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A LAW OF THE ITERATED LOGARITHM FOR THE
ROBBINS—MONRO METHOD

by
P. MAJOR

Let a real number « and a function H(x, y) be given which is a distribution
function for fixed x and measurable for fixed y. Set

M(x) = [ yH(y,%).

Let a,=0 be a sequence of real numbers for which Xa,=eo, Za2<<-. Let us define
the random variables x;, Xy, ... V1, Vs, ... with the following properties: x; is an
arbitrary constant x,;; = x,—a,(y,—%), and

P(yn<y.‘x19y1 v Yn—1> xn) = P(yn<y‘xn) = H(ya -xn)'

This construction of the x;’s and y;’s is the Robbins—Monro method [1]. J. R. BLum
proved in [2] that if M (x) and the root 0 of the equation M (x)=u satisfy the follow-
ing conditions:

(I) |M(x)| = A|x|+ B for all x and suitable 4, B;
an inf M(x)=o and sup M(x)<o for every &=0;
1

e<X—0<— —=>x—0>——
& &

(11D fw(y— M (x)?H(dy, x) = K<< for every x
then ;,,i() with probability 1.

We shall deal with the special case, when the errors are bounded, that is
H(M(x)—K, x) = 0, HM(x)+XK, x) = 1 for every x, and @, = % are chosen. In

this case, using mainly the idea of J. R. BLUM [2] we can strengthen his result in the
following way.

THEOREM 1. Let us suppose that M ’(9)>%, a, = %, M (x) is bounded in a

neighbourhood of 0 and x,, ~0 with probability 1. Then there exists a number L (depend-
ing on M'(0) and the bound K of the error) such that

Plim]/ —2— |x,— 0] <L| = 1.
loglogn
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96 P. MAJOR

On the other hand, if we suppose that the errors are identically distributed, that is
the distribution-function H(y— M (x), x) does not depend on x then we can state
the following

THEOREM 2. If the errors are bounded having the same distribution and M’(0)< <o,
then there exists an L’=0 such that

Plfm ]/ " |x,—0=L|=1.
loglogn

For the sake of simplicity we shall suppose that «=6=0.
It is easy to see that for m=n

0 52 =D

i=n

N[b—-i

M(x;)— ; Ii ()’i = M(xi))-

Let F;=B(x;; 9 ,‘..., X;,»,) be the smallest o-algebra with respect to which
the random variables x;, yy, ..., X;, »; are measurable. Then the system

[1 (J’i i M(xi))s F;

is a martingale difference series. If the errors are identically distributed then the
. 1 ) . ’
random variables - (y;i—M(x;)) are even independent. Using these facts we give

a sharper bound than that of BLuM and these boundings will enable us to prove our
statement. This way we need the following

LemMA 1. Let (¢;, F))...(&,, F,)... be martingale difference series with P(|¢;| =K)=
=1. Then for almost all w and for all =0 there exists an n(w)=n(w, &) such that for

every m=n=n(w)
= 212K+ Bl

L
2k

i n

[ sup ZS l/v—_IOglogn] =
Nzm=n i=n 1 n

= P[ sup expf(n) va é — expu-f(n)VlOg LOE)

N=m=n i=n

PROOF.

‘where f(n) =0 is arbitrary constant.

But {epo@fi, Fm} m=mnn+1,...N
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is a semimartingale and by the Kolmogorov inequality for semimartingale (see [4]

Chapter VII) we get that
[ - 2572 l/loglogn]
N=zm=n i=n

_ folo2 )
g

/loglogn]

1)

For |x] <d(¢) we have e*<1+x+—— 5 g and choosing f(n) = v-Vnloglogn we

1-—f(’?5fi = 5(s).

2
get that if # is big enough and i=n, then

Hence

[IA

on 33 9] £

f ( )K2 N—lf(n)fl ~
[ (2 8)NZ] [CXpiZ;: f] =...

(., fPmK ] S K>
]J[” —9iF) =P @ nm-1)

lIA

Il/\

So for large »

P[Ni“‘ing o “@gn] = exp[ L ng u-f(n)]/k’g—z"g—”].

Tending with N to infinity, for large n

1 2
[SUP Z ; = ul/ ogLogn] = exp {[02[14— nil] 2153 —uv] loglogn} =

: 2(14¢) V2—¢
= h = = .
(ogm™ if we choose u S K v X

Using the Borel—Cantelli lemma for arbitrary =1

: =& 1+ s) V log log 0"] -
Pls ey K %
n;; [mgg" i;«;" i V o 10g0 n=1 ntt

so for almost all w there is an n(w) such that for every

m . . k
mz= 0= n(w) D, —éf = (V2K+8)l/lmig;&'
fr2
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In the same way

[IA

: Toglog
=2(/2K +¢) Vlog 1(;g

Since ¢ and 0 can be chosen as near to 0 and to 1, respectively as we want, our
lemma is proved. ;

2(V2K +¢) V@log n
0 Ry

PRrROOF of Theorem 1. First we prove that P[El{

shall prove this relation for every w for which y;(w)— M (x;(w)) satisfies the lemma
and x,(w) >0 as n—<. Let us choose an ¢=0 in such a way that

(2) IM(»)| = Bly| and |M(p)|<a if |y<e

1 ;
where /3>5, a>0 are constants. Let us choose a number ¢ 0<c<1 such that 2fc>1.

Then it is easy to see that

[/3 V1+dlog (1+cd)
Y1+6—1

Let us choose a §=0 so, that

BYV1+61log(1+cd)

lim
50

—V1+5]=2ﬂc—1 = Q.

—V1+46=u=0.

(3) -
Y1461
Let us choose an ny=n,(w) so large, that
4) [x, (@) <& for n=n,
‘ Sl ‘ loglogn
®) }LT(yi—M(xi)))é?aK S for m=n=n,
lri=n |
6) e L
Vn, (V1+6—Dn
Let us define
L(a)):max{3K1/1+51+5+LLl/1+5,_1), max _n__[x,,[}.
u(Y1+6—1) ny=n=ny+3) | loglogn
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We state that

, loglogn
7 |x,| = L(w) V&gnogn for every n = n,.

For ny = n = ny(1+9) (7) follows from the definition of L(w). As a first step
we prove that the validity of (7) for an n=n, implies its validity for every n(l+cd)=
=7 = (1+0)n .Our statement is a straight consequence of this fact.

In order to prove this we introduce the following notation:

¥ z/(}/l+() 1) . 146
g and A=
V1+o1+o+u(V1 +6—1)] L) . an V1+6—1u

Obviously L*=3K and d=L(w). Let us consider two different cases:

. [loglogn .
First case: x; > a’V ——gh—g— for every n=j<n.

Since (7) is true for n by (1), (2) and (5) in this case we have

n-1 1 7:—1]
Xy = Xyt ZJ [y;—M(x;)] —~Z;,—M(xj) =
/loglogn lo logn loglogn
gL(w)V —ng AW S g——BdZ /] g,g
j=n

Thus by the definition of ¢ and by (3) and finally using the definition of L*
we get

o _Vloglog”[L( )+ L* — Bdlog (1 +6¢)] =

I =
1 log logn [L( o)+ L LYT+5—L* 1+5J _ L(w) l/loglogn
n n y1+5 n

[lToglog i
§L(w)V— =1

: _ 1/ loglog: .
Second case: There is a j, n=j<i for which x; < loigzoa?n d. In this case
either x;_; =<0 and
K oo
Xy = th*[{ =d— = L(w)l/‘ loglog 7
i—1 Vn—1 P

and x;=0

L

because of (6) or there is a n=;*<7 for which Of.\j,*édl/bg’]fgn

for every j“=i<# also because of (6). So M (x;)=0 for these i-s. Therefore

n—1

— ] | /77 = 3. a2 g
2 = (i—M(x) =d V li’g;:’g—”quL* Vmifﬁ? =
i=*

Xp = Xjx

+

-
*
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_ V loglogn L(@) _ ;. 1/loglog
n V1+6 l 7

By a little modifica-

; [loglo
In the same way it can be proved that x, >~L(a))1 ognogn

tion the original statement can be proved too.
Actually we proved the following: There is a constant L

explicitely L = 3K} 1+ o [1 -t 7,1,+5
u(Y1+6—1)

log lo;
such that if |x,| = og ogn for an n=ny(w) and an appropriate number K,
[log log n(1 +0)
then x; = max (K, L)L log O(glz_(b—;()) for n(1+4+cd)<7n = n(1+0). But choos-
; [1+ 60 log7
ing a c=g<1 constant we get that x; = 1/ 1—}% max (L, K,,) l/ S20RY e
171

n(l+4cd) =i = n(l+69); If the relation

were true only for L(w)=L if ny =n<ny(1+05) then the unequality |x,| =

l/llj:?;-lL( )Vloglng would be true for ny(l+08) =n = ny(1+00)>

Iterating this result we get our statement.
By an affine transformation we get the following corollary.

¢ .
COROLLARY. Let a, = e 2M’(0)=c and the other conditions of the theorem

be fulfilled. Then there is an L such that

P ml/ %, —0]<L|=1.
loglogn

1 ]
Remark: 1If M'(0) = = lj,a,, o~ the same argument gives that

P(lim nf~*(x,—0) = 0) = 1.

The simplest case is when M (x) = - x we look for the root of M (x)=0 and there
is no error. In this case

x, = (1 —,B)[ —g] [1—%] Xg = Xg€Xp leog[l——lj—lwc-n—ﬁ

with a constant C that is
P(lim nf (x,—0) = ¢) = 1.
and this shows that the exponent can not be improved.
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To prove theorem 2 we need the following lemma.

LEMMA 2. Let &, &y, ..., &y, ... be independent identically distributed random
variables, so that P(|&;|=K)=1 for a constant K and E&;=0.
Then there is a 0=1 and t=0 so that

gn+1 —n
? B Z1/loglog0

a"+1 i o"
for infinitely many n with pr obabllzty 1 .
ProoF. Let us denote D¢E; by D. Clearly
gn+1 gn+1 gn+1
1., 1. 1 1
2 &= 2 Z&F 2 [.ﬁ,,]fi-
i=gn+1 1 i=ont1 0 i=6n+1 ! 0
To estimate the first member of the sum we need the inequality 1—@(x) =
V12 (1—;3] ebwgﬂ(dﬁ(x) is the normal distribution) and the theorem of large
n
deviation for equal components (see [3] p. 517)
9"(0—1)
P [ Sf 1 C.D loglog 0”] p ,:Z; E c ]/log log 0"
= ] = —————e— = =
e 0" pyero—1y V0
e (C1+9)?
log tog 0" ,loglog 6" 0" T
= L — = = -1
= 1l @[(Cl—i—s) 01 ]_exp[ (Ci+¢) 20— 1) (nlog6) )

So by the Borel—Cantelli lemma (the sums for different n’s are independent) for

arbitrary ¢=0
gn+1

® > Jf¢i>vmanV‘9%‘;:g =

=g 0"

infinitely many times with probability 1.
Estimating the second member of the sum by the same method as in Lemma 1 we

get with f(n) = y V6" loglog 0".
9n+1 7
P[ [1 i] :, Vlogl(jgf)]
i= 0’ 1 4
91+1
1 log log 0"
[expf(n) > [ . ]é = exp C,f(n )[/"g = ]

gn+1

= 71 £[exo o0 [~ ) fewe [ o] 22T | =

2 gn+1

|
fexp{2~_8 2 Z [0” l]loglog()” Czyloglogﬂ"}

i=0m+1

HV

(A

for sufficiently large n’s (¢=0 is fixed).

Studia Scientiarum Mathematicarum Hungarica 8 (1973)




102 P. MAJOR: A LAW OF THE ITERATED LOGARITHM

But
gnggn
-2
BT (g 1) ~ l 0"+ — 07y _(6- 1)
,.:%I[W*T = gn =) T = T (),

So by a little calculation, using the Borel—Cantelli lemma we get that

© 2 [(91"11] &= [V6 DE-1y2— ]l/‘oggzgﬁ’

i=6"

sufficiently large n with probability 1.

Since we can choose 0 and ¢ as near to 1, and to 0, respectively as we want,
Lemma 2 follows from (8) and (9).

Using lemma 2 theorem 2 can be proved easily.

PROOF of theorem 2. Apply lemma 2 for the sequence y; — M (x;) and suppose that
the statement of the theorem does not hold. Let |M (x)|<pf|x| if |x|<& where fis a
positive constant. Then with probability 1 for large k& |x,(w)|=6 and |x,(w)| = L’

1
l/logogj with a constant L” such that L’(2+ f log 0) < t. But then

k
,1/ log log 6"
|Xgn+1,q— Xgnyq| = 2L VT

| gn+1

| o n gntt 1 1]
=X 1 — M(x;) éL’VlOcl%g—g o LﬂV Ogloge log 0
\19"+1l 0 e
gn+1 gn+1
Z — D= M)l = — Xgnr141+ Xgny — Z M(Xx)
i=0n+1 ! =731 1
1 1 n
= (2L +Blog 9)} %‘}ga

for sufficiently large n contradicting to lemma 2.
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