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Summary. We prove  limit theorems for sums of non-l inear  functionals of  
Gauss ian  sequences. In certain cases we obta in  a non-Gauss i an  limit with a 
no rming  factor  n ", 0 < ~  < 1/2. The  class of  functionals we are investigating 
is a na tura l  enlargement  of  the class invest igated by M. Rosenbla t t  in [7]. 
We prove  our  results by refining the me thod  of the paper  [3]. 

1. Introduction 

In recent time, several papers  dealt  with limit theorems for sums of dependent  
r a n d o m  variables.  Examples  when the central  limit t heorem ceases to hold are 
of  special interest. The first example  of  this type was given by M. Rosenbla t t  in 
[6] (see also [8]). H e  considered quadra t ic  functionals of  a s ta t ionary  Gauss ian  
sequence with a correlat ion function which slowly tends to zero. This result 
was general ized by Dobrush in  and Ma jo r  in [3] and by Taqqu  in [10] 
independent ly  of  each other. The  p rob lem is more  natural ly  put  in the follow- 
ing modif ied form:  

Let  ~n, n =  . . . .  . . -  1, 0, 1, be a strictly s ta t ionary  sequence, E~ n = 0, E~,2-1.- 
For  every posit ive integer N, N = 1, 2 . . . .  define a new sequence: 

nN 
N _ _  - 1  z. -AN Y, 

m=(n  1 ) N + 1  
n = . . . - 1 ,  0, l, . . . ,  N =  1, 2 . . . . .  (1.1) 

where A N is an appropr ia te  no rming  constant.  Quest ion:  Under  what  con- 
ditions does the sequence Z ,  u tend to a sequence Z*, n . . . .  - 1 ,  0, 1, ... in 
dis t r ibut ion? In the mos t  general  case this quest ion seems to be very difficult, 
but  in the case when the ~ are functionals  of  a Gauss ian  sequence some 
interesting results have already been proved.  
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The first problem to be solved when answering the above question is the 
characterization of the possible limiting sequences Z*. For  every N =  1, 2, . . .  
formula (1.1) induces a transformation TN(AN) on the distribution of sequences 
of random variables ~,, n . . . .  - 1, 0, 1, .... It can be seen (cf. [2] for a proof) 
that the distribution of a limiting sequence Z* must be a fixed point of the 
transformations TN(AN) for all N. More precisely, Z* can be the limit of some 
sequences Z~ defined by (1.1) only if its distribution remains invariant under 
all transformations TN(N ~) with some fixed positive constant e>0 .  In this case, 
A N must be chosen in (1.1) as AN=N~L(N), where L(.) is a slowly varying 
function. Sequences whose distributions are invariant under the transfor- 
mations TN(N ~) will be called self-similar processes with self-similarity parame- 
ter 1 -  a. (There is no standard definition of the self-similarity parameter in the 
literature. We follow the terminology of Dobrushin in [1].) 

A large class of non-Gaussian self-similar processes was constructed by 
Dobrushin in [1]. Essentially the same class was found also by Taqqu in [9], 
but he gave a different representation. In the study of limit theorems for sums 
of dependent random variables in [3] the following self-similar processes 
played an important role. 

Z ,  = Z,,(k, cO= ~ exp [in(x i + ... +xk) ] 
c(--I c(--i 

�9 K o ( x ~ + . . . + x k ) l x ~ l  2 . . .Ixk I 2 W ( d X l ) . . . W ( d x k )  

n . . . . . .  1, 0,  1, . . .  (1 .2)  
where 

exp ( i x )  - 1 
K~ = ix ' (1.3) 

i.e. K o is the characteristic function of the uniform distribution on [0, 1], W(') 
denotes the white noise process, and the integral is meant as multiple Wiener- 
It6 integral. More precisely, we consider here and also in the sequel a modified 
version of the Wiener-It6 integral which is defined in [1]. The process Z,(k, r 

1 
is well-defined if 0<kc~<l ,  and its self-similarity parameter is k ~ < ~ .  There- 

fore, they can appear as the limit of sequences Z,  u defined by (1.1) only if A N 
1 k~ k ~  1 

= N  -TL(N) ,  where 1 - ~ - > ~ ,  and L(.) is a slowly varying function. Quite 

recently, M. Rosenblatt [7] found a class of stationary sequences whose partial 
sums satisfy a non-central limit theorem with a norming factor N c, c < 1/2. Our 
aim is to prove limit theorems which contain Rosenblatt's result as a very 
special case. 

Let us introduce some notation: 
Let ...Y_ z, Yo, I71 . . . .  E Y o =0,  E y2 = 1, be a stationary Gaussian sequence 

with correlation function 

r(n)=EYoY,=n-~L(n),  0 < ~ < 1 ,  (1.4) 
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where L( . )  is a slowly varying function. Given a real function H(x) and a 
sequence of real numbers  G,  n = . . . - 1 ,  0, 1 . . . .  we define the sequences of 
r andom variables 

and 

X,  : H(Y,), n = . . . - 1 ,  0, 1, ... (1.5) 

(1.8) 
where 

/s (x) = K o (x) m o (x) (1.9) 

Mo(x ) = b M(ol)(x) + cM(o2)(x) (1.10) 

M(ol)(x)=lxf, M(o2)(x)=ilxf signx (1.11) 

and Ko(x ) is defined in (1.3). 
Here,  W(.) denotes again the white noise process, and we consider multiple 

Wiener-I t6 integrals with respect to it. The process Z* is well-defined if and 
only if 

IKo(xl + . . .  + xk)l 2 Ix~ I ~ -  ~. , .  Ix~l ~ -  1 dx~...dxk < oo. (1.12) 

This integral is convergent  if and only if 

k 
0 < k c ~ < l ,  and 0 < l - f i - ~ < l .  (1.13) 

The first inequali ty in (1.13) ensures that 

[I~o(xl +... + xk)121x~?- z...lxk? l dxi . . .dxk < oo, 
1 < [ x l + . , . + x k [ <  2 

U m = U~(H) = ~ a, Xm+,, m = . . .  - 1, 0, 1 . . . . .  (1.6) 
n - - o o  

In formula (1.6) convergence is meant  in L 2 sense. If the sum on the r ight-hand 
side of (1.6) does not  converge in L 2 sense, then we consider formula (1.6) to be 
meaningless. N o w  we define the sequences 

( n +  1 ) N - -  1 
N N 1 Z , = Z , ( H ) = A ~  ~ U m, n . . . .  , - 1 , 0 , 1 , . . . , N = 1 , 2 , . . .  (1.7) 

m = n N  

where A N is an appropr ia te  norming constant.  Our  aim is to prove limit 
theorems for the distribution of the sequences Z~', n = , . . - 1 , 0 ,  1 . . . .  when 
N ~ oo. We shall consider some processes Z* which belong to the class of self- 
similar processes constructed in [1]. They  will appear  as the limit of some 
sequences Z ,  u defined in (1.7), when N--* oo. 

Z,  - Z ,  (cq fi, k, b, c )=~ exp [in(x 1 +... +xk)] 

�9 ~;o(X~+...+x~)lxll 2 . . . rx~l  2 W(dxl)...W(dx~) 
n = . . . - 1 ,  0, 1, ... 
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and the second one that the singularities of the integrand in the region x~ + . . .  
+ x k = 0  and X~+...+Xk--+oO do not make the integral (1.12) divergent. The 
finiteness of the integral (1.12) under the condition (1.13) will follow also from 
the results of this paper, k 

The self-similarity parameter of the process Z*(cq fl, k,b, c) is f l+~ ~. In 
k 1 

case f i>0  it may occur that 7 = 1 - f l - ~  c~<~, and in this case limit theorems 

with norming factor N ~, 7 < 1 can be expected. 
Let H k denote the k-th Hermite polynomial with first coefficient 1. The 

convergence problem for u Z,  (H) with a general function H can be reduced to 
the convergence problem for ZU,(Hk), k =  1, 2 . . . . .  The main result of this paper 
is the following one' If an=C~n-P-l+o(n a-i)  for n>0,  a,=C2ln[ -~-1 
+o(In[ -~-1) for n<0,  ZU,(Hk) is defined by (1.4), (1.5), (1.6) and (1.7), ~ and fl 
satisfy (1.13), then N Z, (Hk) converges with an appropriate norming to a field 
Z,  (~, fl, k, b, c), where the constants b and c are appropriately chosen. But in 

the case f l>0  this statement holds only under the additional condition ~ a, 

We formulate this result in more detail. Let a sequence a n satisfy the 
relations 

a,=a,(fl)=C(1)n-~-l +o(n, p-l) if n > 0  

a,=an(fl)=C(2)lnl-a-l+o(ln[ -~-1) if n<0.  (1.14) 

Define the new sequences 

bn=�89 cn=l(an--a_n), n=  ...--1, 0, 1, .... (1.15) 

Obviously, 

b~=�89 b,=b_ n, bo=a  o. 

cn=�89 -~-1 signn+o(ln[-~-l), cn= - c  n, Co=0, 

and a n = b n + c,. 
We shall prove the following 

Theorem. Given a stationary Gaussian sequence Y,, n . . . .  - 1 ,  0, 1, ... E Y0=0, 
E y 2 = I  satisfying (1.4) and a sequence of real numbers a n satisfying (1.15) we 
define the stationary sequences X n, U,, ZU, by means of formulae (1.5), (1.6) and 
(1.7) with the choice H(x)=Hk(x), the k-th Hermite polynomial with first 
coefficient 1. I f  condition (1.13) is satisfied, then the processes X,,  U,, Z,  are 
well-defined. Further assume one of the following conditions to be satisfied 

(i) O < f l < l a n d  ~ an=O, 
n =  - - o o  

(ii) - l < f l < O ,  
(iii) /~ =0, C(1)= - C(2) and Y~ Ibn[ < oo. 

Then the finite dimensional distributions of the sequences Z~ tend, with the 
choice AN=N 1-~-k/2~ L(N) k/2, to the finite dimensional distributions of the se- 
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D Z n = D  Z .  quence -k , -k *(~,fi, k ,b,c)  defined in (1.8), as N ~ o o .  D is chosen as 

D=2F(~)  cos (2 n) in all three cases. In eases ( i )and ( i i ) b = 2 [ C ( 1 ) +  C(2)] 

- - n  , c = 2 [ C ( 1 ) - C ( 2 ) ]  F(- /3)  cos 7c . 

In case (iii), b = ~ b,, c = C(1). 

Let us now consider a general function H(x) with the following properties 

SH(x) exp ( - ~ ) d x = O ,  S [H(x)] 2 exp ( _ x ~ ) d x < o o .  (1.16) 

The function H(x) can be expanded by means of Hermite polynomials in the 
form 

H(x)= ~, dkHk(X), Z d 2 k ! < o o .  (1.17) 
k = l  

We shall prove the following 

Corollary. Let the function H(x) satisfy (1.16), and let k be the smallest index in 
N N its expansion (1.17) such that dk @O. Let us define the sequences Z n - Z ,  (H) in 

the same way as in the Theorem, only substituting Hk(x ) by H(x). I f  the 
conditions of the Theorem hold with the k defined at the beginning of the 
Corollary, then the sequences Zn, are well-defined and their finite-dimensional 

- D - k Z , ~ .  a k ,b,e)  as N - , o o .  The distributions tend to that of the sequence a k , t~, p, 
constants D, b, c are determined in the same way as in the Theorem. 

It is worthwhile comparing the Theorem with the following Theorem A, 
which is a consequence of Theorem 3 in [3]. 

Theorem A. Given a stationary Gaussian sequence Y,, n =. . .  - 1, O, 1 . . . .  E Yo = O, 

E y 2 = I  satisfying (1.4) and a sequence of real numbers a,, ~ la, l < ~ ,  
n =  - -  oo  

a n ~ O, we define the sequences Xn, U,, ZU, by aid of formulae (1.5), (1.6) and 
n ~  - oo  

(1.7) with the choice of H(x)= Hk(x ). These sequences are well-defined, and in the 
case 0 <k~ < 1 the finite dimensional distributions o f  the sequences Zu, tend with 
the choice AN=NI-k~/Z Lk/2(N), to the finite dimensional distributions of the 

sequence D -k/a Z,(k, ~) as N--*oo, where Z ,  is defined in (1.2) and D . a .  . 

is the same constant as in the Theorem. 

Let us observe that the exponent of the norming factor in case (i) of the 
Theorem is smaller than in Theorem A. This shows that the condition ~ a,---0 
in case (i) is essential. 

The self-similar sequences 2 ,  belong to the class of self-similar fields Z* 
defined in (1.8). Nevertheless, a comparison of the Theorem and Theorem A 
indicates that the sequence 2 ,  plays a special role. The sequences Z* appear as 
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the limit of sequences Z~ only if the coefficients a, are very specially chosen, 
namely only if the sequence a, behaves asymptotically like a power of n. On 
the other hand, in Theorem A a rather general sequence a, can be chosen. As 
the proof of the Theorem will show, this particular behaviour of the sequence 
Z* is closely connected with the following fact in Fourier analysis. If f (x) is a 
sufficiently smooth function on the real line with support in [ - ~ ,  ~), then for 
every fl, - 1 < fl < 1, 

i exp(inx) Ix[ ~ signx . f (x)  dx  

=C(fi)[n[ -~-1 sign n(1 + o(1)), C(fi)+O. 

A similar relation holds if Ix[ ~ sign x is substituted by lxl ~. The only exceptional 
case is when fl=0, and the term sign x is absent. In this case, the Fourier 
transform tends fast to zero at infinity, since the function g (x )= l  has no 
singularity. We shall see that this exceptional behaviour of the constant func- 
tion has some implication about the behaviour of the sequence Z*. 

The present paper consists of four sections. In Sect. 2 we prove the Theo- 
rem with the help of a lemma and some relations in Fourier analysis. In 
Sect. 3, this lemma and the Corollary are proved together with the facts from 
Fourier analysis needed in Sect. 2. In Sect. 4, some comments are made and 
some possible generalizations are discussed. 

2. Proof of the Theorem 

The bulk of the proof consists of checking that certain sums and integrals are 
finite. To explain the idea of the proof better, we first give a brief outline of it. 

We shall represent the sequences Z~ by means of multiple Wiener-It6 
integrals. After an appropriate substitution Z~ can be written in the  form 

Z)' =S exp [in(x 1 +. . .  +Xk)]/s + . . .  +Xk)Za~,(dxO... ZG~,(dxk). 

with such functions /(N and G N that Is ) and GN(x)~Go(x ). These 
relations would suggest a formal limiting procedure which yields 

Z, u, -~ ~ exp [i n (x 1 +.. .  + Xk)] IV o (X 1 +""  + Xk) ZGo (dx 1 )"" Zao (d xk). 

To justify this limiting procedure, we shall prove that the sequence of measures 
~tN, 

#N(A)= j ]/s §  § 2 as(dxO. . .  6u(dxk), A =R k 
A 

tends weakly to the measure #o, where 

#o(a)= ~ [Ko(xl+...+xk)[ZGo(dxO...Oo(dXk), A ~ R  k. 
A 
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We prove the last statement by means of Fourier analysis. Now if we want to 
follow the argument of [-3J in the proof of the Theorem then we meet with 
some problems. They arise because the convergence /~N~/s may be non- 
uniform even in bounded regions. To overcome this difficulty we decompose 

N__ N N Z,  N into the s u m  Zn-- (Zn) l - } - (Zn)  2 in an appropriate way. We make this 
decomposition in such a way that the limiting procedure can be carried out for 

N (Z,)2 is negligible. (Z,)2 relatively simply, and N 
Now we begin the proof by showing that the random variables Um = U,,(Hk) 

are well-defined, i.e. that under the condition (1.13) for every e > 0  there exists 
an L = L(e) such that 

L'I L~ ] 2 
J = E  a, Hk(Y,+m)-- ~ a, Hk(Y,+m) <5 (2.1) 

n L1 n= -L2 

for all L~,EI,L1,E2>L. 
The following estimates hold true" 

J<=2E a,,I-Ik(Yo+,. ) +2E y~ a,,Hk(Y.+,.) 
=-- n-- +1 

2 (la l ra,I + la_; laoJ)It(r-  n)Jk 
p = L  n = L  

Since [r(n)[<K([n[+l) -~+~ with arbitrary c~>0 and K=K(6) for all n, and 
[a,]<K[n[ -~-1 for all n + 0  with an appropriate K > 0 ,  to justify (2.1) it is 
enough to show that 

l = L  n = L  

for sufficiently large L = L(e) > 0. 
The following estimation can be made: 

~ n-(~+l)(ll--nl+l)-k~+~ 
n = L  

I t/2 
< C  k~+~ ~ n-(~+1)+/-(~+1) 

n = l  

n = 2 / + 1  

21 
( I n - l j + l )  -k~+a 

n = l / 2 + l  

(2.3) 

(The letters C, K, etc. will denote appropriate constants from now on. The 
same letter may denote different constants in different formulae.) 

In case f l>0  it can immediately be seen that the expression in (2.3) is finite, 
and then a simple substitution in (2.2) shows that relation (2.2) holds. In case 
f l<0,  let us first observe that f l + l §  for small c5>0, because /~+1 

+ k c ~ > 3 - 2  t l - f l - ~ c ~ t > l  by (1.13). Hence the expression in (2 .3)can be 
\ Z / 
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estimated by C. I -e-k=+a in this case. Substituting this estimate into (2.3) we 
get that 

I < C  ~ I-3+2(1-/~-k/2c0+a< G 

as we claimed. We remark that the condition k ~ < l  was needed only in the 
estimation of the second term in (2.3). It can be substituted by the condition 
/3 > _ 1  which is a consequence of (1.13). 

Now we express Z~ by means of multiple Wiener-It6 integrals. We can 
write 

Y,, = j exp(inx) ZG(dx), 

where G is the spectral measure of the stationary sequence Y~, n=  . . . -  1, 
0, 1, ..., and Za is the random spectral measure corresponding to it. By the 
definition of U,, and the It&formula (see e.g. formulae 4.14 and 4.15 in [1]) the 
identities 

U,,,=J ~ a1 exp [i(m +j)(x, +... +Xk) ] ZG(dxl)...ZG(dxk) 
j ~  ~ oo 

and 

Z.N __A N- 1 ~ exp [inN(x 1 +... +xk) ] 

" L aj exp[(j(xi+...+Xk) ] 
j ~  --  oo 

N - 1  

exp [(il(x i +... + xk) ] ZG(dXl)... Zo(dxk) (2.4) 
/ = 0  

hold true. 
We want to prove that for arbitrary positive integer p and real numbers 

P 

c p, c_p+t, . . . ,% the sequence ~ clZ ~ tends in distribution to the random 
l = - p  

P 

variable ~ czZ~'. For this end we change variables in formula (2.4) with the 
I = - - p  

substitution Nxj=y s (cf. Proposition 4.2 in [1]). This substitution indicates 
P 

c t Z~ has the same distribution as 
l = - - r  

where 

with 

P P 

~, c,2~= ~ c, ~ exp[il(x I +... +xk) ] RN(x I +... +Xk) 
l =  - p  l =  - p  

. ZGN(dxl)... Z~v(dxk), 

K,u(X ) = KN(x) MN(x) 

K~(~)- exp ( ix)-  1 

MN(X)=N ~ ~ ajexp i x 
j ~  - -  cx3 

(2.5) 

(2.6) 

(2.7) 
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and the measure G N is defined by the relation 

GN(A) = ~ (2.8) 

for every measurable set A on the real line. The infinite sum in (2.7) may not 
convergence pointwise. Nevertheless, formula (2.7) is meaningful if we consider 
the limit in the infinite sum on its right hand side in L 2 s e n s e  with respect to 
the measure 

]KN(xl +. . .  +Xk)t 2 GN(dxl)... GN(dxk). 

(And we have to consider it so in order to prove that the Wiener-It6 integral 
in (2.5) is meaningful.) 

Indeed, since 

KN(xl  +. . .  + x k ) = - -  ~ exp --i j (xl + .. + Xk) (2.9) 
N j -o  N " ' 

to make (2.7) meaningful, we have to show that 

L2 L2 N-- 1 N 1 

~ a,a~ ~ 2 r~(n-~+j~-~) 
1= LI n = - - L I  j ~ = 0  j 2 = 0  

has a limit for every N as L1, L 2 ~ oe. 
Since 

N 1 N--1 

~ Irk(n--l+jx--j2)l<--_C(N, ~ ) ( l / - n l + l )  -k~+6 
j l = O  j 2 = 0  

for every 6 > 0, and integers N, l, n, this fact follows immediately from (2.2). 
In Proposition 1 of paper [3] it has been proved that 

GN([0, x])--,Go([0, x3)=(~D)-lx ~ for all x > 0 .  (2.10) 

(Actually, the norming factor (c~D)-1 was determined in remark 1.2 of [3].) 
Let us define the measures #N on ~k, on the Borel a-algebra of the k- 

dimensional Euclidean space, by the formula 

~N(A)= ~ IKN(xl +... +xk)l 2 GN(dx~)... GN(dxk), 
A 

A ~  k, N = 0 ,  1,2 . . . . .  

(This formula is meaningful also for N = 0, s ince/(o is defined in (1.9).) 
In Sect. 3 we shall prove the following 

Lemma. I f  the sequence a, satisfies the conditions of the Theorem then the 
sequence of measures #N tends weakly to the measure kto as N---, oe, where the 
constants b and c in the definition of M o are determined in the same way as in 
the Theorem. 
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By aid of this lemma and relation (2.10) we want to make a limiting 
procedure which leads to 

P P 

~, Cp2~ ~163 ~ cl ~ exp[il(Xl +... +xk)J/s +. . .  +xk) 
1= - p  l= - p  

�9 Zao(dxfl... ZGo(dxk), (2.11) 

where ~ ,  denotes convergence in distribution. Relation (2.11) implies the 
Theorem. In order to see it, one has to observe that the expression on the 

P 

right-hand side of (2.11) has the same distribution as ~, qZ*. This follows 
l = - - p  

from the rule of change of variables in Wiener-It6 integrals with the sub- 
stitution Go(dx ) =D- l lx?- 1 dx. 

We shall prove (2.1t) in an indirect way. Instead of the random variables 
2~ we shall work with some new random variables 2~ defined below. These 
random variables 2~ are close to 2~ and are easier to handle. 

First we define two numerical sequences b', and c',, which are close to the 
sequences b n and c, defined in (1.14) and (1.15), and which have some nice 

properties. Let f(x) be a twice differentiable funciton with support in [ - 2 ,  2]  

such that f ( x ) = l  for Ixl<rc/4, f(x) is monotone decreasing for x > 0  and 
monotone increasing for x < 0. 

Let 

where 

b;=l 2~ C(fi) i exp(-inx)txl~f(x) dx, if - l < f l < l ,  fl#O 

b'~=b, if fi=O, 

c'~ 1 = ~ -  C'(fi) i exp(-inx)[xfj'(x).isignxdx, if - l < f l < l ,  
--'/g 

C(fl)=2[C(1)+ C(2)3 V(-fi) sin (fl+ 1) rc 
2 

i f - l < f i < l ,  f l+0 

C'(fi)=2[C(1)- C(2)] F(-fi) cos - -  

and 

C'(0)=2n. C(1). 

We shall prove in Sect. 3 that 

(fi+l)rt 

and 

2 
if - l < f i < l ,  fi#:O, 

C(1)+C(2)lnl-e-~+O(lnl-2 ) if - l < f l < l ,  fi4~O b'~- 2 

! 

Cn 
C(1)-  C(2) 

In[ -~-1 signn+O([n1-2) if - 1  < f l < l .  
2 

(2.12) 
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(Although relation (2.12) seems to be well-known among specialists in Fourier 
analysis we could not trace it in the literature. Therefore we shall prove it.) 

As a consequence of (2.12) we obtain that 

b', exp(inx)= C(fi) Ixl~ f (x)= C(~) Ixl a, 
n =  - -  c o  

and 

c'exp(inx)=iC'(fi)lxI~f(x)signx=iC'(fi)lxl~signx, - 1 < f i < 1  (2.14) 
n = - - c o  

for [xl <7z/4 with the only expectation x = 0  in the case - 1  <f i<0 .  
Indeed, the Fourier series (2.13) and (2.14) are convergent with the only 

exception x = 0  if - 1  < f i<0 ,  hence the Fej6r theorem, e.g., implies that they 
agree with C(fl)Ixl ~ and iC'(fl)Ixl ~ sign x respectively. 

The substitution x =0  into (2.13) gives that 

b' ,=0 if 1 >f i>0 .  
n =  co 

On the other hand, b',=b'_, and c',= - c '  ,. Hence the sequence a',=b',+c', also 
satisfies the conditions of the Theorem. Let us define the random variables 

~N = S exp [il(x 1 +... +xk) ] K'u(xa +... + xk) ZGN(dxl)... ZG~,(dxk), 

where 

with 

- l < f i < l ,  fi4:0, (2.13) 

(2.15) 

(2.16) 

/ = . . . - 1 ,  0, 1, ..., 

Is ) = KN(X ) M~(x) 

M}(x)=N ~ a) exp t ~ x  . 
j =  - c o  

First we show with the aid of the Lemma that 

E ( 2 ~ - Z ~ ) 2 ~ 0  for a l l /  as N ~  oo. 

Write 
1 

E(2N_ ~N)2 =]~l S ]/s -1-"" ~- Xk)-/~N (X 1 + ' "  ~- Xk)[ 2 GN(dX1)"" GN(dXk) 

1 
�9 tt IRKS. =~. #Nt ), 

where the measure #} is defined in the same way as #N, only Mu(x ) is replaced 

by M~c(x)=N p (aj-aj) exp i ~ x  . Since the sequence an-a' ~ also saris- 
j =  - o o  

ties the conditions of the Theorem, with C(1)=C(2)=0 in this case, the 
Lemma gives that p}(R k) -+0. Therefore relation (2.16) holds. 
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Because of (2.16), it is enough to show that 

p p 

cl Z~ ~ ~ ~ c, S exp[iI(Xl +"" + Xk)] I(o(Xl +"" + Xk) 
l= --p l-- --p 

ZGo(dXl)... ZGo(dXk) (2.17) 

in order to prove the Theorem. 
Let us assume for a while that fl #0 .  It can be seen by comparing formulae 

(2.13), (2.14), (2.15) and (1.10) that 

7"C 
M}(x)=Mo(x)  if lxl<~-N and x + 0 ,  

where the constants b and c in M o are defined the same way as in the 
Theorem. Consequently, given any A > 0  and 3 > 0  

RN(x 1 +...  + x O--+ Ko(x 1 + . . .  + Xk) (2.18) 

on the set B=B(A,  3), and the convergence in (2.18) is uniform if 

B =B(A, 3)= {(X 1 . . . .  , xk), Ixjl_-<A, j =  1, 2 . . . .  , k, 

IX 1 -}- . . .  -[-.Xk[ > 3 }  (2.19) 

p 

RN(x)= ~ cl exp(ilx)KN(x)M'N(x) 
l = - - p  

and 
p 

/(N(x) = ~ cl exp(ilx)I(o(X). 
l = - p  

Let us further observe that the Lemma implies that 

where 

and 

# * ~ # *  weakly as N-~ ~ ,  (2.20) 

#N*(A) = S ]/~N(Xl +.. .- t-  Xk)] 2 GN(dXl)... GN(dXk), 
A 
A ~ N  k, N = 1 , 2 , . . .  

#*(A)= S [/~o(xl + '"  +Xk)[ 2 Go(dxl)"" Go(dxk), Ae~k" 
A 

Now we would like to deduce (2.17) from the relations (2.10), (2.18) and (2.20) 
by the aid of Lemma 3 in [3]. This lemma cannot be applied directly since 
I(o(Xl + ... + Xk) is not continuous in the points (x 1 . . . .  , Xk) where xl  + ... + x k 
=0  if f l<0.  However, it is not difficult to prove (2.17) by slightly changing the 
argument of this lemma. Let us first observe that because of (2.20) and the 
absolute continuity of the measure #* with respect to the Lebesgue measure 
#~(R k) < 0% and there exist some B > 0  and 3 >0  such that #*(R k - B ( A ,  3))< e, 
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where B=B(A,g))  is defined in (2.19). Because of (2.20) the relation pN(R k 
- B ( A ,  3))<8 also holds for N > N o = N o ( e ,  A). The last relation means that 

1 
k~-. [E S RN(xl  + ... + Xk) IRk-B(Xl, "", Xk) ZG~(dx~)'"ZG~(dxk)] 2 <~ (2.21) 

for N = 0  or N > N ( 0 ,  where IA(" ) denotes the indicator function of the set A. 
Since /s is continuous on the set B = B ( A ,  6), and relations (2.10) and (2.18) 
hold, the functions Rs ,  N =0,  1, 2, ... can be approximated on B by elementary 
functions just the same way as in Lemma 3 of [3]. This approximation to- 
gether with (2.21) implies 

Is (x 1 + ' "  + xk) ZG~,(dx 1)'" ZG~,(dxk) 

' j " / ~ o ( X  1 - t - . . .  q-Xk) ZGo(dXl)...aGo (dXk) 

which is a rewriting of (2.17). 
The case fi = 0  can be discussed similarly. We have to remark that 

M'~T(X 1 + ... + xk)-~ Mo(x a + ... + xk) uniformly 

on every set B = B ( A ,  cS), A>0,  c5>0, because of the condition ~ b,<oQ. 
n= oo 

Hence the argument applied in the case f i # 0  can be repeated without any 
change. The proof of the Theorem using the Lemma is now completed. 

3. Proof of the Lemma of the Corollary and of Formula (2.12) 

Proof of the Lemma. Let us define the following modified Fourier transfor- 
mation of the measures #N, N = 1, 2 . . . .  

r i  -1 
@ N ( t l ,  . . . ,  L k ) :  ~ e x p  [~(jlXl-+-...-}-jkXk)[ #N(dXl . . . .  

R k L I Y  J 

where the integers Jl,J2 . . . .  ,Jk are determined by the relation 

J l < t  <Jl +1 .... ~_<tk<  j k + l  
N X '  

We shall show that 

, dxk), (3.1) 

(3.2) 

lim ~0S(t 1 . . . . .  t~)=q00(q, ..., tk) 
N~oo 

for all tl, t 2 . . . .  , t k (3.3) 

and Cpo(t 1 . . . .  , tk) is a continuous function. As the measure Pu is concentrated 
on the cube I - -N~,  N~z) k formula (3.3) and Lemma 2 of [33 imply that the 
measures #N tend weakly to a measure go whose Fourier transform is 
q0o(t 1 . . . .  , tk). First we show that rio is actually go, i.e., that (3.3) implies the 
Lemma. This could be done by calculating the Fourier transform of #o. But 
since in this case we would have to tackle some inconvenient convergence 
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problems we chose another way. We define an auxiliary stationary process in 
the following way. 

Let Y~, n . . . .  - 1 , 0 ,  1, . . .EYo=0, E Y02=I be a stationary Gaussian se- 
quence with spectral density Clx[ ~-1, - z c < x < r c ,  and C=c~/2n -~. Let X,  

=Hk(Y~) and Um=Um(Hk)= ~ a',Xm+ ~ where the sequence a; agrees with 
n = - - o o  

the sequence a'~ defined in the proof of the Theorem. 
Let us observe that 

r (n )= C ~ e x p ( i n x ) l x l ~ - l d x ~ C D n  -~ as n--*oo. 
- -  T T  

Hence the process U, belongs to the class of processes investigated in the 
Theorem�9 Thus, relation (3.3) implies that the measures fiN, 

/TN(A) = ~ [M~v(x a + ... +xk)[ 2 [gN(x~ + ... +Xk)] 2 
A ca [ -  N~, Nzc) k 

�9 Go(dxl) . . .  Go(dXk), A e ~  k 

tend weakly to the measure fi0 as N ~  oo, where G O is defined in (2.10), M} in 
(2.15) and K N in (2.6). (To see why the last relation holds one has to observe 
that GN(x)=A.NGo(x ) for [xl<Nrc with a sequence 2N~1 as N ~ o o  if the 
auxiliary process U, is considered.) We want to show it is actually the measure 
go that the measures #N converge to. In Sect. 2, we have already seen that 

[M'N(x~ + ... + Xk)l 2 ]KN(x~ + ... +Xk)l z 

--, IM0(x 1 + ... +Xk)[ 2 Ig0(xl + ... +xk)[ 2 

uniformly on every bounded closed subset of R k separated from the hyperplane 
x~ + . . .  +Xk=0. Moreover, since [KN(x)[<I for all x on every bounded set B 

R k , 

IM~(x~ + ... +xk)[ 2 [KN(X 1 + ... +Xk)[ 2 < K + KIx l  +..�9 + x f  p 

with an appropriate K > 0  if N > N o = N o ( B  ). (We wrote the constant term K in 
the last inequality only to include the case fl=0.) Hence to prove /TN~#o 
(which implies also/~N~p0) it is sufficient to show that for all A > 0  and e > 0  
there exists a fi > 0 such that 

[l +]xl  +. . . - l -xkl21S]]Xl]~- l . . . lXkl~- ldxl , . . . ,dXk<g,  (3.4) 
U(A, 6) 

where the set U(A, 6) is defined by 

U (A, c~)= {(Xl . . . .  , x0, Ix~l < A , j =  1, 2 , . . .  k, Ix I + . , .  + Xkl < c5}. 

To prove (3.4) let us first observe that (3.3) together with Lem m a2  in [3] 
imply that sup #N(R k) < o0. 

Hence N 

Ixl + . . .  + Xkl2P lxll~- llXkl~'- l dx l  . . .dxk = K < ~ 
[ x l + . . . §  1 
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S 
U(A, 6) 

Therefore the homogeneity of the integrands implies that 

Ix, + . .  + xkl 2p tx x 1~- 1... I x J - *  dXl.., dxk 

and 

< ~ Ix1 + . . .  +xkl2a IxlP 1.. .]xy-1dxl. . .dxk=Kc32~+k~, 
Ix~+.. .+xkl<6 

Ix~l=-~...[x~l = l d x l . . . d x k < K ' 6 k t  
U(A, 6) 

These inequalities imply (3.4) because 2/3 + k~ > 0, kc~ > 0 by (1.13). 
Now we turn to the proof of (3.3). By writing KN(x 1 +. . .  + x J  in the form 

(2.9) it can be seen that 

(ON(t 1 . . . .  , tk) 

- -Nk~+2 /~ -  2 L 
L(N) k .~,.~=_ 

where 

Let us 

N - 1  k 

au, au2 Y 171 r ( u ~ + v ~ - u 2 - ~ + / i )  
vl,v2=O /=1 

L(N) k ,= -co ~=-~ 7,(N) 7~(N) r(u - v +Jl) . . .  r(u - -  V +Jk), (3.5) 

N - u  1 

7.(N): ~ a k. (3.6) 
k = - - u  

remark that with a slight modification in the argument which shows 
that (2.7) is meaningful it can be proved that the middle term in (3.5) is 
absolutely convergent. Hence the rearrangement made in (3.5) is legitimate. Let 
us define the functions 

k N ~ 
PN(x, y, t~ .... , tj = N 2~ 7[Nx] (N) 7iN,] (N) z_~1 L~ r(ENx] - [Ny] + [Ntl]) (3.7) 

Formula (3.1) can be rewritten in the form 

~0N(t 1 . . . .  , t k ) =  ~ ~ PN(N, y ,  t I . . . .  , t j  dx dy. (3.8) 
-co  -oo 

We claim that 

where 

~,(x)- 

N~ VtNx] (N) ~ 7 (x) as N ~ oo, 

c(1) 
fi Elxl-P-(l+lxl)-~3 if x < O  

C(1)- C(2) C(1)+C(2) [ x _ a + ( l _ x ) _ p ]  + [x t~ - (1 -x )  ~] 
2/3 2/3 

if 0 < x < l  
C(2) 

B l -x '~ - (x-1) -~]  if x > l  

(3.9) 
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for fi 4= 0, and 

[C(1) [log lxl - log (1 +lxl)] if x<O 
7(x)= ~C(2) [logx-log(1-x)]+b if O < x < l  

[C(2) [ l o g x - l o g ( x - 1 ) ]  if x > l  

for fi=O. 
In checking (3.9) the case O<x < 1 deserves some special attention. In this 

case one has to write a,=b,+c n and then exploit the relation c , = - c , ,  and 
that in the case fl > 0 the relation 

N u--1  - -u- -1  

Z bk=-- 2 bk- ~ bk 
k -  - - u  k =  - -oo  k = N - - u  

holds. 
Moreover, the inequality 

I x~ 7ENx1(N) I < y(x) = 71(x) + 72 (x) + 73 (x) + 74(x) (3.10) 

holds true, where 

7~(x)= Clxt -(~+1)1(x <= -�89 

72(x) = C(]x] -p + 1)/(Ix] <�89 

73(x) = C(Ix- 1[ -~ + 1) I(�89 <2) 

~4(x) = C Ixl-(e+ 1)1( X ~ 2) 

with an appropriate C > 0 if fl 4: O, and 

71(x)=i~1 I(x< -�89 

72(x) = Cixl-~ I(Ixl ~1) 

73(x)= Clx- ll-~ I(�89 <2) 

74(x) = c  I(x__> 2) 
X 

with an arbitrary e>0  and C=C(e)>O if fl=0. (7(x)= oo if x = 0  or x = l  and 
p~0.)  

One can prove (3.10) similarly to (3.9) by exploiting the inequality 
la.l_-<K(Jnl + 1) -p 1 with an appropriate K >0. In checking (3.10) one has to be 

more careful in the regions x~ - ~ ,  and x~ 1 - ~ - ,  1 + ~  . Inequality 

(3.10) holds also in these regions, since 

CN ~ if fi > 0 

[N~yN(u)]_< C if f i<0  (3.10') 

C log N if fl = 0 

for all u. 
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On the other hand 

N~ 

L ( N )  
- -  r ( [ N x ]  - [Ny] + [ N t ~ ] )  ---, Ix - y + q l - ~  as N- ,oo ,  1=1 ,2 , . . . , k .  

This formula together with (3.9) imply that in formula (3.7) a limit can be 
taken which gives 

k 

PN(x, y, t ,  . . . ,  tk)--,Po(x, y, t , ,  . . . ,  t 0 = ~(x) ~(y) I-I I x -  y + q I =. 

We are going to show that a formal limiting procedure in (3.8) is legitimate, 
i.e., 

C/3 

l imePN(tl , . . . , tk)=q)0(t l , . . . , tk)= ~ ~ Po(x,y ,  t l , . . . , t k )  d x d y  (3.11) 

and the integral in (3.11) is finite. 
Karamata's theorem (see e.g. [4]) implies that for every e>0  there exists a 

constant K = K(e) > 0 such that 

L ( u N ) < K L ( N ) u  -~ for 0 < u < l  

L ( u N ) < K L ( N ) u  ~ for u > l .  

These inequalities together with the relation Ir(n)[ < 1 for all n imply that 

N8r  

- -  r(EN x] - EN y] + EN t ,])< K ( e )E Ix -  y + tzl-~+~ + i x -  y + t,I -~ ~]. 
L ( N )  

(Relation Ir(n)l < 1 was needed to show that the above inequality holds also in 
the case I x - y  + tzl < C N -  1). 

The last inequality together with (3.10) imply that 

k 

[PN(X, y, t, . . . .  tk)t < K T(x) 7(Y) I ]  [Ix -- y + t,I . . . .  + [x -- y + t,I -~ + ~] 
l = 1  

= i f ( x ,  y, q ,  . . . ,  tO. 

Hence by the dominated convergence theorem it is enough to prove that 

J (q , - - - , t k )=  ~ 7 i ( x ,  Y, q ,  . . . ,  tk) d x d y < ~ 1 7 6  
oo oo 

for arbitrary q . . . .  , t k (3.12) 

in order to prove (3.11). 
In proving (3.12) it is enough to restrict ourselves to the case t 1 = t  2 . . . .  t k 

= t, since HSlder's inequality implies that 

,]l,k 
J ( q  . . . .  , tk)< J ( t . . . . ,  t~ 

L I =  1 



146 P. Major 

Let us first consider the integral 

l(y, t )= ~ 7(x)Elx-y+tl-k(=+~) +lx-y+t l  -k(=-~)] dx. 
- c o  

We claim that 

I(y, t)<B(y, t)=B,(y-t)+B2(Y , t) 
with 

(3.13) 

B, (y ) -  K [(]y[ + 1)- e-k(=-~) + (]y] + 1)- k(~-=)] 

Be(y, t)=KI(lt-y] <2)[1 § 1 ]*-B-k(=+~)3 

where the constant K may depend on e, fi, k, e and t. We assume that e > 0  is 
sufficiently small, and f14=0. The case f l=0  is similar but simpler. Let us 
introduce the notation 

Ij(y, t)=jTj(x)[lx--y+tl-k(=+~)+]x--y+t] -k(~-~)] dx, j = l ,  2, 3, 4. 

To prove (3.13) it is enough to show that 

I~(y,t)<B(y,t), j = l ,  2, 3,4. 

Let us observe that f i+l+k~=(f l+~c~-l)+~c~+2>l by (1.13). H e n c e i n  

case ] t -y[  > 2 the following estimates hold true: 

- -  1/2  

II(y,t)<--C ~ lxl-~-*lx-y+tl-kr 
- - c o  

= - -2  ] t - -y  I --�89 --y] 

- 2 [ t - y [  -�89 

< C '  ~oo Ix]-~-I k(~-~)dx+ 5 tt--Yl-:e-llx--Y+t] -k(~-~)dx 
- 2 l t - y  ] 

+ ~ Ixl,e-llt-yl-~r 
- �89 

_<_ C" t t -  yl-k(~-~) [1 + I t -y ]  -~] < B ,  ( y -  t), 

and 
1 

I2(y , t)<= C I t -y l  -k(=-~) 5 (Ixl -~+1)  dx < C' It-yl-"(~-~)<Bl(y-t). 
- �89 

In case I t - y l < 2  

[2 ] ll(y , t)< C Ixl -~-l-kr 5 Ix-Y +tl-k(~+")dx <C'<B2(y, t), 
- 4 -  
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and �89 
I2(Y, t)<= C j (Ixl-a+l)lx--y+tl-k(~+~)dx 

-�89 

__<c[ S + S + ] 
I x i < � 8 9  � 8 9  2It yl<[xl<�89 

< C'[ j (Ixl-~ + l)ly-tl-~(~+') dx 
Ixl<�89 

+ ~ [ly-- t l -a+l]lx--y+tl-k(~+~)dx 
� 8 9  

+ S ( Ixl -~+l) lx l  k(=+~)dx] 
21t-yl<lxl<�89 

< C"[1 + It-ul i-k(=+~)-a] <=B2(Y ' t). 

The terms I3(y, t) and I4(y, t) can be estimated similarly. To prove (3.12) with 
the help of (3.13) it is enough to show that 

y(y)B(y, t)dt < ~ .  (3.14) 
--0(3 

Inequality (3.14) holds because, if e is sufficiently small, the function ~(y) B(y, t) 
tends to zero faster than ly[ -c with some c > l  in plus and minus infinity, and 
its finite singularities are smaller than [Yl ~' with some c '<  1. These facts follow 
from the inequalities 

2fi+ka>O, f l + k ~ > 0  and f i < l ,  k ~ + 2 f i < 2 ,  k ~ + f i < 2  

which are consequences of (1.13). 
To complete the proof of the Lemma, it suffices to show that (po(t~ . . . . .  tk) 

is a continuous function. This follows from the following consideration: The 
above made estimations imply that for all e > 0  and t I . . . .  t k there exists an 
A>0,  3 > 0  and a neighbourhood B( t l , . . . , t k )~R k of the point (tl , . . . , tk)~R k 
such that 

S Po(x,y, sl, " " , s k )dxdy<e  
R 2 -- D ( A ,  c5) 

where 

for all (sl, ..., Sk)SB(tl, ..., tk) 

D(A, 3)=D(A, 3, t~ . . . . .  tk) 
k 

= I - A ,  A] x [ - A ,  A ] -  Q) {(x, y): ]x-t f l  <3, t y - t f l<3} .  
j = l  

Then the continuity of the function Po(x, y, t l, . . . ,  tk )  in all of its variables on 
the set D x B(tl, ..., tk) implies the continuity of qo o in the point (t 1, ..., tk). The 
Lemma is proven. 

Proof of the Corollary. Since EHk(Xn) Hz(Xm)=O for all n, m if k +l, 

E d, : # 2. 
l = k + l  / l : k + l  
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On the other hand 

E(Z,N(HI))2=/~ ~ ~ 7u(N)7,(N)r(u-v) l, 
u = - o o  ~ ) ~  - c o  

where 7,(N) is defined in (3.6). 
We are going to show that 

A~zE[ZU,(H)-dkZ~(Hk)JZ=A~ 2 ~ dZE(ZU,(Hz))2--+O. (3.15) 
l = k +  1 

Formula (3.15) implies the Corollary. 
The identity 

E(ZN,(Ht)): =(/!) 1 ~0N(0 .. . .  ,0) 

holds true, where ON is defined in (3.1), only we have to substitute k by l in it. 
In the Lemma we have proved that if l>k, 1 - f i - � 8 9  then 

A~ 2 E Z~ (Hi) a = A~ 2 0 (N 2- Z p- l~ L(N)Z) ~ O. 

Hence, because of (1.17), in order to prove (3.15) it is enough to show that 

K 
. . . . . . . .  = ( K ( z ) N  1-2~+~ if fl<�89 

for every e > 0 and l satisfying the relation 

1-fl-�89 or lc~>l, (3.16) 

k 
where K(e)>0 depends on e, but not on l. (Let us remark that 1 - f l - ~  c~>l 

-f l ,  therefore A 2 > N  1-2p+~ for small ~.) The inequality [r(n)l< Cn -~+~ holds N 
for every n, n#0 ,  and 6 > 0  with an appropriate C=  C(6), hence 

{~-1+~ if fl<�89 
]r(n)] ~--< 2+2~+~ if fl>�89 

for every e>0,  In[ > C(e) and 1 satisfying (3.16). 
Because of the last estimate and (3.10), 

I ~ 2  Y,(N)yv(N)r(u-v) 1[<=Nx-2~+2 S ~ 7(u)y(v)l u-vl;dudv 
l u -  v l  > c ( ~ )  - oo  - ~o 

with 2 = e - 1  if fl<�89 and 2 = - 2 + 2 f l + e  if fl>�89 But in the proof of (3.12) 
actually we have proved that the last integral is finite. Because of the in- 
equalities 

I r (n)[ __< 1, 17, (N) 7~(N)[ _-< �89 (72 (N) + 72 (N)), 



Limi t  T h e o r e m s  for N o n - L i n e a r  Funct iona ls  149 

it is enough to show that 

EE [?~(N)+7~(N)]<=4C(O ~ 72(N) 
lu-vl <=C(~) u= -o~ 

~K(a)N ~ if /~>�89 
<(K~N 1-2~+~ if fi<�89 

in order to complete the proof of (3.15). 
Inequality (3.17) can be deduced from (3.10) and (3.10)'. 

< 1  In the casefi 5, f i#0 

U----O3 -00 

and in the case/? >�89 

(3.17) 

2N 

?~(N)==_K Z (Inl+l) -2p+N~-2p J" y2(x) dx<K'. 
x -  ~ n -  2N ]x[>2 

(We exploited that (1.13) implies that/~> _1, therefore ~2(x) tends to zero fast 
enough in plus and minus infinity.) In case/~=�89 the same argument shows that 
K logN is a good upper bound in (3.17). The case fl=0 can be discussed with 
some slight changes. The proof of the Corollary is now complete. 

Proof of Formula (2.12). Let us first consider the case - 1  <fi<0.  We can write, 
applying the substitution nx =y, 

/(n)= Sexp(inx)lxf f(x)dx=n-~-x ~exp(iy)[yf f (Y) dy. 

It is easy to see that 

lim~exp(iy)[yff(~)dy= ~exp(iy)lyfdy. 

We want to investigate the speed of convergence in the last formula. Let us 
consider the expression 

I(N,n)=~exp(iy)lyf [.if ( Y ) - f  (Y)]  dy. 

for arbitrary N, n, N > n > 0. Integrating by parts, and exploiting the fact that 

f n - f  = 0 for y <~-n, we get 

1 , I(N,n)=-i ~ exp(iy)[lyf(~f '(Y)-~f (Y)) 
[ y l > ~ n  

4 
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f '(y/N) and f'(y/n) are functions of bounded variation, and they are vanishing 
at large y. Hence for y > 0  they can be written as the difference of two 
monotone decreasing functions with a compact support. A similar decom- 
position holds for y < 0. These properties yield that 

~ exp ( i y ) ! f ' (Y )  l y fdy  <Kn ~ 1  

and tyl>~, 

1 , [y fdy <=Kn r exp(iy) ~ f  (Y)  

lYl>�88 
Quite similarly 

b,I ~,~_. l Y f - ~ [ f ( Y ) - f ( Y ) ]  exp(iy)dy <Knp-1 

2 

These estimates together imply that 

I(N, n) NKn t~- 1, 

where the constant K does not depend on N. Letting N go to infinity we get 
that 

I(n)=n, ~-1 ~ exp(iy)lyf dy+O(n-2). 

The relation 

J" exp ( inx)lxf f(x)  sign x dx = n-  ~ - 1 ~ exp (iy)lYf sign y dy + 0 (n- 2), 

if - 1 </3 < 0 can be proved in the same way. 
If 1 >/~ > 0 we get, on integrating by parts, that 

exp ( inx)Ixf f(x)  dx = - i  .[ exp (inx)[Ixl~f'(x)+ fl I x f -  1 f (x) ]  dx. 

We have already seen that 

- i ~ ~[ exp (inx)I J -  i f (x)  dx = - i f in  -a-1 ~ exp (ix)Ixl ~-1 dx + O(n- 2). 
n --c~ 

Integrating by parts again we get that 

n- 1 ~ exp(inx)]xf f '(x) dx=n-  2 
�9 .[ exp (inx)[lxff"(x) + [xf -1/3f'(x)] dx = O(n- 2). 

These calculations together yield that 

exp (inx) [xf f (x) d x 

= - i ~  ~ exp( inx) lx f - l  d x . n - P - l  +O(n -a) for 0< /3<1 .  
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Similary 

exp ( inx) Ix f f  sign x . f ( x )  dx  

= - i / 3  ~ exp ( inx ) l x l  ~ l s i g n x d x . n - ~ - l + O ( n  2) 
- - o 0  

for 0</3<1.  
The estimate 

exp (inx) sign x f ( x )  d x  = 2 i n -  1 + 0 (n- 2) 

can be proved similary to the case - 1 </3 < 0. 
These relations together with the identities 

~ t ~ - l e x p ( - i t ) d t = F ( / 3 ) e x p ( - � 8 9  for 0</3<1,  
0 

F(/3+l)=/3F(/3) and F(1-/3)F(/3)=rcsinrc/3 

imply formula (2.12). 

4. Possible Generalizations, Comments 

Remark  4.1. Condition (iii) in the Theorem and also in the Corollary can be 
substituted with the following weaker condition (riO'; 

(iii)', a , = b , + c , ,  n = . . . - 1 , 0 , 1 , . . . ,  ~ Ibnl<ov, c , = - c  ,, 
n -  oo 

n = 0 , 1 , 2  . . . .  , and c n = C ( 1 ) n  1+o(n -1 )  as n-~oo. (Condition (1.14) is not 
assumed to be satisfied.) 

In this case also b =  ~ bn, c =  C(1) in the Theorem. 
n -  oo 

This strengthened form of the Theorem contains Theorem A as a special 
case. 

Remark  4.2. The class of self-similar processes defined in (1.8) is only a special 
case of the class constructed by Dobrushin in [1]. The process 

Z* = ~ exp Ein(x 1 + . . .  +xk) ] Ko(x  1 + . . .  + xk) m (x 1 . . . .  , xk) 

�9 ZGo(dxl) . . .  ZGo(dxk) n = . . .  - 1, 0, 1, ... (4.1) 

is also self-similar if the following conditions are satisfied: 

a l )  m ( x l  . . . . .  x k ) = M ( - - x l ,  . . . ,  --xk),  
a2) M(x~(l)  . . . .  , x~(k ) )=m(x  1 . . . .  , xk) for all ~zeH, 

where H denotes the set of all permutations of the numbers 1, 2,. . . ,  k. 

a3) There exists a/3 such that 

M ( T x  1 . . . .  , T x k ) = 7 ~ M ( x  1 . . . .  ,xk) fora l l  7 > 0  and x 1 . . . .  , xkER.  
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b) Zoo is the random spectral measure corresponding to the function Go(x ) 
=Ix[ ~, with some e>0.  

c) S [go(x1 + ... +Xk)] 2 [M(Xl, . . . ,  Xk)[ 2 Go(dx l ) . . .  Go(dXk)< oo. 

The self-similarity parameter of the process Z* defined in (4.1) is f i+~  c~. (The 

representation of the processes Z* in the form (4.1) is not unique. The class of 
self-similar fields constructed by Dobrushin consists of the linear combination 
of the above defined processes.) 

The aim of the present remark is to illuminate the content of the Theorem, 
and to indicate how to look for a large class of stationary sequences 
... U ~ ,  Uo,/21 . . . .  such that the sequences Z~ defined by (1.7) and these Um 
tend to a sequence Z* of the form (4.1). 

Let g(x) be a bounded function on the real line vanishing outside the 
interval [--re, r0 and such that g(x)>0, g ( x ) = g ( - x )  for all x, g(0)=l ,  and g is 
continuous in zero. Define the spectral measure G, 

G(A)= g(x) G0(dx), 
A 

Let f :  Rk--*R 1 be a bounded function satisfying al)  and a2) and having the 
following properties: It is continuous in the origin, f(0,  ..., 0) = 1, and 

7E 
f ( x  1 . . . .  ,Xk)=0 if IXl + . . . + X k I >  ~.  

Set 
M (xl ,  ... , Xk)= M (xl ,  ... , Xk) f (xl . . . .  , Xk) 

and 

Urn= ~ exp [ im(x x + ... +Xk) ] M(x 1 . . . . .  xk) 

�9 Z~ (dX l ) . . .  Zd(dXk), m = . . . -  1, 0, 1 . . . . .  (4.2) 

Let us impose the following condition a4) on the function M. 
a4) The set of points where M is discontinuous has zero Jordan measure, 

i.e. for every e>0  and K > 0  the intersection of this set with the cube [ - K ,  K]  k 
can be covered with finitely many rectangulars whose total volume is less than 
8. 

Now we formulate the following 

Proposition. The processes Z~ defined by (4.2) and (1.7) with the choice A N =  N 1- 
k 

~-Y~ tend in distribution to the process Z*  defined in (4.1) provided that the 
function M satisfies the additional condition a4). 

Proof  o f  the Proposition. Let us consider an arbitrary integer p and real 
numbers C p . . . .  , Cp. By change of variables it can be seen that the random 

p 

variable ~ c z Z~ has the same distribution as 
l=  --p 

S JN(X1 . . . .  , Xk) Z ~ , ( d x l ) . . .  Z8~,(dXk) (4 .3)  
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where 

and 

p 

JN(xl, . . . , xk )= ~ c I exp[il(x l + . . . + x k )  ] 
l=--p 

�9 

8~(A)=N~d(N ), Ae2. 
Let us introduce the notation 

P 

Jo(Xl, ... , xk)= ~ c~exp[il(x l + ... + xk)j Mo(x l, ... , xk) Ko(x l + ... + xk). 
l=--p 

It is easy to see that the density function if, of the measure GN satisfies the 
inequality 

d 
~,N(x)< C dxx G~ 

On the other hand 

JN(xl . . . .  , xk) [ -<__ C' IJo(Xl, ..., xk) l, N = 1, 2,. . .  

since property a3) holds for M, and either Ix l + . . . + x k l > ~ N ,  and 
^ X 1 

M ( ~ , . . . , ~ ) = O o r [ x l + . . . + x k l < ~ N a n d  

IKN(Xl + ... +xk)l <-_ ~lKo(xl  +. . .  + xk)[. 

These relations together with property c) of the function M imply that for 
every e>0  there exists a K=K(e )  such that 

E IS JN(xl, "',Xk)[1--~II(Ix~I<_K,(X,) ] Zd~(dx l ) . . .Zd~(dxk)]2<~ 

for all N = 1, 2 . . . . .  

Let us still observe that 

JN(xl,--., xk)-~Jo(X...., xk) 
uniformly on every bounded set where the function Jo is bounded, and 

tiN([0, x])-+Go([0, x]) for all x. 

Hence, because of property a4) of the function M, Lemma 3 in [3] with some 
modification proves the Proposition. 

It is natural to expect that the statement of the Proposition remains valid if 
~r and G are slightly perturbated. We explain what we mean by slight per- 
turbation, and show that it may better explain the content of the Theorem. 
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Let us choose sufficiently smooth functions f and g in the definition of 
and G. Then 

and 

r ( n ) = ~ e x p ( i n x ) G ( d x ) ~ n  -~ with a D>0,  i f ~ + 1 , 2 , 3 , . . .  (4.4) 

(2~z) -k ~ exp [i(n I x 1 +. . .  +nkXk) ] ~I (x l  . . . .  , Xk) dx l  ... dxk 

= a , - - b  (~nl) l n l , a - l  +O(lnl-X) (4.5) 

if the function M is "nice enough", where n = (n I . . . .  , nk). 

/12 In] 2 = 1 , b(') 
/ = 1  

is a function on the unit sphere of R k, and 2 can be made arbitrary large by 
choosing a sufficiently smooth function f Moreover it is natural to expect that 
in nice cases 

f / i (x l ,  . . . ,  Xk)= ~ a n exp [i(n 1 x 1 + ... +nkXk) ] 
n 

for - 1 c < x l < ~ ,  / = l , 2 , . . . , k .  (4.6) 

Generally the function M has a singularity in zero because of its homogeneity. 
Therefore the function b(.) in (4.5) cannot vanish everywhere, i.e. an=t= 
o(Inl-P-1). The case M ( x  1 . . . .  ,Xk) - - I ,  when M is analytic, is exceptional. 
This exceptional behaviour of the constant function can explain the special role 
of the self-similar processes Z,  defined in (1.2), if we consider them rewritten 
in the form 

2 , =  S exp [in(x 1 +. . .  +xk) ] Ko(x  1 + . . .  + Xk) ZGo(dX1) ... ZGo(dXk) 

with Go(x)=Jx] ~ (Other natural candidates for an analytic function M like 
M (x 1 . . . . .  Xk)=(X 1 + ... + Xk) 2v, p = l ,  2, ... are excluded by condition c). 

Now we formulate the following conjecture: 
Let 

a , = b  ~ (  [nl -~- l  +o( ln[-~- l ) .  (4.7) 

an=a ., if n=(n~, . . . ,  nk) and n'=(n~(1) ..... n~(k)), ~ I I  

where the function b(.) is the same as in (4.5), and let G o be a spectral measure 
on (-zc, re) with the property 

r(n) = S exp (inx) G(dx) = n -~ L(n). (4.8) 

with a slowly varying function L('). 
Define with the help of this sequence a, and measure G the process 

U m = ~ exp [im(x 1 +. . .  + xk) ~] ) f l ( x l , . . . ,  Xk) Za (dX l ) . . .  ZG(dxk), (4.9) 
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where 

m ( x  1 . . . .  , Xk)= ~ a, exp [i(n 1 x 1 + ... +nkXk) ]. 
n 

If  the function M "behaves  nicely", and the sequence a,  satisfies some 
identities connected with the behav iour  of  M (e.g. ~ a , = 0  if M(0, . . . , O ) ~ 0 )  
then the processes Z ,  u defined by (4.9) and (1.7) with the choice AN=N 1 

k k 

P-g~L(N)Y tend in dis tr ibut ion to the process Z*  defined in (4.1) as N ~  oo. 
Let  us explain why it is na tura l  to expect such a result. If  we want  to prove  

the conjecture by the me thod  of this paper  the crucial point  is to prove  the 
following s ta tement :  

Define the measures  gN, N = 0, 1, 2, ... by the formulae:  

go(A) = ~ tKo(xl  + ... +xk)[ 2 M ( x  1 . . . . .  Xk)l 2 e o ( d x 1 ) . . .  Go(dXk)  , AE.~ k 
A 

#N(A)= ~ IKN(x1 +. . .  +xk)l 2 ~ r (x l  . . . . .  xk)l 2 GN(dxl) . . .  GN(dXk), 
A 

A ~ N  k N = 1, 2 . . . .  

where G N ( A ) = N ~ / L ( N ) . G ( A ) .  

Then  the measures  #N tend weakly to the measure  g0 as N ~ oe. 
In the p roof  of  the Propos i t ion  we have  proved  this convergence in the 

special case 5~r = ~ t  and d = G, The  convergence of the measures  #N to #o is 
equivalent  to the convergence of the modif ied Four ier  t ransform ON of #S 
defined in (3.1) to the Four ier  t rans form Cpo of go" cpu(tl . . . . .  tk) can be expressed 
by the corre la t ion functions r(n) and  the coefficients a,  as it was done in the 
p roo f  of  the Lemma .  If  the numbers  r(n) and a,  are defined by (4.4) and (4.5) 
then cpN--,qo o. So what  we have  to check is tha t  a small  pe r tu rba t ion  of a n and 
r(n) does not  change the convergence cpN~q). 

Let  us now explain the relat ion between the conjecture and the Theorem.  
The processes defined in (1.8) and (4.1) agree if we choose 

M (x 1 . . . . .  xk) =b Ix 1 + ... +xkl p + ci Ix 1 +. . .  +xkl ~ sign (x 1 + ... +xk). 

Let  us choose a funct ion f ( x  1 . . . . .  x k ) = f ( x  1+. . .  +Xk) in the definition of )~r. 
Then only the coefficients an, n = ( n  I . . . . .  nl) differ f rom zero in the expansion 
(4.6). Let  us choose also the coefficients a n in (4.7) so that  a , # 0  only if n 
= (n  1 . . . .  , nz). Then  the I t6 formula  yields that  

y = l  
Um=l=-~o ~ a~Hk(Y"+m)' where , r(0) ~exp( inx)Z~(dx) ,  

n = . . . - 1 , 0 , 1  . . . .  , and r ( 0 ) E = G ( [ - r c ,  rc)). 

Hence  the conjecture contains the T h e o r e m  as a special case. We remark  that  
the I t6 formula  combined  with an or thogonal iza t ion  makes  it always possible 
to express the r a n d o m  variables  U m defined in (4.9) as a functional  of  the above  
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defined process I1,, but this representation is rather complicated in the general 
case. 

R e m a r k  4.3. The method of this paper seems to work also in the case of 
stationary fields, i.e. in the case when the random variables are parametrized 
by the lattice points of the v dimensional space, v > 2. The random fields have a 
richer structure for large v. In particuliar there are self-similar fields with a 
representation analogous to (4.1), for which the function M is a non-constant 
analytic function. 

One can investigate also limit theorems for generalized fields. In case of 
generalized fields there are self-similar fields whose representation contains a 
non-constant analytic function M even in the one-dimensional case. It is 
natural to expect that such fields have a large range of attraction. We return to 
this question in a subsequent paper. 

R e m a r k  4.4. A natural generalization of the problem discussed in this paper is 
the following one: Let H "  R r ~ R  1 be a function of r variables such that 

E H ( Y 1 ,  . . . ,  Y~) =0,  EH2(y ,  . . . . .  Y~) < oo, 

where Yn, n . . . .  - 1 ,  0, 1 is a stationary Gaussian sequence E Y o=0,  E Y o a=  1, 
satisfying (1.4). 

Define the process 

Urn = ~ a n H ( Y n - m - 1  . . . .  , Y n  . . . .  ), m = . . . - 1 , 0 , 1 , . . .  
n ' l  = - -  o o  

where the sequence a n is the same as in the Theorem. Let the process Z~ be 
defined by (1.7) via this process U m. We are interested whether the processes 
Z~ have a limit as N --* oe. 

With the help of the It6 formula the random variables 
H ( Y , - m - 1  . . . . .  Y, . . . .  ) can be expressed in the form 

H ( Y n - m - 1 ,  ""  ' rn . . . .  )=  ~ ~ exp 1-in(x I + . . .  +xz) ] g l ( x l  . . . .  , x l)  
1 

. Z G ( d x l ) . . .  Z G ( d x l )  (4.10) 

where the function g t ( x  I . . . .  , xz) has the form 

g l ( X l , . . . ,  x l ) =  ~ c . . . . . . . . .  exp [ i ( s  1 x 1 + . . .  + s  l xl) ], 
l_<~<r 

j = l , z ,  . . . .  l 

and 

% ..... s, �9 = c s ~ )  ..... s~(,) for an arbitrary 

permutation 7~ of the numbers 1, 2 . . . . .  I. (See Remark (6.1) in I-3] for an 
explanation how this representation can be obtained.) 

Let us first consider the special case when the sum (4.10) contains only one 
term with an index k. 
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Let us assume that the conditions of the Theorem are satisfied with this k. 
A natural modification in the proof of the Theorem shows that this new 

, - - . ,  Z ~ process Z~ tends in distribution to the process (~csl s~) , ,  where the 
process Z * - Z ,  (~, fi, k, b, c) and the norming constants A N are the same as in 
the Theorem. A slight modification in the proof of the Corollary shows that 
the same result holds if the sum (4.10) contains finitely many terms, i.e. in this 
case only the smallest index counts. The expression in (4.10) is a finite sum if 
and only if H is a polynomial. Probably the condition about the finiteness of 
the sum (4.10) can be dropped, but we were unable to prove this. 

Remark 4.5. The self-similar fields Z* defined in (1.8) can be represented also 
by means of the original Wiener-It6 integral defined in [5]. It can be done by 
the help of Lemma 6.1 in [10]. 

* -  k [ i  ~+~ ~+~ ] Z -D(c  0 ~ In+u+t~l 2 ... In+u+tk[ ~ N(u)du W(dt 0 . . .  W(dt 0 

with (4.11) 

N(u) =bA(fl)(lyl -t~ sign y - l Y -  11 -~ sign ( y -  1)) +eA'(fi)[lyl - p -  l y -  11-~ 

if fl + O, and 

N(u)=b.I{o<=,~l}(u)+c.A'(O)[lnly-ll-lnlyl] if f l=0, 

where D(c~), A(fi), A'(fi) are appropriate constants, and W(.) denotes the white 
noise process. 

To verify (4.11) one has to show that the integrand (with respect the white 
noise) in (4.11) is the Fourier transform of the integrand in (1.8). We give a 
short informal proof of this relation which, however can be made rigorous. 

The identity 

/(o(t) = ~ exp (itu) N(u) du (4.12) 

holds. Formula (4.12) is meaningless in the usual sense, but it is meaningful 
and correct if we interpret it in the following way: The generalized function/s 
is the Fourier transform of the generalized function N. With the substitution t 
= x  1 + ... + x  k in (4.12) we get that 

exp {[i(t 1 x 1 +... +tkXk)+n(x ~ + ... + Xk)]} 
a - - 1  ~ i 

. Ko(x~+.. .+x~)lx~l  ~ ...Ix~l 2 dx~. . .dx~ 

=~N(u) exp[i(tt+n+u)xl][x~l X dx t du 
l= 

k ~ + 1  

=D(cOk~N(u) H I t z + n + u l  2 du, 
I = l  

as we claimed. 
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