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Summary. We prove limit theorems for sums of non-linear functionals of
Gaussian sequences. In certain cases we obtain a non-Gaussian limit with a
norming factor n*, 0<a<1/2. The class of functionals we are investigating
is a natural enlargement of the class investigated by M. Rosenblatt in [7].
We prove our results by refining the method of the paper [3].

1. Introduction

In recent time, several papers dealt with limit theorems for sums of dependent
random variables. Examples when the central limit theorem ceases to hold are
of special interest. The first example of this type was given by M. Rosenblatt in
[6] (see also [8]). He considered quadratic functionals of a stationary Gaussian
sequence with a correlation function which slowly tends to zero. This result
was generalized by Dobrushin and Major in [3] and by Taqqu in [10]
independently of each other. The problem is more naturally put in the follow-
ing modified form:

Let &, n=...—1,0,1, ... be a strictly stationary sequence, E¢,=0, E£?=1.
For every positive integer N, N=1, 2, ... define a new sequence:

nN
ZN=45" Y &, n=..—101,..,N=12 ., (1.1)

me=(m_1)N+1

where A, is an appropriate norming constant. Question: Under what con-
ditions does the sequence ZY tend to a sequence Z* n=...—1,0,1,... in
distribution? In the most general case this question seems to be very difficult,
but in the case when the & are functionals of a Gaussian sequence some
interesting results have already been proved.
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the Deutsche Forschungsgemeinschaft
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The first problem to be solved when answering the above question is the
characterization of the possible limiting sequences Z*. For every N=1,2, ...
formula (1.1) induces a transformation Ty(4y) on the distribution of sequences
of random variables &,, n=...—1,0,1,.... It can be seen (cf. [2] for a proof)
that the distribution of a limiting sequence Z* must be a fixed point of the
transformations T,(A4,) for all N. More precisely, Z¥ can be the limit of some
sequences Z) defined by (1.1) only if its distribution remains invariant under
all transformations T, (N*) with some fixed positive constant «=0. In this case,
Ay must be chosen in (1.1) as Ay=N*L(N), where L(+) is a slowly varying
function. Sequences whose distributions are invariant under the transfor-
mations T, (N%) will be called self-similar processes with self-similarity parame-
ter 1 —e. (There is no standard definition of the self-similarity parameter in the
literature. We follow the terminology of Dobrushin in [1].)

A large class of non-Gaussian self-similar processes was constructed by
Dobrushin in [1]. Essentially the same class was found also by Taqqu in [9],
but he gave a different representation. In the study of limit theorems for sums
of dependent random variables in [3] the following self-similar processes
played an important role.

Z,=Z(k,o)={exp[in(x; +... +x;,)]
_1

o a—1

Ko Ex)xg ] 2o x] 2 W(dx,)... Wdx,)
n=..=-101,.. (1.2)

where

exp(ix)—1

K (x)= , (1.3)

X

ie. K, is the characteristic function of the uniform distribution on [0, 1], W(-)
denotes the white noise process, and the integral is meant as multiple Wiener-
It6 integral. More precisely, we consider here and also in the sequel a modified
version of the Wiener-Itd integral which is defined in [1]. The process Z,(k, @)

. . 1
is well-defined if O<ka<1, and its self-similarity parameter is k%<§. There-

fore, they can appear as the limit of sequences ZY defined by (1.1) only if 4,

1k

=N "2 L(N), where 1—1%06>%, and L(-) is a slowly varying function. Quite
recently, M. Rosenblatt [7] found a class of stationary sequences whose partial
sums satisfy a non-central limit theorem with a norming factor N¢, ¢<1/2. Our
aim is to prove limit theorems which contain Rosenblatt’s result as a very
special case.

Let us introduce some notation:

Let ...Y_,, Y,, ¥,,... EY,;=0, EY?=1, be a stationary Gaussian sequence
with correlation function

r(imy=EY,Y,=n"*L(n), O<a<l, (1.4
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where L(*) is a slowly varying function. Given a real function H(x) and a
sequence of real numbers a,, n=...—1,0,1,... we define the sequences of
random variables

X =H(Y), n=..—-1,01,.. (1.5)
and
U,=U,H= > a,X,. . m=.-101 .. (1.6)

In formula (1.6) convergence is meant in L, sense. If the sum on the right-hand
side of (1.6) does not converge in L, sense, then we consider formula (1.6) to be
meaningless. Now we define the sequences

m+1)N-1
ZV=ZNH)=45' Y U, n=..,—101,..,N=1,2.. (L7

m=nN
where A4, is an appropriate norming constant. Our aim is to prove limit
theorems for the distribution of the sequences ZY, n=...—1,0,1,... when
N —o00. We shall consider some processes Z* which belong to the class of self-

similar processes constructed in [1]. They will appear as the limit of some
sequences ZY defined in (1.7), when N — co.

ZE=Z%o, B, k, b, c)={exp[in(x, +...+x,)]

a1 a1
Koy o)X, 2 X 2 W(dxy).. W (dxy)
n=..—1,0,1,.. (1.8)
where B
Ko(x)=Kg(x) Mo(x) (1.9)
My (x)=bM§(x)+cMP(x) (1.10)
MP(x)=|x!, MP(x)=i|x|"signx (1.11)

and K, (x) is defined in (1.3).

Here, W(-) denotes again the white noise process, and we consider multiple
Wiener-1td integrals with respect to it. The process Z¥ is well-defined if and
only if

(1Ko q+ o217 Ix X [ dxy . Ldx < 0. (1.12)

This integral is convergent if and only if
k
O<ko<1, and 0<1—ﬁ—§oc<1. (1.13)

The first inequality in (1.13) ensures that

[Ko(xy + .o x)lP ey P L% [t dxy . dx, < oo,
L<|xi+ . Fxel<2
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and the second one that the singularities of the integrand in the region x, +...
+x,=0 and x,+...+x,— o0 do not make the integral (1.12) divergent. The
finiteness of the integral (1.12) under the condition (1.13) will follow also from
the results of this paper. k

The self-similarity parameter of the process Z¥(a, f,k, b,c) is B +§ o In

] k1 . . .
case >0 it may occur that y=1—ﬁ—§ oc<§, and in this case limit theorems

with norming factor N?, y <% can be expected.

Let H, denote the k-th Hermite polynomial with first coefficient 1. The
convergence problem for ZY(H) with a general function H can be reduced to
the convergence problem for ZY(H,), k=1, 2, .... The main result of this paper
is the following one: If a,=C n~?~'40(n *#-1Y) for n>0, a,=C,|n|~F*
+o(ln|=#-1) for n<0, ZN(H,) is defined by (1.4), (1.5), (1.6) and (1.7), « and S
satisfy (1.13), then Z¥(H,) converges with an appropriate norming to a field
Z¥(a, B, k, b, ¢), where the constants b and ¢ are appropriately chosen. But in

the case f>0 this statement holds only under the additional condition ) a,
=0, n=—o
We formulate this result in more detail. Let a sequence a, satisfy the
relations
a,=a,(B)=C\yn" P +om=*#-1 if n=0
a,=a,(f)=CQ)|n|~*~1+o(n|=f~Y) if n<O. (1.14)

Define the new sequences

—unl

b,=3(a,+a_,), c¢,=3a,—a n=..—10,1,.... (1.15)
Obviously,
b,=3(C)+CQRYInI~ " +o(ln|=#="),  b,=b_,, by=a,.

¢,=3(C=CQ)Inl="~*signn+o(n#~1),  ¢,=—c_,, ¢g=0,

and a,=b,+c,.
We shall prove the following

Theorem. Given a stationary Gaussian sequence Y,, n=...—1,0,1,... EY;=0,
EY7 =1 satisfying (1.4) and a sequence of real numbers a, satisfying (1.15) we
define the stationary sequences X ,, U, ZY by means of formulae (1.5), (1.6) and
(1.7) with the choice H(x)=H,(x), the k-th Hermite polynomial with first
coefficient 1. If condition (1.13) is satisfied, then the processes X,, U, Z, are
well-defined. Further assume one of the following conditions to be satisfied

(i) 0O<p<land ) a,=0,

() —1<p<0,

(iii) p=0, C1)=—C(2) and Y 1b,|< .
Then the finite dimensional distributions of the sequences ZY tend, with the
choice Ay=N*'—F=¥2* (N2 to the finite dimensional distributions of the se-
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quence D~*Z*=D=* Z*(«, B, k, b, ¢) defined in (1.8), as N—o0. D is chosen as
D=2T () cos (% n) in all three cases. In cases (i} and (ii) b=2[C(1)+ C(2)]

(- p) sin (ﬁzl

n), ¢=2[C(1)= C(2)] I'(— ) cos (ﬁgl n).

In case (i), b= Y b,, c=C(1).

n=—o0

Let us now consider a general function H(x) with the following properties

[H(x) exp (—E;) dx=0, [[H(x)]*exp (_x;) dx < 0. (1.16)

The function H(x) can be expanded by means of Hermite polynomials in the
form

H(x)= i d H(x), Y d*k!<co. (1.17)

We shall prove the following

Corollary. Let the function H(x) satisfy (1.16), and let k be the smallest index in
its expansion (1.17) such that d,+0. Let us define the sequences ZX=ZY(H) in
the same way as in the Theorem, only substituting H,(x) by H(x). If the
conditions of the Theorem hold with the k defined at the beginning of the
Corollary, then the sequences ZY are well-defined and their finite-dimensional
distributions tend to that of the sequence d, D™*Z*(a, B, k, b,c) as N—co. The
constants D, b, ¢ are determined in the same way as in the Theorem.

It is worthwhile comparing the Theorem with the following Theorem A,
which is a consequence of Theorem 3 in [3].

Theorem A. Given a stationary Gaussian sequence Y,, n=...—1,0,1, ... EY,=0,
EYS =1 satisfying (1.4) and a sequence of real numbers a,, Y |a,|<o0,
Y a,=*0, we define the sequences X, U,, ZY by aid of formulae (1.5), (1.6) and

(1.7) with the choice of H(x)=H,(x). These sequences are well-defined, and in the
case 0<ka<1 the finite dimensional distributions of the sequences ZY tend with
the choice Ay=N*'"*'21¥2(N), to the finite dimensional distributions of the

sequence D‘k/z( Y an> -Z (k, o) as N— oo, where Z, is defined in (1.2) and D

1= — 0

is the same constant as in the Theorem.

Let us observe that the exponent of the norming factor in case (i) of the
Theorem is smaller than in Theorem A. This shows that the condition ) a,=0
in case (i) is essential.

The self-similar sequences Z, belong to the class of self-similar fields Z*
defined in (1.8). Nevertheless, a comparison of the Theorem and Theorem A
indicates that the sequence Z, plays a special role. The sequences Z* appear as
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the limit of sequences ZY only if the coefficients g, are very specially chosen,
namely only if the sequence a, behaves asymptotically like a power of n. On
the other hand, in Theorem A a rather general sequence a, can be chosen. As
the proof of the Theorem will show, this particular behaviour of the sequence
Z¥ is closely connected with the following fact in Fourier analysis. If f(x) is a

sufficiently smooth function on the real line with support in [—3%, %), then for
every 8, —1<f<l,

} exp (inx)|x|’ signx - f(x) dx

—n

=C(B)|n|~*-"signn(l +o(l)), C(B)=0.

A similar relation holds if |x}® sign x is substituted by |x|?. The only exceptional
case is when f=0, and the term signx is absent. In this case, the Fourier
transform tends fast to zero at infinity, since the function g{x)=1 has no
singularity. We shall see that this exceptional behaviour of the constant func-
tion has some implication about the behaviour of the sequence Z¥*.

The present paper consists of four sections. In Sect. 2 we prove the Theo-
rem with the help of a lemma and some relations in Fourier analysis. In
Sect. 3, this lemma and the Corollary are proved together with the facts from
Fourier analysis needed in Sect. 2. In Sect. 4, some comments are made and
some possible generalizations are discussed.

2. Proof of the Theorem

The bulk of the proof consists of checking that certain sums and integrals are

finite. To explain the idea of the proof better, we first give a brief outline of it.
We shall represent the sequences Z¥ by means of multiple Wiener-Itd

integrals. After an appropriate substitution ZY can be written in the form

ZV=[explin{x;+... +x )] Ky(xy + ... +x) Zg (dx})... Z g (dx,).

with such functions Ky and Gy that Ku(x)—K(x) and Gy(x) > Gy(x). These
relations would suggest a formal limiting procedure which yields

ZN[explin(x, +... +x )1 Ko(x, + ... +x) Zg (dx1)... Z (dx,).

To justify this limiting procedure, we shall prove that the sequence of measures
Hys

sy (A)= [ IR y0cy + ... + %12 Gy(dxy)...Gy(dx,), AcR:
A

tends weakly to the measure u,, where

polA)= [ 1Ko(x; 4 ... +x)1* Go(dxy)...Goldx,), AR~
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We prove the last statement by means of Fourier analysis. Now if we want to
follow the argument of [3] in the proof of the Theorem then we meet with
some problems. They arise because the convergence Ky— K, may be non-
uniform even in bounded regions. To overcome this difficulty we decompose
Z¥ into the sum ZN=(ZY), +(ZY), in an appropriate way. We make this
decomposition in such a way that the limiting procedure can be carried out for
(ZY), relatively simply, and (Z%), is negligible.

Now we begin the proof by showing that the random variables U, =U,,(H))
are well-defined, i.e. that under the condition (1.13) for every ¢>0 there exists
an L=L(e) such that

L Ly 2
J=E[ Y am(.)- Y aH.,)| < 1)
n=—Li n=-1Lj
foralt L,,L,,L,,L,>L.
The following estimates hold true:

—Ly-1 2 L5 2
s ( Y am ) +28( Y 0.,

n=—1L,; n=IL1+1

2% Y (aylla) +la_lla_D Irp=ml

p=Ln=L

lIA

Since |r(n)| <K(|n|+1)"**° with arbitrary 6>0 and K=K(d) for all n, and
la,|<K|n|=#~* for all n+0 with an appropriate K >0, to justify (2.1) it is
enough to show that

[=

!

[~ D =B D (| 1) < (22)

If
L8
[
118

n

for sufficiently large L= L(g)>0.
The following estimation can be made:

Z n/(ﬁﬁ‘— 1)(|l—~n| _|_1)*ka+é
n=1L

2 21
éC[l*k"“”s Z p= L L [-6+D Z (n—1]+1)~ke+
n=1 n=12+1
+ Z n‘ﬂ‘l—kaﬂ-é]. (23)
n=2I+1

(The letters C, K, ctc. will denote appropriate constants from now on. The
same letter may denote different constants in different formulae.)

In case f>0 it can immediately be seen that the expression in (2.3) is finite,
and then a simple substitution in (2.2) shows that relation (2.2) holds. In case
p=0, let us first observe that f+1+ka—35>1 for small 6>0, because f+1

k
+koa=3-2 (1——,8—505)>1 by (1.13). Hence the expression in (2.3) can be



136 P. Major

estimated by C-I1~#-%+% in this case. Substituting this estimate into (2.3) we
get that

w0
I§C z l—3+2.(1—[Z—-]c/201)+5<85
i=L

as we claimed. We remark that the condition ko<1 was needed only in the
estimation of the second term in (2.3). It can be substituted by the condition
B> —1 which is a consequence of (1.13).

Now we express ZY by means of multiple Wiener-It6 integrals. We can
write

' Y,=| exp(inx) Z4(dx),

where G is the spectral measure of the statiopary sequence Y, n=...—1,
0,1, ..., and Z; is the random spectral measure corresponding to it. By the

definition of U, and the Itd-formula (see e.g. formulae 4.14 and 4.15 in [1]) the
identities

U,=| . i a;exp[iim+)) (x,+...+x)1 Zg(dx,)... Z(dx,)

Je=— a0
and
ZY=Az"' [exp[inN(x,+...+x)]
Y apexplijlxg+ ..+ x)]
J= -
N—1
. zzo exp[(l(x,+... +x )] Zg(dx,)... Z5(dxy) (2.4)
hold true.

We want to prove that for arbitrary positive integer p and real numbers

C C

)4
—p» Copyts-en €, the sequence ) ¢, Z7' tends in distribution to the random

P I=-r
variable Y ¢, Zf. For this end we change variables in formula (2.4) with the
I=—p
substitution Nx;=y; (cf. Proposition4.2 in [1]). This substitution indicates

P
Y. ¢ Z]) has the same distribution as

l=—r

P . P _
Yoo ZV=% ¢ fexplil(x;+... +x)] Ky(x; +...+x)

lest o p l=—p
Zg (dX1) .. Z g (dX,), (2.5)
where
Ky(x)=Ky(x) My(x)
with .
Ky(x)= EXP(Z’?"{ , 2.6)
N {exp (i TV_X) — 1}
MN(x)=Nﬂ. i a; exp (i%};x) | 2.7
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and the measure Gy is defined by the relation

GN(A)=L]EI];) G (-]%) (2.8)

for every measurable set A on the real line. The infinite sum in (2.7) may not
convergence pointwise. Nevertheless, formula (2.7) is meaningful if we consider
the limit in the infinite sum on its right hand side in L, sense with respect to
the measure

IKy(xy+ ... +x)12 Gyldx,)... Gyldx,).
(And we have to consider it so in order to prove that the Wiener-It6 integral
in (2.5) is meaningful.)
Indeed, since
1 N-1 ]
Ky(x;+...+x)=— > exp [—i—(x1+...+xk)], 2.9
N j=0 N

to make (2.7) meaningful, we have to show that

Ly Ly N—-1 N-1
Z Z a,q z Z rfn—1+j,—Jj,)
I=—Ly n=—L; J1=0 j2=0

has a limit for every N as L, L, —cc.
Since
N-1N-1

Y ) Irm—=14j, =) S CN, 0) (I —n|+1)~F**°

Jj1=0j2=0

for every 6 >0, and integers N, [, n, this fact follows immediately from (2.2).
In Proposition 1 of paper [3] it has been proved that

Gy ([0, x1) > Go ([0, x])=(aD) ' x*  for all x=0. (2.10)

(Actually, the norming factor (xD)~ ' was determined in remark 1.2 of [3].)
Let us define the measures py on %% on the Borel g-algebra of the k-
dimensional Euclidean space, by the formula

un(A)= j |KN(XI +.. +xk)|2 Gy(dx;)...Gyldxy),
A
Aed* N=0,1,2,....

(This formula is meaningful also for N =0, since K is defined in (1.9).)
In Sect. 3 we shall prove the following

Lemma. If the sequence a, satisfies the conditions of the Theorem then the
sequence of measures py tends weakly to the measure u, as N— oo, where the
constants b and c¢ in the definition of M, are determined in the same way as in
the Theorem.



138 P. Major

By aid of this lemma and relation (2.10) we want to make a limiting
procedure which leads to

P ™ e p —
Y e, 782 Y ey Jexpliley + . +x)] Kooy 4. 4%,)
l=—p . l=—p

Zg (). Z g, (d%,), @.11)

where —2» denotes convergence in distribution. Relation (2.11) implies the

Theorem. In order to see it, one has to observe that the expression on the
14

right-hand side of (2.11) has the same distribution as ) ¢, Z§. This follows
l=—p
from the rule of change of variables in Wiener-It6 integrals with the sub-

stitution Go(dx)=D"}{x|*~1dx.

We shall prove (2.11) in an indirect way. Instead of the random variables
ZY we shall work _with some new random variables ZN defined below. These
random variables ZN are close to Z and are easier to handle

First we define two numerical sequences b), and c,, which are close to the
sequences b, and ¢, defined in (1.14) and (1.15), and which have some nice
propertics. Let f{x) be a twice differentiable funciton with support in [—g, g]
such that f(x)=1 for |x|<=n/4, f(x) is monotone decreasing for x>0 and
monotone increasing for x <0.

Let

bj,:% cB Tf exp(—inx) |x[ff(x)dx, if —1<f<1, f+0

b.=b, if f=0,
C;‘:% C'(B) f exp(—inx) |x|’f(x)-isignxdx, if —l<f<l,
where
cp=21cty+cenr-pHsin T i —1<p<r, g0
C'(By=2[C(1)~ CQIT(~ ) cos(ﬁ%l)-’E if —1<B<1, B0,
and
C'(0)=27- C(1).
We shall prove in Sect. 3 that
b= C—(ll;;p(z)] =1 0(n"%  if ~1<fB<l, %0 2.12)

and
'_M!n!—ﬂ

= 5 “lsignn+0(n|~?) if —1<B<l.
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(Although relation (2.12) scems to be well-known among specialists in Fourier
analysis we could not trace it in the literature. Therefore we shall prove it.)
As a consequence of (2.12) we obtain that

S b, expline)=C(B)IxIPf(x)=CB) Il —1<f<l, p+0, (2.13)

n=
and

i ¢, exp(inx)=iC'(B) |x|’f (x) signx =i C'() x|’ sign x, —1<p<1 (214

for |x| £m/4 with the only expectation x=0 in the case —1<f<0.

Indeed, the Fourier series (2.13) and (2.14) are convergent with the only
exception x=0 if —1<f=0, hence the Fejér theorem, e.g., implies that they
agree with C(B)|x|? and i C'(B) |x|’ sign x respectively.

The substitution x =0 into (2.13) gives that

Y b,=0 if 1>p>0.

n= — o

On the other hand, b,=b"_, and ¢,= —¢'_,. Hence the sequence a,=b,+c, also
satisfies the conditions of the Theorem. Let us define the random variables

ZV=[explil(e, + ... + )] Ky (xq + ... +x) Zg, (dx,)... Zg, (%),

I=..—1,0,1,...,
where
Kjy(x)=Ky(x) My(x)
with © .
My(x)=N* . Y, d;exp [ijﬁx]. (2.15)
==

First we show with the aid of the Lemma that

EZY—Z¥?>0 foralll as N—co. (2.16)
Write

~ x 1 _ _
E@ZY—ZM)=— [IKy(x;+...+x) —Kylxy + ... +x)I> Gy(dxy)... Gy(dx,)
k!

1 " k
:H :uN(R )7

where the measure py is defined in the same way as uy, only M (x) is replaced

by My(x)=N* . Y, (a;—a}) exp (i%x). Since the sequence a,—d, also satis-
j=—o

fies the conditions of the Theorem, with C(1)=C(2)=0 in this case, the
Lemma gives that pj(R*)—0. Therefore relation (2.16) holds.
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Because of (2.16), it is enough to show that

r ~ 14 —
Y e, ZV-2, Y ey fexplil(x, +...+x )] Ko, +... +x)

l=—p l=—p

Zg (dXy)... Zg, (dx) (2.17)

in order to prove the Theorem.
Let us assume for a while that §=0. It can be seen by comparing formulae
(2.13), (2.14), (2.15) and (1.10) that

My(x)=My(x) if |x|<%N and  x+0,

where the constants b and ¢ in M, are defined the same way as in the
Theorem. Consequently, given any A>0 and 6>0

Rty +x) = Kol +... +x) (2.18)
on the set B=B(4, d), and the convergence in (2.18) is uniform if

B=B(4,0)={(x1, ..., %), 15| €4, j=1,2, ..., k,
[, +...+x,]>03} (2.19)

Ku()= ¥ e exp(ilx) Ky(x) Miy(x)
and -

Ky(x)= i ¢, exp(ilx) K o(x).

I=—p

Let us further observe that the Lemma implies that

ur—-uy  weakly as N— oo, (2.20)
where
pn(A)= j IKAN(xl +. 112 Gyldxy)... Gyldxy),
134695", N=1,2,...
and

pE(A)= [ 1Ko+ ... +x )12 Go(dxy)...Goldx,), AeH~
A

Now we would like to deduce (2.17) from the relations (2.10), (2.18) and (2.20)
by the aid of Lemma 3 in [3]. This lemma cannot be applied directly since
Ko(x,+...+x,) is not continuous in the points (x,, ..., x,) where x, +... +x,
=0 if §<0. However, it is not difficult to prove (2.17) by slightly changing the
argument of this lemma. Let us first observe that because of (2.20) and the
absolute continuity of the measure puf with respect to the Lebesgue measure

wE(RF) < oo, and there exist some B>0 and d>0 such that uf(R*—B(4, §)) <,
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where B=B(4, §) is defined in (2.19). Because of (2.20) the relation py(R*
—B(4, §))<e also holds for N> N,=N,(s, A). The last relation means that

1 .
o (E f Ky(xy+ ..+ %) Tpie_p(Xq, ooy X) Zg o dx,) ... Zg, (dx)]P<e  (2.21)

for N=0 or N> N(e), where I,(+) denotes the indicator function of the set A.
Since K, is continuous on the set B=B(4, §), and relations (2.10) and (2.18)
hold, the functions K v N=0,1,2, ... can be approximated on B by elementary
functions just the same way as in Lemma 3 of [3]. This approximation to-
gether with (2.21) implies

jKN(x1 + o x) Zg, (dxy) ... Z g, (dxX,)
TR o0ty + 4%, Zg (%) . Z g, (d,)

which is a rewriting of (2.17).
The case =0 can be discussed similarly. We have to remark that

My(x;+...+x)>My(x,+...+x,) uniformly

on every set B=B(4,d), A>0, §>0, because of the condition ) b, <.

Hence the argument applied in the case S0 can be repeated without any
change. The proof of the Theorem using the Lemma is now completed.

3. Proof of the Lemma of the Corollary and of Formula (2.12)

Proof of the Lemma. Let us define the following modified Fourier transfor-
mation of the measures py, N=1,2, ...

i .
Pxlty, . t)={ exp [ﬁ (]1x1+...+]kxk)] pn{dxy, ..., dx,), (3.1)

Rk

where the integers j,, j,, ..., J, are determined by the relation

jl < -jl +1 jk ]k+1
=<t < e, =51, < . 3.2
N= 1 N » N= k N ( )
We shall show that
Lm @u(ty, ... 5=y, ..., t,) forall t,,1,,...,1, (3.3)
N— oo
and @4(,, ..., %) is a continuous function. As the measure u, is concentrated

on the cube [ —Nn, Nn)* formula (3.3) and Lemma 2 of [3] imply that the
measures uy tend weakly to a measure [i, whose Fourier transform is
@olty, ..., ). First we show that i, is actually y,, ie., that (3.3) implies the
Lemma. This could be done by calculating the Fourier transform of p,. But
since in this case we would have to tackle some inconvenient convergence
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problems we chose another way. We define an auxiliary stationary process in
the following way.

Let ¥, n=...—1,0,1,...EY,=0, EY?=1 be a stationary Gaussian se-
quence with spectral density Clx[*"!, —n<x<m, and C=a27n % Let X,

o0

=H/(Y) and U,=U,(H)= ) a,X,,, where the sequence a, agrees with

n
n= — 0

the sequence a, defined in the proof of the Theorem.
Let us observe that

r(m)=C | exp(inx)|x[* 'dx~CDn™* as n— .
Hence the process U, belongs to the class of processes investigated in the
Theorem. Thus, relation (3.3) implies that the measures fi,

fiy(4)= ) |My(xg + 21 Ky Oy + o )

An[—Nn, Nn)*

-Goldxy)...Gy(dxy), AeH

i

tend weakly to the measure /i, as N— oo, where G is defined in (2.10), My in
(2.15) and K, in (2.6). (To see why the last relation holds one has to observe
that Gy(x)=14G,(x) for |x|<Nn with a sequence Ay—1 as N—oo if the
auxiliary process U, is considered.) We want to show it is actually the measure
U that the measures y, converge to. In Sect. 2, we have already seen that

IMy(x, + .o+ x)1? | Ky + .0+ x0)2
=Myt +x )2 Ko, + - +x)1°

uniformly on every bounded closed subset of R* separated from the hyperplane
X;+...+x, =0, Moreover, since |Ky(x)]£1 for all x on every bounded set B
o R",

IMyg(xy + ...+ x )P 1Ky (g + oo +x )P S K+ K |xg +.. 4 x, |2

with an appropriate K >0 if N> N,=N,(B). (We wrote the constant term K in
the last inequality only to include the case f=0.) Hence to prove jiy—pu,
(which implies also py— p,) it is sufficient to show that for all 4>0 and ¢>0
there exists a 6 >0 such that

[oDFlxy + oA x PP x g [ Tdxy, ., dxg <, (3.4)
U4, 5)

where the set U(A, 0) is defined by
U4, 0)={(x1, ..., %), x| =4, 7=1,2, ...k, |x; +... +x,| <6}

To prove (3.4) let us first observe that (3.3) together with Lemma?2 in [3]
imply that sup uy(R*) < co.
Hence ~ '

| I 4o X 28 | 7 x, [F L d X, = K < 0.
|14 oo+ xf< 1
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Therefore the homogeneity of the integrands implies that

[olxy X P e o X P Yy dx,
U(4,8)

< § Iy 4 2P g P X [ L dx = K 2P

X1 4 oo xp] < 8

and
Folx P tx P tdx, . dx, <K' 6%
U4, )
These inequalities imply (3.4) because 2+ ka>0, ka>0 by (1.13).
Now we turn to the proof of (3.3). By writing Ky(x, +...+Xx,) in the form

(2.9) it can be seen that

Onltys s by)
Nka+2ﬁ~2 5] N-1 k
=_— a,, a,, Uy +v,—u,—v,+j,)
L(N)k U, uz::~ ! Vi1, g 0 ll_[ ! ! 2 2 ]1
Nka+2ﬁ 2w
N)k Z Z Vu(N ’))u ) ( _U+j1)"'r(u_v+jk)7 (35)
where
N—u—1
(N)= ) a,. (3.6)
k=—u

Let us remark that with a slight modification in the argument which shows
that (2.7) is meaningful it can be proved that the middle term in (3.5) is
absolutely convergent. Hence the rearrangement made in (3.5) is legitimate. Let
us define the functions

Bx,y,ty,...,t,)=N?* Yivag (V) Ying ( N)Z

o

LY

r(Nx]=[Nyl+[Nt, ) (37)

Formula (3.1) can be rewritten in the form

oty ...t)=§ | Bx,pt,, ..., 1) dxdy. (3.8)
We claim that
NﬂV[Nx] (N)—7(x) as N—oo, (3.9)
where
C(l) Ox|~#—1+|x))~#] if x<0
CH+C2 cC(H—CQ
10— b1 g4 SO - 1
if 0<x<1
_c@)

5 [x f—(x—1)"F] if x>1
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for §+0, and
C(1) [log|x|—log(1 +|x]1 if x<0
P(x)=4C(2) [logx—log(1—x)]+b if O<x<1
C(2) [logx—log(x—1)] if x>1
for f=0.

In checking (3.9) the case 0<x<1 deserves some special attention. In this

case one has to write a,=b,+c, and then exploit the relation ¢,= —c_,, and
that in the case >0 the relation

N—u—1 —u—1 ©

Z b=— Z b, — Z k

k=—u k= —c0 k=N—u

holds.
Moreover, the inequality
IN? V[Nx](N)| ST =y1() + 72 (x)+73(x) +74(x) (3.10)

holds true, where
. (x)=C|x|"P+VI(x < —1)
7,(x)=C(lx|" P+ 1) I(1x| £%)
73()=C(x =17/ +1) I(3<x<2)
7a(0)=Clx|"#*VI(x=2)

with an appropriate C>0 if %0, and
)= 1= -
72(x)=Clx|* (x| =3)
P3(x)=Clx—1|"*I(<x<2)

C
y4(x)=; I(x=2)

with an arbitrary ¢>0 and C=C(g)>0 if f=0. (J(x)=00 if x=0 or x=1 and
p=0.)

One can prove (3.10) similarly to (3.9) by exploiting the inequality
la,| <K (Jn|+1)~#~! with an appropriate K >0. In checking (3.10) one has to be

Cc C C C .
more careful in the regions xe [—]—V—, N) and xe (1 N 1+N)' Inequality
(3.10) holds also in these regions, since

CN*# if f>0
INfyy)s {C if <0 (3.10)
ClogN if =0

for all u.
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On the other hand

o

L(N)

r(INx]—[Ny]+[Nt,D=lx—y+t,7* as N-oowo,[=1,2,... k.

This formula together with (3.9) imply that in formula (3.7) a limit can be
taken which gives

k
Po(X, Yy tyy ees )Py, 3, £y -os 1) =7(X) y(¥ H [x—y+i,] %

We are going to show that a formal limiting procedure in (3.8) is legitimate,
ie.,

lm @y(ty, ..., t) =0, = { [ Ryt ....t)dxdy (3.11)

N-w —®0 —w

and the integral in (3.11) is finite.
Karamata’s theorem (see e.g. [4]) implies that for every ¢>0 there exists a
constant K=K (g)>0 such that

LuN)ZEKL(N)u™® for O<u<l
LuN)SKL(N)u for u=1.

These inequalities together with the relation |r(n)| <1 for all n imply that

&

L(N)

r((INx]—[INYI+IN DK@ Ox =y 67" +x—y+5/ 7.

(Relation |r(n)|<1 was needed to show that the above inequality holds also in
the case |[x —y+1t|<CN~1).
The last incquality together with (3.10) imply that

k
1PeCe, y, by IS KT TO) [T Hx—p+6) 7"+ [x —y+1] "]
=1

=15(x, Vybyseoes )

Hence by the dominated convergence theorem it is enough to prove that

Jpnty=1{ [ Pyt ... t)dxdy<o

for arbitrary t, ..., ¢, (3.12)

in order to prove (3.11).
In proving (3.12) it is enough to restrict ourselves to the case {;=t,=...1,
=¢, since Holder’s inequality implies that

k 1/k
J(tl,...,tk)g[nJ(tl,...,tl)] .
=1
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Let us first consider the integral

fes}

Iy, 0= § 7)[x—y+t|75+9 ix—y 4+t *~ " dx.

w0

We claim that
I,y <B(y,)=B,{y—1)+B,(»,1) (3.13)
with
By () =K[(y|+1)7 P59+ [y +1)+e—7]
By, ) =KI(t—y| SD[L+1y—t[!F-He1 94y — 114 -Hew 9]
where the constant K may depend on «, 5, k, ¢ and t. We assume that >0 is

sufficiently small, and f=£0. The case =0 is similar but simpler. Let us
introduce the notation

Ly, )= y;0)llx—y+e| ¥4 [x—y+e7*@9]dx,  j=1,2,3,4
To prove (3.13) it is enough to show that
Li(y,)<B(y, 1), j=1,23.4

k
Let us observe that f+1+ko= (B+§ o— 1) +§ a+2>1 by (1.13). Hence in
case |t y|>2 the following estimates hold true:

—1/2
Il(y> I)éc _!- }XIMB—lix_y‘i'tl-k(u_g)dx

1

_ C[~2|jf~.v|+—fijt-yl+ J.z ]

—-® =20ty =%ty

~2lt-y| —3le—y]
gC’[ [ IxprAtkeagx g [ ji—yT P x—y 4T P dx
—w =2yl

+ ] ey dax)

—lt-y|

SCt—y|THe I+ [t —y|"P]1< B, (y—1),
and

Ly, ) Clt—y|*e-9 j (x|"?+1)dx< C'|t—y|7 =2 <B, (y—1).

In case |[t—y|<2

L0, t)gc[j Ix|=P- 1=k g 4 | Ix-y—l-t]“"(““’dx]<C’<Bz(y, ),
0 — &
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and 1
Ly, n=C f (%77 + 1) x—y+e| e+ dx

S T edicain T mies)
fel<ile-yl  3l—yl<lxl<2li-y] 2l-yl<ixi<}

=CT j (Ix|=P+1)|y—t| e+ dx
lxl<%le—v]

+ j. [Iy_tlﬁﬂ‘l'l]|x—y+tl—k(a+s)dx
Llt—yl<|x|<2]t—y|

+ [ (xIPH D) |x] e dx]
2jt-yl<Ixl<%

S C'[L+|t—u|* ~*e+9-F1< B, (y, 1).

The terms I;(y, t) and 1,(y,t) can be estimated similarly. To prove (3.12) with
the help of (3.13) it is enough to show that

T 50) By, )dt < co. (3.14)

Inequality (3.14) holds because, if ¢ is sufficiently small, the function y(y) B(y, )
tends to zero faster than |y|~¢ with some ¢>1 in plus and minus infinity, and
its finite singularities are smaller than |y|~¢ with some ¢’ <1. These facts follow
from the inequalities

2B+ ka>0, B+ka>0 and fp<1, ka+2p<2, ka+p<2

which are consequences of (1.13).

To complete the proof of the Lemma, it suffices to show that ¢ (¢, ..., %)
is a continuous function. This follows from the following consideration: The
above made estimations imply that for all ¢>0 and t,,... ¢, there exists an
A>0, >0 and a neighbourhood B(t,,...,t;,)<R* of the point (¢,...,t)eR"
such that

Py(x, v,8¢, ..., 8)dxdy<e forall (s,...,s)eB(t;, ..., t)
0 1

R2-D(4,3)
where
D(A4,0)=D(4, 5, t,, ..., 1)
=[—A, Al x [— 4, A]—j@l{(x, V)i lx—t;l<d, ly—t;|<é}.
Then the continuity of the function Fy(x, y, t;, ..., t,) in all of its variables on

the set D x B(t, ..., t,) implies the continuity of ¢, in the point (¢, ..., t,). The
Lemma is proven.

Proof of the Corollary. Since EH (X ,) H,(X,,)=0 for all n,m if k=1,

B( 3 azm) = 3 @@y

I=k+1
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On the other hand
1 o0 o0
EZIH) =7 Y Y n®nWre—o),

where 7,(N) is defined in (3.6).
We are going to show that

AFPE[ZY(H) —d, ZYHY =432 Y, B#EEZ})H)?>0.  (3.15)
I=k+1
Formula (3.15) implies the Corollary.
The identity

E(ZJ(H)*=(1)"" 950, ..., 0)

holds true, where @, is defined in (3.1), only we have to substitute k by [ in it.
In the Lemma we have proved that if [>k, 1—f—210>0, la<1 then

APEZYN(H)*=Ay2O(N*~ 212 L(N))—0.
Hence, because of (1.17), in order to prove (3.15) it is enough to show that

0 L JK@)N i f=3
Y X vu(N),v.,(N)r(u—”)é{K(e)Nl*”” if <3

U=—00 v=—00
for every ¢>0 and [ satisfying the relation

1—p—1a<0 or lax1, (3.16)

k
where K(g)>0 depends on ¢ but not on I (Let us remark that 1—/3—5 a>1

— B, therefore A%>N'=2#*¢ for small &) The inequality [r(n)|<Cn *"? holds
for every n, n+0, and §>0 with an appropriate C= C(d), hence

poite it p<i
]r(n)llé{n—2+2ﬂ+s if Bz;

for every ¢>0, |n|> C(e) and [ satisfying (3.16).
Because of the last estimate and (3.10),

oo}

| ST 5N 2N rlu— oI SN2+ T 5 7(0) lu—ol” dudv

|u—v]|>C(e) “ —oo

with A=¢g—1 if f<%, and 1= —2+2B+¢ if f=3. But in the proof of (3.12)
actually we have proved that the last integral is finite. Because of the in-
equalities

r(WI=1, 17, (N) 7, (NI =300 (V) + 72 (V),
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it is enough to show that

T RN+ NI4CE Y 20N

lu—v|£C(e) U= —a0
< K(g) N* if f=
- <

1
K£N1—2ﬁ+s lf ﬁ ; (317)

in order to complete the proof of (3.15).
Inequality (3.17) can be deduced from (3.10) and (3.10).
In the case f<3, f+0

Y yE(N)<N'7? | 7*(x)dx <KN*'-2*f

u= —
and in the case =1

© 2N
Y yAN)SK Y (In|+1)" 24N [ (x)dx <K
xX=— n=—2N [x{>2
(We exploited that (1.13) implies that B> —3, therefore 7%(x) tends to zero fast
enough in plus and minus infinity.) In case =% the same argument shows that
K logN is a good upper bound in (3.17). The case =0 can be discussed with
some slight changes. The proof of the Corollary is now complete.

Proof of Formula (2.12). Let us first consider the case —1<f<0. We can write,
applying the substitution nx =7y,

I(n)= [ exp (inx)|xl’ f (x) dx=n""=" {exp (iy) |yl f (%) dy.

It is easy to see that

tim fexp )5 f (£) dy= | exptinlypay.

h— o0

We want to investigate the speed of convergence in the last formula. Let us
consider the expression

1%, m=fexp @y [ (£) = (£)] av

for arbitrary N,n, N>n>0. Intcgrating by parts, and exploiting the fact that

y Y _ n
f(_> _f(ﬁ>_0 for y<4 n, we get

n
=i | e[ (1 (2)-5 ()

[»] >%n

eaor s G o
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S"(v/N) and f'(y/n) are functions of bounded variation, and they are vanishing
at large y. Hence for y>0 they can be written as the difference of two
monotone decreasing functions with a compact support. A similar decom-
position holds for y <0. These properties yield that

1
) eXp(iY);f’(%)lyl“dle(n"“‘

and B>

1
| exp(iy) ﬁf’ (%) lylfdy|<Knf-1.

[y1>%n
4

Quite similarly

§ort [f (%) ~f ({;ﬂ eXp(iy)dyléKnﬁ‘l.

yi>Zn

These estimates together imply that
I(N,m)<Knf~1,

where the constant K does not depend on N. Letting N go to infinity we get
that

Im=n=""1 | exp(nlyffdy+0(n=2).
The relation
fexp(inx) x|’ f(x)signxdx=n"F~1 ? exp(iy)|y)fsignydy+0(n=3),

if —1<f<0 can be proved in the same way.
If 1>5>0 we get, on integrating by parts, that

Jexpimglxl£(x)dx=— [exp(nx) Il f'(x)+ B~ f (] dx.
We have already seen that
—~i§ fexpinx)|xf~ 1 f(x)dx=—ipn~ " Of exp(ix)|x}f~*dx+0@m"32).

Integrating by parts again we get that

n=* fexp(inx)|x|? f'(x) dx=n"2
- Jexpinx)[Ix) £ (o) +x)P 1 Bf ()] dx=0(n"?).

These calculations together yield that
[ exp(inx) x|’ f(x)dx

=—if | exp(inx)|xf/~'dx-nP"'4+0(n"? for 0<p<l.
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Similary

[ exp(inx)|x|® signx - f (x) dx

=—if | exp(inx)|x/!~'signxdx-n"#-'+0(n"?)
for 0<ff<1.
The estimate
[ exp(inx)signxf(x)dx=2in"'+0(n"?)

can be proved similary to the case —1<f<0.
These relations together with the identities

oo}

[t#=Yexp(—it)ydt=T(B)exp(—%mif) for 0<f<I,
0

F+1)=prp) and r-pgr{)==sinnp
imply formula (2.12).

4. Possible Generalizations, Comments

Remark 4.1. Condition (iii} in the Theorem and also in the Corollary can be
substituted with the following weaker condition (iii)’;

@iy, a,=b,+c,, n=..-101,.., % |bl<w, ¢,=-—c

n= — o0

—n>

n=0,1,2,..., and ¢,=C(1)n '4+o(n~') as n—oo. (Condition (1.14) is not
assumed to be satisfied.)

In this case also b= ) b,, ¢c=C(1) in the Theorem.

This strengthened form of the Theorem contains Theorem A as a special
case.

Remark 4.2. The class of self-similar processes defined in (1.8) is only a special
case of the class constructed by Dobrushin in [1]. The process

ZF={explin(x;+... +x )] Ko(x, +... + x) M(x, ..., x;)
 Zg,dxy) ... Zg,(dx) n=...—1,0,1, ... @.1)

is also self-similar if the following conditions are satisfied:
al) M(x,,....x)=M(—xq, ..., —X,),
a2) M(Xy1ys oees Xpp) =M (x4, ..., x;) for all nell,

where II denotes the set of all permutations of the numbers 1,2, ... k.
a3) There exists a f§ such that

M(yxy, ..., yx)=y"M(x,, ...,x,) forall y>0 and x,,...,x,€R.
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b) Z, is the random spectral measure corresponding to the function G,(x)
=|x|*, with some o>0.
o) [1Ko(x;+ .. +xPIM(xy, ..., )17 Goldxy) ... Goldx,) < 0.

k
The self-similarity parameter of the process Z¥* defined in (4.1) is ﬁ+§ . (The

representation of the processes Z¥ in the form (4.1) is not unique. The class of
self-similar fields constructed by Dobrushin consists of the linear combination
of the above defined processes.)

The aim of the present remark is to illuminate the content of the Theorem,
and to indicate how to look for a large class of stationary sequences
.U_1, Uy, Uy, ... such that the sequences ZY defined by (1.7) and these U,
tend to a sequence Z¥ of the form (4.1).

Let g(x) be a bounded function on the real line vanishing outside the
interval [ —7, 7) and such that g(x)=0, g(x)=g(—x) for all x, g(0)=1, and g is
continuous in zero. Define the spectral measure G,

G(A)=g(x)Gy(dx), Aea.

Let f: R*—>R! be a bounded function satisfying al) and a2) and having the
following properties: It is continuous in the origin, f(0, ...,0})=1, and

F0, s x)=0  if |x1+...+xk|>g.
Set

My, ...,x =M, .., 00 f(Xq, -0 %)
and
U,={explim(x,+... +x)] M(xy, ..., x;)

Zgdxy) ... Zg(dx), m=..—1,0,1,.... (4.2)

Let us impose the following condition a4) on the function M.

a4) The set of points where M is discontinuous has zero Jordan measure,
i.e. for every >0 and K >0 the intersection of this set with the cube [ — K, K]*
can be covered with finitely many rectangulars whose total volume is less than
&

Now we formulate the following

Proposition. The processes ZY defined by (4.2) and (1.7) with the choice Ay=N -
k

#=2% tend in distribution to the process Z¥ defined in (4.1) provided that the

function M satisfies the additional condition a4).

Proof of the Proposition. Let us consider an arbitrary integer p and real

numbers ¢_,, ..., c,. By change of variables it can be seen that the random

)4
variable ) ¢ Z} has the same distribution as
l=—p

fInxq, o, x) Zg (dxy) ... Zg (dx,) (4.3)



Limit Theorems for Non-Linear Functionals 153

where
14
Iylxg, e, x)="Y crexplil(x;+...+x,)]
l=-p
~ (X x
-NﬁMN(YVl,...,N") Ky, + .. 1x,)
and

GN(A)zN“G(%>, AeB.

Let us introduce the notation

)4
Joxy, ox)=) crexplil(xy+...+x )T Mo(xy, ..., x) Ko(x;+ ... +x).

1=—p

It is ecasy to see that the density function §, of the measure G, satisfies the
inequality

On the other hand
Ty s X IEC glxy, oo x)l, N=1,2,...
since property a3) holds for M, and either |x,+...+x,/>3N, and

M(%, ...,chi>=0 or |x; +...+x,|<ZN and

Ky, + .. Fx ) S5K (0 ..o Fx)l

These relations together with property c) of the function M imply that for
every ¢>0 there exists a K= K(e) such that

E[jJN(xl, s X) [l_ll__lll{lxlléK}(xl)] ZGN(dxl)...ZGN(dxk)] <g

forall N=1,2,....
Let us still observe that

Inxg, s x> Jo(xq, -, Xy)
uniformly on every bounded set where the function J, is bounded, and
Gy([0,x]) > Go([0,x]) forall x.

Hence, because of property a4) of the function M, Lemma 3 in [3] with some
modification proves the Proposition.

It is natural to expect that the statement of the Proposition remains valid if
M and G are slightly perturbated. We explain what we mean by slight per-
turbation, and show that it may better explain the content of the Theorem.
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Let us choose sufficiently smooth functions f and g in the definition of M
and G. Then

r(iy=[exp(inx)Gdx)~n~* with a D>0, if a1,2,3,... (44)
and
@m)*fexp[i(n, x,+... +mx ] M(xy, ..o, x) dx, ... dx,
—a,=b (1) =+ 0(nl «5)
if the function M is “nice enough”, where n=(n,, ..., n,).

k 2

= (X ), b0)
=1

is a function on the unit sphere of R¥ and A can be made arbitrary large by

choosing a sufficiently smooth function f. Moreover it is natural to expect that

in nice cases

M(xy,...,x)=Y a,exp[i(n, x; +... +1,x,)]
for —m<x,<m I=1,2,...,k (4.6)

Generally the function M has a singularity in zero because of its homogeneity.
Therefore the function b(-) in (4.5) cannot vanish everywhere, ie. a,%
o(jn]7#="). The case M(x,,...,x,)=1, when M is analytic, is exceptional.
This exceptional behaviour of the constant function can explain the special role
of the self-similar processes Z, defined in (1.2), if we consider them rewritten
in the form

Z,={explin(x,+...+x)] Ko(x;+... +x) Zg (dx,) ... Zg (dx,)

with G,(x)=|x|* (Other natural candidates for an analytic function M like
M(x,, ..., x)=(x;+... +x)?%, p=1,2, ... are excluded by condition c).

Now we formulate the following conjecture:

Let
n

an=b(

a,=a, if n=(ny,...,n) and W=, Mew) TEN

ln,) n]=# % +o((n|~2-1) @)

where the function b(-) is the same as in (4.5), and let G, be a spectral measure
on (—=n, #) with the property

r(n)= | exp (inx) G(dx)=n"*L(n). (4.8)

with a slowly varying function L(-).
Define with the help of this sequence a, and measure G the process

U,=[explim(x,+... +x )] M(xy, ..., %) Zg(dx,) ... Zg(dx,), (4.9)
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where
M(xq, ..., x)=> a,exp[i(n; x; +... +nx)].

If the function M “behaves nicely”, and the sequence a, satisfies some
identities connected with the behaviour of M (e.g. Zan=0 if M(0,...,0)=0)
then the processes ZY defined by (4.9) and (1.7) with the choice Ay=N '

k k
ﬂ_E“L(N)E tend in distribution to the process Z* defined in (4.1) as N — co.

Let us explain why it is natural to expect such a result. If we want to prove
the conjecture by the method of this paper the crucial point is to prove the
following statement:

Define the measures py, N=0,1, 2, ... by the formulae:

to(A)= [ [Ko(x {4 ...+x)P M(x, ..., x)I* Go(dxy) ... Goldx,), Aed*
4

()= [ K (¢, + ..+ 3P M(xy. .., x)2 Gyldx,) .. Gyldxy),
A
Aeg* N=1,2,..

where Gy(A)=N*L(N)-G (%)

Then the measures py tend weakly to the measure u, as N — .

In the proof of the Proposition we have proved this convergence in the
special case M=M and G=G. The convergence of the measures  to Ug 18
equivalent to the convergence of the modified Fourier transform @, of uy
defined in (3.1) to the Fourier transform ¢, of uy - @y(t,, ..., t,) can be expressed
by the correlation functions r(n) and the coefficients a, as it was done in the
proof of the Lemma. If the numbers r(n) and a, are defined by (4.4) and (4.5)
then ¢y —@,. So what we have to check is that a small perturbation of a, and
¥(n) does not change the convergence ¢, — .

Let us now explain the relation between the conjecture and the Theorem.
The processes defined in (1.8) and (4.1) agree if we choose

My, ..., x)=bl|x;+...+x ) +cilx; +...+ x| sign (x, +... +x,).

Let us choose a function f(x,, ..., x)=f(x,+...+x,) in the definition of M.
Then only the coefficients a,, n=(n,, ..., n,) differ from zero in the expansion
(4.6). Let us choose also the coefficients a, in (4.7) so that a,+0 only if n
=(ny, ..., n;). Then the 1té formula yields that

ve)

1
U,= Y a,H(Y,.,), where Ynzwj"exp(inx)ZG(dx),

l=—ow

n=..—1,0,1,..., and r(0)>=G([—r, 7).

Hence the conjecture contains the Theorem as a special case. We remark that
the It6 formula combined with an orthogonalization makes it always possible
to express the random variables U, defined in (4.9) as a functional of the above



156 P. Major

defined process Y, but this representation is rather complicated in the general
case.

Remark 4.3. The method of this paper seems to work also in the case of
stationary fields, ie. in the case when the random variables are parametrized
by the lattice points of the v dimensional space, v=2. The random fields have a
richer structure for large v. In particuliar there are self-similar fields with a
representation analogous to (4.1), for which the function M is a non-constant
analytic function.

One can investigate also limit theorems for generalized fields. In case of
generalized fields there are self-similar fields whose representation contains a
non-constant analytic function M even in the one-dimensional case. It is
natural to expect that such fields have a large range of attraction. We return to
this question in a subsequent paper.

Remark 4.4. A natural generalization of the problem discussed in this paper is
the following one: Let H: R"— R! be a function of r variables such that

EH(Y,, ..., Y)=0, EHXY,, ..., Y)<o,

where Y, n=...—1,0,1 is a stationary Gaussian sequence EY,=0, EY?=1,
satisfying (1.4).
Define the process

o]

U,= Y a,H(, Y_,. ), m=..—101 ..

m n—m—1>°""2> ‘p—m-—vr
where the sequence a, is the same as in the Theorem. Let the process Z¥ be
defined by (1.7) via this process U,. We are interested whether the processes
ZY have a limit as N — 0.
With the help of the It6 formula the random variables

HY, ,,.1--» Y, _,._,) can be expressed in the form
H(Y, 1 Yn—m_r)ZZIeXP Lin(xy +...+x)] g(xy, -0 X))

!

- Zgldxy)... Zgldx) (4.10)
where the function g,(x,, ..., x;) has the form

g(xp,x)= Y o g explilsyx;+...+5,x)],
1s;8r
=121
and
Corovst” =Csitrn s sy for an arbitrary

permutation 7 of the numbers 1,2, ...,1. (See Remark (6.1) in [3] for an

explanation how this representation can be obtained.)
Let us first consider the special case when the sum (4.10) contains only one
term with an index k.
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Let us assume that the conditions of the Theorem are satisfied with this k.
A natural modification in the proof of the Theorem shows that this new
process Z) tends in distribution to the process (3Y.c,, . )Z¥ where the
process Z¥=Z%(a, B, k, b, ¢) and the norming constants A, are the same as in
the Theorem. A slight modification in the proof of the Corollary shows that
the same result holds if the sum (4.10) contains finitely many terms, i.e. in this
case only the smallest index counts. The expression in (4.10) is a finite sum if
and only if H is a polynomial. Probably the condition about the finiteness of
the sum (4.10) can be dropped, but we were unable to prove this.

Remark 4.5. The self-similar fields Z¥ defined in (1.8) can be represented also
by means of the original Wiener-Itd integral defined in [5]. It can be done by
the help of Lemma 6.1 in [10].

o+ 1 a+1

Z¥=D(o)* | [?|n+u+t1|7... |n+u+tk|TN(u)du] wdt,)... W(dt,)

with (4.11)

N@)=bAB) Iy’ signy—|y—1|"Fsign(y—1)+cA'(B)[Iyl*~ly—11"*]
if =0, and
Nw=b-Ioc, y)+c- AQ)nly—1|-Inly[] if p=0,

where D(x), A(f), A'(B) are appropriate constants, and W(-) denotes the white
noise process.

To verify (4.11) one has to show that the integrand (with respect the white
noise) in (4.11) is the Fourier transform of the integrand in (1.8). We give a
short informal proof of this relation which, however can be made rigorous.

The identity

K,(0)= ]? exp (itu) N(u)du (4.12)

holds. Formula (4.12) is meaningless in the usual sense, but it is meaningful
and correct if we interpret it in the following way: The generalized function K,

is the Fourier transform of the generalized function N. With the substitution ¢
=X;+...+x, in (4.12) we get that

Fexp {[i(t, x; +... +tx)+n(x, +... +x)]}

Koy 4 x)lxg] 2 X 2 dxg ... dx,

=f N(u){ ﬁ fexp [i(t,+n+u) x;] Ix,l%dxl} du
=1

k
=D(@) [Nw)]] lt,+n+ul 2 du,
-1

as we claimed.
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