n−k/2Īn,k(f)| ≥ Ank/2σk+1

)

≤ e−γA1/2knσ2

if A ≥ A0. (12.7)

It is clear that Proposition 12.2′ and Theorem 10.4, more explicitly formula (10.8′)
in it imply Proposition 12.2. The proof of Proposition 12.2 is based on a symmetrization
argument which will be explained in the next section. Here an important ingredient
of it will be proved, the multivariate version of Hoeffding’s inequality formulated in
Theorem 3.4.

Theorem 12.3. The multivariate version of Hoeffding’s inequality. Let ε1, . . . ,
εn be independent random variables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n. Fix a
positive integer k, and define the random variable

Z =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a(j1, . . . , jk)εj1 · · · εjk (12.8)

with the help of some real numbers a(j1, . . . , jk) which are given for all sets of indices
such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k, and jl 6= jl′ if l 6= l′. Put

S2 =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a2(j1, . . . , jk) (12.9)

Then

P (|Z| > u) ≤ C exp

{

−B
(u

S

)2/k
}

for all u ≥ 0 (12.10)

with some constants B > 0 and C > 0 depending only on the parameter k. Relation
(12.10) holds for instance with the choice B = k

2e(k!)1/k
and C = ek.

Proof of Theorem 12.3. We get with the help of formula (10.4) (which is a consequence
of Borell’s inequality) that

E|Z|q ≤ (q − 1)kq/2
(

EZ2
)q/2 ≤ qkq/2

(

EZ2
)q/2

= qkq/2S̄q
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with

S̄2 =
∑

1≤j1<j2···<jk≤n

(

∑

π∈Πk

a((jπ(1), . . . , jπ(k))

)2

,

where Πk denotes the set of all permutations of the set {1, . . . , k}. Observe that

(

∑

π∈Πk

a(jπ(1), . . . , jπ(k))

)2

≤ k!
∑

π∈Πk

a2(jπ(1), . . . , jπ(k)) for all 1 ≤ j1 < · · · jk ≤ n,

hence S̄2 ≤ k!S2, and E|Z|q ≤ qkq/2(k!)q/2Sq with the number S2 defined in (12.9).
Thus the Markov inequality implies that

P (|Z| > u) ≤
(

qk/2
√
k!S

u

)q

for all u > 0 and q ≥ 2.

Choose the number q as the solution of the equation q
(√

k!S
u

)2/k

= 1
e . Then we get that

P (|Z| > u) ≤ exp
{

−B
(

u
S

)2/k
}

with B = k
2e(k!)1/k

, provided that q = 1
ek!1/k

(

u
S

)2/k ≥
2, i.e. B

(

u
S

)2/k ≥ k. By multiplying the above upper bound with C = ek we get such
an estimate for P (|Z| > u) which holds for all u > 0.

Remark: The result of Theorem 12.3 will be good enough for our purposes, although the
constants B and C we have given in formula (12.10) are not optimal. Thus Theorem 3.4
yields that in the special case k = 1 the estimate (12.10) holds with B = 1

2 and C = 1
(and not only with B = 1

2e and C = e). The reason for this relative weakness of
Theorem 12.3 is that the moment estimate given for a homogeneous polynomial of
Rademacher functions in formula (10.4) is not always sharp. In Theorem 16.6 I present
(without proof) an improved version of Theorem 12.3 which yields the estimate (12.10)
with the right constant C in the exponent. The proof can be found in paper [22].
It is based on a sharp estimate on the moments EZ2M for large positive integers M
formulated in Theorem 16.7. This estimate can be considered as the improvement of
Bernstein’s inequality in a most important special case.
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13. The strategy of the proof for the main result of this paper

We have reduced the proof of the main result of this paper, the proof of Theorem 8.4
to that of Proposition 12.2′. It is a multivariate version of Proposition 6.2, and also its
proof is based on similar ideas. In particular, a multivariate version of Lemma 7.2
will be proved, which means some kind of randomization. In this result we con-
sider a class of decoupled, degenerate U -statistics Īn,k(f) together with a class of
randomized, decoupled U -statistics Īn,k(f, ε) defined in formulas (10.5) and (10.6) re-
spectively with the same countable class of functions f ∈ F and want to bound the

probability P

(

n−k/2 sup
f∈F

Īn,k(f)| > u

)

with the help of a probability of the form

P

(

n−k/2 sup
f∈F

Īn,k(f, ε)| > Bu

)

with some appropriate universal constant B > 0.

To carry out such a program we introduce 2k independent copies ξ
(j)
1 , . . . , ξ

(j)
n and

ξ̄
(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ n, of the sequence of random variables ξ1, . . . , ξn we have at

the start. We shall work with these 2k copies and a sequence of independent random
variables ε = (ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, independent

also of the sequences ξ
(j)
1 , . . . , ξ

(j)
n and ξ̄

(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ k. Given some function

f(x1, . . . , xk) of k variables in the k-fold power (Xk,X k) of some measurable space
(X,X ) let us consider the random sums Ĩn,k(f) and Ĩn,(f, ε) defined in formulas (11.9)
and (11.9′) with the help of the above random sequences. We shall use Lemma 11.5
which states that given a class of functions of k-variables f ∈ F , the joint distribution
of the random variables Ĩn,k(f) and Ĩn,(f, ε) agree.

As we shall see later, Lemma 11.5 enables us to reduce the multivariate version of
Lemma 7.2 we would like to prove to an appropriate bounding of the distribution of
sup
f∈F

Īn,k(f) by that of sup
f∈F

Ĩn,k(f). In the proof of Lemma 7.2 we met a simple special

case of this problem, and it could be solved by means of the Symmetrization Lemma
(Lemma 7.1). In the general case Lemma 7.1 is not sufficient for our purposes, since
we have to work with not necessarily independent random variables. Hence we prove a
generalized version of it.

Lemma 13.1 (Generalized version of the Symmetrization Lemma.) Let Zn and
Z̄n, n = 1, 2, . . . , be two sequences of random variables on a probability space (Ω,A, P ).
Let a σ-algebra B ⊂ A be given on the probability space (Ω,A, P ) together with a B-
measurable set B and two numbers α > 0 and β > 0 such that the random variables Zn,
n = 1, 2, . . . , are B measurable, and the inequality

P (|Z̄n| ≤ α|B)(ω) ≥ β for all n = 1, 2, . . . if ω ∈ B (13.1)

holds. Then

P

(

sup
1≤n<∞

|Zn| > α+ u

)

≤ 1

β
P

(

sup
1≤n<∞

|Zn − Z̄n| > u

)

+ (1− P (B)) for all u > 0.

(13.2)
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Proof of Lemma 13.1. Put τ = min{n : |Zn| > α + u) if there exists such an n, and
τ = 0 otherwise. Then

P ({τ = n} ∩B) ≤
∫

{τ=n}∩B

1

β
P (|Z̄n| ≤ α|B) dP =

1

β
P ({τ = n} ∩ {|Z̄n| ≤ α} ∩B)

≤ 1

β
P ({τ = n} ∩ {|Zn − Z̄n| > u}) for all n = 1, 2, . . . .

Hence

P

(

sup
1≤n<∞

|Zn| > α+ u

)

− (1− P (B)) ≤ P

({

sup
1≤n<∞

|Zn| > α+ u

}

∩B
)

=
∞
∑

n=1

P ({τ = n} ∩B) ≤ 1

β

∞
∑

n=1

P ({τ = n} ∩ {|Zn − Z̄n| > u})

≤ 1

β
P

(

sup
1≤n<∞

|Zn − Z̄n| > u

)

.

Thus Lemma 13.1 is proved.

The main difficulty we meet when we try to prove Proposition 12.2′ instead of its
simpler version, Proposition 6.2 is that now we have to check an estimate of the form
(13.1) with some appropriately chosen random variables Zn, σ-algebra B and set B
instead of the estimate (7.1) applied in the proof of Proposition 6.2. The cause of this
difference is that now we have to work with not completely independent random vari-
ables. In the symmetrization argument needed in the proof of Proposition 6.2 we could
simply check inequality (7.1) by calculating the variance of the random variables we were
working with. On the other hand, to check inequality (13.1) in the symmetrization ar-
gument we want to apply in the present case we shall bound the conditional variance
of certain random variables, and we can only state that this conditional variance is
relatively small with great probability.

In the proof of Proposition 12.2′ we formulate and prove a multivariate version of
the definition of good tail behaviour for a class of normalized random sums, where the
normalized random sums are replaced by degenerate decoupled U -statistics. It is enough
to prove the good tail-behaviour of decoupled U -statistics introduced below by means
of an appropriate induction, and Proposition 12.2′ follows from it. But to carry out
such a program we have to formulate and check another property which will be called
the good tail behaviour for a class of integrals of decoupled U -statistics. This property
helps us to carry out the induction procedure needed in the proof of Proposition 12.2′.
Its introduction and proof corresponds to the symmetrization argument formulated in
Lemma 7.2 in the proof of Proposition 6.2. The above mentioned two properties will be
proved simultaneously. Before their formulation I make some comments about the idea
behind the introduction of the property ‘good tail behaviour for a class of integrals of
decoupled U -statistics’.

In the introduction of this property we consider a class of functions f(x1, . . . , xk, y)
depending on a parameter y ∈ Y , but in all further applications we shall apply this
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property with the choice Y = X l and ρ = µl (i.e. with the l-th power of the space
X and the probability measure µ on it) with some integer l. The property ‘good tail
behaviour for a class of integrals of decoupled U -statistics’ with the above choice will
be useful for us for the following reason.

We shall consider the expression introduced in formula (11.9), which is some sort
of linear combination of decoupled U -statistics, and want to bound the inner sums at
the right-hand side of this expression. More explicitly, we consider those inner sum
terms for which m(v) = l ≥ 1, i.e. for which the original sample elements are replaced
by their independent copies in l ≥ 1 coordinates. We want to calculate the conditional
variance of such sums under the condition that the values of the elements of the original
sample are prescribed. The property of good tail behaviour for a class of integrals of
decoupled U -statistics helps us in getting a good estimate for these expressions. If we
want to bound the conditional variance of such an inner sum where the original sample
elements are replaced in l coordinates, then the application of the property of good tail
behaviour for a class of integrals of U -statistics with k − l instead of k parameters and
with the choice (Y,Y, ρ) = (X l,X l, µl) will be useful. By applying this property with
such a choice together with the canonical property of the function f(x1, . . . , xk) we shall
work with we can prove the estimate we need.

Let me also remark that the estimate (13.5) we have imposed in the definition
of the property of ‘good tail behaviour for a class of integrals of U -statistics’ is fairly
natural. We have applied the natural normalization, and with such a normalization it is
natural to expect that the distribution of sup

f∈F
n−kHn,k(f) behaves similarly to that of

const.
(

ση2
)k
, where η is a standard normal random variables. Formula (13.5) expresses

such a behaviour, only the power of the number A in the exponent at the right-hand
side was chosen in a non-optimal way.

Naturally, we want to prove the property of good tail behaviour for a class of
integrals of decoupled U -statistics under appropriate, not too restrictive conditions.
Let me remark that in the conditions of Proposition 13.3 we want to prove we have
imposed besides formula (13.6) a fairly weak condition (13.7). Most difficulties arise
in the proof because we want to work with this condition. Here we did not demand
that the L2-norm of the functions f(x1, . . . , xk, y) should be small for all parameters y.
We only assumed that some average of these L2-norms expressed in formula (13.7) are
small. Now I formulate the definition of the properties we shall work with.

Definition of good tail behaviour for a class of decoupled U-statistics. Let us
have some measurable space (X,X ) and a probability measure µ on it. Let us consider
some class F of functions f(x1, . . . , xk) on the k-fold product (Xk,X k) of the space
(X,X ). Fix some positive integer n ≥ k and positive number 0 < σ ≤ 1, and take k

independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of independent µ-distributed

random variables ξ1, . . . , ξn. Let us introduce with the help of these random variables
the decoupled U -statistics Īn,k(f), f ∈ F , defined in formula (10.5). Given some real
number T > 0 we say that the set of decoupled U -statistics determined by the class of
functions F has a good tail behaviour at level T (with parameters n and σ2 which we
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fix in the sequel) if the inequality holds:

P

(

sup
f∈F

|n−k/2Īn,k(f)| ≥ Ank/2σk+1

)

≤ exp
{

−A1/2knσ2
}

for all A > T. (13.3)

We shall also introduce the following property:

Definition of good tail behaviour for a class of integrals of decoupled U-
statistics. Let us have a product space (Xk × Y,X k × Y) with some product measure
µk×ρ, where (Xk,X k, µk) is the k-fold product of some probability space (X,X , µ), and
(Y,Y, ρ) is some other probability space. Fix some positive integer n ≥ k and positive
number σ > 0, and consider some class F of functions f(x1, . . . , xk, y) on the product

space (Xk × Y,X k × Y, µk × ρ). Take k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k,

of a sequence of independent, µ-distributed random variables ξ1, . . . , ξn. For all f ∈ F
and y ∈ Y let us define the decoupled U -statistics Īn,k(f, y) = Īn,k(fy) by means of

these random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, the kernel function fy(x1, . . . , xk) =

f(x1, . . . , xk, y) and formula (10.5). Define with the help of these U -statistics Īn,k(f, y)
the random integrals

Hn,k(f) =

∫

Īn,k(f, y)
2ρ( dy), f ∈ F . (13.4)

Choose some real number T > 0. We say that the set of random integrals Hn,k(f),
f ∈ F , have a good tail behaviour at level T (with parameters n and σ2 which we fix in
the sequel) if

P

(

sup
f∈F

n−kHn,k(f) ≥ A2nkσ2k+2

)

≤ exp
{

−A1/(2k+1)nσ2
}

for A > T. (13.5)

Now I formulate those two inductive statements in Propositions 13.2 and 13.3
which imply that the above introduced properties of good tail behaviour for a class
of decoupled U -statistics and good tail behaviour for a class of integrals of decoupled
U -statistics hold under fairly general conditions. Proposition 12.2′ can be obtained as
a relatively simple consequence of these results.

Proposition 13.2. Let us fix a positive integer n ≥ k, a real number 0 < σ ≤
2−(k+1) and a probability measure µ on a measurable space (X,X ) together with a
countable L2-dense class F of canonical kernel functions f = f(x1, . . . , xk) (with re-
spect to the measure µ) on the k-fold product space (Xk,X k) which has exponent L ≥ 1
and parameter D. Let us also assume that all functions f ∈ F satisfy the condi-
tions sup

xj∈X,1≤j≤k
|f(x1, . . . , xk)| ≤ 2−(k+1),

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2,

and nσ2 > K(L + β) log n with an appropriately chosen fixed number K = K(k) with

β = max
(

logD
logn , 0

)

.
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There exists some real number A0 = A0(k) > 1 such that if all classes of functions
F satisfying the above conditions the sets of decoupled U -statistics determined Īn,k(f),
f ∈ F , have a good tail behaviour at level T 4/3 for some T ≥ A0, then they also have a
good tail behaviour at level T .

Proposition 13.3. Fix some positive integer n ≥ k and real number 0 < σ ≤ 2−(k+1),
and let us have a product space (Xk×Y,X k×Y) with some product measure µk×ρ, where
(Xk,X k, µk) is the k-fold product of some probability space (X,X , µ), and (Y,Y, ρ) is
some other probability space. Let us have a countable L2-dense class F of canonical
functions f(x1, . . . , xk, y) on the product space (Xk × Y,X k × Y, µk × ρ) with some
exponent L ≥ 1 and parameter D. Let us also assume that the functions f ∈ F satisfy
the conditions

sup
xj∈X,1≤j≤k,y∈Y

|f(x1, . . . , xk, y)| ≤ 2−(k+1) (13.6)

and
∫

f2(x1, . . . , xk, y)µ( dx1) . . . µ( dxk)ρ( dy) ≤ σ2 for all f ∈ F . (13.7)

Let the inequality nσ2 > K(L + β) log n hold with a sufficiently large, appropriately

chosen number K = K(k) and β = max
(

logD
logn , 0

)

.

There exists some number A0 = A0(k) > 1 such that if for all classes of functions
F which satisfy the above conditions the random integrals Hn,k(f), f ∈ F , defined in
(13.4) have a good tail behaviour at level T (2k+1)/2k with some T ≥ A0, then they also
have a good tail behaviour at level T .

Remark: In the conditions of Proposition 13.3 the notion of canonical functions appeared
in a slightly more general form than it was defined in formula (8.8). We say that a
function f(x1, . . . , xk, y) on the product space (Xk × Y,X k × Y, µk × ρ) is canonical if

∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk, y)µ( du) = 0

for all 1 ≤ j ≤ k, xs ∈ X, s 6= j and y ∈ Y

and
∫

f(x1, . . . , xk, y)ρ( dy) = 0 for all xj ∈ X, 1 ≤ j ≤ k.

It is not difficult to deduce Proposition 12.2′ from Proposition 13.2. Indeed, let
us observe that the set of decoupled U -statistics determined by a class of functions F
satisfying the conditions of Proposition 13.2 has a good tail-behaviour at level T0 =
σ−(k+1), since under the conditions of this Proposition the probability at the left-hand
side of (13.3) equals zero for A > σ−(k+1). Then we get from Proposition 13.2 by
induction with respect to the number j, that this set of decoupled U -statistics has

a good tail-behaviour also for all T ≥ T
(3/4)j

0 = σ−(k+1)(3/4)j for j = 0, 1, 2, . . . if

σ−(k+1)(3/4)j ≥ A0. (Observe that σ < 1 under the conditions of Proposition 13.2,
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since σ2 ≤ 2−2(k+1) in this case.) This implies that if a class of functions F satisfies
the conditions of Proposition 13.2, then the set of decoupled U -statistics determined

by this class of functions has a good tail-behaviour at level T = A
4/3
0 , i.e. at a level

which depends only on the order k of the decoupled U -statistics. This result implies
Proposition 12.2′, only we have to apply it not directly for the class of functions F
appearing in it, but these functions have to be multiplied by a sufficiently small positive
number depending only on k.

Similarly to the above argument an inductive procedure yields a corollary of Propo-
sition 13.3 formulated below. Actually, we shall need this corollary of Proposition 13.3.

Corollary of Proposition 13.3. If the class of functions F satisfies the conditions
of Proposition 13.3, then there exists a constant Ā0 = Ā0(k) > 0 depending only on k
such that the class of integrals Hn,k(f), f ∈ F defined in formula (13.4) have a good
tail behaviour at level Ā0.

The main difficulty in the proof of Proposition 13.2 appears as we try to apply the
symmetrization procedure corresponding to Lemma 7.2 in the one-variate case. This
difficulty can be overcome by means of Proposition 13.3, more precisely its corollary.
It helps us to estimate the conditional variances of the decoupled U -statistics we have
to handle in the proof of Proposition 13.2. The proof of Propositions 13.2 and 13.3
apply similar arguments, and they will be proved simultaneously. These results will
be proved by means of the following inductive procedure. First Propositions 13.2 and
then Proposition 13.3 are proved for k = 1. If Propositions 13.2 and 13.3 are already
proved for all k′ < k for some number k, then first we prove Proposition 13.2 and then
Proposition 13.3 for this number k.

14. A symmetrization argument

The proof of Propositions 13.2 and 13.3 apply similar ideas to the proof of Proposi-
tion 6.2, but here some additional technical difficulties have to be overcome. As a first
step we prove two results formulated in Lemma 14.1A and 14.1B. They can be con-
sidered as a symmetrization argument analogous to Lemma 7.2 applied in the proof of
Propositions 6.2. Lemma 14.1A will be needed in the proof of Proposition 13.2 and
Lemma 14.1B in the proof of Proposition 13.3. This section contains the proof of these
results.

Lemma 14.1A is a natural multivariate version of Lemma 7.2. In this result the
probability we want to estimate in Proposition 13.2 is bounded by means of the distri-
bution of the supremum of homogeneous polynomials of Rademacher functions of order
k (the order of the decoupled U -statistic we investigate), and such an expression can be
investigated similarly to the proof of Proposition 6.2 by means of the multi-dimensional
version of Hoeffding’s inequality given in Theorem 12.3. The case of Lemma 14.1B is
more complicated. The probability we want to investigate in Proposition 13.3 will be
bounded by the distribution of the supremum of some random variables W̄ (f), f ∈ F ,
which will be defined in formula (14.8). The expressions W̄ (f) are squares of random
polynomials of Rademacher functions. It is useful to study them more closely. This
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will be done in the proof of corollary of Lemma 14.1B which yields a more appropriate
bound for the expression we want to estimate in Proposition 13.3. We shall apply this
corollary in the sequel.

The proof of Lemmas 14.1A and 14.1B is similar to that of Lemma 7.2. First we

introduce an independent copy ξ̄
(j)
n , . . . , ξ̄

(j)
n of the k sequences ξ

(j)
n , . . . , ξ

(j)
n , 1 ≤ j ≤ k,

and construct with their help some appropriate expressions which have the same dis-
tribution as the randomized sums we shall work with in the proof of Lemmas 14.1A
and 14.1B. This statement will be formulated and proved in Lemmas 14.2A and 14.2B.
These results enable us to reduce the problems we are interested in to some simpler ques-
tions which can be studied with the help of Lemmas 14.3A and 14.3B. In Lemma 14.3A
the conditional variance of a random variable is estimated under some appropriate con-
ditions. This estimate together with the generalized form of the Symmetrization Lemma
enable us to prove Lemma 14.1A. Lemma 14.1B can be proved similarly, but here we
need an estimate about the conditional distribution of a more complicated expression.
This estimate can be proved with the help of Lemma 14.3B. In Lemma 14.3B the con-
ditional expectation of the absolute value of an appropriate expression is bounded.

Now we formulate the main results of this section.

Lemma 14.1A. Let F be a class of functions on the space (Xk,X k) which satisfies the
conditions of Proposition 13.2 with some probability measure µ. Let us have k indepen-

dent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed random

variables ξ1, . . . , ξn, and a sequence of independent random variables ε = (ε1, . . . , εn),
P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is independent also of the random

sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. Consider the decoupled U -statistics Īn,k(f), f ∈ F ,

defined with the help of these random variables by formula (10.5) together with their
randomized version

Īεn,k(f) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)

, f ∈ F . (14.1)

Then there exists some constant A0 = A0(k) > 0 such that the inequality

P

(

sup
f∈F

n−k/2
∣

∣Īn,k(f)
∣

∣ > Ank/2σk+1

)

< 2k+1P

(

sup
f∈F

∣

∣Īεn,k(f)
∣

∣ > 2−(k+1)Ankσk+1

)

+ 2knk−1e−A1/(2k−1)nσ2/k

(14.2)
holds for all A ≥ A0.

To formulate Lemma 14.1B first we have to introduce some new quantities. We
introduce them, because we want to adapt the symmetrization argument of Lemma 11.5
to the case when we work with a function f(x1, . . . , xk, y) depending on a parameter y,
and we have to introduce some new notions in this new situation. Some of the quantities
introduced below will be used somewhat later. The quantities ĪVn,k(f, y) introduced in
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(14.3) will depend on the sets V ⊂ {1, . . . , k}, and they are the natural adaptations of
the inner sum terms in formula (14.9). Such expressions are needed when we want to
formulate that version of the symmetrization result of Lemma 11.5 which is needed in

the proof of Proposition 13.3. Their randomizations Ī
(V,ε)
n,k (f, y), introduced in formula

(14.6), correspond to the inner sum terms in formula (11.9′). We also introduce the
integrals of these expressions in formulas (14.4) and (14.7).

Let us consider a class F of functions f(x1, . . . , xk, y) ∈ F on a space (Xk×Y,X k×
Y, µk×ρ) which satisfies the conditions of Proposition 13.3. Let us take 2k independent

copies ξ
(j)
1 , . . . , ξ

(j)
n , ξ̄

(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed

random variables ξ1, . . . , ξk together with a sequence of independent random variables
(ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent

of the previous random sequences. Let us introduce the notation ξ
(j,1)
l = ξ

(j)
l and

ξ
(j,−1)
l = ξ̄

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k. For all subsets V ⊂ {1, . . . , k} of the set {1, . . . , k}

let |V | denote the cardinality of this set, and define for all functions f(x1, . . . , xk, y) ∈ F
and V ⊂ {1, . . . , k} the decoupled U -statistics

ĪVn,k(f, y) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f
(

ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y
)

, (14.3)

where δj = ±1, 1 ≤ j ≤ k, δj = 1 if j ∈ V , and δj = −1 if j /∈ V , together with the
random variables

HV
n,k(f) =

∫

ĪVn,k(f, y)
2ρ( dy), f ∈ F . (14.4)

Put
Īn,k(f, y) = Ī

{1,...,k}
n,k (f, y), Hn,k(f) = H

{1,...,k}
n,k (f), (14.5)

i.e. Īn,k(f, y) and Hn,k(f) are the random variables ĪVn,k(f, y) and HV
n,k(f) with V =

{1, . . . , k} which means that these expressions are defined with the help of the random

variables ξ
(j,1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n.

Let us also define the ‘randomized version’ of the random variables ĪVn,k(f, y) and

HV
n,k(f) as

Ī
(V,ε)
n,k (f, y) =

1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y
)

, f ∈ F , (14.6)

and

H
(V,ε)
n,k (f) =

∫

Ī
(V,ε)
n,k (f, y)2ρ( dy), f ∈ F , (14.7)

where δj = 1 if j ∈ V , and δj = −1 if j ∈ {1, . . . , k} \ V .

Let us also introduce the random variables

W̄ (f) =

∫





∑

V⊂{1,...,k}
(−1)|V |Ī(V,ε)n,k (f, y)





2

ρ( dy), f ∈ F (14.8)
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With the help of the above notations we can formulate Lemma 14.1B.

Lemma 14.1B. Let F be a set of functions on (Xk × Y,X k × Y) which satisfies the
conditions of Proposition 13.3 with some probability measure µk × ρ. Let us have 2k
independent copies ξj,±1

1 , . . . , ξj,±1
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed

random variables ξ1, . . . , ξn together with a sequence of independent random variables
ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, which is independent also of the
previously considered sequences.

Then there exists some constant A0 = A0(k) > 0 such that if the integrals Hn,k(f),
f ∈ F , determined by this class of functions F have a good tail behaviour at level
T (2k+1)/2k for some T ≥ A0, (this property was defined in Section 13 in the definition of
good tail behaviour for a class of integrals of decoupled U -statistics), then the inequality

P

(

sup
f∈F

|Hn,k(f)| > A2n2kσ2(k+1)

)

< 2P

(

sup
f∈F

∣

∣W̄ (f)
∣

∣ >
A2

2
n2kσ2(k+1)

)

+ 22k+1nk−1e−A1/2knσ2/k

(14.9)

holds with the random variables Hn,k(f) introduced in the second identity of relation
(14.5) and with W̄ (f) defined in formula(14.8) for all A ≥ T .

We formulate a corollary of Lemma 14.1B which can be better applied than the
original lemma. The inconvenience in Lemma 14.B arises, because at the right-hand
side of formula (14.9) we have a probability depending on sup

f∈F
|W̄ (f)|, and W̄ (f) is a too

complicated expression. It equals the integral of the square of homogeneous polynomials
of Rademacher functions (with random coefficients) depending on a parameter y with
respect to this parameter. We have to understand better the structure of W̄ (f). Hence
we shall rewrite it by means of relations (14.10) and (14.11) in a somewhat complicated,
but more explicit form. These formulas enable us to find such a corollary of Lemma 14.B
which is more appropriate for us. To work out the details first we introduce some
diagrams.

Let G = G(k) denote the set of all diagrams consisting of two rows, such that each
row is the set {1, . . . , k}, and the diagrams of G contain some edges {(j1, j′1) . . . , (js, j′s)},
0 ≤ s ≤ k, connecting some point (vertex) of the first row with some point (vertex) of
the second row. The vertices j1, . . . , js which are end points of some edge in the first
row are all different, and the same relation holds also for the vertices j′1, . . . , j

′
s in the

second row. Given some diagram G ∈ G let e(G) = {(j1, j′1) . . . , (js, j′s)} denote the set
of its edges, and let v1(G) = {j1, . . . , js} be the set of those vertices in the first row and
v2(G) = {j′1, . . . , j′s} the set of those vertices in the second row of the diagram G from
which an edge of G starts.

Given some diagram G ∈ G and two sets V1, V2 ⊂ {1, . . . , k}, we define with

the help of the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, and

ε = (ε1, . . . , εn) taking part in the definition of the random variables W̄ (f) the following
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random variables Hn,k(f |G,V1, V2):

Hn,k(f |G,V1, V2) =
∑

l1,...,lk, l
′
1,...,l

′
k

1≤lj≤n, lj 6=lj′ if j 6=j′, 1≤j,j′≤k,

1≤l′j≤n, l′j 6=l′
j′

if j 6=j′, 1≤j,j′≤k,

lj=l′
j′

if (j,j′)∈e(G), lj 6=l′
j′

if (j,j′)/∈e(G)

∏

j∈{1,...,k}\v1(G)

εlj
∏

j∈{1,...,k}\v2(G)

εl′
j

1

k!2

∫

f(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)f(ξ
(1,δ̄1)
l′1

, . . . , ξ
(k,δ̄k)
l′
k

, y)ρ( dy)

(14.10)
where δj = 1 if j ∈ V1, δj = −1 if j /∈ V1, and δ̄j = 1 if j ∈ V2, δ̄j = −1 if j /∈ V2. (Let
us observe that if the graph G contains s edges, then the product of the ε-s in (14.10)
contains 2(k − s) terms and the number of terms in the sum (14.10) is of order n2k−s.)
As the Corollary of Proposition 14.1B will indicate in the proof of Proposition 13.3
the expression Hn,k(f |G,V1, V2) has to be estimated. This can be done by means of
Theorem 12.3, the multivariate version of Hoeffding’s inequality. But the estimate we
get in such a way has to be rewritten in a form appropriate for our inductive procedure.
This will be done in the next section.

We shall prove that the identity

W̄ (f) =
∑

G∈G, V1,V2⊂{1,...,k}
(−1)|V1|+|V2|Hn,k(f |G,V1, V2) (14.11)

holds.

To prove this identity let us write first

W̄ (f) =
∑

V1,V2⊂{1,...,k}
(−1)|V1|+|V2|

∫

Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y)ρ( dy).

Then let us express the products Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y) by means of formula (14.6). Let

us rewrite this product as a sum of products of the form 1
k!2

k
∏

j=1

εljf(· · · )
k
∏

j=1

εl′
j
f(· · · )

and let us define the following partition of the terms in this sum. The elements of this
partition are indexed by the diagrams G ∈ G, and if we take a diagram G ∈ G with
the set of edges e(G) = {(j1, j′1), . . . , (js, j′s)}, then the term of this sum determined by
the indices l1, . . . , lk, l

′
1, . . . , l

′
k belongs to the element of the partition indexed by this

diagram G if and only if lju = l′j′u for all 1 ≤ u ≤ s, and no more numbers between the

indices l1, . . . , lk, l
′
1 . . . , l

′
k may agree. Since εlju εl′j′u

= 1 for all 1 ≤ u ≤ s and all other

εlj and εl′
j
are different for a term of the sum in the element of the partition indexed by

the diagram G we get by integrating the product Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y) with respect

to the measure ρ that
∫

Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y)ρ( dy) =

∑

G∈G
Hn,k(f |G,V1, V2)
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for all V1, V2 ∈ {1, . . . , k}. The last two relations imply formula (14.11).

Since the number of terms in the sum of formula (14.11) is less than 24kk!, this
relation implies that Lemma 14.1B has the following corollary:

Corollary of Lemma 14.1B. Let a set of functions F satisfy the conditions of Propo-
sition 13.3. Then there exists some constant A0 = A0(k) > 0 such that if the integrals
Hn,k(f), f ∈ F , determined by this class of functions F have a good tail behaviour at
level T (2k+1)/2k for some T ≥ A0, then the inequality

P

(

sup
f∈F

|Hn,k(f)| > A2nkσ2(k+1)

)

≤ 2
∑

G∈G, V1,V2⊂{1,...,k}
P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
nkσ2(k+1)

)

+ 22k+1nk−1e−A1/2knσ2/k

(14.12)
holds with the random variables Hn,k(f) and Hn,k(f |G,V1, V2) defined in formulas
(14.5) and (14.10) for all A ≥ T .

In the proof of Lemmas 14.1A and 14.1B we apply the result of the following
Lemmas 14.2A and 14.2B.

Lemma 14.2A. Let us take 2k independent copies

ξ
(j,1)
1 , . . . , ξ(j,1)n and ξ

(j,−1)
1 , . . . , ξ(j,−1)

n , 1 ≤ j ≤ k,

of a sequence of independent µ distributed random variables ξ1, . . . , ξk together with a
sequence of independent random variables (ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 ,
1 ≤ l ≤ n, which is also independent of the previous sequences.

Let F be a class of functions which satisfies the conditions of Proposition 13.2.
Introduce with the help of the above random variables for all sets V ⊂ {1, . . . , k} and
functions f ∈ F the decoupled U -statistic

ĪVn,k(f) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f
(

ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

)

(14.13)

and its ‘randomized version’

Ī
(V,ε)
n,k (f) =

1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

)

, f ∈ F , (14.13′)

where δj = ±1, and δj = 1 if j ∈ V , and δj = −1 if j ∈ {1, . . . , k} \ V .
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Then the sets of random variables

S(f) =
∑

V⊂{1,...,k}
(−1)|V |ĪVn,k(f), f ∈ F (14.14)

and
S̄(f) =

∑

V⊂{1,...,k}
(−1)|V |Ī(V,ε)n,k (f), f ∈ F (14.14′)

have the same joint distribution.

Lemma 14.2B. Let us take 2k independent copies

ξ
(j,1)
1 , . . . , ξ(j,1)n and ξ

(j,−1)
1 , . . . , ξ(j,−1)

n , 1 ≤ j ≤ k,

of a sequence of independent µ distributed random variables ξ1, . . . , ξk together with a
sequence of independent random variables (ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 ,
1 ≤ l ≤ n, which is also independent of the previous sequences. Let F be a class of
functions of k variables satisfying the conditions of Proposition 13.3. For all functions
f ∈ F and V ∈ {1, . . . , k} consider the decoupled U -statistics ĪVn,k(f, y) defined by for-

mula (14.3) with the help of the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n ,

and define with their help the random variables

W (f) =

∫





∑

V⊂{1,...,k}
(−1)|V |ĪVn,k(f, y)





2

ρ( dy), f ∈ F . (14.15)

Then the random vectors {W (f) : f ∈ F} defined in (14.15) and {W̄ (f) : f ∈ F} defined
in (14.8) have the same distribution.

Proof of Lemmas 14.2A and 14.2B. Lemma 14.2A agrees actually with the already
proved result Lemma 11.5, only the notation is different. The proof of Lemma 14.2B is
also similar to the proof of 11.5. We can state that even the following stronger state-
ment holds. For any ±1 sequence (u1, . . . , un) of length n the conditional distribution
of the random field W̄ (f), f ∈ F , under the condition (ε1, . . . , εn) = (u1, . . . , un) agrees
with the distribution of the random field W (f), f ∈ F . To see this relation let us first
observe that the conditional distribution of the field W̄ (f) under this condition agrees
with the distribution of the random field we get by replacing the random variables εl
by ul for all 1 ≤ l ≤ n in formulas (14.6) and (14.8). Besides, we get by replacing

the vectors (ξ
(j,1)
l , ξ

(j,−1)
l ) by (ξ

(j,−1)
l , ξ

(j,1)
l ) for those indices (j, l) for which u(l) = −1

(independently of the value of the parameter j) and not modifying these vectors with
coordinates (l, j) such that u(l) = 1 a measure preserving transformation of the distribu-

tion of the random vector consisting of the random variables (ξ
(j,1)
l , ξ

(j,−1)
l ), 1 ≤ l ≤ n,

1 ≤ j ≤ k, and this implies that also the distribution of the field W (f), f ∈ F , agrees
with the distribution of the field we obtain by carrying out the above transformation in
the elements of the field W (f), f ∈ F . These facts imply Lemma 14.2B.
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Now we formulate and prove Lemma 14.3A.

Lemma 14.3A. Let us consider a class of functions F satisfying the conditions of
Proposition 13.2 with parameter k, and the random variables ĪVn,k(f), f ∈ F , V ⊂
{1, . . . , k}, defined in formula (14.1). Let B = B(ξ(j,1)1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤ k) denote

the σ-algebra generated by the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k, i.e. by

the random sequences with second coordinate 1 in their upper index taking part in the
definition of the random variables ĪVn,k(f). For all V ∈ {1, . . . , k}, V 6= {1, . . . , k}, there
exists a number A0 = A0(k) > 0 such that the inequality

P

(

sup
f∈F

E
(

ĪVn,k(f)
2
∣

∣B
)

> 2−(3k+3)A2n2kσ2k+2

)

< nk−1e−A1/(2k−1)nσ2/k. (14.16)

holds for all A ≥ A0.

Proof of Lemma 14.3A. Let us first consider the case V = ∅. In this case we can

write E
(

Ī∅n,k(f)
2
∣

∣

∣B
)

= E
(

Ī∅n,k(f)
2
)

≤ nk

k! σ
2 ≤ n2kσ2k+2 for all f ∈ F . In the above

calculation we have exploited that the functions f ∈ F are canonical, and this implies
certain orthogonalities, and also the inequality nσ2 ≥ 1 holds. The above relation
implies that for V = ∅ the probability at the left-hand side of (14.16) equals zero if the
number A0 is chosen sufficiently large, i.e. the inequality (14.16) holds in this case.

To avoid some complications in the notation let us first restrict our attention to
sets of the form V = {1, . . . , u} with some 1 ≤ u < k, and prove relation (14.16) for
such sets. For this goal let us introduce the random variables

ĪVn,k(f, lu+1, . . . , lk) =
1

k!

∑

1≤lj≤n, j=1,...,u

lj 6=lj′ if j 6=j′

f
(

ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

)

for all f ∈ F , i.e. we fix the last k−u coordinates ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

of the random

variable ĪVn,k(f) and sum up with respect the first u coordinates. Then we can write

E
(

ĪVn,k(f)
2
∣

∣B
)

= E





















∑

1≤lj≤n j=u+1,...,k

lj 6=lj′ if j 6=j′

ĪVn,k(f, lu+1, . . . , lk)











2∣
∣

∣

∣

∣

∣

∣

∣

∣

B











=
∑

1≤lj≤n j=u+1,...,k

lj 6=lj′ if j 6=j′

E
(

ĪVn,k(f, lu+1, . . . , lk)
2
∣

∣B
)

.

(14.17)

The last relation follows from the identity

E
(

ĪVn,k(f, lu+1, . . . , lk)Ī
V
n,k(f, l

′
u+1, . . . , l

′
k)
∣

∣B
)

= 0
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if (lu+1, . . . , lk) 6= (l′u+1, . . . , l
′
k), which relation holds, since f is a canonical function.

It follows from relation (14.17) that

{

ω : sup
f∈F

E
(

ĪVn,k(f)
2
∣

∣B
)

(ω) > 2−(3k+3)A2n2kσ2k+2

}

⊂
⋃

1≤lj≤n j=u+1,...,k

lj 6=lj′ if j 6=j′

{

ω : sup
f∈F

E
(

ĪVn,k(f, lu+1, . . . , lk)
2
∣

∣B
)

(ω) >
A2n2kσ2k+2

2(3k+3)nk−u

}

.

(14.18)
The probability of the events in the union at the right-hand side of (14.18) can be
estimated with the help of the corollary of Proposition 13.3 with parameter u < k
instead of k. (We may assume that Proposition 13.3 holds for u < k.) We claim that
this corollary yields that

P

(

sup
f∈F

E
(

ĪVn,k(f, lu+1, . . . , lk)
2
∣

∣B
)

>
A2nk+uσ2k+2

2(3k+3)

)

≤ e−A1/(2u+1)(n−u)σ2

. (14.19)

Indeed, introduce the space (Y,Y, ρ) = (Xk−u,X k−u, µk−u), the k−u-fold power of the
measure space (X,X , µ), and for the sake of simpler notations write y = (xu+1, . . . , xk)
for a point y ∈ Y . Let us consider a class of functions f ∈ F which satisfies the
conditions of Proposition 13.2 and let us prove for it relation (14.16). Let us introduce
for this goal the class of those function F̄ on the space (Xu × Y,X u ×Y, µu × ρ) which
can be written in the form f̄(x1, . . . , xu, y) = f(x1, . . . , xk) with y = (xu+1, . . . , xk) and
some function f(x1, . . . , xk) ∈ F . The class of functions F̄ satisfies the conditions of
Proposition 13.3 with parameter u < k, hence we may apply by our inductive hypothesis
the Corollary of Proposition 13.3 for this class of functions. We shall apply this Corollary
for decoupled U -statistics with sample size n−u which is defined with the u independent

sequences of independent µ-distributed random variables we define as ξ
(j,1)
l , 1 ≤ j ≤ u,

l ∈ {1, . . . , n}\{lu+1, . . . , lk} where the set of numbers {lu+1, . . . , lk} is the set of indices
appearing in formula (14.19). With such a choice we get that

P

(

sup
f̄∈F̄

(n− u)−uHn−u,u(f̄) ≥ A2(n− u)uσ2u+2

)

≤ e−A1/(2u+1)(n−u)σ2

for A > A0(u),

(14.20)

where

Hn−u,u(f̄) =

∫

In,u(f̄ , y)
2ρ( dy) =

k!

u!
E
(

ĪVn,k(f, lu+1, . . . , lk)
2|B
)

(14.21)

with the function f ∈ F for which the identity f̄(x1, . . . , xu, y) = f(x1, . . . , xk) holds
with y = (xu+1, . . . , xk).

100



It is not difficult to deduce formula (14.19) from relations (14.20) and (14.21). It is

enough to replace the level A2nk+uσ2k+2

2(3k+3) in the probability at the left-hand side of (14.19)

by A2(n− u)2uσ2u+2 < A2nk+uσ2k+2

2(3k+3) . The last inequality really holds if the constant K
in the condition nσ2 > K log n in Proposition 13.2 is chosen sufficiently large.

Relations (14.18) and (14.19) imply that

P

(

sup
f∈F

E
(

ĪVn,k(f)
2
∣

∣B
)

(ω) > 2−(3k+3)A2n2kσ2k+2

)

≤ nk−ue−A1/(2u+1)(n−u)σ2

.

Since e−A1/(2u+1)(n−u)σ2 ≤ e−A1/(2k−1)nσ2/k if u ≤ k − 1 and n ≥ k inequality (14.16)
holds for a set V of the form V = {1, . . . , u}, 1 ≤ u < k.

The case of a general set V ⊂ {1, . . . , k}, 1 ≤ |V | < k, can be handled similarly,
only the notation becomes more complicated. Moreover, the case of general sets V can
be reduced to the case of sets of form we have already considered. Indeed, given some set
V ⊂ {1, . . . , k}, 1 ≤ |V | < k, let us define a new class of function FV we get by applying
a rearrangement of the indices of the arguments x1, . . . , xk of the functions f ∈ F in
such a way that the arguments indexed by the set V are the first |V | arguments of the
functions fV ∈ FV , and put V̄ = {1, . . . , |V |}. Then the class of functions FV also
satisfies the condition of Proposition 13.2, and we can get relation (14.16) with the set
V by applying it for the set of function FV and set V̄ .

Now we prove Lemma 14.1A. It will be proved with the help of Lemma 14.2A, the
generalized symmetrization lemma 13.1 and Lemma 14.3A.

Proof of Lemma 14.1A.We show with the help of the generalized symmetrization lemma,
Lemma 13.1, and Lemma 14.3A that

P

(

sup
f∈F

n−k/2
∣

∣Īn,k(f)
∣

∣ > Ank/2σk+1

)

< 2P

(

sup
f∈F

|S(f)| > A

2
nkσk+1

)

+ 2knk−1e−A1/(2k−1)nσ2/k

(14.22)

with the function S(f) defined in (14.14). To prove relation (14.22) introduce the

random variables Z(f) = I
{1,...,k}
n,k (f) and Z̄(f) = − ∑

V⊂{1,...,k}, V 6={1,...,k}
(−1)|V |ĪVn,k(f)

for all f ∈ F , the σ-algebra B considered in Lemma 14.3A and the set

B =
⋂

V⊂{1,...,k}
V 6={1,...,k}

{

ω : sup
f∈F

E
(

ĪVn,k(f)
2
∣

∣B
)

(ω) ≤ 2−(3k+3)A2n2kσ2k+2

}

.

Observe that S(f) = Z(f) − Z̄(f), f ∈ F , B ∈ B, and by Lemma 14.3A the

inequality 1− P (B) ≤ 2knk−1e−A1/(2k−1)nσ2/k holds. Hence to prove relation (14.22) it
is enough to apply Lemma 13.1 and to show that

P

(

|Z̄(f)| > A

2
nkσk+1|B

)

(ω) ≤ 1

2
for all f ∈ F if ω ∈ B. (14.23)
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But P
(

Ī
|V |
n,k(f)| > 2−(k+1)Ankσk+1|B

)

(ω) ≤ 2−(k+1) for all functions f ∈ F and sets

V ⊂ {1, . . . , k}, V 6= {1, . . . , k}, if ω ∈ B by the ‘conditional Chebishev inequality’,
hence relations (14.23) and (14.22) hold.

Lemma 14.1A follows from relation (14.22), Lemma 14.2A and the observation that

the random vectors {Ī(V,ε)n,k (f)}, f ∈ F , defined in (14.13′) have the same distribution

for all V ∈ {1, . . . , k} as the random vector Īεn,k(f), defined in formula (14.1). Hence

P

(

sup
f∈F

|S(f)| > A

2
nkσk+1

)

≤ 2kP

(

sup
f∈F

∣

∣Īεn,k(f)
∣

∣ > 2−(k+1)Ankσk+1

)

.

Lemma 14.1A is proved.

Lemma 14.1B will be proved with the help of the following version Lemma 14.3B
of Lemma 14.3A.

Lemma 14.3B. Let us consider a class of functions F satisfying the conditions of
Proposition 13.3 and the random variables ĪVn,k(f, y), f ∈ F , V ⊂ {1, . . . , k}, defined in

formula (14.3). Let B = B(ξ(j,1)1 , . . . , ξ
(j,1)
n ; 1 ≤ j ≤ k) denote the σ-algebra generated

by the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k, i.e. by the random variables with

second argument 1 in their upper index taking part in the definition of the random
variables ĪVn,k(f, y) and H

V
n,k(f) introduced in formulas (14.3) and (14.4).

a) For all V ∈ {1, . . . , k}, V 6= {1, . . . , k}, there exists a number A0 = A0(k) > 0 such
that the inequality

P

(

sup
f∈F

E(HV
n,k(f)|B) > 2−(4k+4)A(2k−1)/kn2kσ2k+2

)

< nk−1e−A1/2knσ2/k.

(14.24)
holds for all A ≥ A0.

b) Given two subsets V1, V1 ⊂ {1, . . . , k} of the set {1, . . . , k} define the integrals of
random expressions

H
(V1,V2)
n,k (f) =

∫

|ĪV1

n,k(f, y)Ī
V2

n,k(f, y)|ρ( dy), f ∈ F , (14.25)

with the help of the functions ĪVn,k(f, y) defined in (14.3). If at least one of the sets
V1 and V2 is not the set {1, . . . , k}, then there exists some number A0 = A0(k) > 0
such that if the integrals Hn,k(f), f ∈ F , determined by this class of functions F
have a good tail behaviour at level T (2k+1)/2k for some T ≥ A0, then the inequality

P

(

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) > 2−(2k+2)A2n2kσ2k+2

)

< 2nk−1e−A1/2knσ2/k (14.26)
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holds for all A ≥ T .

Proof of Lemma 14.3B. Part a) of Lemma 14.3B can be proved in almost the same
way as Lemma 14.3A. Hence I only briefly explain the main step of the proof. In the
case V = ∅ E(HV

n,k(f)|B) = E(HV
n,k(f)), hence it is enough to show that E(HV

n,k(f)) ≤
nkσ2

k! ≤ n2kσ2k+2

k! for all f ∈ F under the conditions of Proposition 13.3. (Here we exploit
in particular that the functions of the class F are canonical.) The case of a general set
V , V 6= ∅ can be reduced to the case V = {1, . . . , u} with some 1 ≤ u < k.

Given a set V = {1, . . . , u} let us define the random variables

ĪVn,k(f, lu+1, . . . , lk, y) =
1

k!

∑

1≤lj≤n, j=1,...,u

lj 6=lj′ if j 6=j′

f
(

ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

, y
)

for all f ∈ F . We can show by exploiting the canonical property of the functions f ∈ F
that

E
(

H̄V
n,k(f)

2
∣

∣B
)

=
∑

1≤lj≤n j=u+1,...,k

lj 6=lj′ if j 6=j′

∫

E
(

ĪVn,k(f, lu+1, . . . , lk, y)
2
∣

∣B
)

ρ( dy),

and the proof of part a) of Lemma 14.3B can be reduced to the inequality

P

(

sup
f∈F

∫

E
(

ĪVn,k(f, lu+1, . . . , lk, y)
2ρ( dy)

∣

∣B
)

>
A(2k−1)/knk+uσ2k+2

2(4k+4)

)

≤ e−A(2k−1)/2(2u+1)k(n−u)σ2

.

This inequality can be proved, similarly to relation (14.19) in the proof of Lemma 14.3A
with the help of the Corollary of Proposition 13.3. Only here we have to work in the
space (Xu × Ȳ ,X u × Ȳ, µu × ρ̄) where Ȳ = Xk−u × Y , Ȳ = X k−u × Y, ρ̄ = µk−u × ρ
with the class of function F so that we identify a function f(x1, . . . , xk, y) ∈ F with
f(x1, . . . , xu, ȳ) = f(x1, . . . , xk, y) so that ȳ = (xu+1, . . . , xk, y). I omit the details.

Part b) of Lemma 14.3B will be proved with the help of Part a) and the inequality

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) ≤

(

sup
f∈F

E(HV1

n,k(f)|B)
)1/2(

sup
f∈F

E(HV2

n,k(f)|B)
)1/2

which follows from the Schwarz inequality applied for integrals with respect to condi-
tional distributions. Let us assume that V1 6= {1, . . . , k}. The last inequality implies
that

P

(

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) > 2−(2k+2)A2n2kσ2k+2

)

≤ P

(

sup
f∈F

E(HV1

n,k(f)|B) > 2−(4k+4)A(2k−1)/kn2kσ2k+2

)

+ P

(

sup
f∈F

E(HV2

n,k(f)|B) > A(2k+1)/kn2kσ2k+2

)
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Hence the estimate (14.24) together with the inequality

P

(

sup
f∈F

E(HV2

n,k(f)|B) > A(2k+1)/kn2kσ2k+2

)

≤ nk−1eA
1/2knσ2

(14.27)

imply relation (14.26). Relation 14.27 follows from Part a) of Lemma 14.3B if V2 6=
{1, . . . , n} and A ≥ A0 with a sufficiently large number A0 (in this case the level
A(2k+1)/kn2kσ2k+2 can be replaced by the larger number 2−(4k+2)A(2k−1)/kn2kσ2k+2 in
the probability of formula (14.27)) and from the conditions of Part b) of Lemma 14.3B
if V2 = {1, . . . , k}. Indeed, in this case we may apply the estimate (13.5) for this
probability, since A(2k+1)/2k ≥ T (2k+1)/2k, and this implies relation (14.27).

Now we turn to the proof of Lemma 14.1B.

Proof of Lemma 14.1B. By Lemma 14.2B it is enough to prove that relation (14.9)
holds if the random variables W̄ (f) are replaced in it by the random variables W (f)
defined in formula (14.15). We shall prove this by applying the generalized form of

the symmetrization lemma, Lemma 13.1 with the choice of Z(f) = H
(V̄ ,V̄ )
n,k (f), V̄ =

{1, . . . , k}, Z̄(f) = W (f) − Z(f), f ∈ F , B = B(ξ(j,1)1 , . . . , ξ
(j,1)
n ; 1 ≤ j ≤ k), and the

set

B =
⋂

(V1,V2) : Vj∈{1,...,k}, j=1,2
V1 6={1,...,k} or V2 6={1,...,k}

{

ω : sup
f∈F

E(H
(V1,V2)
n,k (f)|B)(ω) ≤ 2−(2k+2)A2n2kσ2k+2

}

.

By Lemma 14.3B the inequality 1 − P (B) ≤ 2k+1nk−1eA
1/2knσ2/k holds, and to

prove Lemma 14.1B with the help of Lemma 13.1 it is enough to show that

P

(

|Z̄(f)| > A2

2
n2kσ2(k+1)

∣

∣

∣

∣

B
)

(ω) ≤ 1

2
for all f ∈ F if ω ∈ B.

To prove this relation observe that

E(|Z̄(f)||B) ≤
∑

(V1,V2) : Vj∈{1,...,k}, j=1,2
V1 6={1,...,k} or V2 6={1,...,k}

E(H
(V1,V2)
n,k (f)|B) ≤ A2

4
n2kσ2k+2 if ω ∈ B

for all f ∈ F . Hence the ‘conditional Markov inequality’ implies that

P

(

|Z̄(f)| > A2

2
n2kσ2k+2

∣

∣

∣

∣

B
)

≤ 1

2
if ω ∈ B and f ∈ F .

Lemma 14.1B is proved.
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15. The proof of the main result

In this section we prove Proposition 13.2 and thus complete the proof of the main result
of this work, of Theorem 8.4 or of its equivalent version Theorem 8.2. Proposition 13.2
will be proved with the help of the symmetrization Lemma 14.1A. In the proof of this
symmetrization lemma we have also applied the corollary of Proposition 13.3 (for orders
u < k if we want to prove Proposition 13.2 for decoupled U -statistics of order k.) Hence
to complete the proof of Proposition 13.2 we also have to prove Proposition 13.3. This
section contains the proof of both results. First we prove Proposition 13.2.

A.) The proof of Proposition 13.2.

The proof of Theorem 13.2 is similar to the proof of Proposition 6.2. It applies an induc-
tion procedure with respect to the parameter k. In the proof of Proposition 13.2 for pa-
rameter k we may assume that Propositions 13.2 and 13.3 hold for u < k. In the proof we

want to give a good estimate on the probability P

(

sup
f∈F

∣

∣

∣
Īεn,k(f)

∣

∣

∣
> 2−(k+1)Ankσk+1

)

appearing in the estimate (14.2) of Lemma 14.1A. To estimate this probability we in-
troduce (using the notation of Proposition 13.2) the functions

S2
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) =

1

k!

∑

1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

f2
(

x
(1)
l1
, . . . , x

(k)
lk

)

, f ∈ F ,

(15.1)

with x
(j)
l ∈ X, 1 ≤ l ≤ n, 1 ≤ j ≤ k. Then we estimate the probability we are interested

in with the help of this quantity similarly to the argument applied in the solution of the
corresponding problem in the proof of Proposition 6.2.

Fix some number A > T and define the set H ⊂ Xkn

H = H(A) =

{

(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) :

sup
f∈F

S2
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) > 2kA4/3nkσ2

}

.

(15.2)

We want to show that

P ({ω : (ξ(j)l (ω), 1 ≤ j ≤ n, 1 ≤ j ≤ k) ∈ H}) ≤ 2ke−A2/3knσ2

if A ≥ T. (15.3)

Relation (15.3) will be proved by means of the Hoeffding decomposition (Theo-
rem 9.1) of the U -statistics with kernel functions f2(x1, . . . , xk), f ∈ F , and by the
estimation of the sum this decomposition yields. More explicitly, write (applying for-
mula (9.2) in Theorem 9.1)

f2(x1, . . . , xk) =
∑

V⊂{1,...,k}
fV (xj , j ∈ V ) (15.4)
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with fV (xj , j ∈ V ) =
∏

j /∈V

Pj

∏

j∈V

Qjf
2(x1, . . . , xk), where Pj is the projection defined

in formula (9.1) and Qj = I − Pj is also the same operator as the operator Qj in
formula (9.2).

The functions fV appearing in formula (15.4) are canonical (with respect to the

measure µ), and the identity S2
n,k(f)(ξ

(j)
l 1 ≤ l ≤ n, 1 ≤ j ≤ k) = Īn,k(f

2) holds for all

f ∈ F . By applying the Hoeffding decomposition (15.4) for each term f2(ξ
(1)
l1
. . . , ξ

(k)
lk

)

in the expression In,k(f
2) we get that

P

(

sup
f∈F

S2
n,k(f)(ξ

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) > 2kA4/3nkσ2

)

≤
∑

V⊂{1,...,k}
P

(

|V |!
k!

sup
f∈F

nk−|V ||Īn,|V |(fV )| > A4/3nkσ2

) (15.5)

with the functions fV in (15.4). We want to give a good estimate for all terms in the
sum at the right-hand side in (15.5). For this goal first we show that the classes of
functions {fV : f ∈ F} satisfy the conditions of Proposition 13.2 for all V ⊂ {1, . . . , k}.

The functions fV are canonical for all V ⊂ {1, . . . , k}. It follows from the conditions
of Proposition 13.2 that |f2(x1, . . . , xk)| ≤ 2−2(k+1) and

∫

f4(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ 2−(k+1)σ2.

Hence relations (9.4) and (9.4′) of Theorem 9.2 imply that

∣

∣

∣

∣

∣

sup
xj∈X,j∈V

fV (xj , j ∈ V )

∣

∣

∣

∣

∣

≤

2−(k+2) ≤ 2−(k+1) for all V ⊂ {1, . . . , k} and
∫

f2V (xj , j ∈ V )
∏

j∈V

µ( dxj) ≤ 2−(k+1)σ2 ≤

σ2 for all V ⊂ {1, . . . , k}. Finally, to check that the class of functions FV = {fV : f ∈ F}
is L2-dense with exponent L and parameter D observe that for all probability measures
ρ on (Xk,X k) and pairs of functions f, g ∈ F

∫

(f2 − g2)2 dρ ≤ 2−2k
∫

(f − g)2 dρ.
This implies that if {f1, . . . , fm}, m ≤ Dε−L, is an ε-dense subset of F in the space
L2(X

k,X k, ρ), then the set of functions {2kf21 , . . . , 2kf2m} is an ε-dense subset of the
class of functions F ′ = {2kf2 : f ∈ F}, hence F ′ is also an L2-dense class of functions
with exponent L and parameter D. Then by Theorem 9.2 the class of functions FV is
also L2-dense with exponent L and parameter D for all sets V ⊂ {1, . . . , k}.

For V = ∅, the function fV is constant, fV =
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤
σ2 holds, and I|V |(f|V |)| = fV ≤ σ2. Therefore the term corresponding to V = ∅ in
the sum at the right-hand side of (13.5) equals zero if A0 ≥ 1 in the conditions of
Proposition 13.2. I claim that the terms corresponding to sets V , 1 ≤ |V | ≤ k, in these
sums satisfy the inequality

P

(

sup
f∈F

|Īn,|V |(fV )| > A4/3n|V |σ2

)
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≤ P

(

sup
f∈F

|Īn,|V |(fV )| > A4/3 k!

|V |!n
|V |σ|V |+1

)

≤ e−A2/3knσ2

if 1 ≤ |V | ≤ k.
(15.6)

The first inequality in (15.6) holds, since σ|V |+1 ≤ σ2 for |V | ≥ 1, the second inequal-
ity follows from the inductive hypothesis if |V | < k, since it yields the upper bound

e−(A4/3k!/|V |!)1/2|V |nσ2 ≤ e−A2/3knσ2

if A0 = A0(k) in Proposition 13.2 is sufficiently
large, and in the case V = {1, . . . , k} it follows from the inequality A ≥ T and the as-
sumption that U -statistics determined by a class of functions satisfying the conditions
of Proposition 13.2 have a good tail behaviour at level T 4/3. Relations (15.5) and (15.6)
together with the estimate in the case V = ∅ imply formula (15.3).

By conditioning the probability P
(∣

∣

∣
Īεn,k(f)

∣

∣

∣
> 2−(k+2)Ank/2σk+1

)

with respect to

the random variables ξ
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k we get with the help of the multivariate

version of Hoeffding’s inequality (Theorem 12.3) that

P
(

∣

∣Īεn,k(f)
∣

∣ > 2−(k+2)Ankσk+1
∣

∣

∣ ξ
(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤ C exp







−B
(

A2n2kσ2(k+1)

22k+4S2
n,k(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)/k!

)1/k






(15.7)

≤ Ce−2−3−4/kBA2/3kk!nσ2

for all f ∈ F if (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) /∈ H.

Given some points x
(j)
l ∈ X, 1 ≤ l ≤ n, 1 ≤ j ≤ k, define the probability measures

ρj = ρ
j, (x

(j)

l
, 1≤l≤n)

, 1 ≤ j ≤ k, uniformly distributed on the set x
(j)
l , 1 ≤ l ≤ n, i.e.

let ρj(x
(j)
l ) = 1

n , 1 ≤ l ≤ n. Let us also define the product ρ = ρ1 × · · · × ρk of these
measures. If f is a function on (Xk,X k) such that

∫

f2 dρ ≤ δ2 with some δ > 0, then

|f(x(j)lj
, 1 ≤ j ≤ k)| ≤ δnk/2 for all vectors (l1, . . . , lk), 1 ≤ lj ≤ n, 1 ≤ j ≤ k,

and this implies that P
(∣

∣

∣
Īεn,k(f)

∣

∣

∣
> δn3k/2

∣

∣

∣
ξ
(j)
l = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

= 0 for

such a function f . Take the numbers δ̄ = An−k/22−(k+2)σk+1 and δ = 2−(k+2)n−k−1/2≤
δ̄. (The inequality δ ≤ δ̄ holds, since A ≥ A0 ≥ 1, and σ ≥ n−1/2.) Choose a δ-dense
set {f1, . . . , fm} in the L2(X

k,X k, ρ) space with m ≤ Dδ−L ≤ 2(k+2)Lnβ+(k+1)L/2

elements. Then the above estimates, the δ-dense property of the set of functions
{f1, . . . , fm} in L2(X

k,X k, ρ) and formula (15.7) imply that

P

(

sup
f∈F

∣

∣Īεn,k(f)
∣

∣ > 2−(k+1)Ankσk+1
∣

∣

∣
ξ
(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤
m
∑

s=1

P
(

∣

∣Īεn,k(fs)
∣

∣ > 2−(k+2)Ankσk+1
∣

∣

∣ ξ
(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(15.8)

≤ C2(k+2)Lnβ+(k+1)L/2e−2−3−4/kBA2/3knk!σ2

if {x(j)l , 1 ≤ l ≤ n, 1 ≤ j ≤ k} /∈ H.
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Relations (15.3) and (15.8) imply that

P

(

sup
f∈F

∣

∣Īεn,k(f)
∣

∣ > 2−(k+1)Ankσk+1

)

≤ C2(k+2)Lnβ+(k+1)L/2e−2−3−4/kBA2/3knσ2

+ 2ke−A2/3kk!nσ2

if A ≥ T.

(15.9)

Proposition 13.2 follows from the estimates (14.2) and (15.9) if the constant A0 together
with the constant K in the condition nσ2 ≥ K(L+β) log n are chosen sufficiently large.

In this case these estimates yield an upper bound less than e−A1/2knσ2

for the probability
at the left-hand side of (13.3).

Now we turn to the proof of Proposition 13.3.

B.) The proof of Proposition 13.3.

Because of formula (14.12) in the corollary of Lemma 14.1B to prove Proposition 13.3
i.e. inequality (13.5) it is enough to choose the parameter A0 in Proposition 13.3 for
which A > T ≥ A0 sufficiently large and to show that

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
n2kσ2(k+1)

)

≤ 2k+1e−A1/2knσ2

for all G ∈ G and V1, V2 ∈ {1, . . . , k} if A ≥ A0

(15.10)

with the random variables Hn,k(f |G,V1, V2) defined in formula (14.10). Let us first
prove formula (15.10) in the case when |e(G)| = k, i.e. when all vertices of the diagram
G are end-points of some edge, and the expression Hn,k(f |G,V1, V2) contains no ‘sym-
metryzing term’ εj . In this case we apply a special argument to prove relation (15.10).

If G is such a diagram for which |e(G)| = k, then we can show by means of the
Schwarz inequality that

|Hn,k(f |G,V1, V2)| ≤
1

k!











∑

l1,...,lk, 1≤lj≤n,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1),δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)ρ( dy)











1/2

1

k!











∑

l1,...,lk,1≤lj≤n,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ̄1)
l1

, . . . , ξ
(k,δ̄k)
lk

, y)ρ( dy)











1/2

,

(15.11)
where δj = 1 if j ∈ V1, δj = −1 if j /∈ V1, and δ̄j = 1 if j ∈ V2, δ̄j = −1 if j /∈ V2.
Indeed, in this case the sum of integrals in (14.10) can be rewritten in a natural way
as the integral of the product of two functions on the product space (Ikn × Y, Ik

n ×
Y, λkn × ρ), where In = {1, . . . , n}, In is the σ-algebra of all subsets of In, and λn is the
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counting measure on In. Then the Schwarz inequality for this product yields formula
(15.11). (Observe that the coordinates l1, . . . , lk determine the coordinates l′1, . . . , l

′
k in

the summation (14.10) if |e(G)| = k.)

By formula (15.11)

{

ω : sup
f∈F

|Hn,k(f |G,V1, V2)(ω)| >
A2

24k+1k!
n2kσ2(k+1)

}

⊂



















ω : sup
f∈F

∑

l1,...,lk,1≤lj≤n,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ1)
l1

(ω), . . . , ξ
(k,δk)
lk

(ω), y)ρ( dy) >
A2n2kσ2(k+1)k!

24k+1



















∪



















ω : sup
f∈F

∑

l1,...,lk,1≤lj≤n,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ̄1)
l1

(ω), . . . , ξ
(k,δ̄k)
lk

(ω), y)ρ( dy) >
A2n2kσ2(k+1)k!

24k+1



















,

and

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
n2kσ2(k+1)

)

≤ 2P











sup
f∈F

1

k!

∑

l1,...,lk,1≤lj≤n,

lj 6=lj′ if j 6=j′

hf (ξ
(1,1)
l1

, . . . , ξ
(k,1)
lk

) >
A2n2kσ2(k+1)

24k+1











(15.12)

with the functions hf (x1, . . . , xk) =
∫

f2(x1, . . . , xk, y)ρ( dy), f ∈ F . (In this upper
bound we could get rid of the terms δj and δ̄j , i.e. on the dependence of the expression
Hn,k(f |G,V1, V2) on the sets V1 and V2, since the probability of the events in the previous
formula do not depend on these terms.)

I claim that

P

(

sup
f∈F

|Īn,k(hf )| ≥ Ankσ2

)

≤ 2ke−A1/2knσ2

for A ≥ A0 (15.13)

if the constants A0 and K are chosen sufficiently large in Proposition 13.3. Relation

(15.13) together with the relation An2kσ2(k+1)

24k+1 ≥ nkσ2 imply that the probability at the

right-hand side of (15.12) can be bounded by 2k+1e−A1/2knσ2

, and the estimate (15.10)
holds in the case |e(G)| = k.

Relation (15.13) is similar to relation (15.5), and the proof of the latter formula
helps to carry out the proof in the present case. Indeed, it follows from the conditions
of Proposition 13.3 that 0 ≤

∫

hf (x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2, and it is not
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difficult to check thatsup |hf (x1, . . . , xk)| ≤ 2−2(k+1), and the class of functions H =
{2khf , f ∈ F} is an L2-dense class with exponent L and parameter D. This means
that by applying the Hoeffding decomposition of the functions hf , f ∈ F , similarly to
formula (15.4) we get such sets of functions (hf )V , f ∈ F , for all V ⊂ {1, . . . , k} which
satisfy the conditions of Proposition 13.2. Hence a natural adaptation of the estimate
given for the expression at the right-hand side of (15.5) yields the proof of formula
(15.13). We only have to replace Sn,k(f) by In,k(hf ), In,|V |(fV ) by In,|V |((hf )V ) and

the levels 2kA4/3nkσ2 and A4/3nkσ2 by Ankσ2 and 2−kAnkσ2. Let us observe that
each term of the upper bound we get in such a way can be directly bounded, since our
inductive hypothesis the result of Proposition 13.2 holds also for k.

In the case e(G) < k formula (15.10) will be proved with the help of the multivariate
version of Hoeffding’s inequality, Theorem 12.3. In the proof of this case an expression,
analogous to S2

n,k(f) defined in formula (15.1) will be introduced and estimated for
all sets V1, V2 ⊂ {1, . . . , k} and diagrams G ∈ G such that |e(G)| < k. To define this
expression first some notations will be introduced.

Let us consider the set J0(G) = J0(G, k, n),

J0(G) = {(l1, . . . , lk, l′1, . . . , l′k) : 1 ≤ lj , l
′
j ≤ n, 1 ≤ j ≤ k, lj 6= lj′ if j 6= j′,

l′j 6= l′j′ if j 6= j′, lj = l′j′ if (j, j
′) ∈ e(G), lj 6= l′j′ if (j, j

′) /∈ e(G)},

the set of those sequences (l1, . . . , lk, l
′
1, . . . , l

′
k) which appear as indices in the summation

in formula (14.10). Let us introduce a partition of J0(G) appropriate for our purposes.

For this aim let us first define the sets M1 = M1(G) = {j(1), . . . , j(k − |e(G)|)} =
{1, . . . , k} \ v1(G), j(1) < · · · < j(k − |e(G)|), and M2 = M2(G) = {̄(1), . . . , ̄(k −
|e(G|)} = {1, . . . , k} \ v2(G), ̄(1) < · · · < ̄(k − |e(G|), the sets of those vertices of the
first and second row of the diagram G in increasing order from which no edges start.
Let us also introduce the set V (G) = V (G,n, k),

V (G) = {(lj(1), . . . , lj(k−|e(G)|), l
′
̄(1), . . . , l

′
̄(k−|e(G)|)) : 1 ≤ lj(p), l

′
̄(p) ≤ n,

1 ≤ p ≤ k − |e(G)|, lj(p) 6= lj(p′), l
′
̄(p) 6= l′̄(p′) if p 6= p′, 1 ≤ p, p′ ≤ k − |e(G)|,

lj(p) 6= l′̄(p′), 1 ≤ p, p′ ≤ k − |e(G)|}.

The set V (G) consists of such vectors which can be obtained as the restriction of some
vector (l1, . . . , lk, l

′
1, . . . , l

′
k) ∈ J0(G) to the coordinates indexed by the elements of the set

M1∪M2. The elements of V (G) can be characterized as such vectors, whose coordinates
indexed by the set M1 ∪M2, take different integer values between 1 and n. Given a
vector v ∈ V (G) put v = (v1, v2), and let v1 = {v(r), 1 ≤ r ≤ k − |e(G)|}, and
v2 = {v̄(r), 1 ≤ r ≤ k − |e(G)|}, denote the set of coordinates of v indexed by the
elements of the set M1 and M2 respectively. For all vectors v ∈ V (G) define the set

EG(v) = {(l1, . . . , lk, l′1, . . . , l′k) : 1 ≤ lj ≤ n, 1 ≤ l′̄ ≤ n, for 1 ≤ j, ̄ ≤ k,

lj 6= lj′ if j 6= j′, l′̄ 6= l′̄′ if ̄ 6= ̄′,

lj = l′̄ if (j, ̄) ∈ e(G) and lj 6= l′̄ if (j, ̄) /∈ e(G),

lj(r) = v(r), l′̄(r) = v̄(r), 1 ≤ r ≤ k − |e(G)|}, v ∈ V (G),
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where {j(1), . . . , j(k − |e(G)|)} = M1, {̄(1), . . . , ̄(k − |e(G)|)} = M2, v = (v(1), v(2))
with v(1) = (v(1), . . . , v(k − |e(G)|)) and v(2) = (v̄(1), . . . , v̄(k − |e(G)|)) in the last line
of this definition. The elements ℓ = (l1, . . . , lk, l

′
1, . . . , l

′
k) of the set EG(v) for some

v ∈ V (G) can be characterized in the following way: For j ∈ M1 the coordinate lj
agrees with the corresponding element of v(1), for ̄ ∈M2 the coordinate l′̄ agrees with

the corresponding element of v(2). The indices of the remaining coordinates of ℓ can be
partitioned into pairs (js, ̄s), 1 ≤ s ≤ |e(G)| in such a way that (js, ̄s) ∈ e(G). The
identity ljs = l′̄s holds for all these pairs, and these values ljs = l′̄s must be different for

different indices s. Otherwise, they can be chosen freely in the set {1, . . . , n}\{v(1), v(2)}.
The sets EG(v), v ∈ V (G), constitute a partition of the set J0(G), and we can

rewrite with their help the random variables Hn,k(f |G,V1, V2) defined in (14.10) as

Hn,k(f |G,V1, V2) =
∑

v=(lj(1),...,lj(k−|e(G)|),l
′
̄(1)

,...,l′
̄(k−|e(G)|

)∈V (G)

k−|e(G)|
∏

s=1

εlj(s)

k−|e(G)|
∏

s=1

εl′
̄(s)

∑

(l1,...,lk,l′1...,l
′
k
)∈EG(v)

1

k!2

∫

f(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)f(ξ
(1,δ̄1)
l′1

, . . . , ξ
(k,δ̄k)
l′
k

, y)ρ( dy)

(15.14)
where δj = 1 if j ∈ V1, δj = −1 if j /∈ V1, and δ̄j = 1 if j ∈ V2, δ̄j = −1 if j /∈ V2.

The inequality

P
(

S2(F|G,V1, V2) > A8/3n2kσ4
)

≤ 2k+1e−A2/3knσ2

if A ≥ A0 and e(G) < k

(15.15)
will be proved for the random variable

S2(F|G,V1, V2) = sup
f∈F

1

k!2

∑

v∈V (G)

(

∑

(l1,...,lk,l′1,...,l
′
k
)∈EG(v)

∫

f(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)

f(ξ
(1,δ̄1)
l′1

, . . . , ξ
(k,δ̄k)
l′
k

, y)ρ( dy)

)2

, (15.15′)

where δj = 1 if j ∈ V1, δj = −1 if j /∈ V1, and δ̄j = 1 if j ∈ V2, δ̄j = −1 if j /∈ V2. The
random variable S2(F|G,V1, V2) defined in (15.15′) plays a similar role in the proof of
Proposition 13.3 as the random variable sup

f∈F
S2
n,k(f) in the proof of Proposition 13.2,

where S2
n,k(f) was defined in formula (15.1).

To prove formula (15.15) let us first fix some v ∈ V (G) and let us observe that,
similarly to the proof of relation (15.11), the Schwarz inequality implies the relation





∑

(l1,...,lk,l′1,...,l
′
k
)∈EG(v)

∫

f(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)f(ξ
(1,δ̄1)
l′1

, . . . , ξ
(k,δ̄k)
l′
k

, y)ρ( dy)





2
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≤





∑

(l1,...,lk,l′1,...,l
′
k
)∈EG(v)

∫

f2(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)ρ( dy)









∑

(l̄1,...,l̄k,l̄′1,...,l̄
′
k
)∈EG(v)

∫

f2(ξ
(1,δ̄1)

l̄′1
, . . . , ξ

(k,δ̄k)

l̄′
k

, y)ρ( dy)





for all v ∈ V (G). Summing up these inequalities for all v ∈ V (G) we get that

S2(F|G,V1, V2) ≤ sup
f∈F

∑

v∈V (G)

1

k!





∑

(l1,...,lk,l′1,...,l
′
k
)∈EG(v)

∫

f2(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)ρ( dy)





1

k!





∑

(l̄1,...,l̄k,l̄′1,...,l̄
′
k
)∈EG(v)

∫

f2(ξ
(1,δ̄1)

l̄′1
, . . . , ξ

(k,δ̄k)

l̄′
k

, y)ρ( dy)





(15.16)

≤ sup
f∈F

1

k!











∑

(l1,...,lk), 1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)ρ( dy)











sup
f∈F

1

k!











∑

(l̄1,...,l̄k), 1≤l̄j≤n, 1≤j≤k,

l̄j 6=l̄j′ if j 6=j′

∫

f2(ξ
(1,δ̄1)

l̄1
, . . . , ξ

(k,δ̄k)

l̄k
, y)ρ( dy)











To check the second inequality of formula (15.16) let us first observe that it can be
reduced to the simpler relation, where the expression sup

f∈F
is omitted at each place. The

simplified inequality we get after the omission of the expressions sup can be checked by
carrying out the term by term multiplication between the products of sums appearing
in (15.16). We get at both sides of the inequality sums consisting of terms of the form

1

k!2

∫

f2(ξ
(1,δ1)
l1

, . . . , ξ
(k,δk)
lk

, y)ρ( dy)

∫

f2(ξ
(1,δ̄1)

l̄1
, . . . , ξ

(k,δ̄k)

l̄k
, y)ρ( dy) (15.17)

and we have to check that if a term of this form appears in the middle term of the
simplified version formula of (15.16), then it appears with coefficient 1, and it also
appears at the right-hand side of this formula. To see this observe that each term
of the form (15.17) which appears in the middle term determines uniquely the index
v = (v1, v2) ∈ V (G) in the outer sum in the middle term for which the product of the
inner sums yields this term. Indeed, the coordinates of this vector v = (v1, v2) (which
depends only on the indices in M1 ∪M2) is such that v1 agrees with the coordinates
of the vector l = (l1, . . . , lk) at indices in M1 and v2 agrees with the coordinates of
(l̄1, . . . , l̄k) at indices in M2. Besides, all terms of the form (15.17) which appear at the
left-hand side also appear at the right-hand of this expression.
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Relation (15.16) implies that

P (S2(F|G,V1, V2)) > A8/3n2kσ4) ≤ 2P

(

sup
f∈F

Īn,k(hf ) > A4/3nkσ2

)

with hf (x1, . . . , xk) =
∫

f2(x1, . . . , xk, y)ρ( dy). (Here we exploited that in the last
formula S2(F|G,V1, V2) is bounded by the product of two random variables whose
distributions do not depend on the sets V1 and V2.) Thus to prove inequality (15.15) it
is enough to show that

2P

(

sup
f∈F

Īn,k(hf ) > A4/3nkσ2

)

≤ 2k+1e−A2/3knσ2

if A ≥ A0. (15.18)

Actually formula (15.18) follows from the already proven formula (15.13), only the
parameter A has to be replaced by A4/3 in it.

With the help of relation (15.15) the proof of Proposition 13.3 can be completed sim-
ilarly to that of Proposition 13.2. It follows from the generalized version of Hoeffding’s
inequality Theorem 12.3 and the definition of the random variable Hn,k(f |G,V1, V2)
given in the form (15.14) that

P

(

|Hn,k(f |G,V1, V2)| >
A2

24k+2k!
n2kσ2(k+1)

∣

∣

∣

∣

ξj,±1
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(ω)

≤ Ce−B2−(4+2/k)A2/3knσ2

if S2(F|G,V1, V2)(ω) ≤ A8/3n2kσ4 for all f ∈ F ,
and G ∈ G such that |e(G)| < k, and V1, V2 ∈ {1, . . . , k} if A ≥ A0.

(15.19)
Indeed, in this case the conditional probability considered in (15.19) can be bounded by

C exp

{

−B
(

A4n4kσ4(k+1)

28k+4(k!)2S2(F|G,V1,V2)/(k!)2

)1/2j
}

≤ C exp

{

−B
(

A4/3n2kσ4k

28k+4

)1/2j
}

, where

2j = 2k − 2|e(G)|, the number of vertices of the diagram G from which no edges start.

Since j ≤ k, nσ2 ≥ 1, and also A4/3

28k+4 ≥ 1 if A0 is chosen sufficiently large the above
calculation implies relation (15.19).

Let us show that also the inequality

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
n2kσ2(k+1)

∣

∣

∣

∣

∣

ξj,±1
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(ω)

≤ Cn(3k+1)L/2+βe−BA2/3knσ2/2(4+2/k)(k!)1/k if S2(F|G,V1, V2))(ω) ≤ A8/3n2kσ4

for all G ∈ G such that |e(G)| < k, and V1, V2 ∈ {1, . . . , k} if A ≥ A0

(15.20)

holds.

To prove formula (15.20) let us fix an elementary event ω ∈ Ω which satisfies the
relation S2(F|G,V1, V2)(ω) ≤ A8/3n2kσ4, two sets V1, V2 ⊂ {1, . . . , k}, and a diagram
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G such that |e(G)| < k, consider the points x
(j,±1)
l = x

(j,±1)
l (ω) = ξ

(j,±1)
l (ω), 1 ≤ l ≤ n,

1 ≤ j ≤ k, and introduce with their help the following probability measures: For all

1 ≤ j ≤ k define the probability measures ν
(1)
j which are uniformly distributed on

the points x
(j,δj)
l , 1 ≤ l ≤ n, and ν

(2)
j which are uniformly distributed on the points

x
(j,δ̄j)
l , 1 ≤ l ≤ n, i.e. let ν

(1)
j

(

{x(j,δj)l }
)

= 1
n and ν

(2)
j

(

{x(j,δ̄j)}l

)

= 1
n , 1 ≤ l ≤ n,

1 ≤ j ≤ k, where δj = 1 if j ∈ V1, δj = −1 if j /∈ V1, and similarly δ̄j = 1 if j ∈ V2

and δ̄j = −1 if j /∈ V2. Let us consider the product measures α1 = ν
(1)
1 × · · · × ν

(1)
k × ρ,

α2 = ν
(2)
1 × · · · × ν

(2)
k × ρ on the product space (Xk × Y,X k × Y), where ρ is that

probability measure on (Y,Y) which appears in Proposition 13.3, and define the measure
α = α1+α2

2 . Given two functions f ∈ F and g ∈ F we give an upper bound for
|Hn,k(f |G,V1, V2)(ω) − Hn,k(g|G,V1, V2)(ω)| if

∫

(f − g)2 dα ≤ δ2 with some δ > 0.
(This bound does not depend on the ‘randomizing terms’ εl(ω) in the definition of the
random variable Hn,k(·|G,V1, V2).)

In this case
∫

(f − g)2 dαj ≤ 2δ2, and
∫

|f(x(1,δ1)l1
, . . . , x

(k,δk)
lk

, y)− g(x
(1,δ1)
l1

, . . . , x
(k,δk)
lk

, y)|2ρ( dy) ≤ 2δ2nk,

∫

|f(x(1,δ1)l1
, . . . , x

(k,δk)
lk

, y)− g(x
(1,δ1)
l1

, . . . , x
(k,δk)
lk

, y)|ρ( dy) ≤
√
2δnk/2

for all 1 ≤ l ≤ k, and 1 ≤ lj ≤ n, and the same result holds if all δj is replaced by δ̄j ,
1 ≤ j ≤ k. Since |f | ≤ 1, |g| ≤ 1 if f, g ∈ F , the condition

∫

(f − g)2 dα ≤ δ2 implies
that
∫

|f(ξ(1,δ1)l1
(ω), . . . , ξ

(k,δk)
lk

(ω), y)f(ξ
(1,δ̄1)
l′1

(ω), . . . , ξ
(k,δ̄k)
l′
k

(ω), y)ρ( dy)

− g(ξ
(1,δ1)
l1

(ω), . . . , ξ
(k,δk)
lk

(ω), y)g(ξ
(1,δ̄1)
l′1

(ω), . . . , ξ
(k,δ̄k)
l′
k

(ω), y)ρ( dy)| ≤ 2
√
2δnk/2

for all vectors (l1, . . . , lk, l
′
1, . . . , l

′
k) which appear as an index in the summation in

(14.10). Hence

|Hn,k(f |G,V1, V2)(ω)−Hn,k(g|G,V1, V2)(ω)| ≤ 2
√
2δn5k/2

if f, g ∈ F ,
∫

(f−g)2 dα < δ2 and the originally fixed ω ∈ Ω is considered. (The measure
α is defined by means of this ω.)

Put δ̄ = A2n−k/2σ2(k+1)

2(4k+7/2)k!
, and δ = n−(3k+1)/2 ≤ δ̄ ( the inequality δ ≤ δ̄ holds, since

σ ≥ 1√
n
and we may assume that A ≥ A0 is sufficiently large), choose a δ-dense subset

{f1, . . . , fm} ⊂ F in the L2(X
k × Y,X k × Y, α) space with m ≤ Dδ−L ≤ n(3k+1)L/2+β

elements. Relation (15.19) for these functions together with the above estimates yield
formula (15.20).

It follows from relations (15.15) and (15.20) that

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
n2kσ2(k+1)

)

≤ 2k+1e−A2/3knσ2

+ Cn(3k+1)L/2+βe−B2−(4+2/k)A2/3knσ2

if A ≥ A0
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for all V1, V2 ⊂ {1, . . . , k} also in the case |e(G)| ≤ k − 1. This inequality implies that
relation (15.10) holds also in this case if the constants A0 and K are chosen sufficiently
large in Proposition 13.3. Proposition 13.3 is proved.

16. The improvement of some results in Section 8

In this section I present an improvement of Theorems 8.3 and 8.5. I shall explain the
picture behind these results and the some ideas of the proofs. But the detailed proofs
which are based on some results called the diagram formulas for the products of multiple
Wiener–Itô integrals and degenerate U -statistics are omitted. These diagram formulas
present an identity which enables us to express the product of Wiener–Itô integrals or
degenerate U -statistics as a sum of such objects. I omitted the proofs because they
heavily depend on the diagram formula, a technique not discussed in this work. The
interested reader can find the detailed proofs in my papers [21] and [22].

The main result discussed in this section is the following

Theorem 16.1. Let ξ1, . . . , ξn be a sequence of iid. random variables on a space
(X,X ) with some distribution µ. Let us consider a function f(x1, . . . , xk) canonical
with respect to the measure µ on the space (Xk,X k) which satisfies conditions (8.1)
and (8.2) with some 0 < σ2 ≤ 1 together with the degenerate U -statistic In,k(f) with
this kernel function. There exist some constants A = A(k) > 0 and B = B(k) > 0
depending only on the order k of the U -statistic In,k(f) such that

P (k!n−k/2|In,k(f)| > u) ≤ A exp







− u2/k

2σ2/k
(

1 +B
(

un−k/2σ−(k+1)
)1/k

)







(16.1)

for all 0 ≤ u ≤ nk/2σk+1.

Theorem 16.1 states in particular that if 0 < u ≤ εnk/2σk+1 with a sufficiently small

ε > 0, then P (k!n−k/2|In,k(f)| > u) ≤ A exp
{

− 1−Cε1/k

2

(

u
σ

)2/k
}

with some universal

constants A > 0 and C > 0 depending only on the order k of the U -statistic In,k(f).
This result is very similar to Theorem 8.3. Both theorems yield an estimate on the
probability P (k!n−k/2|In,k(f)| > u) for 0 ≤ u ≤ nk/2σk+1, but in the present result we
also get a good estimate on the constant α in formula (8.9) for 0 ≤ u ≤ εnk/2σk+1. At
first sight this additional result does not seem an essential improvement, but actually it
expresses an important property of the estimate (16.1). To understand this it is worth
while to compare Theorem 16.1 with Bernstein’s inequality formulated in Theorem 3.1.

Theorem 3.1 implies the estimate

P (n−1/2|In,1(f)| > u) ≤ 2e−Cu2/σ2

if 0 ≤ u ≤ nσ2 (16.2)

for the degenerate U -statistic In,1(f) of order 1 with a kernel function f , (i.e. for a sum
of iid. random variables Ef(ξ1) = 0) if the relations sup |f(x)| ≤ 1 and Ef(ξj) = 0
and Ef2(ξj) ≤ σ2 hold. Besides, relation (16.2) also holds with a constant of the form

115



C = 1−O(ε)
2 if 0 ≤ u ≤ εnσ2. On the other hand, Example 3.2 shows an example

(formulated with a different normalization) with a function f and a sequence of iid.
random variables ξ1, ξ2, . . . satisfying the above conditions such that

P (n−1/2In,1(f) > u) ≥ A exp

{

−B
(u

σ

)2

·
√
nσ2

u
log

u√
nσ2

}

if u≫ nσ2. This means that in the special case k = 1 the probability P (n−1/2|In,1(f)| >
u) has a Gaussian type estimate for 0 ≤ u ≤ const.nσ2, and such an estimate does not
hold for u ≫ nσ2. Besides, in the smaller interval 0 ≤ u ≤ εnσ2 we can say more.
In this case the relation (16.2) holds with such a constant C which almost agrees with
the number 1

2 , i.e. the upper bound we get for k = 1 almost agrees with the quantity
suggested by a formal application of the central limit theorem.

I want to explain that Theorem 16.1 states a similar result for degenerate U -
statistics of any order k ≥ 1. To understand this let us first recall that a sequence
of normalized degenerate U -statics n−k/2In,k(f), n = 1, 2, . . . , defined with the help of
a sequence of iid. random variables ξ1, ξ2, . . . taking values on some measurable space
(X,X ) with distribution µ and a function f(x1, . . . , xk) of k variables canonical with
respect to µ and such that

σ2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) <∞

has a limit distribution as n → ∞. Moreover, this limit can be expressed explicitly as
the distribution of the Wiener–Itô integral

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW (dxk), (16.3)

where µW is the white noise with counting measure µ, i.e. µW (A), A ∈ X , is a Gaussian
field indexed by the measurable subsets of the space X such that EµW (A) = 0 and
EµW (A)µW (B) = µ(A ∩ B) for all A,B ∈ X . (The definition of Wiener–Itô integrals
can be found e.g. in [17].) Hence it is natural to expect that in the estimates about the
distribution of degenerate U -statistics the distributions of Wiener–Itô integrals play a
role similar to the Gaussian distributions in the case k = 1. Therefore we are interested
in good estimates on the distribution of Wiener–Itô integrals. The next result supplies
such an estimate. As Theorem 16.1 was an improvement of Theorem 8.3, the next result
is an improvement of the first estimate in Theorem 8.5 presented in formula (8.11).

Theorem 16.2. Let us consider a σ-finite measure µ on a measurable space together
with a white noise µW with counting measure µ. Let us have a real-valued function
f(x1, . . . , xk) on the space (Xk,X k) which satisfies relation (8.2). Take the random in-
tegral Zµ,k(f) introduced in formula (16.3). This random integral satisfies the inequality

P (k!|Zµ,k(f)| > u) ≤ C exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (16.4)
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with an appropriate constant C = C(k) > 0 depending only on the multiplicity k of the
integral.

In Theorem 16.2 we gave only an upper bound for the distribution of Wiener–
Itô integrals. The following example shows that there are cases when this estimate is
essentially sharp.

Example 16.3. Let us have a σ-finite measure µ on some measure space (X,X ) to-
gether with a white noise µW on (X,X ) with counting measure µ. Let f0(x) be a
real valued function on (X,X ) such that

∫

f0(x)
2µ( dx) = 1, and take the function

f(x1, . . . , xk) = σf0(x1) · · · f0(xk) with some number σ > 0 and the Wiener–Itô integral
Zµ,k(f) introduced in formula (16.3).

Then the relation
∫

f(x1, . . . , xk)
2 µ( dx1) . . . µ( dxk) = σ2 holds, and the random

integral Zµ,k(f) satisfies the inequality

P (k!|Zµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (16.5)

with some constant C̄ > 0.

Proof of the statement of Example 16.3. We may restrict our attention to the case k ≥ 2.
Itô’s formula (see e.g. [17]) states that the random variable k!Z̄µ,k(f) can be expressed
as k!Zµ,k(f) = σHk

(∫

f0(x)µW ( dx)
)

= σHk(η), where Hk(x) is the k-th Hermite poly-
nomial with leading coefficient 1, and η =

∫

f0(x)µW ( dx) is a standard normal random
variable. Hence we get by exploiting that the coefficient of xk−1 in the polynomial
Hk(x) is zero that P (k!|Zµ,k(f)| > u) = P (|Hk(η)| ≥ u

σ ) ≥ P
(

|ηk| −D|ηk−2| > u
σ

)

with a sufficiently large constant D > 0 if u
σ > 1. There exist such positive constants A

and B that P
(

|ηk| −D|ηk−2| > u
σ

)

≥ P
(

|ηk| > u
σ +A

(

u
σ

)(k−2)/k
)

if u
σ > B.

Hence

P (k!|Zµ,k(f)| > u) ≥ P

(

|η| >
(u

σ

)1/k
(

1 +A
(u

σ

)−2/k
))

≥
C̄ exp

{

− 1
2

(

u
σ

)2/k
}

(

u
σ

)1/k
+ 1

with an appropriate C̄ > 0 if u
σ > B. Since P (k!|Zµ,k(f)| > 0) > 0, the above inequality

also holds for 0 ≤ u
σ ≤ B if the constant C̄ > 0 is chosen sufficiently small. This means

that relation (16.5) holds.

Let us remark that if f(x1, . . . , xk) = σf0(x1) . . . f0(xk) is a function on the space
(Xk,X k) such that

∫

f0(x)µ( dx) = 0,
∫

f20 (x)µ( dx) = 1, sup |f0(x)| ≤ 1, 0 < σ ≤ 1,
and we have a sequence of iid. random variables, ξ1, ξ2, . . . with distribution µ, then
the U -statistics In,k(f), n = 1, 2, . . . , are degenerate, and they satisfy the conditions of
Theorem 16.1. Besides, they converge in distribution to the Wiener–Itô integral Zµ,k(f)
as n→ ∞ which satisfies the conditions of example (16.3). Hence the U -statistics In,k(f)
satisfy relation (16.1), and also the inequality

lim
n→∞

P (k!n−k/2|In,k(f)| > u) ≥
C̄ exp

{

− 1
2

(

u
σ

)2/k
}

(

u
σ

)1/k
+ 1
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holds with an appropriate C̄ > 0 if u
σ > B. This means that for not too large values

of u, more explicitly if u ≤ εnk/2σk+1 with a small number ε > 0, the estimate given
in Theorem 16.1 is essentially sharp. Let me also remark that Example 8.6 shows
such a degenerate U -statistic of order k = 2 for which an estimate similar to that of
Theorem 8.3 cannot hold for n ≫ nk/2σk+1. We have presented such an example only
for k = 2, but similar examples can be given for all k ≥ 1.

This means that Theorem 16.1 shows a similar picture about the distribution of
degenerate U -statistics of order k for all k ≥ 1 as Bernstein’s inequality shows in the
case k = 1. We have a good estimate on the distribution P (n−k/2In,k(f) > u) of a
degenerate U -statistic with a kernel function f satisfying relations (8.1) and (8.2) in
the domain 0 ≤ u ≤ nk/2σk+1. Such an estimate is already proved in Theorem 8.3,
but Theorem 16.1 says more in an interval of the form 0 ≤ u ≤ εnk/2σk+1 with a
small ε > 0. The limit theorems about degenerate U -statistics give an upper bound for
the coefficient α in the exponent of formula (8.9) in Theorem 8.3, and Theorem 16.1
states that the estimate (8.9) holds with an almost as good coefficient α in the interval
0 ≤ u ≤ εnk/2σk+1 as this upper bound suggests.

The proof of the above results are based, similarly to the proof of Theorems 8.3
and 8.5, on some good estimates on high moments of degenerate U -statistics In,k(f) and
of Wiener–Itô integrals Zn,k(f). The result of Theorem 16.2 follows from the following

Proposition 16.4. Let the conditions of Theorem 16.2 be satisfied for a multiple
Wiener–Itô integral Zµ,k(f) of order k. Then, with the notations of Theorem 16.2,
the inequality

E (k!|Zµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M for all M = 1, 2, . . . (16.6)

holds.

By the Stirling formula Proposition 16.4 implies that

E(k!|Zµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(

2

e

)kM

(kM)kMσ2M (16.7)

for all numbers A >
√
2 if M ≥ M0 = M0(A). The following Proposition 16.5 states a

similar, but weaker inequality for the moments of normalized degenerate U -statistics.

Proposition 16.5. Let us consider a degenerate U -statistic In,k(f) of order k with
sample size n and with a kernel function f satisfying relations (8.1) and (8.2) with
some 0 < σ2 ≤ 1. Fix a positive number η > 0. There exists some universal constants
A = A(k) >

√
2, C = C(k) > 0 and M0 = M0(k) ≥ 1 depending only on the order of

the U -statistic In,k(f) such that

E
(

n−k/2k!In,k(f)
)2M

≤ A (1 + C
√
η)

2kM

(

2

e

)kM

(kM)
kM

σ2M

for all integers M such that kM0 ≤ kM ≤ ηnσ2.

(16.8)
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The constant C = C(k) in formula (2.3) can be chosen e.g. as C = 2
√
2 which does not

depend on the order k of the U -statistic In,k(f).

Let us remark that formula (16.6) can be reformulated as E(k!|Zµ,k(f)|)2M ≤
E(σηk)2M , where η is a standard normal random variable. Theorem 16.2 states that
the tail distribution of k!|Zµ,k(f)| satisfies an estimate similar to that of σ|η|k. This
follows simply from Proposition 16.4 and the Markov inequality P (k!|Zµ,k(f)| > u) ≤
E(k!|Zµ,k(f)|)2M

u2M with an appropriate choice of the parameter M .

Proposition 16.5 states that in the case M0 ≤M ≤ εnσ2 the inequality

E
(

n−k/2k!In,k(f)
)2M

≤ E((1 + β(ε))σηk)2M

holds with a standard normal random variable η and a function β(ε), 0 ≤ ε ≤ 1, such
that β(ε) → 0 if ε → 0, and β(ε) ≤ C with some universal constant C = C(k) if
0 ≤ ε ≤ 1. This means that certain high but not too high moments of n−k/2k!In,k(f)
behave similarly to the moments of k!Zµ,k(f). As a consequence, we can prove a similar,
but slightly weaker estimate for the distribution of n−k/2k!In,k(f) as for the distribution
of k!Zµ,k(f). Actually this is done in the proof of Theorem 16.1.

Estimate (16.8) is very similar to the bound (10.1) formulated in Proposition (10.1).
The main difference is that here we get the estimate

E
(

n−k/2k!In,k(f)
)2M

≤ CM (kM)kMσ2M (16.9)

with a good constant C, at least if M ≤ εnσ2 with a small number ε > 0. The method
of proof of Theorem 8.3 presented in this paper cannot yield such a good estimate.
The main problem with this method is that it applies a symmetrization argument (this
is done in the proof of the Marcinkiewicz–Zygmund inequality), in which we bound
the moments of the random variable we are investigating by the moments of a random
variable with constant times larger variance. Such a step in the proof does not allow to
get the estimate (16.9) with a good constant C > 0.

On the other hand, the estimation of the moments of a degenerate U -statistics by
means of the diagram formula yields a better estimate of the moments. The idea behind
this approach is that in calculating the even moments E (In,k(f))

2M
of a degenerate

U -statistics by means of the diagram formula we have to work with some terms which
also appear in the calculation of the moments E(Zµ,k(f))

2M of the Wiener–Itô inte-
gral Zµ,k(f), but we also have to handle some additional terms. It must be checked
that the contribution of these additional terms is not too large. This is the case if
M ≤ nσ2 with σ2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk), and an even better estimate
can be given about the contribution of these terms if M ≥ εnσ2 with a small ε > 0.

Let me finally remark that the above method can also give an improvement of
the multivariate version of the Hoeffding inequality (Theorem 12.3). The proof of the
following inequality can be found in [22].
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Theorem 16.6. The multivariate version of Hoeffding’s inequality. Let ε1, . . . ,
εn be independent random variables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n. Fix a
positive integer k, and define the random variable

Z =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a(j1, . . . , jk)εj1 · · · εjk (16.10)

with the help of some real numbers a(j1, . . . , jk) which are given for all sets of indices
such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k, and jl 6= jl′ if l 6= l′. Put

S2 =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a2(j1, . . . , jk) (16.11)

Then

P (k!|Z| > u) ≤ C exp

{

−1

2

(u

S

)2/k
}

for all u ≥ 0 (16.12)

with some constant C > 0 depending only on the parameter k.

We may assume that the coefficients a(j1, . . . , jk) in formulas (16.10) and (16.11) are
symmetric functions of their arguments, i.e. a(j1, . . . , jk) = a(jπ(1), . . . , jπ(k)) for all
permutations π ∈ Πk of the set {1, . . . , k}. If these coefficients a(j1, . . . , jk) do not
have not this symmetry property, then we can replace them with their symmetrizations
aSym(j1, . . . , jk) =

1
k!

∑

π∈Πk

a(jπ(1), . . . , jπ(k). In such a way we do not modify the value

of the random variable Z, and decrease the value of the number S2. With such a choice
of the coefficients we have EZ = 0 and VarZ = k!S2.

The main advantage of this result with respect to Theorem 12.3 is that formula
(16.12) holds with the right constant in the exponent at the right-hand side. The proof
is based on good moment estimates of the random variable Z defined in (16.10). I
formulate this result which may be interesting in itself.

Theorem 16.7 The random variable Z defined in formula (16.10) satisfies the inequal-
ity

EZ2M ≤ 1 · 3 · 5 · · · (2kM − 1)S2M for all M = 1, 2, . . . (16.13)

with the constant S defined in formula (16.11).

It is worth while to compare formula (16.13) with the estimate that Borell’s in-
equality yields for this problem. By applying Borell’s inequality with the choice q = 2
and p = 2M we get that EZ2M ≤ (2M − 1)kME(Z2)M = (2M − 1)kM

(

k!S2
)

M .

Since (2M − 1)2M = (2M)kM
(

1− 1
2M

)kM ∼ e−k/2(2M)kM for large values M , hence
Borell’s inequality yields the inequality EZ2M ≤ const. (2M)kMS2M · (k!)M for large
exponents M . On the other hand, Theorem 16.7 together with the Stirling formula

yield the estimate EZ2M ≤ const. (2M)kMS2M ·
(

k
e

)kM
. It can be seen that k! >

(

k
e

)k

for all k ≥ 1. This means that Theorem 16.7 yields an improvement of the Borell’s
inequality in the special case discussed above. This estimate is only a special case of
Borell’s inequality, but this is its most important special case.
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17. An overview of the results in this work

I discuss briefly the problems investigated in this work and recall some basic results
related to them. I also give a list of works where they can be found. Besides, I discuss
some background problems and results which may explain the motivation for the study
presented here.

I met the main problem considered in this work when tried to adapt the method of
proof of the central limit theorem for maximum-likelihood estimates to some more diffi-
cult questions about so-called non-parametric maximum likelihood estimate problems.
The Kaplan–Meyer estimate for the empirical distribution function with the help of
censored data investigated in the second section is such a problem. It is not a maximum-
likelihood estimate in the classical sense, but it can be considered as a non-parametric
maximum likelihood estimate. Indeed, since in the estimation of a distribution function
with the help of censored data the class of possible candidates for being the distribution
function we are looking for is too large, there is no dominating measure with respect
to which all of them have a density function. As a consequence, the classical principle
of the maximum-likelihood estimate cannot be applied in this case. A natural way to
overcome this difficulty is to choose a smaller class of distribution functions, to compare
the probability of the appearance of the sample we observe with respect to all distribu-
tion functions of this class and to choose that distribution function as our estimate for
which this probability takes its maximum. The Kaplan–Meyer estimate can be found
on the basis of this principle in the following way: Let us estimate the distribution
function F (x) of the censored data simultaneously with the distribution function G(x)
of the censoring data. (We have a sample of size n and know which sample elements
are censored and which are censoring data.) Let us consider the class of such pairs
of estimates (Fn(x), Gn(x)) of the pair (F (x), G(x)) for which the distribution function
Fn(x) is concentrated in the censored sample points and the distribution function Gn(x)
is concentrated in the censoring sample points; more precisely, let us also assume that
if the largest sample point is a censored point, then the distribution function Gn(x)
of the censoring data takes still another value which is larger than any sample point,
and if it is a censoring point then the distribution function Fn(x) of the censored data
takes still another value larger than any sample point. (This modification at the end of
the definition is needed, since if the largest sample points is from the class of censored
data, then the distribution G(x) of the censoring data in this point must be strictly less
than 1, and if it is from the class of censoring data, then the value of the distribution
function F (x) of the censored data must be strictly less than 1 in this point.) Let us
take this class of pairs of distribution functions (Fn(x), Gn(x)), and let us choose that
pair of distribution functions of this class as the (non-parametric maximum likelihood)
estimate with respect to which our observation has the greatest probability.

The above extremal problem for the pairs of distribution functions (Fn(x), Gn(x))
can be solved explicitly, and it yields the estimate of Fn(x) written down in formula (2.3).
(The function Gn(x) satisfies a similar relation, only the random variables Xj and Yj
and the events δj = 1 and δj = 0 have to be replaced in it.) Then, as I have indicated, a
natural analog of the linearization procedure in the maximum likelihood estimate also
works in this case, and there is only one really hard part of the proof. We need a good
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estimate on the distribution of the integral of a function of two variables with respect
to the product of a normalized empirical measure with itself. Moreover, we also need
a good estimate on the distribution of the supremum of a class of integrals, when the
elements of an appropriate class of functions are integrated with respect to the above
product measure. The main subject of this work is to solve the above problems in a
more general setting, when not only two-fold, but also k-fold integrals are considered
with arbitrary number k ≥ 1.

The proof of this work for the limit behaviour of the Kaplan–Meyer estimate applied
the explicit form of this estimate. It would be interesting to find such a modification
of this proof which exploits that the Kaplan–Meyer estimate is the solution of an ap-
propriate extremal problem. We may expect that such a proof can be generalized to a
general result about the limit behaviour for a wide class of non-parametric maximum
likelihood estimates. Such a consideration is behind the remark of Richard Gill I quoted
at the end of Section 2. I hope that such a program can be realized, but at the present
time I cannot do this.

A detailed proof together with a sharp estimate on the speed of convergence for
the limit behaviour of the Kaplan–Meyer estimate based on the ideas presented in
Section 2 is given in paper [24]. Paper [25] explains more about its background, and it
also discusses the solution of some other non-parametric maximum likelihood problems.
The results about multiple integrals with respect to a normalized empirical distribution
function needed in these works were proved in [17]. The results of [18] are completely
satisfactory for the study in [24], but they also have some drawbacks. They do not
show that if the random integrals we are considering have small variances, then they
satisfy better estimates. Besides, if we consider the supremum of random integrals of
an appropriate class of functions, then these results can be applied only in very special
cases. Moreover, the method of proof of [18] did not allow a real generalization of its
results, hence I had to find a different approach when tried to generalize them.

I do not know of other works where the distribution of multiple random integrals
with respect to a normalized empirical distribution is studied. On the other hand, there
are some works where the distribution of (degenerate) U -statistics is investigated. The
most important results obtained in this field are contained in the book of de la Peña
and Giné Decoupling, From Dependence to Independence [6]. The problems about the
behaviour of degenerate U -statistics and multiple integrals with respect to a normalized
empirical distribution function are closely related, but the explanation of their relation
is far from trivial. I return to this question later.

Even the study of the one-dimensional version of the problems studied here, i.e.
the description of the behaviour of one-fold integrals or classes of one-fold integrals
contains several hard problems which have to be investigated closely to have a good
understanding of the subject. In the one-dimensional case it is fairly simple to prove
that the problems about the behaviour of one-fold integrals with respect to a normalized
empirical measure and about the behaviour of normalized sums of independent random
variables are equivalent. I start this work with the description of the case of (classes of)
one-fold integrals or of sums of independent random variables. This question has a fairly
big literature. I would mention first of all the books A course on empirical processes [9],
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Real Analysis and Probability [10] and Uniform Central Limit Theorems [11] written by
R. M. Dudley. These books contain a much more detailed description of the empirical
processes than the present work together with a lot of interesting results.

The first problem studied here deals with the tail behaviour of sums of indepen-
dent and bounded random variables with expectation zero. This question is considered
in Section 3 where the proof of two already classical results, that of Bernstein’s and
Bennett’s inequalities is explained. (These results are proved e.g. [4]). We are also
interested in the question when these results give an estimate suggested by the central
limit theorem. Bernstein’s inequality provides such an estimate if the variance of the
sum is not too small. (The results in Section 3 tell explicitly when this variance should
be considered too small.) If the variance of the sum is too small, then Bennett’s in-
equality provides a slight improvement of Bernstein’s inequality. On the other hand,
Example 3.2 shows that in the unpleasant case when this variance is too small Bennett’s
inequality is essentially sharp. I inserted this example to the text, because it may help
to understand better the content of Bernstein’s and Bennett’s inequality. I have not
found similar examples in the literature.

The estimate on the distribution of a sum of independent random variables if this
sum has a small variance is weak because of the following reason. In this case the
probability that the sum will be larger than a given value may be much larger than the
(rather small) value suggested by the central limit theorem because of the appearance
of some irregularities with relatively large probability. The hardest problems we have
to cope with in the solution of the problems of this work are closely related to the
weak estimates for sums of independent random variables if the variance of the sums
are small and to the weak estimates in some similar problems. The weakness of these
estimates imply that in the study of the problems we are interested in the method of
proof for their Gaussian counterpart cannot be adapted completely, some new ideas are
needed. We have overcome this difficulty by applying a symmetrization argument. The
last result of Section 3, Hoeffding’s inequality presented in Theorem 3.4 is an important
ingredient of this symmetrization argument. It is also a classical result whose proof can
be found for instance in [15].

In Section 4 I formulated the one-variate version of our main result about the supre-
mum of the integrals of a class F of functions with respect to a normalized empirical
measure together with an equivalent statement about the distribution of the supremum

of a class of random sums
n
∑

j=1

f(ξj) defined with the help of a sequence of i.i.d. random

variables ξ1, . . . , ξn and a class of functions f ∈ F satisfying some appropriate condi-
tions. These results are given in Theorems 4.1 and 4.1′. Also a Gaussian version of them
is presented in Theorem 4.2 about the distribution of the supremum of a Gaussian field
with some appropriate properties.

In the above mentioned results we have imposed the condition that the class of
functions F or what is equivalent the set of random variables whose supremum we
estimate is countable. In the proofs this condition is really exploited. On the other
hand, in some important applications we also need results about the supremum of
a possibly non-countable set of random variables. Hence I introduced the notion of
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countably approximable classes of random variables and proved that in the results of
this work the condition about countability can be replaced by the weaker condition
that the class of random variables whose supremum is taken is countably approximable.
R. M. Dudley worked out a different method to handle the supremum of possibly non-
countably many random variables, and generally his method is applied in the literature.
The relation between these two methods deserves some discussion.

Let us first recall that if a class of random variables St, t ∈ T , indexed by some index
set T is given, then a set A can be measurable with respect to the σ-algebra generated by
the random variables St, t ∈ T , only if there exists a countable subset T ′ = T ′(A) ⊂ T
such that the set A is also measurable with respect to the smaller σ-algebra generated
by the random variable St, t ∈ T ′. Besides, if the finite dimensional distributions of the
random variables St, t ∈ T , are given, then by the results of classical measure theory
also the probability of the events measurable with respect to the σ-algebra generated by
these random variables St, t ∈ T , is determined. But there are rather few other events
whose probabilities are determined by the finite dimensional distributions of the random
variables St, t ∈ T . On the other hand, if T is a non-countable set, then the events
{

sup
t∈T

St > u

}

are not measurable with respect to the above σ-algebra, hence generally

we cannot speak of their probabilities. To overcome this difficulty Dudley worked out
a theory which enabled him to work also with outer measures. His theory is based on
some rather deep results of the analysis. It can be found for instance in his book [11].

I restricted my attention to the case when after the completion of the proba-
bility measure P we can also speak of the real (and not only outer) probabilities

P

(

sup
t∈T

St > u

)

. I tried to find appropriate conditions under which these probabili-

ties really exist. More explicitly, we are interested in the case when for all u > 0 there
exists some set A = Au measurable with respect to the σ-algebra generated by the
random variables St, t ∈ T , such that the symmetric difference of the sets Au and
{

sup
t∈T

St > u

}

is contained in a set measurable with respect to the σ-algebra generated

by the random variables St, t ∈ T , and has probability zero. In such a case we can define

also the probability P

(

sup
t∈T

St > u

)

as P (Au). This approach led me to the definition

of countable approximable classes of random variables. Its validity enables us to speak
about the probability of the event that the supremum of the random variables we are
interested in is larger than some fixed value. I also proved a simple but useful result in
Lemma 4.3, which provides a condition for the validity of this property.

The problem we met here is not an abstract, technical difficulty. Indeed, the
distribution of such a supremum can become different if we modify each random variable
at a set of probability zero, although the joint distribution of the random variables we
consider remains the same after such an operation. Hence, if we are interested in the
supremum of a non-countable set of random variables with described joint distribution
we have to describe more explicitly which version of this set of random variables we
consider. It is natural to look for such an appropriate version of the random field St,
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t ∈ T , whose ‘trajectories’ St(ω), t ∈ T , have nice properties for all elementary events
ω ∈ Ω. Lemma 4.3 can be interpreted as a result in this spirit. The condition given for
the countable approximability of a class of random variables at the end of this lemma
can be considered as a smoothness condition about the ‘trajectories’ of the random field
we consider. This approach shows some analogy to some important problems in the
theory of stochastic process when a regular version of a stochastic process is considered
and the smoothness properties of its trajectories are investigated.

In our problems the version of the set of random variables St, t ∈ T , we shall work
with appears in a simple and natural way. In these problems we have finitely many
random variables ξ1, . . . , ξn at the start, and all random variables St(ω), t ∈ T , we
are considering can be defined individually for each ω as a functional of these random
variables ξ1(ω), . . . , ξn(ω). We take the version of the random field St(ω), t ∈ T , we get
in such a way and want to show that it is countably approximable. In Section 4 we have
proved this property in an important model, probably in the most important model
in possible applications we are interested in. In more complicated situations when our
random variables are defined not as a functional of finitely many sample points, for
instance in the case when we define our set of random variables by means of integrals
with respect to a Gaussian field it is harder to find the right regular version of our
sets of random variables. In this case the integrals we consider are defined only with
probability 1, and we have to make some extra work to find their right version. At any
rate, in the problems we are interested in our approach is satisfactory for our purposes,
and it is simpler than that of Dudley; we do not have to follow his rather difficult
technique. On the other hand, I must admit that I do not know the precise relation
between the approach of this work and that of Dudley.

In Section 4 the notion of Lp-dense classes, 1 ≤ p < ∞, is also introduced. The
notion of L2-dense classes plays an important role in the formulation Theorems 4.1
and 4.1′. The notion of L2-dense classes can be considered as a version of the ε-entropy
discussed at many places in the literature. On the other hand, there seems to be no
unique definition of ε-entropy in the literature. I introduced the term of L2-dense
classes, because this seems to be the appropriate notion in the study of this work. To
apply the results related to L2-dense classes we also need some knowledge about how to
check it in concrete models. For this goal I discussed here Vapnik–Červonenkis classes, a
popular and important notion of modern probability theory. Several books and papers,
(see e.g. the books [11], [28], [30] and the references in them) deal with this subject. An
important result in this field is Sauer’s lemma, (Lemma 5.2) which together with some
other results, like Lemma 5.3 imply that the classes of sets or functions are in many
several interesting models Vapnik–Červonenkis classes.

I put these results to the Appendix, partly because they can be found in the liter-
ature, partly because in our investigation Vapnik–Červonenkis classes play a different
and less important role than at other places. In our discussion Vapnik–Červonenkis
classes are applied to show that certain classes of functions are L2-dense. A result of
Dudley formulated in Lemma 5.2 implies that a Vapnik–Červonenkis class of functions
with absolute value bounded by a fixed constant is an L1, hence also an L2-dense class
of functions. The proof of this important result which seems to be less known even
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among experts of this subject than it should be is contained in the main text. Dudley’s
original result was formulated in the special case when the functions we consider are
indicator functions of some sets, but its proof contained all important ideas needed in
the proof of Lemma 5.2.

Theorem 4.2, which is the Gaussian counterpart of Theorems 4.1 and 4.1′ is proved
in Section 6 by means of a natural and important technique, called the chaining argu-
ment. We apply an inductive procedure, during which an appropriate sequence of finite
subsets of our set of random variables is defined, and try to give a good estimate on the
supremum of these subsets of our random variables. The subsets we consider are denser
and denser subsets of the original set of random variables, and if they are constructed in
a clever way, then we get the result we want to prove by means of a limiting procedure.
In such a way we get a relatively simple proof of Theorem 4.2, but this method is not
strong enough to supply a complete proof of Theorem 4.1. The cause of the weakness
of the method in this case is that we cannot give a good estimate on the probability
that a sum of independent random variables is greater than a prescribed value if these
random variables have too small variances. The chaining argument supplies a result
much weaker than that what we want to prove under the conditions of Theorem 4.1.
Lemma 6.1 contains the result the chaining argument yields under the conditions of
Theorem 4.1. In Section 6 still another result, Lemma 6.2 is formulated, and it is also
shown that Lemmas 6.1 and 6.2 together imply Theorem 4.1. The proof is not diffi-
cult, despite of some non-attractive details. We have to check that the parameters in
Lemmas 6.1 and 6.2 can be fitted to each other.

Lemma 6.2 is proved in Section 7. It is based on a symmetrization argument.
This proof applies the ideas of a paper of Kenneth Alexander [1], and although its
presentation is essentially different of Alexander’s approach, it can be considered as a
version of his proof.

A similar problem should also be mentioned at this place. M. Talagrand wrote a
series of papers about concentration inequalities, and this research was also continued by
some other authors. I would mention the works of M. Ledoux [16] and P. Massart [26].
Concentration inequalities give a bound about the difference of the supremum of a
set of appropriately defined random variables from its expected value; they express
how strongly this supremum is concentrate around its expected value. Such results
are closely related to Theorem 4.1, and the discussion of their relation deserves some
attention. A typical concentration inequality is the following result of Talagrand [29].

Theorem 17.1. (Theorem of Talagrand.) Consider n independent and identically
distributed random variables ξ1, . . . , ξn with values in some measurable space (X,X ).
Let F be some countable family of real-valued measurable functions of (X,X ) such that

‖f‖∞ ≤ b < ∞ for every f ∈ F . Let Z = sup
f∈F

n
∑

i=1

f(ξi) and v = E(sup
f∈F

n
∑

i=1

f2(ξi)).

Then for every positive number x,

P (Z ≥ EZ + x) ≤ K exp

{

− 1

K ′
x

b
log

(

1 +
xb

v

)}
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and

P (Z ≥ EZ + x) ≤ K exp

{

− x2

2(c1v + c2bx)

}

,

where K, K ′, c1 and c2 are universal positive constants. Moreover, the same inequalities
hold when replacing Z by −Z.

Theorem 17.1 yields, similarly to Theorem 4.1, an estimate about the distribution
of the supremum for a class of sums of independent random variables. It can be consid-
ered as a generalization of Bernstein’s and Bennett’s inequalities when the distribution
of the supremum of partial sums is estimated. A remarkable feature of this result is
that it assumes no condition about the structure of the class of functions F (like the
condition of L2-dense property of the class F imposed in Theorem 4.1.) On the other

hand, the estimates in Theorem 17.1 contain the quantity EZ = E

(

sup
f∈F

n
∑

i=1

f(ξi)

)

.

Such an expectation of some supremum appears in all concentration inequalities. As
a consequence, they are useful only if we can bound the expected value of an appro-
priate supremum. This is a hard question in the general case, and this is the reason
why I preferred a direct proof of Theorem 4.1 without the application of concentra-
tion inequalities. Let me remark that the condition u ≥ const.σ log1/2 2

σ with some
appropriate constant which cannot be dropped from Theorem 4.1 is related to the fact
that the expected value of the supremum of the normalized random sums considered in
Theorem 4.1 has such a magnitude.

The main results of this work are presented in Section 8. Theorem 8.3 which con-
tains an estimate about the distribution of a degenerate U -statistic was first proved in a
paper of Giné and Arcones in [2], its equivalent version about the multiple integrals with
respect to a normalized empirical measure formulated in Theorem 8.1 in my paper [19].
The equivalence of these two results is not self-evident. Later I proved an improved
version of Theorem 8.3 in paper [21]. This result is formulated in Theorem 16.1, and
it is also compared with Theorem 8.3. It is also explained that Theorem 16.1 could
be considered the multivariate version of Bernstein’s inequality with more right than
Theorem 8.3. Here I omitted its proof which applies a technique (diagram formulas for
the calculation of products of multiple random integrals or degenerate U -statistics) not
discussed in this work. Here Theorem 8.3 was proved by means of a symmetrization
argument. The explanation of such a proof was simpler in the present work, because it
applies such methods which were worked out in the investigation of other problems. On
the other hand, some arguments can be posed against such a proof. The application
of symmetrization arguments in the proof of Theorem 8.3 also has some drawbacks. In
certain problems, like the problem of Theorem 8.3, this method cannot supply a really
sharp result. Some mathematicians working in this field seem not to be aware of this
fact.

It may be interesting to mention that the problem of Theorem 8.3 has a natural
generalization worth of a closer study. We can consider such generalized U -statistics in
which the underlying random variables ξ1, . . . , ξn are independent, but they need not be
identically distributed, and the U -statistic also may have a more general form. Namely,

127



we can take a class of kernel functions f = {fl1,...,lk(x1, . . . , xk)} on the space (Xk,X k)
with such an indexation that 1 ≤ lj ≤ n, 1 ≤ j ≤ k, and lj 6= lj′ if j 6= j′, and define
with the help of these independent random variables and class of kernel functions the
generalized U -statistic

In,k(f) =
∑

1≤lj≤n, 1≤j≤k

lj 6=lj′ if j 6=j′

fl1,...,lk(ξl1 , . . . , ξlk). (17.1)

One can also naturally define generalized degenerate U -statistics. We call a generalized
U -statistic degenerate if for all sets of indices (l1, . . . , lk) in the sum (17.1) and for all
1 ≤ j ≤ k

E(fl1,...,lk(ξl1 , . . . , ξlk)|ξls , s ∈ {1 . . . , k} \ {j}) ≡ 0.

Generalized degenerate U -statistics can be considered as the natural multivariate
generalizations of sums of independent random variables, just as degenerate U -statistics
are the natural multivariate generalizations of sums of iid. random variables. One would
also try to generalize Theorem 8.3 to an estimation about the distribution of general-
ized degenerate U -statistics. One may hope that the method of proof of Theorem 8.3
can also be applied for the study of generalized degenerate U -statistics, just as the
distribution of sums independent random variables can be investigated similarly to the
sums of iid. random variables. Probably, the methods worked out for the study of the
problems related to Theorem 8.3 are helpful, but in the study of generalized degenerate
U -statistics first some special questions have to be clarified. We have to find the right
form of the estimation about the distribution of a generalized degenerate U -statistic.
In particular, it must be clarified which are the natural quantities by which we should
express this estimate.

It is natural to expect that generalized degenerate U -statistics In,k(f) of order k
(without normalization) satisfy the inequality

P (|In,k(f)| > u) < A exp

{

−C
(

u

Vn

)2/k
}

(17.2)

with some universal constants A = A(k) > 0 and C = C(k) > 0 in a relatively large
interval for the parameter u, where V 2

n denotes the variance of In,k(f). An essential
problem is to find a relatively good constant C and to determine the interval 0 < u <
Dn, where the estimate (17.2) holds. Theorem 8.3 states that in the case of classical
degenerate U -statistics (17.2) holds in the interval [0, Dn] with Dn = const.nkσk+1,
where σ2 = Ef(ξ1, . . . , ξk)

2. For k = 1 this means that relation (1.9) holds in the
interval 0 ≤ u ≤ V 2

n . But it is not clear what corresponds in the case of generalized
degenerate U -statistics to the right end-point Dn = const.nkσk+1 of the interval where
the estimate (17.2) should hold. (The variance of a degenerate U -statistic of order k is
of order nkσ2.)

Theorems 8.2 and 8.4 yield an estimate about the supremum of (degenerate) U -
statistics or of multiple random integrals with respect to a normalized empirical measure
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when the class of kernel functions in these U -statistics or random integrals satisfy some
conditions. They were proved in my paper [20]. Earlier Arcones and Giné proved a
weaker form of this result in paper [3]. The Gaussian version of Theorem 8.1 or 8.3
given in Theorem 8.5 was proved much earlier. My lecture note [17] also contains
a proof of this result. The second statement of Theorem 8.5 about the supremum
of Wiener–Itô integrals can be simply proved. Section 8 also contains an example
which shows in particular that the probability P

(

n−1In,2(f) > u
)

can be bounded for
a degenerate U -statistic In,2(f) of order 2 by the estimate given in Theorem 8.3 only
if u ≤ const.nσ3, i.e. this condition of Theorem 8.3 (in the case k = 2) cannot be
dropped. Similar examples could be constructed for all k ≥ 1. The paper of Arcones
and Giné [2] contains another example explained by Talagrand to the authors which
also has a similar consequence.

On the other hand, this example does not exclude the possibility to prove such
a multi-dimensional version of Hoeffding’s inequality Theorem 3.3 which provides a
slight improvement of Theorems 8.1 and 8.3 similarly to the improvement of Bernstein’s
inequality provided by Hoeffding’s inequality. Moreover, we can also expect such a
strengthened form of Theorems 8.2 and 8.4 (or of Theorem 4.2 in the one-dimensional
case) which takes into account the above improvements if the supremum of a nice class
of random integrals or degenerated U -statistics is considered. There is a hope that some
refinement of the methods of the present work would supply such results. However, here
we did not study this problem.

Theorems 9.2 and 9.3 deal with the properties of degenerate U -statistics. This
subject deserves special attention. Degenerate U -statistics can be considered as the
multivariate version of sums of independent and identically distributed random variables
with expectation zero. Similarly, if f is a canonical function with respect to a measure
µ and put independent µ-distributed random variables into its arguments, then the
random variables we get in such a way can be considered as the multivariate version of
random variables with expectation zero. The background of several proofs about the
behaviour of U -statistics can be better understood with the help of the above remark.
I tried to explain for instance that the proof about the Hoeffding decomposition of
U -statistics (Theorem 9.1) is actually a natural adaptation of the decomposition of a
random variable to the sum of a random variable with expectation zero plus the expected
value of the random variable.

Hoeffding’s decomposition is a fairly well-known result which can be found for
instance in the Appendix of [12]. Theorem 9.1 slightly differs from the formulation
of Hoeffding’s decomposition one usually meets in the literature. It can be exploited
that a U -statistic does not change if we replace its kernel function by its symmetrized
version. Besides, the value of the U -statistics In,|V |(fV ) do not change if we replace
the kernel function fV (xj1 , . . . , xj|V |

), V = {j1, . . . , j|V |}, by fV (x1, . . . , x|V |) in the
Hoeffding decomposition (9.3) of the U -statistic In,k(f), and fV (x1, . . . , x|V |) is also
a canonical function. The above observations enable us to unify the contribution of
all terms In,|V |(fV ) with |V | = l for some 0 ≤ l ≤ k into one non-degenerate U -
statistics of order l. Generally, the formula obtained in such a way is called the Hoeff-
ding decomposition in the literature. Nevertheless, we have applied Theorem 9.1 in this
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work, because this form of the Hoeffding’s decomposition was more convenient for us.

In our investigations it is important to know that if a function satisfies a good
L2-norm or L∞-norm estimate, then the elements of its Hoeffding decomposition also
have this property, and if a class of function is L2-dense, then the same relation holds
for the classes of functions in the Hoeffding decomposition of the functions in this class.
This is the content of Propositions 9.2 and 9.3. The estimates on the L2-norm given in
formulas (9.7) and (9.8) are actually reformulations of some well-known facts about the
properties of conditional expectations.

Theorem 9.4 enables us to reduce the estimates about multiple random integrals
with respect to normalized empirical measures to estimates about degenerate U -sta-
tistics. Such random integrals are actually sums of U -statistics, and we can apply for
each of these U -statistics the Hoeffding decomposition. Besides, as we consider multiple
integrals with respect to a normalized empirical measure we can expect that a lot of
cancellations appear during the calculation by which we express our random integral in
the form of linear combination of degenerate U -statistics. We get such a representation
which enables us to reduce the estimates we want to prove about multiple random
integrals to analogous estimates about degenerate U -statistics. This is the main content
of Theorem 9.4 which can be considered as an analog of the Hoeffding decomposition
for multiple stochastic integrals with respect to normalized empirical measures. This
representation of a multiple stochastic integral as a linear combination of degenerate
U -statistics of different order also contains degenerate U -statistics of low order. But
as a consequence of the cancellation effects these U -statistics are multiplied with small
coefficients. The proof of Theorem 9.4 is based on a good “book-keeping” of the different
contributions to the integral Jn,k(f). An essential, although less spectacular step of this
“book-keeping” procedure is to express the terms we are working with by means of the
(signed) measures µ and µ(l) − µ, i.e. the measures µ(l) have to be replaced by their
normalizations µ(l) − µ. The calculations needed in the proof are quite natural, but
unfortunately they contain some unpleasant and complicated technical details.

Theorem 9.4 also has the consequence that the second moment of the multiple
random integral of a function with respect to a normalized empirical measure can be
bounded by constant times the L2-norm of the kernel function we integrate. The repre-
sentation of the stochastic integrals given in Theorem 9.4 may also contain a non-zero
constant term. This has the unexpected consequence that the expected value of a mul-
tiple random integral with respect to a normalized empirical measure can be non-zero.
Our random integrals may show such an unusual behaviour because the numbers of
sample points falling to disjoint sets are not independent random variables. But the
dependence between such random variables is very weak, and the expected value of the
random integrals we consider is sufficiently small.

From the pair of Theorems 8.1 and 8.3 I have proved only Theorem 8.3, since its
proof is simpler, and by the results of Section 9 Theorem 8.1 follows from it. The proof
of Theorem 8.3 is different from its original proof published in paper [2]. First a good
estimate is presented about the moments of the degenerate U -statistics in Proposition
10.1. Theorem 8.3 can be deduced from this estimate. Actually the proof is different,
first a version Theorem 8.3′ of Theorem 8.3 is proved, where an analogous estimate
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is proved for degenerate decoupled U -statistic. The adjective ‘decoupled’ refers to the
fact that we put independent copies of a sequence of iid. random variables in different
coordinates of the kernel function of the U -statistic. The study of decoupled U -statistics
is a popular subject of some authors. In particular, the main subject of the book [6] is
a comparison of the properties of U -statistics and decoupled U -statistics.

The study of decoupled U -statistics is simpler than that of usual U -statistics, be-
cause the arguments applied in the study of usual U -statistics can be applied for them,
and they also satisfy a multivariate version of the Marcinkiewicz–Zygmund inequality.
On the other hand, the Marcinkiewicz–Zygmund inequality does not hold for usual U -
statistics, at least the proofs I know of do not work for them. We can prove with the help
of the multivariate version of the Marcinkiewicz–Zygmund and Borell’s inequality an
estimate about the moments of degenerate U -statistics formulated in Proposition 10.1′.
Proposition 8.3′ can be deduced from Proposition 10.1′, and by a result of de la Peña
and Montgomery–Smith formulated in Theorem 10.4 Theorem 8.3′ implies Theorem 8.3.
The results applied in the proof of Theorem 8.3 are proved in Section 11. Let me also
remark that Proposition 10.1 is not proved in this text, since we chose such an approach
where we do not need it. On the other hand, it follows from the results of this work
and some other standard results about U -statistics not discussed in the present work.

I have mentioned the possibility of another proof of Theorem 8.3 on the basis of
the methods of the theory of Wiener–Itô integrals to this problem. In [19] I gave a
proof of Theorem 8.1 by means of the so-called diagram method. Let me also remark
that the method of paper [21] which yields an improvement of Theorem 8.3 presented
in Theorem 16.1 is actually a refinement of the method in [19]. Both in paper [19] and
in the present work the main step of the proof consists of finding a good estimate on
the moments of the random variables we are investigating. It is enough to estimate
the moments of the type M = 2m, where m is a positive integer. For m = 1 such
an estimate is known, and we can get an estimate for m > 1 by means of a recursive
procedure. A similar approach is applied in [19] and in the present work. The main
difference between them is in the form of the recursive inequality between the moments
of the random variables we work with and the way we prove them.

I found the result about the multivariate version of the Marcinkiewicz–Zygmund
equation in the book [6], but the proof of the result given here is different. Only the
proof about the upper estimate of the p-th moment of decoupled U -statistics is written
down. There is also an estimate in the opposite direction, but such a result would be
interesting for us only for the sake of some orientation. Theorem 10.4 was proved by
de la Peña and Montgomery–Smith in their paper [7]. I formulated their result for
separable Banach space valued random variables, just as they did it. Such a general
formulation of the results is very popular in the literature, but here the discussion of
Banach space valued random variables had a different cause. I also wanted to prove
formula (10.8′), a result which is actually not contained in paper [7]. (Book [6] contains
this result, but the proof is left to the reader.) The simplest way to get this statement
was to prove the original result in Banach spaces, and to apply it in appropriate L∞
spaces. Paper [7] also contains some kind of converse result of Theorem 10.4, but as we
do not need it I omitted its discussion.
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This work contains the proof of de la Peña and Montgomery–Smith for Theo-
rem 10.4, but I have explained it in my own style. In particular, I worked out some
details where the author gave only a very short explanation. This proof is given in the
Appendix.

The proof of Borell’s inequality is closely related to that of Nelson’s inequality.
Edward Nelson published the inequality named after him in his paper [27]. He also
showed that the general inequality presented in Appendix C can be reduced to the
inequality given in formula (C1) or in Proposition C2 of this work. This reduction
follows actually from our Theorem 11.2. However, this observation did not help him
to find a proof, and finally he gave a proof without its application. Borell’s inequality
can also be reduced to a one-dimensional statement formulated in Theorem 11.3. This
seems to be a simple inequality, but its proof is surprisingly hard. Actually in this paper
it is enough to prove this inequality in the special case q = 2 and p = 2k, k = 1, 2, . . . .
Actually, as I mentioned in Theorem 16.6, Borell’s inequality can be proved in this
special case with better constants. (See paper [22].)

In the proof of Theorem 11.3 I have followed the paper of Leonhard Gross Logarith-
mic Sobolev inequalities [13]. Gross has worked out a general theory and he could prove
both Nelson’s and Borell’s inequality (more precisely an estimate which simply implies
this result) with its help. Gross’ method and results are interesting, because they are
very useful in several parts of the mathematics. (See e.g [16] or [14].) Let me also
remark that similar results and ideas also appeared in an earlier work of A. Bonami [5].

Gross introduced a so-called logarithmic Sobolev inequality related to Markov pro-
cesses and showed that it implies another inequality, which is in the case of a Wiener
process Nelson’s inequality, while we can define such a simple Markov process for which
the logarithmic Sobolev inequality corresponding to it yields the proof of Theorem 11.3.
This Markov process is explicitly described in Section 11, and the logarithmic Sobolev in-
equality corresponding to it is also formulated and proved there. Actually Gross showed
that each logarithmic Sobolev inequality is equivalent to the inequality he proved as its
consequence. On the other hand, the proof of the logarithmic Sobolev inequalities is
less difficult than a direct proof of the inequalities he has obtained as their consequence.

The name ‘logarithmic Sobolev inequality’ has the following explanation. Generally
one calls ‘Sobolev inequality’ such inequalities where for some pairs of numbers 1 ≤ q <
p < ∞ we prove a bound on the Lp-norm of a function if we have an estimate on its
Lq-norm together with the Lq-norm of some partial derivatives of this function. In
the logarithmic Sobolev inequalities the integral of a function of the form |f |p log |f | is
bounded by means of the integral of |f |p and the integral of a differential type operator
of this function f which is closely related to the infinitesimal operator of a Markov
process.

The proof of Borell’s inequality presented here is due to Leonhard Gross. We
have also shown in the Appendix that from this estimate and the central limit theorem
Nelson’s inequality can be deduced. In this proof we have applied some basic facts about
Wiener–Itô integrals which we did not discuss in detail. The most important results we
have used here are the so-called Itô’s formula for Wiener–Itô integrals and the diagram
formula. All these results can be found in my lecture note [17]. Borell’s inequality was
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applied in the proof of Theorem 8.3′. We also proved another result with its help which
plays an important role in our study. This is the multivariate version of Hoeffding’s
inequality in Theorem 12.3. This result is a simple consequence of Borell’s inequality,
but I did not find it in the literature. Paper [22] contains an improved version of this
estimates presented in Theorem 16.6.

Sections 12 — 15 deal with the proof of Theorem 8.4 about the tail-behaviour of
the supremum of a class of degenerate U -statistics under appropriate conditions. This
result was proved in my paper [20]. The proof of this result is similar to that of its one-
variate version Theorem 4.1, but some additional difficulties have to be overcome. We
have formulated some results in Propositions 12.1 and 12.2 which are the multivariate
analogs of Propositions 6.1 and 6.2, and Theorem 8.4 can be proved as their consequence.
Proposition 12.1 can be proved similarly to Proposition 6.1, and also the deduction of
Theorem 8.4 from Propositions 12.1 and 12.2 is similar to the argument applied in the
proof of Theorem 4.1.

The hard part of the problem is to prove Proposition 12.2. By means of the results
of de la Peña and Montgomery–Smith it can be reduced to a version formulated in
Proposition 12.2′, where degenerate U -statistics are replaced by degenerate decoupled
U -statistics. This result is proved by means of a refinement of the argument of the proof
of Proposition 6.2. The main difficulty appears as we want to find the multivariate
analog of the symmetrization argument made by means of the Symmetrization Lemma,
Lemma 7.1 and Lemma 7.2 in the one-variate case. In the proof of Theorem 4.1 we could
carry out a symmetrization procedure by investigating the difference of two independent
copies of the random sums we have considered. In the proof of Proposition 12.2′ a more
sophisticated construction has to be applied. This construction actually appeared in
the proof of Theorem 8.3, and Lemma 11.5 explains its most important properties.

In the proof of Proposition 12.2′ Lemma 7.1 is not sufficient for us in its original
form. We need a generalization of this result, and this is given in Lemma 13.1. The
proof of Lemma 13.1 is not hard. The real difficulty arises when we want to apply it in
our case. Then as we want to check formula (13.1) we have to bound some non-trivial
conditional probabilities. In the analog relation, in formula (7.1) of Lemma 7.1 it was
enough to bound a usual probability, and this was simple. But as we want to adapt this
method in the multivariate case we have to bound an appropriate conditional variance.
This demands much more work, and the hardest new steps of the proof were introduced
to overcome this difficulty.

Proposition 12.2′ was proved by means of an inductive procedure formulated in
Proposition 13.2, which is the multivariate analog of Proposition 6.2. But because of
the problems we meet in carrying out the symmetrization procedure the arguments of
Proposition 7.2 are not sufficient in this case. Hence another statement is introduced in
Proposition 13.3. Propositions 13.2 and 13.3 can be proved simultaneously by means of
an appropriate inductive procedure. The proof is based on a refinement of the arguments
in the proof of Proposition 6.2. We also have to exploit our knowledge about the
properties of Hoeffding’s decomposition.
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Appendix A.

The proof of some results about Vapnik–Červonenkis classes

Proof of Theorem 5.1. (Sauer’s lemma) Let F1, . . . , Fm be the subsets of cardinality k
of the set S0(n), m =

(

n
k

)

. By the conditions of the theorem all sets Fj , 1 ≤ j ≤ m, have
a “hidden” subset Hj ⊂ Fj such that the class of sets D(S0, Fj) = {Fj ∩B; B ∈ D(S0)}
does not contain the set Hj . Let us denote by C0 = C0((F1, H1), . . . , (Fm, Hm)) the
class of subsets of S0(n) we get by taking first all subsets of S0(n) and then omitting all
subsets of the form Hj ∪Gj with some Gj ⊂ S0 \Fj , 1 ≤ j ≤ m. The subsets omitted in
the definition of C0 do not belong to D(S0), thus C0 contains all elements of D(S0), and
it is enough to show that C0 contains no more than

(

n
0

)

+
(

n
1

)

+ · · · +
(

n
k−1

)

subsets of
S0(n). If Hj = Fj for all “hidden” subsets Hj , 1 ≤ j ≤ m, then C0 contains the subsets
of S0(n) with cardinality at most k − 1, and we have to show that this is the extreme
case.

Let us choose some element s ∈ S0, and define similarly to the class C0 a new
class C1 = C1((F1, H̄1), . . . , (Fm, H̄m)) with the difference that instead of the “hidden”
subsets Hj of Fj taking part in the definition of C0 we work with the sets H̄j we get
by augmenting Hj with the element s if it is possible, i.e. in the definition of C1 Hj

is replaced by H̄j = (Hj ∪ {s}) ∩ Fj . Given a set B ⊂ S0 we can say that B ∈ C0 if
and only if B ∩ Fj 6= Hj for all 1 ≤ j ≤ m, and B ∈ C1 if and only if B ∩ Fj 6= H̄j

for all 1 ≤ j ≤ m. We want to show that C1 has more elements than C0. Theorem 5.1
can be deduced from this statement, because by iterating this procedure for enlarging
the “hidden” subsets Hj of the sets Fj for all s ∈ S0 we get that the class C0 has the
greatest cardinality in the case when Hj = Fj for all 1 ≤ j ≤ k.

Let us define the map T (B) = B \ {s} for all sets B ⊂ S0(n). We shall show
that T (·) is an injection of C0 \ C1 to C1 \ C0. This implies that the cardinality of C1 is
larger than that of C0 just as we claimed. To prove the above property of T (·) first we
check that a) if B ∈ C0 \ C1 then s ∈ B. This implies that different elements of C0 \ C1
have different images under the map T . We also check that b) if B ∈ C0 \ C1, then
T (B) ∈ C1 \ C0, i.e. b1) T (B) ∈ C1 and b2) T (B) /∈ C0.

If B ∈ C0 \ C1 then B ∩ Fj 6= Hj for all 1 ≤ j ≤ m, and B ∩ Fj = H̄j for some j.
This means that B ∩ Fj 6= Hj and B ∩ Fj = H̄j for some index j. This is only possible
if s /∈ Hj , s ∈ Fj and s ∈ B, i.e. property a) holds. Besides, T (B)∩Fj = H̄j \{s} = Hj

for such an index j which means that property b2) holds. To check property b1) we
have to show that if B ∈ C0 \ C1, then (B \ {s}) ∩ Fj 6= H̄j for all 1 ≤ j ≤ m. This
relation clearly holds for such indices j for which s ∈ Fj , since in this case s ∈ H̄j .
If s /∈ Fj , then the condition B ∈ C0 implies that B ∩ Fj 6= Hj , and H̄j = Hj and
B ∩ Fj = (B \ {s}) ∩ Fj because of the relation s /∈ Fj . These relations imply that
(B \ {s}) ∩ Fj 6= H̄j also in this case.

The proof of Theorem 5.3 Let us fix an arbitrary set F = {s1, . . . , sk+1} of the set S,
and consider the set of vectors Gk(F ) = {(g(s1), . . . , g(sk+1)) : g ∈ Gk} of the k + 1-
dimensional space Rk+1. By the conditions of the Theorem Gk(F ) is an at most k-
dimensional subspace of Rk+1. Hence there exists a non-zero vector a = (a1, . . . , ak+1)
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such that
k+1
∑

j=1

ajg(sj) = 0 for all g ∈ Gk. We may assume that A = A(a) = {j : aj <

0, 1 ≤ j ≤ k+1} is a non-empty set by multiplying the vector a by −1 if it is necessary.

Thus we can write

∑

j∈A

ajg(sj) =
∑

j∈{1,...,k+1}\A
(−aj)g(sj), for all g ∈ Gk. (A1)

Put B = {sj , j ∈ A}. Then B ⊂ F , and we claim that B 6= {g : g(s) ≥ 0} ∩ F for all
g ∈ Gk. Indeed, if there were some g ∈ Gk such that B = {g : g(s) ≥ 0} ∩ F , then the
left-hand side of the equation (A1) would be strictly positive and its right-hand side
would be non-positive for this g ∈ Gk, and this is a contradiction.

Thus Theorem 5.1 implies that for all subsets S0(n) of S with n ≥ k + 1 elements
and the class of subsets D of S introduced in the formulation of Theorem 5.3 S0(n)∩D
has at most

(

n
0

)

+
(

n
1

)

+ · · ·+
(

n
k

)

elements. Hence D is a Vapnik–Červonenkis class.

Appendix B. The proof of Theorem 10.3

(A result of de le Peña and Montgomery–Smith)

The proof of Theorem 10.3. We concentrate our efforts to prove relation (10.8). For-
mula (10.8′) can be obtained as a relatively simple consequence of this result. The
proof of formula (10.8) will be made by means of an inductive procedure. To carry out
it we have to formulate and prove our statement in a more general form where such
generalized U -statistics are considered for which different kernel functions may appear
in each term of the sum. More explicitly, let ℓ = ℓ(n, k) denote the set of all sequences
l = (l1, . . . , lk) of length k such that 1 ≤ lj ≤ n, 1 ≤ j ≤ k. Let us fix a class of func-
tions {fl1,...,lk(x1, . . . , xk), (l1, . . . , lk) ∈ ℓ} which map the space (Xk,X k) to a separable
Banach space B. Let us denote this class of functions by f(ℓ), and define similarly to
the U -statistics and decoupled U -statistics the generalized U -statistics and generalized
decoupled U -statistics by the formulas

In,k(f(ℓ)) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

fl1,...,lk (ξl1 , . . . , ξlk)

and

Īn,k(f) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

fl1,...,lk

(

ξ
(1)
l1
, . . . , ξ

(k)
lk

)

(with the same random variables ξl and ξ
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k as before.)

The following generalization of relation (10.8) will be proved.

P (‖In,k(f(ℓ))‖ > u) ≤ AP
(

‖Īn,k(f(ℓ))‖ > γu
)

(10.8b)
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with some constants A = A(k) and γ = γ(k) depending only on the order of these
U -statistics.

To prove relation (10.8b) first we verify the following statement.

Let us take two independent copies ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n of our original

sequence of random variables ξ1, . . . , ξn and introduce for all sets V ⊂ {1, . . . , k} the
function αV (j), 1 ≤ j ≤ k, defined as αV (j) = 1 if j ∈ V and αV (j) = 2 if j /∈ V . Let
us define with the help of these quantities the decoupled generalized U -statistics

In,k,V (f(ℓ)) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

fl1,...,lk

(

ξ
(αV (1))
l1

, . . . , ξ
(αV (k))
lk

)

for all V ⊂ {1, . . . , k}.

(B1)

The following inequality will be proved: There are some constants Ck > 0 and
Dk > 0 depending only on the order k of the generalized U -statistic In,k(f(ℓ)) such
that for all numbers u > 0

P (‖In,k(f(ℓ))‖ > u) ≤
∑

V⊂{1,...,k}, 1≤|V |≤k−1

CkP (Dk‖In,k,V (f(ℓ))‖ > u) . (B2)

Here |V | denotes the cardinality of the set V , and the condition 1 ≤ |V | ≤ k − 1 in the
summation of formula (B2) means that we omit the sets V = ∅ and V = {1, . . . , k} from
the summation, i.e. the cases when either αV (j) = 1 for all 1 ≤ j ≤ k or αV (j) = 2
for all 1 ≤ j ≤ k are not considered in this sum. Formula (10.8b) can be deduced
from formula (B2) by means of a relatively simple inductive argument. In the proof of
formula (B2) we shall apply the following simple lemma.

Lemma B1. Let ξ and η be two independent and identically distributed random vari-
ables taking values on a separable Banach space B. Then

3P

(

|ξ + η| > 2

3
u

)

≥ P (|ξ| > u) for all u > 0.

Proof of Lemma B1. Let ξ, η and ζ three independent, identically distributed random
variables taking values in B. Then

3P

(

|ξ + η| > 2

3
u

)

= P

(

|ξ + η| > 2

3
u

)

+ P

(

|ξ + ζ| > 2

3
u

)

+ P

(

| − (η + ζ)| > 2

3
u

)

≥ P (|ξ + η + ξ + ζ − η − ζ| > 2u) = P (|ξ| > u).

To prove formula (B2) let us introduce the random variable

Tn,k(f(ℓ)) =
1

k!

∑

1≤lj≤n,sj=1 or sj=2, j=1,...,k

lj 6=lj′ if j 6=j′

fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

=
∑

V⊂{1,...,k}
Īn,k,V (f(ℓ)),

(B3)
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and observe that the random variables In,k(f(ℓ)), In,k,∅(f(ℓ)) and In,k,{1,...,k}(f(ℓ)) are
identically distributed and the last two random variables are independent of each other.
Hence Lemma B1 yields that

P (‖In,k(f(ℓ))‖ > u) ≤ 3P

(

‖In,k,∅(f(ℓ)) + In,k,{1,...,k}(f(ℓ))‖ >
2

3
u

)

= 3P





∥

∥

∥

∥

∥

∥

Tn,k(f(ℓ))−
∑

V : V⊂{1,...,k}, 1≤|V |≤k−1

In,k,|V |(f(ℓ))

∥

∥

∥

∥

∥

∥

>
2

3
u





≤ P (3 · 2k−1‖Tn,k(f(ℓ))‖ > u) (B4)

+
∑

V : V⊂{1,...,k}, 1≤|V |≤k−1

P (3 · 2k−1‖In,k,|V |(f(ℓ))‖ > u).

To deduce relation (B2) from relation (B4) we need a good estimate on the probability
P (3 · 2k−1‖Tn,k(f(ℓ))‖ > u). We shall compare the distribution of ‖Tn,k(f(ℓ))‖ with
that of ‖In,k,V (f(ℓ))‖ for an arbitrary set V ⊂ {1, . . . , k} and get an estimate which is
sufficient to prove relation (B2). To carry out this program first we prove the following
lemmas.

Lemma B2. Let us consider a sequence of independent random variables ε1, . . . , εn,
P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent of the ran-

dom variables ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n appearing in the definition of the decoupled

U -statistics In,k,V (f(ℓ)) defined in formula (B1). Let us define with their help the se-

quences of random variables η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n whose elements (η

(1)
l , η

(2)
l ) =

(η
(1)
l (εl), η

(2)
l (εl)), 1 ≤ l ≤ n, are given as

(η
(1)
l (εl), η

(2)
l (εl)) =

(

1 + εl
2

ξ
(1)
l +

1− εl
2

ξ
(2)
l ,

1− εl
2

ξ
(1)
l +

1 + εl
2

ξ
(2)
l

)

,

i.e. let (η
(1)
l (εl), η

(2)
l (εl)) = (ξ

(1)
l , ξ

(2)
l ) if εl = 1, and (η

(1)
l (εl), η

(2)
l (εl)) = (ξ

(2)
l , ξ

(1)
l )

if εl = −1, 1 ≤ l ≤ n. Then the joint distribution of the pair of sequences of ran-

dom variables ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n agrees with that of the pair of sequences

η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n .

Let us fix some V ⊂ {1, . . . , k}, and introduce the random variable

Īn,k,V (f(ℓ)) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

fl1,...,lk

(

η
(αV (1))
l1

, . . . , η
(αV (k))
lk

)

, (B5)

where similarly to formula (B1) αV (j) = 1 if j ∈ V , and αV (j) = 2 if j /∈ V . Then the
identity

2k Īn,k,V (f(ℓ)) (B6)

=
1

k!

∑

1≤lj≤n,sj=1 or sj=2, j=1,...,k

lj 6=lj′ if j 6=j′

(1 + ε
(1)
l1,s1,V

) · · · (1 + ε
(k)
lk,sk,V

)fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)
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holds, where ε
(j)
l,1,V = εl, ε

(j)
l,2,V = −εl if j ∈ V , and ε

(j)
l,1,V = −εl, ε(j)l,2,V = εl if j /∈ V ,

1 ≤ l ≤ n.

In the proof of relation (B2) we need besides Lemma B2 another result given in
Lemma B4. Before the formulation of Lemma B4 we present Lemma B3 whose result
will be used in its proof.

Lemma B3. Let Z be a random variable in a separable Banach space B with expectation

zero, i.e. let Eκ(Z) = 0 for all κ ∈ B′. Then P (‖v + Z‖ ≥ ‖x‖) ≥ inf
κ∈B′

(Eκ(Z))2

4Eκ(Z)2 for all

v ∈ B. Here B′ denotes the (Banach) space of all (bounded) linear transformations on
B to the real line.

Lemma B4. Let us consider a sequence of independent random variables ε1, . . . , εn,
P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, a polynomial of order k of these random
variables with some coefficients a(l1, . . . , ls), 1 ≤ s ≤ k, 1 ≤ ls ≤ n, from some separable
Banach space B. Let us assume that the coefficients of this polynomial satisfy the
relation a(l1, . . . , ls) = 0 if lp = lq with some 1 ≤ p < q ≤ s, and the constant term is
zero. The inequality

P











∥

∥

∥

∥

∥

∥

∥

∥

∥

v +

k
∑

s=1

∑

1≤lj≤n, j=1,...,s

lj 6=lj′ if j 6=j′

a(l1, . . . , ls)εl1 · · · εls

∥

∥

∥

∥

∥

∥

∥

∥

∥

> ‖v‖











≥ ck (B7)

holds for all v ∈ B with some constant ck > 0 depending only on the order k of this
polynomial.

The proof of Lemma B2. Let us consider the conditional joint distribution of the se-

quences of random variables η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n under the condition that

the random vector ε1, . . . , εn takes the value of some prescribed ±1 series of length n.
Observe that this conditional distribution agrees with the joint distribution of the se-

quences ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n for all possible conditions. This fact implies the

statement about the joint distribution of the sequences η
(1)
l , η

(2)
l , 1 ≤ l ≤ n.

To prove identity (B6) let us fix a set M ⊂ {1, . . . , n} and consider the case when
εl = 1 if l ∈ M and εl = −1 if l /∈ M . Observe that for all fixed sequences 1 ≤
l1, . . . , lk ≤ n, lj 6= lj′ if j 6= j′

fl1,...,lk

(

η
(αV (1))
l1

, . . . , η
(αV (k))
lk

)

= fl1,...,lk

(

ξ
(βV,M (1,l1))
l1

, . . . , ξ
(βV,M (k,lk))
lk

)

,

where βV,M (j, l) = 1 if j ∈ V and l ∈ M or j /∈ V and l /∈ M), and βV,M (j, l) = 2
otherwise. On the other hand,

∑

sj=1 or sj=2, j=1,...,k

(1 + ε
(1)
l1,s1,V

) · · · (1 + ε
(k)
lk,sk,V

)fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

= 2kfl1,...,lk

(

ξ
(βV,M (1,l1))
l1

, . . . , ξ
(βV,M (k,lk))
lk

)

,
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since the product (1+ ε
(1)
l1,s1,V

) · · · (1+ ε(k)lk,sk,V
) equals either zero or 2k, and ε

(j)
lj ,sj ,V

= 1

if βV,M (j, lj) = sj , and ε
(j)
lj ,sj ,V

= −1 if βV,M (j, lj) 6= sj .

Summing up these identities for all 1 ≤ l1, . . . , lk ≤ n such that lj 6= lj′ if j 6= j′ we
get identity (B6).

The proof of Lemma B3. Let us first observe that if ξ is a real valued random variable

with zero expectation, then P (ξ > 0) ≥ (E|ξ|)2
4Eξ2 since (E|ξ|)2 = 4(E(ξI({ξ > 0}))2 ≤

4P (ξ > 0)Eξ2 by the Schwarz inequality, where I(A) denotes the indicator function of
the set A.

Given some v ∈ B let us choose a linear operator κ such that ‖κ‖ = 1 and κ(v) =
‖v‖. Such an operator exists by the Banach–Hahn theorem. Observe that {ω : ‖v +
Z(ω)‖ ≥ ‖v‖} ⊃ {ω : κ(v + Z(ω)) ≥ κ(v)} = {ω : κ(Z(ω)) ≥ 0}. Besides, Eκ(Z) =
0. Hence we can apply the above proved inequality for ξ = κ(Z), and it yields that

P (‖v + Z‖ ≥ ‖v‖) ≥ Eκ(Z)2

4(Eκ(Z))2 . Lemma B3 is proved.

Proof of Lemma B4. Take the class of random polynomials

Y =

k
∑

s=1

∑

1≤lj≤n, j=1,...,s

lj 6=lj′ if j 6=j′

b(l1, . . . , ls)εl1 · · · εls ,

where εl, 1 ≤ l ≤ n, are independent random variables with P (εl = 1) = P (εl =
−1) = 1

2 , and the coefficients b(l1, . . . , ls), 1 ≤ s ≤ k, are arbitrary real numbers. It is
enough to show that there exists a constant ck depending only on the order k of these
polynomials such that the inequality

(E|Y |)2 ≥ 4ckEY
2. (B8)

holds for all of these polynomials Y . Indeed, formula (B7) follows from relation (B8)

and Lemma B3 with ck ≥ inf
κ

(Eκ(Z))2

4Eκ(Z)2 if we apply them for the vector v ∈ B in formula

(B7) and

Z =

k
∑

s=1

∑

1≤lj≤n, j=1,...,s

lj 6=lj′ if j 6=j′

a(l1, . . . , ls)εl1 · · · εls ,

and the infimum is taken for all bounded linear operators κ on the Banach space B.
But this inequality follows from relation (B8).

To prove relation (B8) first we compare the moments EY 2 and EY 4. Let us
introduce the random variables

Ys =
∑

1≤lj≤n, j=1,...,s

lj 6=lj′ if j 6=j′

b(l1, . . . , ls)εl1 · · · εls 1 ≤ s ≤ k,
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and observe that because of Borell’s inequality (Theorem 10.2) and the uncorrelatedness
of the random variables Ys, 1 ≤ s ≤ k,

EY 4 =

(

k
∑

s=1

Ys

)4

≤ k3
k
∑

s=1

EY 4
s ≤ k333k/2

k
∑

s=1

(EY 2
s )

2

≤ k333k/2

(

k
∑

s=1

EY 2
s

)2

= k333k/2(EY 2)2.

This estimate together with the Hölder inequality yield that EY 2 = E(Y 4)1/3|Y |2/3 ≤
(EY 4)1/3(E|Y |)2/3 ≤ k3k/2(EY 2)1/3(E|Y |)2/3, i.e. EY 2 ≤ k3/233k/4(E|Y |)2, and rela-
tion (B8) holds with 4ck = k−3/23−3k/4. Lemma B4 is proved.

Let us turn back to the estimation of the probability P (3 · 2k−1‖Tn,k(f)‖ > u).

Let us introduce the σ-algebra F = B(ξ(1)l , ξ
(2)
l , 1 ≤ l ≤ n) generated by the random

variables ξ
(1)
l , ξ

(2)
l , 1 ≤ l ≤ n, and fix some set V ⊂ {1, . . . , k}. We claim that there exists

some constant ck > 0 that the random variable Īn,k,V (f(ℓ)) defined in formula (B5)
satisfies the inequality

P
(

‖2k Īn,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F
)

≥ ck with probability 1. (B9)

Indeed, formula (B6) and the independence of the random sequences εl,V , ξ
(1)
l and

ξ
(2)
l , 1 ≤ l ≤ n yield that

P
(

‖2k Īn,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F
)

= PεV

(∥

∥

∥

∥

1

k!

∑

1≤lj≤n,sj=1 or sj=2, j=1,...,k

lj 6=lj′ if j 6=j′

(1 + ε
(1)
l1,s1,V

) · · · (1 + ε
(k)
lk,sk,V

)fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

∥

∥

∥

∥

> ‖Tn,k(f(ℓ))‖
)

, (B10)

where PεV means that we fix the values of the random variables ξ
(1)
l , ξ

(2)
l , 1 ≤ l ≤ n and

take the probability with respect to the remaining random variables ε
(j)
l,s,V , 1 ≤ j ≤ k,

1 ≤ l ≤ n, and s = 1 or s = 2. Let us observe that the probability considered
at the right-hand side of (B10) is a polynomial of order k of the random variables

ε1, . . . , εn. (The terms ε
(j)
lj ,sj ,V

taking part in it equal either εlj or −εlj depending on

the parameters j and sj .) Besides, the constant term of this polynomial equals Tn,k(f).
Hence this probability can be bounded by means of Lemma B4, and this result yields
relation (B9).
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Relation (B9) implies that

P (‖2k Īn,k,V (f(ℓ))‖ ≥ 3 · 2k−1u)

≥ P (‖2k Īn,k,V (f(ℓ))‖ ≥ ‖Tn,k(f(ℓ))‖, ‖Tn,k(f(ℓ))‖ ≥ 3 · 2k−1u)

=

∫

{ω : ‖Tn,k(f(ℓ))(ω)‖≥3·2k−1u}
P
(

‖2k Īn,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F
)

dP

≥ ckP (‖Tn,k(f(ℓ))‖ ≥ 3 · 2k−1u)

The last inequality with the choice of any set V ⊂ {1, . . . , k}, 1 ≤ |V | ≤ k− 1, together
with relation (B4) imply formula (B2).

To formulate the inductive hypothesis we need to prove formula (10.8b) with the
help of relation (B2) first we introduce the following quantities. Let W = W(k) denote

the set of all partitions of the set {1, . . . , k}. Let us fix k independent copies ξ(j)1 , . . . , ξ
(j)
n ,

1 ≤ j ≤ k, of the sequence of random variables ξ1, . . . , ξn. Given a partition W =
(V1, . . . , Vs) ∈ W(k) let us introduce the function sW (j), 1 ≤ j ≤ k, which tells for all
arguments j the index of that element of the partition W which contains the point j,
i.e. the function sW (j), 1 ≤ j ≤ k, is defined by the relation j ∈ VsW (j). Let us define
(actually generalizing the notion introduced in formula (B1)) the notion of generalized
decoupled U -statistics corresponding to a partition W ∈ W(k) as

In,k,W (f(ℓ)) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

fl1,...,lk

(

ξ
(sW (1))
l1

, . . . , ξ
(sW (k))
lk

)

for all W ∈ W(k).

Given a partition W = (V1, . . . , Vs) let us call the number s of the elements of this
partition the rank both of the partition W and of the generalized decoupled U -statistic
In,k,W (f(ℓ)).

Relation (10.8b) will be proved by induction with respect to the order k of the
U -statistics. This induction assumption clearly holds for k = 1, so when we prove it
for k we may assume that it holds for all k′ < k. We prove it by first showing the
following statement. Fix the number k. For all numbers 2 ≤ j ≤ k there exist some
constants C(k, j) > 0 and δ(k, j) > 0 such that for all generalized decoupled U -statistics
In,k,W (f(ℓ)) of order k

P (‖In,k,W (f(ℓ))‖ > u) ≤ C(k, j)P
(

‖Īn,k(f(ℓ))‖ > δ(k, j)u
)

for all 2 ≤ j ≤ k if the rank of W equals j.
(B11)

(In relation (B11) we compare the distribution of some generalized decoupled U -statis-
tics with that of the decoupled U -statistic Īn,k(f(ℓ)).) We shall prove this statement by
means of a backward induction with respect to the rank j of the generalized decoupled
U -statistics.

Relation (B11) clearly holds for j = k with C(k, k) = 1 and δ(k, k) = 1. To prove
it for generalized decoupled U -statistics of rank 2 ≤ j < k first we make the following
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observation. If the rank j of the partition W = (U1, . . . , Uj) satisfies the relation
2 ≤ j ≤ k − 1, then it contains an element with cardinality strictly less than k and
strictly greater than 1. For the sake of simpler notation let us assume that the element
Uj of this partition is such an element, and Uj = {s, . . . , k} with some 2 ≤ s ≤ k−1. The
investigation of general U -statistics of rank j, 2 ≤ j ≤ k− 1 can be reduced to this case
by a reindexation of the random arguments in the U -statistics if it is necessary. Let us
consider the partition W̄ = (U1, . . . , Uj−1, {s}, . . . , {k}) and the generalized decoupled
U -statistic In,k,W̄ (f(ℓ)) corresponding to this partition W̄ . We show that our inductive
hypothesis implies the inequality

P (‖In,k,W (f(ℓ))‖ > u) ≤ Ā(k)P
(

‖In,k,W̄ (f(ℓ))‖ > γ̄(k)u
)

(B12)

with Ā(k) = sup
j≤k−1

A(j), γ(k) = inf
j≤k−1

γ(j) if the rank j ofW is such that 2 ≤ j ≤ k−1.

To prove relation (B12) let us define the σ-algebra F generated by the random
variables appearing in the first s − 1 coordinates of these generalized U -statistics. We
show that relation (10.8b) for U -statistics of order k − s + 1 ≤ k − 1 yields that
P (‖In,k,W (f(ℓ))‖ > u|F) ≤ Ā(k)P

(

‖In,k,W̄ (f(ℓ))‖ > γ̄(k)u|F
)

with probability 1. This
inequality follows from our inductive hypothesis, since the conditional probabilities we
compare here are generalized U -statistics and generalized decoupled U -statistics of or-
der k − s+ 1 we get by putting substituting the (known) first s− 1 coordinates in the
generalized U -statistics In,k,W (f(ℓ)) and In,k,W̄ (f(ℓ)). Then taking expectation at both
sides of this inequality we get relation (B12). As the rank of W̄ is strictly greater than
the rank of W relation (B12) together with our backward inductive assumption imply
relation (B11) for all 2 ≤ j ≤ k.

Inequality (10.8b) is a simple consequence of relations (B2) and (B11). Indeed,
the probability P (‖In,k(f(ℓ))‖ > u) is bounded in formula (B2) by such an expression,
where some linear combination of the probabilities are considered that certain gener-
alized decoupled U -statistics of order k and rank 2 are larger than uD−1

k . Each of
these terms can be bounded by means of relation (B11), and in such a way we get
relation (10.8b).

We prove formula (10.8′) first in the simpler case when the supremum of finitely
many functions is taken. Let us have M functions f1, . . . , fM , and to prove relation
(10.8′) in this case let us apply formula (10.8) with the function f = (f1, . . . , fM )
taking values in the separable Banach space BM consisting of the points (v1, . . . , vM ),
vj ∈ B, 1 ≤ j ≤ M , with the norm ‖(v1, . . . , vM )‖ = sup

1≤j≤m
‖vj‖. The application of

formula (10.8) with this choice yields formula (10.8′) in this case. Let us emphasize that
the constants appearing in this estimate do not depend on the number M . Since the
distribution of the random variables sup

1≤s≤M
‖In,k(fs)‖ converge to sup

1≤s<∞
‖In,k(fs)‖, the

distribution of the random variables sup
1≤s≤M

∥

∥Īn,k(fs)
∥

∥ converge to sup
1≤s<∞

∥

∥Īn,k(fs)
∥

∥ as

M → ∞, we get the proof of relation (10.8′) in the general case by taking limitM → ∞
in this relation.
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Appendix C.

Nelson’s inequality and its application

In this part of the Appendix I formulate and prove Nelson’s inequality and briefly indi-
cate how it can be applied in the proof of Theorem 8.5, i.e. in the Gaussian counterpart
of Theorems 8.3 and 8.4. As the latter problem does not belong to the main subject of
the work, the detailed explanation of some background results I shall apply in the proof
will be omitted. In particular, I do not discuss the basic results about the properties
of multiple Wiener–Itô integrals. These results can be found for instance in my lecture
note Multiple Wiener–Itô integrals.

There are several equivalent formulations of Nelson’s inequality. First I present its
terminologically simplest form. Before its formulation let me recall that the Hermite
polynomials Hk(x), k = 0, 1, 2, . . . , are those polynomials which constitute an orthogo-

nal system with respect to the normal density function ϕ(x) = 1√
2π
e−x2/2. To fix their

normalization, let us make the agreement that Hk(x) is a polynomial of order k, and
the coefficient of its leading term xk equals 1.

Theorem C1. (Nelson’s inequality). Let (Y,Y, ν) = (R∞,B∞, ν∞) be the direct
product of infinite many copies of the space (R,B, λϕ), where R denotes the real line,
B is the Borel σ-algebra on it, λϕ is the measure determined by the standard normal
distribution function, i.e. the probability measure which is absolutely continuous with
respect to the Lebesgue measure with density function ϕ(y) = 1√

2π
e−y2/2.

Given a number γ > 0 introduce the operator Tγ on (Y,Y) by defining it first on
polynomials by the formula

Tγ

(

∑

cl1,j1,...,ls,jsHl1(yj1) · · ·Hls(yjs)
)

=
∑

γl1+···+lscl1,j1,...,ls,jsHl1(yj1) · · ·Hls(yjs),

where all finite sums of the above form are considered, and Hl(·) denotes the Hermite
polynomial of order l. Let us extend this linear operator to general functions on the
space (Y,Y) in the natural way.

Fix two numbers 1 < q ≤ p < ∞ and a number γ ≤
√

q−1
p−1 . Then the operator Tγ

defined above, considered as a linear operator from the space Lq(Y,Y, ν) to Lp(Y,Y, ν)
is a contraction, i.e. ‖Tγ(f)‖p ≤ ‖f‖q for all functions f ∈ Lq(Y,Y, ν).

By Theorem 11.2 Nelson’s inequality can be reduced to the following one-dimen-
sional inequality

∫ ∞

−∞

∣

∣

∣

∣

∣

s
∑

l=0

clγ
lHl(x)

∣

∣

∣

∣

∣

p
1√
2π
e−x2/2 dx ≤

[

∫ ∞

−∞

∣

∣

∣

∣

∣

s
∑

l=0

clHl(x)

∣

∣

∣

∣

∣

q
1√
2π
e−x2/2 dx

]p/q

(C1)

for all finite polynomials
s
∑

l=0

clHl(x) if 1 < q ≤ p <∞, and γ ≤
√

q−1
p−1 .
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We shall prove inequality (C1) in a seemingly more complicated equivalent form
in the following Proposition C2. Proposition C2 can be proved by means of the hyper-
contractive inequality for Rademacher functions, the central limit theorem and by some
basic results in the theory of multiple Wiener–Itô integrals.

Proposition C2. Let us consider a Wiener process W (t) on the interval [0, 1], and
consider multiple Wiener–itô integrals with respect to it. The inequality

E

∣

∣

∣

∣

∣

s
∑

l=0

clγ
l

∫

W ( dx1) · · ·W ( dxl)

∣

∣

∣

∣

∣

p

≤
[

E

∣

∣

∣

∣

∣

s
∑

l=0

cl

∫

W ( dx1) · · ·W ( dxl)

∣

∣

∣

∣

∣

q]p/q

(C2)

holds for all numbers s and coefficients cl, 0 ≤ l ≤ s if 1 < q ≤ p <∞, and γ ≤
√

q−1
p−1 .

Remark: Relations (C1) and (C2) are equivalent. To show this observe that by Itô’s for-
mula for multiple Wiener–Itô integrals

∫

W ( dx1) · · ·W ( dxl) = Hl

(∫

W ( dx)
)

. Besides,
the random variable ξ =

∫

W ( dx) = W (1) −W (0) has standard normal distribution,
and formula (C2) can be rewritten with its help as

E

∣

∣

∣

∣

∣

s
∑

l=0

clγ
lHl(ξ)

∣

∣

∣

∣

∣

p

≤
[

E

∣

∣

∣

∣

∣

s
∑

l=0

clHl(ξ)

∣

∣

∣

∣

∣

q]p/q

which is clearly equivalent to relation (C1).

The proof of Proposition C2. First we want to show a version of formula (C2) where
the multiple Wiener–Itô integrals are replaced by appropriate approximations of these
integrals. For this goal let us consider m independent, normally distributed random
variables ξ1, . . . , ξm with expectation zero and variance 1

m . We shall prove with the
help of the hypercontractive inequality for Rademacher functions and the central limit
theorem (more precisely a slight generalization of it) the following inequality:

E

∣

∣

∣

∣

∣

∣

∣

∣

s
∑

l=0

clγ
l

∑

1≤j1,...,jl≤m
ju 6=j′u if u 6=u′, 1≤u,u′≤m

ξj1 · · · ξjl

∣

∣

∣

∣

∣

∣

∣

∣

p

≤









E

∣

∣

∣

∣

∣

∣

∣

∣

s
∑

l=0

cl
∑

1≤j1,··· ,jl≤m
ju 6=j′u if u 6=u′, 1≤u,u′≤m

ξj1 . . . ξjl

∣

∣

∣

∣

∣

∣

∣

∣

q







p/q

(C3)

for all s and coefficients cs, 1 ≤ s ≤ l, if 1 < q ≤ p <∞, and γ ≤
√

q−1
p−1 .

To prove relation (C3) let us choose for all n = 1, 2, . . . a sequence of independent
random variables ε1, . . . , εmn such that P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤

mn, and define the random variables Z
(n)
j = 1√

mn

jn
∑

k=(j−1)n+1

εj , 1 ≤ j ≤ m. The

hypercontractive inequality for Rademacher functions implies that

E

∣

∣

∣

∣

∣

∣

∣

∣

s
∑

l=0

clγ
l

∑

1≤j1,...,jl≤m
ju 6=j′u if u 6=u′, 1≤u,u′≤m

Z
(n)
j1

· · ·Z(n)
jl

∣

∣

∣

∣

∣

∣

∣

∣

p

≤









E

∣

∣

∣

∣

∣

∣

∣

∣

s
∑

l=0

cl
∑

1≤j1,...,jl≤m
ju 6=j′u if u 6=u′, 1≤u,u′≤m

Z
(n)
j1

· · ·Z(n)
jl

∣

∣

∣

∣

∣

∣

∣

∣

q







p/q

(C4)
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By the central limit theorem the random vectors (Z
(n)
1 , . . . , Z

(n)
m ) converge in dis-

tribution to the random vector (ξ1, . . . , ξm) as n→ ∞. This convergence in distribution
also can be expressed as the relation

lim
n→∞

Ef(Z
(n)
1 , . . . , Z(n)

m ) = Ef(ξ1, . . . , ξm) (C5)

for all bounded and continuous functions f on Rm. Moreover, it can be proved that

the distribution of the random vectors Z
(n)
j converge to zero sufficiently fast at infinity,

more explicitly for all K > 0 there exists some constant C = C(K) > 0 such that

P (|Z(n)
m | > x) ≤ CxK for all x ≥ 1 and n = 1, 2, . . . . This fact implies that relation

(C5) also holds for continuous functions f such that |f(x)| ≤ C(1 + |x|)K) with some
constant C > 0 and K > 0, where x = (x1, . . . , xm) and |x| is the length of the vector x.
This strengthened form of (C5) enables us to take the limit n→ ∞ in formula (C4) and
to get relation (C3) in such a way.

Let us apply formula (C3) with the choice ξj = W
(

j
m

)

−W
(

j−1
m

)

, 1 ≤ j ≤ m.
Observe that for all indices l the inner sums at both sides of this expression are approx-
imative sums for the Wiener–Itô integral

∫

W ( dx1) · · ·W ( dxl). Hence it is natural to
expect that by applying the limiting procedure m→ ∞ in formula (C3) with the above
choice of the random variables ξj we get relation (C2). This belief is correct, only its jus-
tification requires the application of some deeper results from the theory of Wiener–Itô
integrals. We need some estimate which states that also the high moments of a Wiener–
Itô integral with a small kernel function are small. We can apply the following result.
If h is such a function in [0, 1]l for which

∫

|h(x1, . . . , xl)|2 dx1 . . . dxl < ε with some

ε > 0, then also the inequality E
∣

∣

∫

h(x1, . . . , xl)W ( dx1) . . .W ( dxl)
∣

∣

2K ≤ C(K, l)εK

holds for all K = 1, 2, . . . with some constant C(K, l) depending only on K and l. But
the proof of this estimate demands some deeper results about Wiener–Itô integrals. (In
my lecture note about Wiener–Itô integrals this result is proved as a consequence of
the so-called diagram formula.) By applying this limiting procedure we get the proof of
(C2). In such a way we have proved Proposition C2 which, as we have shown, implies
Theorem C1.

Now I formulate a version of Nelson’s inequality presented in the language of
Wiener–Itô integrals.

Theorem C3. Let us fix a measurable space (X,X ) together with a countable non-
atomic measure µ on it, and let Zµ be an orthogonal Gaussian random measure with
counting measure µ on (X,X ). (See the definition of counting measure before the for-
mulation of Theorem (8.5).) For the sake of simplicity let us assume that the space
L2(X,X , µ) is separable.

Let us have a sequence of measurable functions fk(x1, . . . , xk) on (Xk,X k) of real
constant ck, k = 1, 2, . . . , and also a constant c0 such that

c20 +

∞
∑

k=1

c2k
k!

∫

f2k (x1, . . . , xk)µ( dx1) . . . µ( dxk) <∞. (C6)
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Then

E

∣

∣

∣

∣

∣

c0 +
∞
∑

k=1

γk
ck
k!

∫

fk(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk)

∣

∣

∣

∣

∣

p

≤
[

E

∣

∣

∣

∣

∣

c0 +

∞
∑

k=1

ck
k!

∫

fk(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk)

∣

∣

∣

∣

∣

q]p/q

.

(C7)

if 1 < q ≤ p <∞, and γ ≤
√

q−1
p−1 .

Inequality (C7) means in particular that if the right-hand side is finite then the
left-hand side is also finite.

The proof of Theorem C3. Theorem C3 will be proved as the consequence of Theorem C1
and Itô’s formula for multiple Wiener–Itô integrals. Let us choose a complete orthonor-
mal system ψ1(x), ψ2(x), · · · in the space L2(X,X , µ), and define the random variables
ξn =

∫

ψ(x)Zµ( dx). Then ξ1, ξ2, . . . is a sequence of independent random variables
with standard normal distribution, and U(ω) = (ξ1(ω), ξ2(ω), . . . ) is a measure preserv-
ing transformation of the probability space (Ω,A, P ) where the orthonormal Gaussian
random measure Zµ is defined to the space (Y,Y, ν) introduced in the formulation of
Theorem C1. We express the Wiener–Itô integrals

Vk =

∫

fk(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk), 1 ≤ k <∞,

by means of Itô’s formula as a function of the Hermite polynomials of the random
variables ξj , 1 ≤ j <∞, and then we deduce Theorem C3 from Theorem C1 by means
of the above introduced measure preserving transformation U .

To carry out this program let us expand the function fk(x1, . . . , xk) by means of the
complete orthonormal system consisting of the products ψj1(x1) · · ·ψjk(xk) 1 ≤ js <∞,
j = 1, . . . , k, in the space (Xk,X k, µk). We can write

fk(x1, . . . , xk) =
k
∑

s=1

∑

(j1,...,js), (l1,...,ls)
ju≥1, lu≥1, 1≤u≤s, j1+···+js=k

lu 6=lu′ if u 6=u′, 1≤u,u′≤s

dj1,...,js,l1,...,lsFj1,...,js,l1,...,ls(x1, . . . , xk)

with some appropriate coefficients dj1,...,js,l1,...,ls and

Fj1,...,js,l1,...,ls(x1, . . . , xk) =
s
∏

u=1

ψlu(xJ(u−1)+1)ψlu(xJ(u−1)+1) · · ·ψlu(xJ(u)),

where J(0) = 0 and J(u) = j1 + · · ·+ ju, 1 ≤ u ≤ s.
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By Itô’s formula
∫

Fj1,...,js,l1,...,ls(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk) =
s
∏

u=1
Hju(ξlu),

and
∫

γkFj1,...,js,l1,...,ls(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk) =
s
∏

u=1
γjuHju(ξlu).

By summing up the above inequalities we get that

Vk = U∗









k
∑

s=1

∑

(j1,...,js), (l1,...,ls)
ju≥1, lu≥1, 1≤u≤s, j1+···+js=k

d̄j1,...,js,l1,...,lsHj1(yl1) · · ·Hjs(yls)









and

γkVk = U∗









k
∑

s=1

∑

(j1,...,js), (l1,...,ls)
ju≥1, lu≥1, 1≤u≤s, j1+···+js=k

d̄j1,...,js,l1,...,lsγ
j1Hj1(yl1) · · · γjsHjs(yls)









with some coefficients d̄j1,...,js,l1,...,ls , where U
∗ denotes the operator from the space of

functions on (Y,Y, ν) to the space of functions on (Ω,A, P ) induced by the measure
preserving transformation U . Summing up these identities for all k = 0, 1, 2, . . . and
exploiting the measure preserving property of the transformation U we get that Theo-
rem C1 implies Theorem C3. (Let me remark that condition (C6) was imposed only to
guarantee that the infinite sum of the Wiener–Itô integrals we considered really exists.)

The proof of formula (8.11) in Theorem 8.5 is fairly simple with the help of Nelson’s
inequality.

The proof of formula (8.11). Let us observe that relation (B7) with q = 2, p = 2M
yields that for a k-fold Wiener–Itô integral

E

∣

∣

∣

∣

1

k!

∫

f(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk)

∣

∣

∣

∣

2M

≤ (2M − 1)kM

[

E

∣

∣

∣

∣

1

k!

∫

f(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk)

∣

∣

∣

∣

2
]M

= (2M − 1)kM
(

1

k!

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

)M

if M ≥ 1.

(C8)

In the last line of formula (C8) we exploited the following simple but basic relation of
the theory of Wiener–Itô integrals:

E

(

1

k!

∫

f(x1, . . . , xk)Zµ( dx1) . . . Zµ( dxk)

)2

=
1

k!

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk).

147



Relation (C8) and the Markov inequality imply that under the conditions of The-
orem 8.5

P (|Zµ,k(f)| > u) ≤ EZµ,k(f)
2M

u2M
≤
(

(2M)kσ2

u2

)M

if M ≥ 1. We get with the choice M = 1
2e

(

u
σ

)2/k
that

P (|Zµ,k(f)| > u) ≤ exp

{

− k

2e

(u

σ

)2/k
}

if u > (2e)k/2σ.

By choosing a sufficiently large A ≥ 1 at the right-hand side of this inequality we get
that formula (8.11) holds for all u ≥ 0.

The second inequality (8.12) of Theorem 8.5 can be proved in the same way as
Theorem 4.1 in the one-dimensional case. No difficulty arises during the proof. The
main point is that inequality (8.11) holds for all u > 0, hence the chaining argument
applied in the proof of Theorem 4.1 supplies the proof also in this case. I omit the
details.

Let me finally remark that Leonhard Gross in his paper Logarithmic Sobolev in-
equalities also gave a proof of the Nelson inequality by means of the hypercontractive
inequality for Rademacher functions. He showed that the central limit theorem enables
us to prove that the logarithmic Sobolev inequality holds not only for the Markov process
considered in Section 11, but also for Wiener processes. This result together with the
general theory he presents imply an inequality which is equivalent to our formula (C1).
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classes of functions with application to asymptotics and bootstrap of U -statistics
with estimated parameters. Stoch. Proc. Appl. 52, 17–38

4.) Bennett, G. (1962) Probability inequality for the sum of independent random vari-
ables. J. Amer. Statist. Assoc. 57, 33-45

5.) Bonami, A. (1970) Étude des coefficients de Fourier des fonctions de Lp(G). Ann.
Inst. Fourier 20, 335–402
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