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1. Introduction.

First I briefly describe the main subject of this work.

Fix a positive integer n, consider n independent and identically distributed random
variables &i,...,&, on a measurable space (X, X) with some distribution p and take
their empirical distribution p, together with its normalization v/n(u, — p). Besides,
take a function f(x1,..., ) of k variables on the k-fold product (X*, X*) of the space
(X, X), introduce the k-th power of the normalized empirical measure \/n(pu, — ) on
(X*, X*) and define the integral of the function f with respect to this signed product
measure. This integral is a random variable, and we want to give a good estimate on
its tail distribution. More precisely, we take the integrals not on the whole space, the
diagonals z, = xy, 1 < 5,8’ <k, s # s, of the space X* are omitted from the domain
of integration. Such a modification of the integral seems to be natural.

We shall also be interested in the following generalized version of the above problem.
Let us have a nice class of functions F of k variables on the product space (X*, X%),
and consider the integrals of all functions in this class with respect to the k-fold di-
rect product of our normalized empirical measure. Give a good estimate on the tail
distribution of the supremum of these integrals.

It may be asked why the above problems deserve a closer study. I found them im-
portant, because they may help in solving some essential problems in probability theory
and mathematical statistics. I met such problems when I tried to adapt the method of
proof about the Gaussian limit behaviour of the maximum likelihood estimate to some
similar but more difficult questions. In the original problem the asymptotic behaviour
of the solution of the so-called maximum likelihood equation has to be investigated. The
study of this problem is hard in its original form. But by applying an appropriate Taylor
expansion of the function that appears in this equation and throwing away its higher
order terms we get an approximation whose behaviour can be simply understood. So
to describe the limit behaviour of the maximum likelihood estimate it suffices to show
that this approximation causes only a negligible error.

One would try to apply a similar method in the study of more difficult questions.
I met some non-parametric maximum likelihood problems, for instance the description
of the limit behaviour of the so-called Kaplan—-Meyer product limit estimate when such
an approach could be applied. But in these problems it was harder to show that the
simplifying approximation causes only a negligible error. In this case the solution of
the above mentioned problems was needed. In the non-parametric maximum likelihood
estimate problems I met, the estimation of multiple (random) integrals played a role
similar to the estimation of the coefficients in the Taylor expansion in the study of
maximum likelihood estimates. Although I could apply this approach only in some
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special cases, I believe that it works in very general situations. But it demands some
further work to show this.

The above formulated problems about random integrals are interesting and non-
trivial even in the special case k = 1. Their solution leads to some interesting and
non-trivial generalization of the fundamental theorem of the mathematical statistics
about the difference of the empirical and real distribution of a large sample.

These problems have a natural counterpart about the behaviour of so-called U-
statistics, a fairly popular subject in probability theory. The investigation of multiple
random integrals and U-statistics are closely related, and it turned out that it is useful
to consider them simultaneously.

Let us try to get some feeling about what kind of results can be expected in these
problems. For a large sample size n the normalized empirical measure /n(u, — i)
behaves similarly to a Gaussian random measure. This suggests that in the problems we
are interested in similar results should hold as in the problems about multiple Gaussian
integrals, called Wiener—Ito integrals in the literature. We may expect that the tail
behaviour of the distribution of a k-fold random integral with respect to a normalized
empirical measure is similar to that of the k-th power of a Gaussian random variable with
expectation zero and an appropriate variance. Besides, if we consider the supremum of
multiple random integrals of a class of functions with respect to a normalized empirical
measure or with respect to a Gaussian random measure, then we expect that under not
too restrictive conditions this supremum is not much larger than the ‘worst’ random
integral with the largest variance taking part in this supremum. We may also hope
that the methods of the theory of multiple Gaussian integrals can be adapted to the
investigation of our problems.

The above presented heuristic considerations supply a fairly good description of
the situation, but they do not take into account a very essential difference between
the behaviour of multiple Gaussian integrals and multiple integrals with respect to a
normalized empirical measure. If the variance of a multiple integral with respect to a
normalized empirical measure is very small, what turns out to be equivalent to a very
small Lo-norm of the function we are integrating, then the behaviour of this integral is
different from that of a multiple Gaussian integral with the same kernel function. In this
case the effect of some irregularities of the normalized empirical distribution turns out
to be non-negligible, and no good Gaussian approximation holds any longer. This case
must be better understood, and some new methods have to be worked out to handle it.

The precise formulation of the results will be given in the main part of the work.
Besides their proof I also tried to explain the main ideas behind them and the notions
introduced in their investigation. This work contains some new results, and also the
proof of some already rather classical theorems is presented. The results about Gaussian
random variables and their non-linear functionals, in particular multiple integrals with
respect to a Gaussian field, have a most important role in the study of the present work.
Hence they will be discussed in detail together with some of their counterparts about
multiple random integrals with respect to a normalized empirical measure and some
results about U-statistics.



The proofs apply results from different parts of the probability theory. Papers
investigating similar results refer to works dealing with quite different subjects, and
this makes their reading rather hard. To overcome this difficulty I tried to work out the
details and to present a self-contained discussion even at the price of a longer text. Thus
I wrote down (in the main text or in the Appendix) the proof of many interesting and
basic results, like results about Vapnik—Cervonenkis classes, about U-statistics and their
decomposition to sums of so-called degenerate U-statistics, about so-called decoupled
U-statistics and their relation to ordinary U-statistics, the diagram formula about the
product of Wiener—Ito integrals, their counterpart about the product of degenerate U-
statistics, etc. I tried to give such an exposition where different parts of the problem
are explained independently of each other, and they can be understood in themselves.

An earlier version of this work was explained at the probability seminar of the
University Debrecen (Hungary).

2. Motivation of the investigation. Discussion of some problems.

In this section I try to show by means of some examples why the solution of the problems
mentioned in the introduction may be useful in the study of some important problems
of the probability theory. I try to give a good picture about the main ideas, but I do
not work out all details. Actually, the elaboration of some details omitted from this
discussion would demand hard work. But as the present section is quite independent of
the rest of the paper, these omissions cause no problem in understanding the subsequent
part.

I start with a short discussion of the maximum likelihood estimate in the simplest
case. The following problem is considered. Let us have a class of density functions
f(x,9) on the real line depending on a parameter ¥ € R!, and observe a sequence of
independent random variables & (w), ..., &, (w) with a density function f(x, ), where
Yo is an unknown parameter we want to estimate with the help of the above sequence
of random variables.

The maximum likelihood method suggests the following approach. Choose that
value ¥,, = 9,,(&1,...,&,) as the estimate of the parameter ¥y where the density function
of the random vector (1, ...,&,), i.e. the product

I £k 9) = exp {Zlog f(ék,ﬂ)}
k=1 k=1

takes its maximum. This point can be found as the solution of the so-called maximum
likelihood equation
.0
9 log f(£, 9) = 0. (2.1)

— oY

We are interested in the asymptotic behaviour of the random variable O — Y9, where
¥y, is the (appropriate) solution of the equation (2.1).

The direct study of this equation is rather hard, but a Taylor expansion of the
expression at the left-hand side of (2.1) around the (unknown) point ¥, yields a good
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and simple approximation of 1§‘n, and it enables us to describe the asymptotic behaviour
of ’19n — 190.
This Taylor expansion yields that

- 9 aﬁf fk;ﬂo
kﬂﬁlogf ExyOn) Z e 0)
q - ] 2f(£ka190) (a%f(fk,ﬂg)f ~
o (1; ( 1}(51@7190) EEED o <n(ﬁn - 190)2)
= (e + Gl — 00)) + O (i —90)?) (2.2)
k=1
where ] ,
g 308E00) gl (V0 (556 00)

J &k, 0) f (&, Y0) f2(&ksY0)

for k = 1,...,n. We want to understand the asymptotic behaviour of the (random)
expression on the right-hand side of (2.2). The relation

a%f(x7 790)

B = | e o)

fz,9¢) dx = (%l /f($,190) dx =0

holds, since [ f(z,9)dz =1 for all ¥, and a differentiation of this relation gives the last

2 r(y 2
(819fj(ci ;;ZC)))) dr >0, k=1,...,n. Hence by the

n
central limit theorem y,, = \/Lﬁ > ni is asymptotically normal with expectation zero
k=1

identity. Similarly, En} = —E¢, = [

D £z, 2
and variance 12 = f % dx > 0. In the statistics literature this number I is

called the Fisher information. By the laws of large numbers % > G~ — 12
k=1

n
5

Thus relation (2.2) suggests the approximation 9, = —*2— of the maximum-
Z Ck
likelihood estimate @n, and /n (~ — Up) is_asymptotically normal with expectation

zero and variance 12 The random variable 9, is not a solution of the equation (2.1),
the value of the expression at the left-hand side is of order O(n(d,, — 99)?) = O(1) in
this point. On the other hand, the derivative of the function at the left-hand side is
large in this point, it is greater than const.n with some const. > 0. This implies that
the maximum-likelihood equation has a solution 19 such that 19 — 9, =0 ( ) Hence
V9, — o) and \/n(J, — 9) have the same asymptotic limit behaviour.

The previous method can be summarized in the following way: Take a simpler
linearized version of the expression we want to estimate by means of an appropriate
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Taylor expansion, describe the limit distribution of this linearized version and show
that the linearization causes only a negligible error.

We want to show that such a method also works in more difficult situations. But
in some cases it is harder to show that the error committed by a replacement of the
original expression by a simpler linearized version is negligible, and to show this the
solution of the problems mentioned in the introduction is needed. The discussion of the
following problem, called the Kaplan—-Meyer method for the estimation of the empirical
distribution function with the help of censored data shows such an example.

The following problem is considered. Let (X;,Z;), i = 1,...,n, be a sequence
of independent, identically distributed random vectors such that the components X;
and Z; are also independent with some unknown distribution functions F'(x) and G(x).
We want to estimate the distribution function F' of the random variables X;, but we
cannot observe the variables X;, only the random variables Y; = min(X;, Z;) and §; =
I(X; < Z;). In other words, we want to solve the following problem. There are certain
objects whose lifetime X; are independent and F' distributed. But we cannot observe
this lifetime X;, because after a time Z; the observation must be stopped. We also
know whether the real lifetime X; or the censoring variable Z; was observed. We
make n independent experiments and want to estimate with their help the distribution
function F.

Kaplan and Meyer, on the basis of some maximum-likelihood estimation type con-
siderations, proposed the following so-called product limit estimator S, (u) to estimate
the unknown survival function S(u) =1 — F(u):

n N(E) I1(Y;<u,8;=1) '
H (m) 1fu§maX(Y1,...,Yn)

0 if u > max(Y7,...,Y,),
undefined if u > max(Y7,...,Y,),

where

N(t)=#{Y;, Yi>t, 1<i<n}=> I(Y;>t).

=1

We want to show that the above estimate (2.3) is really good. For this goal we
shall approximate the random variables S, (u) by some appropriate random variables.
To do this first we introduce some notations.

Put _
H(u)=PY; <u)=1-H(

) (2.4)
H(u) = P(Y; <wu, 6; = 1),

u)?
H(u) = P(Y; < u, 6; = 0)

and



Clearly H(u) = H(u) + ﬁl(u) and H,(u) = H,(u) + ﬁn(u) We shall estimate F,,(u) —
F(u) for u € (—o0,T] if

1—H(T)>Jd with some fixed § > 0. (2.6)

Condition (2.6) implies that there are more than gn sample points Y} larger than T
with probability almost 1. The complementary event has only an exponentially small
probability. This observation helps to show in the subsequent calculations that some
events have negligibly small probability.

We introduce the so-called cumulative hazard function and its empirical version
A(u) = —log(1 — F(u)), An(u)=—1log(l— F,(u)). (2.7)

S'inl(ge F,(u) — F(u) = exp(—A(u)) (1 — exp(A(u) — Ay, (u))) a simple Taylor expansion
yields
Fo(u) = F(u) = (1 = F(u)) (An(u) = A(u)) + Ry (u), (2.8)

and it is easy to see that Rq(u) = O (A(u) — A, (u))?). It follows from the subsequent
estimations that A(u) — A, (u) = O(n~/2), thus nR; (u) = O(1). Hence it is enough to
investigate the term A, (u). We shall show that A, (u) has an expansion with A(u) as
the main term plus n~'/2 times a term which is a linear functional of an appropriate
normalized empirical distribution function plus an error term of order O(n=1).

From (2.3) it is obvious that

An(u) = =3 I(Y; <u, 6 = 1)log (1 _ #(Y)) |
i=1 ¢

It is not difficult to get rid of the unpleasant logarithmic function in this formula by
means of the relation —log(1 — x) = x + O(2?) for small z. It yields that

n

Ap(u) = Zl = ifqua) = 4 Row) = Raw) + Ra(w) (2.9)

with an error term Ry (u) such that nRs(u) is smaller than a constant with probability
almost one. (The probability of the exceptional set is exponentially small.)

The expression An(u) is still inappropriate for our purposes. Since the denominators
n
N(;) = > I(Y; > Y;) are dependent for different indices i we cannot see directly the

j=1
limit behaviour of A, (u).

We try to approximate An(u) by a simpler expression. A natural approach would

be to approximate the terms N(Y;) in it by their conditional expectation (n—1)H (Y;) =
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(n—1)(1-H(Y;)) = E(N(Y;)|Y;) with respect to the o-algebra generated by the random
variable Y;. This is a too rough ‘first order’ approximation, but the following ‘second
order approximation’ will be sufficient for our goals. Put

) iI(Yj>Y¢)—nH(Yi)
N(Y;) =Y 1(Y; > Vi) = nH (V) | 14+ 25 nH(Y;)

Jj=1

and express the terms W in the sum defining A,, (with A, introduced in (2.9))

o0
by means of the relation 1J1rz = Y (=1)*2¥ = 1 — 2 + ¢(2) with the choice z =
k=0

i I(Y;>Y;)—nH(Y;)

j=1

. As |e(z)] < 222 for |z] < 5 we get that

nH(Y;)
. k
WO SECETL AT FU B 105> 70 -nA0)
~  nH(Y;) 2 )
JERTPTEETY B PRGSOt
- nH(Y;) nH(Y;) + Rs(u)

(2.10)

where

and
I(Y; < u, 6 = DI(Y; > V)
n2H2(Y;) '

It can be proved by means of standard methods that nRs(u) is exponentially small.
Thus relations (2.9) and (2.10) yield that

A, (u) = 2A(u) — B(u) + negligible error. (2.11)

This means that to solve our problem the asymptotic behaviour of the random
variables A(u) and B(u) has to be given. We can get a better insight to this problem by
rewriting the sum A(u) as an integral and the double sum B(u) as a two-fold integral
with respect to empirical measures. Then these integrals can be rewritten as sums
of random integrals with respect to normalized empirical measures and deterministic
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measures. Such an approach yields a representation of A, () in the form of a sum whose
terms can be well understood.

Let us write

. T-H(y)

O Iy <w)(a > y)
B(u) = dH,(z)dH,
) /_oo o (1 H(y) (@)dHn(y)

We rewrite the terms A(u) and B(u) in a form better for our purposes. We express
these terms as a sum of integrals with respect to dH(u), dH (u) and the normalized

emprical processes dv/n(H,(x) — H(z)) and d\/n(H,(y) — H(y)). For this goal observe
that

Hy () Ho(y) = H(2)H(y) + H(z)(H, ) - a
+ (Hy(x) — H(x))(Ha(y) —

)) + (Hu(x) — H(x))H(y)
(¥))-

mz@

Hence it can be written that B(u) = By(u) + Ba(u) + Bs(u) + By(u), where

/ /W MC>9) ey afi(y) |

(1-H(y)®
Ba(u) f L /+°° G an@)a (Vi) - W),
mw=1= [ [ G B A (V) ~ Hw) di()
T S aa e ~ ) (Vi) - H)).

In the above decomposition of B(u) the term Bj is a deterministic function, By, Bj
are linear functionals of normalized empirical processes and By is a nonlinear functional
of normalized empirical processes. The deterministic term Bj(u) can be calculated

explicitly. Indeed,
too I(x > y . “
o= [ | i = [ =

Then the relations H(u) = [“ (1 —G(t)) dF(t) and 1 — H = (1 — F)(1 — G) imply
that
Bi(u) = / % = —log(1 — F(u)) = Au). (2.12)
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Observe that

_ “ dﬁn(@/)

o dA) faly) ~ A ())) (2.13)
N / 1-H(y) \/_ — H(y)
= Bi(u) + Ba(u).

From relations (2.11), (2.12) and (2.13) it follows that
An(u) — A(u) = Ba(u) — Bs(u) — By(u) + negligible error. (2.14)

Integration of By and B3 with respect to the variable z and then integration by parts
in the expression B yields that

w d(vn(Hu(y) — H(y))
BQ(U):%/_OO < 1—H(y) )

V() - W) e G - )
V(L — H(u)) Vil o (1-H(y)?

_ Lo Vn(H(y) — Hay) -
B = 7 [ P i),

With the help of the above expressions for By and Bs, (2.14) can be rewritten as

N > 1— <y>> .

(1 - (y))
- \/5B4 (u) + negligible error.

H(y)) dH (y)

Formula (2.15) (together with formula (2.8)) almost agrees with the statement we
wanted to prove. Here the normalized error /n (A, (u) — A(u)) is expressed as a sum
of linear functionals of normalized empirical measures plus some negligible error terms
plus the error term /nBs(u). So to get a complete proof it is enough to show that
vnBy(u) also yields a negligible error. But Bg(u) is a double integral of a bounded
function (here we apply again formula (2.6)) with respect to a normalized empirical
measure. Hence to bound this term we need a good estimate of multiple stochastic
integrals (with multiplicity 2), and this is just the problem formulated in the intro-
duction. The estimate we need here follows from Theorem 8.1 of the present work.
Let us remark that the problem discussed here corresponds to the estimation of the
coefficient of the second term in the Taylor expansion considered in the study of the
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maximum likelihood estimation. One may worry a little bit how to bound By(u) with
the help of estimations of double stochastic integrals, since in the definition of By(u)
integration is taken with respect to different normalized empirical processes in the two
coordinates. But this is a not too difficult technical problem. It can be simply overcome
for instance by rewriting the integral as a double integral with respect to the empirical

process <\/ﬁ (H,(x) — H(x)),\/n (ﬁn(y) — ff(y))) in the space R2.

By working out the details of the above calculation we get that the linear functional
Bs(u)— Bs(u) of normalized empirical processes yields a good estimate on the expression
Vn(A,(u) — A(u)) for a fixed parameter u. But we want to prove somewhat more, we
want to get an estimate uniform in the parameter u, i.e. to show that even the random

variable sup |v/n(A,(u) — A(u)) — Ba(u) + Bs(u)] is small. This can be done by making
u<T

estimates uniform in the parameter « in all steps of the above calculation. There appears

only one difficulty when trying to carry out this program. Namely, we need an estimate

on sup |B4(u)|, i.e. we have to bound the supremum of multiple random integrals with
u

respect to a normalized random measure for a nice class of kernel functions. This can
be done, but at this point the second problem mentioned in the introduction appears.
This difficulty can be overcome by means of Theorem 8.2 of this work.

Thus the limit behaviour of the Kaplan—Meyer estimate can be described by means
of an appropriate expansion. The steps of the calculation leading to such an expansion
are fairly standard, the only hard part is the solution of the problems mentioned in the
introduction. It can be expected that such a method also works in a much more general
situation.

I finish this section with a remark of Richard Gill he made in a personal conversation
after my talk on this subject at a conference. He told that this approach had given a
complete proof about the limit behaviour of this estimate, but it had exploited the
explicit formula given in the Kaplan—-Meyer estimate. He missed the application of an
argument based on the non-parametric maximum likelihood character of this estimate.
This was a completely justified remark, since if we do not restrict our attention to
this problem, but try to generalize it to general non-parametric maximum likelihood
estimates, then we have to understand how the maximum likelihood character can be
exploited. I believe that this can be done, but it demands further studies.
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3. Some estimates about sums of independent random variables.

We need some results about the distribution of sums of independent random variables
bounded by a constant with probability one. Later only the results about sums of inde-
pendent and identically distributed variables will be interesting for us. But since they
can be generalized without any effort to sums of not necessarily identically distributed
random variables the condition about identical distribution of the summands will be
dropped. We are interested in the question when these estimates give such a good
bound as the central limit theorem suggests, and what can be told otherwise.

More explicitly, the following problem will be considered: Let X1,..., X, be inde-
pendent random variables, FX; = 0, Var X; = 032-, 1 <5 < n, and take the random

n n
sum S, = Y X; and its variance Var S, = V2 = Y o7. We want to get a good bound
Jj=1 j=1
on the probability P(S,, > uV,,). The central limit theorem suggests that under general
conditions an upper bound of the order 1 — ®(u) should hold for this probability, where

®(u) denotes the standard normal distribution function. Since the standard normal dis-

2 2
tribution function satisfies the inequality (L — 25) € \/27/2 <1—®(u) < L€ \/27/2 for all

u > 0 it is natural to ask when the probability P(S,, > uV,,) is comparable with the value

e~v"/2. More generally, we shall call an upper bound of the form P(S,, > uV,) < e=¢%’
with some constant C' > 0 a Gaussian type estimate.

First I formulate Bernstein’s inequality which tells for which values u the probability
P(S,, > uV,,) has a Gaussian type estimate. It supplies such an estimate if u < const V,.
On the other hand, for u > const. V,, it yields a much weaker estimate. I also present
an example which shows that in this case only a very weak improvement of Bernstein’s
inequality is possible. I also discuss another result, called Bennett’s inequality, which
shows that such an improvement is possible. The main difficulties we meet in this work
are closely related to the weakness of the estimates we have for the probability of the
event P(S,, > uV,) if u > const. V,,.

In the usual formulation of Bernstein’s inequality a real number M is introduced,
and it is assumed that the terms in the sum we investigate are bounded by this number.
But since the problem can be simply reduced to the special case M = 1 I shall consider
only this special case.

Theorem 3.1. (Bernstein’s inequality). Let Xi,...,X,, be independent random
variables, P(|X;] < 1) =1, EX; = 0,1 <j <n. Puto; = EX;, 1< j < n,

Sn= > X; and V? = VarS, = Y o3. Then
Jj=1 j=1

2
P (S, >uV,) <expg — for all uw > 0. (3.1)

u
2(1+

U
Vn

Proof of Theorem 3.1. Let us give a good bound on the exponential moments EetS»
for appropriate parameters ¢ > 0. Since £X; = 0 and E|XJI.“+2] < o2 for k > 0 we can

W=
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. . 1252 N
write FetXi = kzo %EXJI“ < <1+ > (k+2),> < 5 (1+kz 3 ktk) =

2 2 n
{t;j 1_1£}if0§t<3. Hence Ee!®» = ] Ee!Xi < exp
3 ]:1

— e
&~
[V
[\
=
_
[ =
e+
——

for 0 <t < 3.
The above relation implies that

2z 1
P (S, > uV,) = P(e® > e!*Vn) < EelSnetuVn < exp{ 2” T tan}
3

if 0 <t < 3. Choose the number t in this inequality as the solution of the equation
t2Vv?2 1_12 = tuV,, i.e. put t = Then 0 <t < 3, and we get that P(S,, > uV,,) <

3
—tuV, /2 _ u®
(& i = eX —— (-
p{ 2(1+%%)}

_u
VatZ

If the random variables X1, ..., X,, satisfy the conditions of Bernstein’s inequality,
then also the random variables —Xj,...,—X,, satisfy them. By applying the above
result in both cases we get that P(|S,| > uV,,) < 2exp {—ﬁ} under the condi-

3Vn

tions of Bernstein’s inequality.

By Bernstein’s inequality for all € > 0 there is some number a(e) > 0 such that in
the case 7+ < a(e) P(S, > uV,) < e~ (1=9)v*/2  Begides, for all fixed numbers A > 0

there is some constant C' = C(A) > 0 such that in the case v < A the inequality

P(S, > uV,) < e~C%" holds. This can be interpreted as a Gaussian type estimate for
the probability P(S,, > uV},,) if u < const. V,,.

On the other hand, if Vin is very large, then Bernstein’s inequality yields a much
worse estimate. The question arises whether in this case Berstein’s inequality can be
replaced by a better, more useful result. Next we present Theorem 3.2, the so-called
Bennett’s inequality which provides a slight improvement of Bernstein’s inequality. But
if Vin is very large, then also Bennett’s inequality provides a much weaker estimate on
the probability P(S, > uV,) than the bound suggested by a Gaussian comparison.
On the other hand, we shall give an example that shows that (without imposing some
additional conditions) no real improvement of this estimate is possible.

Theorem 3.2. (Bennett’s inequality). Let Xi,...,X, be independent random
variables, P(|1X;| < 1) = 1, EXj =0,1<j5<n Put 0]2- = EXJZ, 1 <5<,

Sp = Z X; and V2 = VarS,, = Z oF. Then

=1 =1

P(S,, > u) <exp {—Vn2 {(1 + W) log (1 + %) - %1 } for allu>0. (3.2)

As a consequence, for all € > 0 there exists some B = B(eg) > 0 such that
P (S, >u) <exp { (1—-¢)ulog — 7z } if u > BV?, (3.3)
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and there exists some positive constant K > 0 such that

u

P (S, >u) < exp{—KulogV—n2

} if u > 2V2 (3.4)

Proof of Theorem 3.2. We have

Lk 0 Lk
t t

EetXi = g EEXfﬁl-i'U? E yzl—i—af (et—l—t)gea?(et_l_t), 1<j5<n,
k=0 k=2

and FetS» < eVa(€'=1=%) for all t > 0. Hence P(S, > u) < e tMEetSn < e tutVi (e —1-1)
for all t > 0. We get relation (3.2) from this inequality with the choice ¢t = log (1 + %)

(This is the place of minimum of the function —tu + V,2(e! — 1 —t) for fixed u in the
parameter t.)

Relation (3.2) and the observation lim (”H)i‘ﬁ(”H)_” = 1 with the choice v = 5
vV—00 g v Va

imply formula (3.3). Because of relation (3.3) to prove formula (3.4) it is enough to check
it for 2 < %5 < B with some sufficiently large constant B > 0. In this case relation

(3.4) followsndirectly from formula (3.2). This can be seen for instance by observing

2 u u ) u
vi] () s+ ) -
ulog%

of the variable % in the interval 2n§ % < B, hence its minimum in this interval is

is a continuous and positive function

that the expression

strictly positive. "

Let us make a short comparison between Bernstein’s and Bennett’s inequality. Both
results yield an estimate on the probability P(S,, > u), and their proofs are very similar.
They are based on an estimate of the moment generating functions R;(t) = Fe'Xs of the
summands X, but Bennett’s inequality yields a better estimate. It may be worth men-
tioning that the estimate given for R;(t) = Fe!*i in the proof of Bennett’s inequality
agrees with the moment generating function Ee*(Yi—EY3) of the normalization Y, - EYj
of a Poissonian random variable Y; with parameter Var X;. As a consequence, we get,
by using the standard method of estimating tail-distributions by means of the moment
generating functions such an estimate for the probability P(.S,, > u) which is compara-
ble with the probability P(T, — ET,, > u), where T;, is a Poissonian random variable
with parameter V,, = Var§,,. We can say that Bernstein’s inequality yields a Gaus-
sian and Bennett’s inequality a Poissonian type estimate for the sums of independent,
bounded random variables.

Remark. Bennett’s inequality yields a sharper estimate for the probability P(S, > u)
than Bernstein’s inequality for all numbers v > 0. To prove this it is enough to
show that for all 0 < t < 3 the inequality Ee!S» < eVn(¢'=1-1) appearing in the

proof of Bennett’s inequality is a sharper estimate than the corresponding inequal-
2v,2

ity FetS» < exp {# 1 } appearing in the proof of Bernstein’s inequality. (Recall,
3

1—
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how we estimate the probability P(S,, > w) in these proofs with the help of the expone-

nential moment Ee’>~.) But to prove this it is enough to check that e/ —1 —¢ < % T
3

for all 0 < ¢t < 3. This inequality clearly holds, since ¢! — 1 —t = Y %, and
k=2
= 5 ae

Next we present Example 3.3 which shows that Bennett’s inequality yields a sharp
estimate also in the case u > V.2 when Bernstein’s inequality yields a weak bound.
But Bennett’s inequality provides only a small improvement which has only a limited
importance. This may be the reason why Bernstein’s inequality which yields a more
transparent estimate is more popular.

w|”‘w

L
3

Example 3.3. (Sums of independent random variables with bad tail distri-
bution for large values). Let us fix some positive integer n, real numbers u and o
such that 0 < o2 < %, n > 4u > 6 and u > 4no?. Let 3° be that solution of the
equation 2> — x + 02 = 0 which is smaller than % Take a sequence of mdependent
and identically distributed random variables X1, ..., X, such that P(X; = 1) =

P(X—O)—l—a foralll1 <j<n. Put X; =X, — EX; = X; — 52 1<]<n

Z X; and V2 = no®. Then P(|X1| < 1) =1, EX; =0, VarX; = o2, hence
j=1

ES, =0, and VarS, = V2. Besides,

P(S, > u) > exp{ Bulog — 7z }
with some appropriate constant B > 0 not depending on n, o and u.

Proof of Example 3.3. Simple calculation shows that EX; = 0, Var X; = 62 — * = 02,
P(]X;| <1) =0, and also the inequality 0? <52 < 202 holds. To see the upper bound
in the last inequality observe that 2 < %, i.e. 1—52 Z 2, hence 02 = 5%(1-052) > 252
In the proof of the inequality of Example 3.3 we can restrlct our attention to the case
when u is an integer, because in the general case we can apply the inequality with
@ = [u] + 1 instead of u, where [u] denotes the integer part of u, and since u < u < 2u,
the application of the result in this case supplies the desired inequality with a possibly
worse constant B > 0.
n
Put S, = > X;. We can write P(S,, > u) = P(S, > u+ns?) > P(S, > 2u) >
j=1
P(S, = 2u) = (5)0%(1 — g2)(n=2u) > (”2‘2 )2%(1 — 32)("=2w) _since u > na?, and
n > 2u. On the other hand (1 — 52)("—2%) > e—20° (n=2u) > —2n5° > e~ %, hence

P(S, > u) > exp {—2ulog (%) —2ulog2 — u}
no
~2
= exp {—2ulog (LQ) — 2ulog 0—2 — 2ulog2 — u}
no o
u
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Example 3.3 is proved.

In the case u > 4V,? Bernstein’s inequality yields the estimate P(S, > u) < e™ %
with some universal constant @ > 0, and the above example shows that at most an
additional logarithmic factor K log {7 can be expected in the exponent of the upper
bound in an improvement of this estimate. Bennett’s inequality shows that such an
improvement is really possible.

I finish this section with another estimate due to Hoeffding which will be later
useful in some symmetrization arguments.

Theorem 3.4. (Hoeffding’s inequality). Let 1,...,e, be independent random
variables, P(e; =1) = P(g; = —1) = 1, 1 < j <n, and let a1,. .., a, be arbitrary real

numbers. Put V =) a;je;. Then
j=1

’LL2

< I
PV >u) < exp{ 5 Z?:l 2

} for all u > 0. (3.5)

Remark 1: Clearly EV = 0 and VarV = ) a?, hence Hoeffding’s inequality yields

7j=1
such an estimate for P(V > u) which the central limit theorem suggests. This estimate
holds for all real numbers aq,...,a, and u > 0.

Remark 2: The Rademacher functions ri(x), & = 1,2,..., defined by the formulas
re(r) =1if (25 —1)27F <2 <252 % and ri(z) = —1if 2(j —1)27F <2 < (25 —1)27F,
1 <j <21 forall k =1,2,..., can be considered as random variables on the
probability space Q2 = [0,1] with the Borel o-algebra and the Lebesgue measure as
probability measure on the interval [0, 1]. They are independent random variables with
the same distribution as the random variables ¢1,...,¢, considered in Theorem 3.4.
Therefore results about such sequences of random variables whose distributions agree
with those in Theorem 3.4 are also called sometimes results about Rademacher functions
in the literature. At some points we will also apply this terminology.

Proof of Theorem 3.4. Let us give a good bound on the exponential moment Ee!V for
n n a;t —aj;t a;t —a;t

all t > 0. The identity Ee!Y = [[ Ee!% = [] w holds, and w =

j=1 J=1

&) 2 o0
> (Z”];)!t% < > (ajt)%k = e%t/2 since (2k)! > 2Fk! for all k > 0. This implies

E

~1
relation (3.5) with the choice t = u (Z a2~> :



4. On the supremum of a nice class of partial sums.

This section contains an estimate about the supremum of a nice class of normalized sums
of independent and identically distributed random variables together with an analogous
result about the supremum of an appropriate class of random one-fold integrals with
respect to a normalized empirical measure. The second result deals with a one-variate
version of the problem about the estimation of multiple integrals with respect to a
normalized empirical measure. This problem was mentioned in the introduction. Some
natural questions related to these results will be also discussed. It will be examined
how restrictive their conditions are. In particular, we are interested in the question
how the condition about the countable cardinality of the class of random variables
can be weakened. A natural Gaussian counterpart of the supremum problems about
random one-fold integrals will be also considered. Most proofs will be postponed to
later sections.

To formulate these results first a notion will be introduced that plays a most im-
portant role in the sequel.

Definition of L,-dense classes of functions. Let a measurable space (Y,)) be given
together with a class G of Y measurable real valued functions on this space. The class of
functions G is called an Ly-dense class of functions, 1 < p < 0o, with parameter D and
exponent L if for all numbers 0 < e <1 and probability measures v on the space (Y,))
there exists a finite e-dense subset G- , = {g1,...,9m} C G in the space L,(Y,Y,v) with
m < De~ L elements, i.e. there exists such a set Ge CG withm < De~L elements for
which inf [ |g — g;|Pdv < &P for all functions g € G. (Here the set G.,, may depend

J e,v

on the measure v, but its cardinality is bounded by a number depending only on ¢.)

In most results of this work the above defined L,-dense classes will be considered
only for the parameter p = 2. But at some points it will be useful to work also with L,-
dense classes with a different parameter p. Hence to avoid some repetitions I introduced
the above definition for a general parameter p.

The following estimate will be proved.

Theorem 4.1. (Estimate on the supremum of a class of partial sums).
Let us consider a sequence of independent and identically distributed random variables
&1y.-,&n, n > 2, with values in a measurable space (X, X) and with some distribu-
tion p. Besides, let a countable and Lo-dense class of functions F with some parameter
D > 1 and exponent L > 1 be given on the space (X, X) which satisfies the conditions

Il = sup F@I <1, forall fe F (4.1)
1712 = / Payp(de) <o®  foralfeF (4.2)

with some constant 0 < o < 1, and

/f(.r)u( dx) =0 forall f € F. (4.3)
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T Vn
There exist some universal constants C' > a > 0 and M > 0 such that the
supremum of the normalized random sums Sy, (f), f € F, satisfies the inequality

Define the normalized partial sums S, (f) = — Z f(&) forall f € F.
"0,

P | sup |Sp(f)|>u| <Cexp {— for those numbers u
feF (4.4)

for which \/no® > u > Mo (L34 log!/? 2 4 (log D)3/,

where the numbers D and L in formula (4.4) agree with the parameter and exponent of
the Lo-dense class F.

Remark. Here and also in the subsequent part of this work we consider random variables
which take their values in a general measurable space (X,X). The only restriction

we impose on these spaces is that all sets consisting of one point are measurable, i.e.
{z} e X forallz € X.

The condition \/no? > u > Mo (L3/* log1/2% + D3/%) about the number u in
formula (4.4) is natural. T discuss this after the formulation of Theorem 4.2 which can
be considered as the Gaussian counterpart of Theorem 4.1. I also formulate a result in
Example 4.3 which can be considered as part of this discussion.

The condition about the countable cardinality of F can be weakened with the help
of the notion of countable approximability introduced below. For the sake of later
applications I define it in a more general form than needed in this section.

Definition of countably approximable classes of random variables. Let us

have a class of random variables U(f), f € F, indexed by a class of functions f €

F on a measurable space (Y,)). This class of random variables is called countably

approximable if there is a countable subset F' C F such that for all numbers u > 0 the

sets A(u) = {w: sup |U(f)(w)| > u} and B(u) = {w: sup |U(f)(w)| > u} satisfy the
feF feF

identity P(A(u) \ B(u)) = 0.

Clearly, B(u) C A(u). In the above definition it was demanded that for all v > 0
the set B(u) should be almost as large as A(u). The following corollary of Theorem 4.1
holds.

Corollary of Theorem 4.1. Let a class of functions F satisfy the conditions of
Theorem 4.1 with the only exception that instead of the condition about the countable
cardinality of F it is assumed that the class of random wvariables S,(f), f € F, is
countably approximable. Then the random variables S, (f), f € F, satisfy relation (4.4).

This corollary can be simply proved, only Theorem 4.1 has to be applied for the
class F'. To do this it has to be checked that if F is an Lo-dense class with some
parameter D and exponent L, and F' C F, then F’ is also an Lo-dense class with the
same exponent L, only with a possibly different parameter D’.

17



To prove this statement let us choose for all numbers 0 < ¢ < 1 and probability

measures v on (Y,)) some functions fi,..., f,, € F with m < D (5)_L elements, such

that the sets D; = {f: [If = fi]?dv < (%)2} satisfy the relation U1D =Y. For all
j

sets D; for which D; N F’ is non-empty choose a function f; € D; N F'. In such a

way we get a collection of functions fj’- from the class F’ containing at most 2 De~F

elements which satisfies the condition imposed for Ls-dense classes with exponent L

and parameter 27D for this number € and measure v.

Next I formulate in Theorem 4.1" a result about the supremum of the integral of a
class of functions with respect to a normalized empirical distribution. It can be consid-
ered as a simple version of Theorem 4.1. I formulated this result, because Theorems 4.1
and 4.1’ are special cases of their multivariate counterparts about the supremum of
so-called U-statistics and multiple integrals with respect to a normalized empirical dis-
tribution function discussed in Section 8. These results are also closely related, but the
explanation of their relation demands some work.

Given a sequence of independent p distributed random variables &1, ..., &, taking
values in (X, X') let us introduce their empirical distribution on (X, X) as

pn(A)w) = # s 1< <n W) €A}, A€k, (4.5)

and define for all measurable and p integrable functions f the (random) integral

To(f) = Jua(f) = Vi / £(2) (i (dr) — (i), (4.6)

Clearly J,() = 7 3 (F(§) ~ B(&)) = Su(F) with f(z) = f(x) ~ [ f(a

It is not difficult to see that sup |f(z)| < 2 if sup |f(z)| < 1, ff(x),u(dx) = 0,
zeX zeX

/ (2 )u(dx) < [ f3(z)p(dz), and if F is an Ly-dense class of functions with pa-
rjsuneter D and exponent L then the class of functions F consisting of the functions
f(z) = — [ fl= ), f 6 F, is an Lo-dense class of functions Wlth parameter
2L'D and exponent L, since [(f — g)?du < e if f,g € F, and [(f —g)?du < (%)2
Hence Theorem 4.1 implies the following result.

Theorem 4.1’. (Estimate on the supremum of random integrals with respect
to a normalized empirical measure). Let us have a sequence of independent and
tdentically distributed random variables &1,...,&,, n > 2, with distribution pu on a
measurable space (X, X) together with some class of functions F on this space which
satisfies the conditions of Theorem 4.1 with the possible exception of condition (4.3). The
estimate (4.4) remains valid if the random sums S, (f) are replaced in it by the random
integrals Jp,(f) defined in (4.6). Moreover, similarly to the corollary of Theorem 4.1, the
condition about the countable cardinality of the set F can be replaced by the condition
that the class of random variables J,,(f), f € F, is countably approzimable.
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All finite dimensional distributions of the set of random variables S, (f), f € F,
considered in Theorem 4.1 converge to those of a Gaussian random field Z(f), f € F,
with expectation EZ(f) = 0 and correlation EZ(f)Z(g) = [ f(x)g9(z)u(dz), f,g € F
as n — oo. Here, and in the subsequent part of the paper a collection of random
variables indexed by some set of parameters will be called a Gaussian random field if
for all finite subsets of these parameters the random variables indexed by this finite set
are jointly Gaussian. We shall also define so-called linear Gaussian random fields. They
consist of jointly Gaussian random variables Z(f), f € G, indexed by a linear space
f € G which satisfy the relation Z(af + bg) = aZ(f) + bZ(g) with probability 1 for all
real numbers a and b and f,g € G.

Let us consider a linear Gaussian random field Z(f), f € G, where the set of
indices G = G,, consists of the functions f square integrable with respect to a o-finite
measure g, and take an appropriate restriction of this field to some parameter set
F C G. In the next Theorem 4.2 we shall present a natural Gaussian counterpart
of Theorem 4.1 by means of an appropriate choice of F. Let me also remark that
in Section 10 multiple Wiener—Ito integrals of functions of k£ variables with respect to
a white noise will be defined for all £ > 1. In the special case k = 1 the Wiener—Ito
integrals for an appropriate class of functions f € F yield a model for which Theorem 4.2
is applicable. Before formulating this result let us introduce the following definition
which is a version of the definition of L,-dense functions.

Definition of L,-dense classes of functions with respect to a measure p. Let
a measurable space (X, X) be given together with a measure p on the o-algebra X and
a set F of X measurable real valued functions on this space. The set of functions F is
called an Ly-dense class of functions, 1 < p < oo, with respect to the measure p with
parameter D and exponent L if for all numbers 0 < ¢ < 1 there exists a finite e-dense
subset Fo = {f1,..., fm} C F in the space L,(X,X,pn) with m < De~L elements, i.e.
such a set F. C F with m < De~L elements for which figgr [1f = fi|Pdp < &P for all
jEFe

functions f € F.

Theorem 4.2. (Estimate on the supremum of a class of Gaussian random
variables). Let a probability measure p be given on a measurable space (X, X) together
with a linear Gaussian random field Z(f), f € G, such that EZ(f) =0, EZ(f)Z(g) =
[ f(@)g(zx)u(dz), f,g € G, where G is the space of square integrable functions with
respect to this measure p. Let F C G be a countable and Lo-dense class of functions
with respect to the measure p with some exponent L > 1 and parameter D > 1 which
also satisfies condition (4.2) with some 0 < o < 1.

Then there ezist some universal constants C > 0 and M > 0 (for instance C = 4
and M = 16 is a good choice) such that the inequality

1 2 2
P (sup Z(f)| > u) < C(D+1)exp {—— <E> } ifu> ML ?clog/? 2 (4.7)
fer 256 \o o

holds with the parameter D and exponent L introduced in this theorem.
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The exponent at the right-hand side of inequality (4.7) does not contain the best

possible universal constant. One could choose the coefficient 155 with arbitrary small

€ > 0 instead of the coefficient ﬁ in the exponent at the right-hand side of (4.7) if the

universal constants C' > 0 and M > 0 are chosen sufficiently large in this inequality.
Actually, later in Theorem 8.6 such an estimate will be proved which can be considered

2
(1;3“ in the

as the multivariate generalization of Theorem 4.2 with the expression —
exponent.

The condition about the countable cardinality of the set F in Theorem 4.2 could
be weakened similarly to Theorem 4.1. But I omit the discussion of this question, since
Theorem 4.2 was only introduced for the sake of a comparison between the Gaussian and
non-Gaussian case. An essential difference between Theorems 4.1 and 4.2 is that the
class of functions F considered in Theorem 4.1 had to be Ly-dense, while in Theorem 4.2
a weaker version of this property was needed. In Theorem 4.2 it was demanded that
there exists a subset of F of relatively small cardinality which is dense in the Lo (1) norm.
In the Ly-density property imposed in Theorem 4.1 a similar property was demanded
for all probability measures v. The appearance of such a property may be unexpected.
But as we shall see, the proof of Theorem 4.1 contains a conditioning argument where
a lot of new conditional measures appear, and the Ls-density property is needed to
work with all of them. One would also like to know some results that enable us to
check when this condition holds. In the next section a notion popular in probability
theory, the Vapnik—Cervonenkis classes will be introduced, and it will be shown that a
Vapnik-Cervonenkis class of functions bounded by 1 is Lo-dense.

Another difference between Theorems 4.1 and 4.2 is that the conditions of for-
mula (4.4) contain the upper bound y/no? > u, and no such condition was imposed in
formula (4.7). The appearance of this condition in Theorem 4.1 can be explained by
comparing this result with those of Section 3. As we have seen, we do not loose much
information if we restrict our attention to the case u < const. Vn2 = const., no? in Bern-
stein’s inequality (if sums of independent and identically distributed random variables
are considered). Theorem 4.1 gives an almost as good estimate for the supremum of
normalized partial sums under appropriate conditions for the class F of functions we con-
sider in this theorem as Bernstein’s inequality yields for the normalized partial sums of
independent and identically distributed random variables with variance bounded by o?2.
But we could prove the estimate of Theorem 4.1 only under the condition y/no? > u.
We shall show in Example 4.3 discussed below that in the case u > /no? only a weaker
estimate holds. It has also a natural reason why condition (4.1) about the supremum
of the functions f € F appeared in Theorems 4.1 and 4.1’, and no such condition was
needed in Theorem 4.2.

The lower bounds for the level u were imposed in formulas (4.4) and (4.7) because
of a similar reason. To understand why such a condition is needed in formula (4.7) let
us consider the following example. Take a Wiener process W (t), 0 < ¢t < 1, define for
all 0 < s <t <1 the functions f(-) on the interval [0,1] as fs(u) = 1if s <u <,
fsi(u) =0if 0 <u < sort<wu<1, and introduce for all ¢ > 0 the following class
of functions F. Fo = {fsr: 0<s<t<1,t—s< 02, s and t are rational numbers.}.

The integral Z(f) = fol f(z)W (dz) can be defined for all square integrable functions f
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on the interval [0, 1], and this yields a linear Gaussian random field on the space of square
integrable functions. In the special case f = fs: we have Z(fs.) = [ fs(w)W (du) =
W(t) — W(s). It is not difficult to see that the Gaussian random field Z(f), f €
F,, satisfies the conditions of Theorem 4.2 with the number o in formula (4.2). It

is natural to expect that P (sup Z(f) >u| < e const: (u/o)?, However, this relation
f€Fs

does not hold if u = u(o) < (1 — €)v20 logl/zé with some ¢ > 0. In such cases
P ( sup Z(f) > u) — 1, as 0 — 0. This can be proved relatively simply with the help
feFs

of the estimate P(Z(fs+) > u(o)) > const.o!™¢ if [t — s| = 02 and the independence
of the random integrals Z(fs ) if the functions f; are indexed by such pairs (s, t) for
which the intervals (s,t) are disjoint. This means that in this example formula (4.7)
holds only under the condition u > Mo logl/ 2 % with M = /2.

There is a classical result about the modulus of continuity of Wiener processes, and
actually this result helped us to find the previous example. It is also worth mentioning
that there are some concentration inequalities, see Ledoux [28] and Talagrand [51],
which state that under very general conditions the distribution of the supremum of a
class of partial sums of independent random variables or of the elements of a Gaussian
random field is strongly concentrated around the expected value of this supremum.
(Talagrand’s result in this direction is also formulated in Theorem 18.1 of this lecture
note.) These results imply that the problems discussed in Theorems 4.1 and 4.2 can be

reduced to a good estimate of the expected value F sup |S,,(f)| and E sup |Z(f)| of the
fer fer
supremum considered in these results. However, the estimation of the expected value

of these suprema is not much simpler than the original problem.
Theorem 4.2 implies that under its conditions E sup | Z(f)| < const. o log'/? 2 with
fer

an appropriate multiplying constant depending on the parameter D and exponent L of
the class of functions F. In the case of Theorem 4.1 a similar estimate holds, but un-
der more restrictive conditions. We also have to impose that \/ﬁa2 > const. alogl/ 2 %
with a sufficiently large constant. This condition is needed to guarantee that the set
of numbers u satisfying condition (4.4) is not empty. If this condition is violated, then
Theorem 4.1 supplies a weaker estimate which we get by replacing ¢ by an appropri-
ate ¢ > o, and by applying Theorem 4.1 with this number &.

One may ask whether the above estimate about the expected value of supremum of
normalized partial sums may hold without the condition y/no? > const. o logl/ 2 % We
show an example which gives a negative answer to this question. Since here we discuss
a rather particular problem which is outside of our main interest in this work I give
a rather sketchy explanation of this example. I present this example together with a
Poissonian counterpart of it which may help explain why such a result holds.

Example 4.3. (Supremum of partial sums with bad tail behaviour). Let
&1,...,&, be a sequence of independent random variables with uniform distribution in the
interval [0,1]. Choose a sequence of real numbers, €, n = 3,4, ..., such that &,, — 0 as
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n — 00, and % > e, > n~°% with a sufficiently small number § > 0. Put o, = &, loi",

and define the set of functions f;n(-) and fjn(-) on the interval [0,1] by the formulas
fin(@) =14f (j — 1)o2 <z < jo2, fjn(x) =0 otherwise, and f;,(z) = fin(z) — 02,

m=8 15 ke PutFa = {fn0) 1€5 € ) Sulf) = 5 X F() for

k

feF, and u,, = % l‘z/ﬁ with a sufficiently small A > 0. Then

lim P (sup Sn(f) > un> = 1.

n—oo fe}—n

This example has the following Poissonian counterpart.

Example 4.3'. (A Poissonian counterpart of Example 4.3). Let P,(z) be a
Poisson process on the interval [0,1] with parameter n and P,(x) = \/LE[PH(Q:) — nx|,
0 <z < 1. Consider the same sequences of numbers ,, o, and u, as in Example 4.3,
and define the random variables Z, ; = Pn(jo2) — Po((j — 1)o2) for alln = 3,4,. ..
and 1 < j < 1. Then

'IL

lim P| sup (Znj— Znj-1)>uy | =1
n—oo 1<j<-L

The classes of functions F,, in Example 4.3 are Lo-dense classes of functions with
some exponent L and parameter D not depending on the parameter n and the choice
of the numbers o,,. It can be seen that even the class of function F = {f: f(z) =
1,if s <z < t, f(r) = 0 otherwise.} consisting of functions defined on the inter-
val [0,1] is an Lo-dense class with some exponent L and parameter D. This follows
from the results discussed in the later part of this work (mainly Theorem 5.2), but it
can be proved directly that this statement holds e.g. with L = 1 and D = 8. The
classes of functions F,, also satisfy conditions (4.1), (4.2) and (4.3) of Theorem 4.1

with 02 = 62 = 02 — o}, lim 2= = 1, and the number u,, satisfies the second con-

n—oo In
dition u, > Mo, (L3*log!/? 2 + (log D)%) in (4.4) for sufficiently large n. But it
does not satisfy the first condition /ng2 > u, of (4.4), and as a consequence Theo-
rem 4.1 cannot be applied in this case. On the other hand some calculation shows that

Uy > (14?45)1/25 1(;4g —0p logl/z 2 Hence I%Igtréfsn log WEJCSGU;) Sn(f) >

0 in this case. As e, log— — 0 as n — oo, this means that the expected value
of the supremum of the random sums considered in Example 4.3 does not satisfy
E sup S,(f) < oo suggested by Theorem 4.1. Ob-

the estimate lim supm
n—oo On fej:n
serve that \/ng2 ~ const.e,o, log"/ 2% in this case, since \/ng2 ~ 5%1°gn”, and
1/2 2 logn
oy log 5. ~ const.ep Nk
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The proof of Examples 4.3 and 4.3'. First we prove the statement of Example 4.3’. For
a fixed index n the number of random variables Z,, ; equals % > é@ > ﬁ, and
they are independent. Hence it is enough to show that P(Z,, ; > u,) > n~1/2 if first
A > 0 and then § > 0 (appearing in the condition &, > n~%) are chosen sufficiently

small, and n > ngy with some threshold index ng = ng(4,9).
Put @, = [ynu, + noz] + 1, where [-] denotes integer part. Then P(Z,; >
un) > P(pn(0-721> > ﬂn) > P(pn(ai) = ﬂn) = (n‘{ﬁe—nai > (no‘i) "’ e_""i. Some

Uy ! = Unp,

2
2Alogn no2 > &, log eln
log =~ ' @n, = 2A

€n

calculation shows that @, < 4len 4 e2logn +1 <

; , and
og =

n

2
log == > —2log é if the constants A > 0, § > 0 and threshold index ngy are appro-

priately chosen. Hence P(Z,, ; > u,) > e~ 20n log(1/en)—no® > 24 logn—ey, logn > p1/2
if Ag > 0 is sufficiently small.

The statement of Example 4.3 can be deduced from Example 4.3 by applying
Poissonian approximation. Let us apply the result of Example 4.3' for a Poisson process
P, 2 with parameter 5 and with such a number &, /, with which the value of o}, /5 equals

the previously defined o,,. Then &, /5 ~ 5”2, and the number of sample points of P, /5 is

less than n with probability almost 1. Attaching additional sample points to get exactly
n sample points we can get the result of Example 4.3. T omit the details.

In formulas (4.4) and (4.7) we formulated such a condition for the validity of Theo-
rem 4.1 and Theorem 4.2 which contains a large multiplying constant M L3/% and M L'/?
of o logl/ 2 % in the lowerbound for the number u if we deal with such an Ls-dense class
of functions F which has a large exponent L. At a heuristic level it is clear that in such
a case a large multiplying constant appears. On the other hand, I did not try to find

the best possible coefficients in the lower bound in relations (4.4) and (4.7).

In Theorem 4.1 (and in its version 4.1’) it was demanded that the class of func-
tions F should be countable. Later this condition was replaced by a weaker one about
countable approximability. By restricting our attention to countable or countably ap-
proximable classes we could avoid some unpleasant measure theoretical problems which
would have arisen if we had worked with the supremum of non-countable number of
random variables which may be non-measurable. There are some papers where possibly
non-measurable models are also considered with the help of some rather deep results
of the analysis and measure theory. Actually, the problem we met here is the natural
analog of an important problem in the theory of the stochastic processes about the
smoothness property of the trajectories of an appropriate version of a stochastic process
which we can get by exploiting our freedom to change all random variables on a set of
probability zero.

The study of the problem in this work is simpler in one respect. Here the set of
random variables S, (f)(w) or J,(f)(w), f € F, are constructed directly with the help
of the underlying random variables & (w),...,&,(w) for all w € € separately. We are
interested in when the sets of random variables constructed in this way are countably
approximable, i.e. we are not looking for a possibly different, better version of them
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with the same finite dimensional distributions. The next simple Lemma 4.4 yields a
sufficient condition for countable approximability. Its condition can be interpreted as
a smoothness type condition for the trajectories of a stochastic process indexed by the
functions f € F.

Lemma 4.4. Let a class of random variables U(f), f € F, indexed by some set F of

functions be given on a space (Y,)). If there exists a countable subset F' C F of the set

F such that the sets A(u) = {w: sup |U(f)(w)| > u} and B(u) = {w: Sup U(f)(w)] >
feF

u} introduced for all w > 0 in the definition of countable appmxzmabzlzty satisfy the
relation A(u) C B(u — €) for all w > € > 0, then the class of random variables U(f),
f € F, is countably approximable.

_ The above property holds if for all f € F, e >0 and w € Q there exists a function
f=1({fe,w) e F' such that |U(f)(w)| = |U(f)(w)| —e.

Proof of Lemma 4.4. If A(u) C B(u —¢) for all ¢ > 0, then P*(A(U) \ B(u)) <
lin%) P(B(u—¢)\ B(u)) = 0, where P*(X) denotes the outer measure of a not necessarily
e—

measurable set X C ), since (| B(u—¢) = B(u), and this is what we had to prove. If

e—0

w € A(u), then for all € > 0 there exists some f = f(w) € F such that |U(f)(w)| > u—3.
If there exists some f=f(f,5w), f €F such that |U(f)(w)| > |Uf(w)| — &, then
lU(f)(w)| >u—e¢, and w € B(u —¢). This means that A(u) C B(u — ¢).

The question about countable approximability also appears in the case of multiple
random integrals with respect to a normalized empirical measure. To avoid some rep-
etition we prove a result which also covers such cases. For this goal first we introduce
the notion of multiple integrals with respect to a normalized empirical measure.

Given a measurable function f(z1,...,z;) on the k-fold product space (X*, x%)
and a sequence of independent random variables &1, ..., &, with some distribution p on
the space (X, X’) we define the integral J, ;(f) of the function f with respect to the
k-fold product of the normalized version of the empirical measure p,, introduced in (4.5)
by the formula

nk/2
In

/fx o) (tin(dry) — p(dr)) - (pin(dy) — pi( dzy)),

where the prime in f means that the diagonals z; = x;, 1 <j <[l <k,

are omitted from the domain of integration. (4.8)

In the case k > 2 it will be assumed that the probability measure p has no atoms.

Lemma 4.4 enables us to prove that certain classes of random integrals J,, x(f),
f € F, defined with the help of some set of functions f € F of k variables are count-
ably approximable. I present an example of a class of such random integrals which is
important in certain applications.

Let us consider the case when X = R?®, the s-dimensional Euclidean space with
some s > 1. For two vectors v = (uM,... u®) € R, v = (v, ..., 0)) € R® such
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that u < v, i.e. u¥) < v foralll < j < slet B(u,v) denote the s-dimensional rectangle
B(u,v) = {2: u < z < v}. Let us fix some function f(x1,...,xx) of k variables such
that sup |f(z1,...,7%)| < 1, on the space (X*, X*) = (R**, B¥*), where B! denotes the
Borel o-algebra on the Euclidean space R!, together with some probability measure pu
on (R*,B?%). For all pairs of vectors (u1,...,ug), (v1,...,v;) such that uj,v; € R® and
u; <wj, 1 < j <k, let us define the function fy, ... uy,v1,...,0, Which equals the function f
on the rectangle (u1,v1) X - -+ X (ug,vg), and it is zero outside of this rectangle. Let us
call a class of functions F consisting of functions of the form f,, . wu. v1,...,0, closed if
it has the following property. If fu, . u. 1,0, € F for some vectors (uq,...,us) and
(vi,...,0), and u; < u; <05 <wj;, 1 <j <k, then fg,  a51,..0. €F. InLemma 4.5
a closed class F of functions will be considered, and it will be proved that the random
integrals of the functions from this class of functions F introduced in formula (4.8)
constitute a countably approximable class.

Lemma 4.5. Let us have a function f on the Buclidean space R*® such that the |f] < 1
in all points, and consider a closed class F of functions of the form fu, . u. vi,....0n €
(R*k, Bs%), uj,v; € R%, uy <wj;, 1 <j <k, introduced in the previous paragraph with
the help of this function f. Let us take n independent and identically distributed random
variables &1, . . ., &, with some distribution p and values in the space (R*,B*%). Let p,
denote the empirical distribution of this sequence. Then the class of random integrals
Ine(fur.. upvr...0n) defined in formula (4.8) with functions fu, .. ugwr,...vn € F is
countably approxrimable.

Proof of Lemma 4.5. We shall prove that the definition of countable approximabil-
ity is satisfied in this model if the class of functions F’ consists of those functions
Jurougvr,eops Wi < vj, 1 < 5 <k, for which all coordinates of the vectors u; and v;
are rational numbers.

Given some function fu, .. w100, & Teal number 0 < ¢ < 1 and w € Q let us
choose a function fa,,  ay,0,..5. € F determined with some vectors u; = u;(e,w),
v; = vj(e,w) 1 < j <k, with rational coordinates u; < u; < v; < v; such that the sets
K; = B(uj,v;) \ B(4;,7;) satisfy the relations u(K;) < e272kF1n=k/2 and & (w) ¢ K;
forall j=1,...,kand [ =1,...,n. Let us show that

|Jn,k<fﬁ1,...,ﬂk,'l_)l,...,@k)(w) - Jn,k(ful,...,uk,vl,...,vk)(w>| S €. (49)
Then lemma 4.4 (with the choice U(f) = J, 1(f)) and relation (4.9) imply Lemma 4.5.

Relation (4.9) holds, since the difference of integrals at its left-hand side can be
written as the sum of the 2¥ — 1 integrals of the function f with respect to the k-fold
product of the measure \/n(u, — i) on the domains Dy X - - - x Dy with the omission of
the diagonals ; = x5, 1 < j,7 <k, j # j, where Dj is either the set K; or B(u;,v;) and
D; = K for at least one index j. It is enough to show that the absolute value of all these
integrals is less than €27, This follows from the observations that |f(z1,...,x)| <1,
Vi, — p)(K;) = —/nu(K;), u(K;) < e272#+1n=k/2 and the total variation of the
signed measure v/n(u, — p) (restricted to the set B(u;,v;)) is less than 2/n.

In Lemma 4.5 we have shown with the help of Lemma 4.4 about an important class
of functions that it is countably approximable. There are other interesting classes of
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functions whose countable approximability can be proved with the help of Lemma 4.4.
But here we shall not discuss this problem.

Let us discuss the relation of the results in this section to an important result
of the probability theory, to the so-called fundamental theorem of the mathematical
statistics. In that result a sequence of independent random variables & (w), ..., &, (w) is
taken with some distribution function F'(z), the empirical distribution function F,(z) =
Fo(z,w) = +#{j: 1 <j < n, §(w) < z} is introduced, and the difference F, (z)— F(z)
is considered. This result states that sup |F,(x) — F(z)| tends to zero with probability

x

one.

Observe that sup |F,(z) — F(x)| = n~'/2 sup | J,,(f)|, where F consists of the func-
T feF
tions f.(-), * € R!, defined by the relation f,(u) = 1 if u < x, and f,(u) = 0 if
u > x. Theorem 4.1’ yields an estimate for the probabilities P | sup |J,(f)] > u |.
ferF

We have seen that the above class of functions F is countably approximable. The
results of the next section imply that this class of functions is also Lo-dense. Oth-
erwise it is not difficult to check this property directly. Hence we can apply The-
orem 4.1’ to the above defined class of functions with ¢ = 1, and it yields that

P (n_1/2 sup |J,.(f)| > u) < e=Onv® if 1 > ¢ > O'n~1/2 with some universal constants
ferxr

C > 0 and C > 0. (The condition 1 > u can actually be dropped.) The application of
this estimate for the numbers € > 0 together with the Borel-Cantelli lemma imply the
fundamental theorem of the mathematical statistics.

In short, the results of this section yield more information about the closeness the
empirical distribution function F),, and distribution function F' than the fundamental
theorem of the mathematical statistics. Moreover, since these results can also be applied
for other classes of functions, they yield useful information about the closeness of the
probability measure p to the empirical measure .
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5. Vapnik—Cervonenkis classes and L,-dense classes of functions.

In this section the most important notions and results will be presented about Vapnik—
Cervonenkis classes, and it will be explained how they help to show in some important
cases that certain classes of functions are Ls-dense. The classes of Lo-dense classes
played an important role in the study of the previous section. The results of this
section may help to find interesting classes of functions with this property. Some of the
results of this section will be proved in Appendix A.

First I recall the following notions.

Definition of Vapnik-Cervonenkis classes of sets and functions. Let a set X
be given, and let us select a class D of subsets of this set X. We call D a Vapnik—
Cervonenkis class if there exist two real numbers B and K such that for all positive
integers n and subsets S(n) = {z1,...,xn} C X of cardinality n of the set X the
collection of sets of the form S(n) N D, D € D, contains no more than Bn subsets
of S(n). We shall call B the parameter and K the exponent of this Vapnik—Cervonenkis
class.

A class of real valued functions F on a space (Y,)) is called a Vapnik-Cervonenkis
class if the collection of graphs of these functions is a Vapnik—Cervonenkis class, i.e. if
the sets A(f) = {(y,t): y € Y, min(0, f(y)) <t < max(0, f(y))}, f € F, constitute a
Vapnik-Cervonenkis class of subsets of the product space X =Y x R'.

The following result which was first proved by Sauer plays a fundamental role in the
theory of Vapnik—Cervonenkis classes. This result provides a relatively simple condition
for a class D of subsets of a set X to be a Vapnik-Cervonenkis class. Its proof is given
in Appendix A. Before its formulation I introduce some terminology which seems to be
wide spread and generally accepted in the literature.

Definition of shattering of a set. Let a set S and a class £ of subsets of S be given.
A finite set F C S is called shattered by the class & if all its subsets H C F can be
written in the form H = E N F with some element B € £ of the class of sets of £.

Theorem 5.1. (Sauer’s lemma). Let a finite set S = S(n) consisting of n elements be
given together with a class £ of subsets of S. If £ shatters no subset of S of cardinality k,

then &€ contains at most (g) + () 4+ (") subsets of S.

The estimate of Sauer’s lemma is sharp. Indeed, if £ contains all subsets of S of
cardinality less than or equal to k— 1, then it shatters no subset of a set F' of cardinality
k (a set F of cardinality k cannot be written in the form ENF, E € &), and £ contains

(8) + (?) + et (kﬁl) subsets of S. Sauer’s lemma states, that this is an extreme case.

Any class of subsets £ of S with cardinality greater than (3) + (7) +---+ (") shatters
at least one subset of S with cardinality k.

Let us have a set X and a class of subsets D of it. One may be interested in when D
is a Vapnik-Cervonenkis class. Sauer’s lemma gives a useful condition for it. Namely, it
implies that if there exists a positive integer k such that the class D shatters no subset
of X of cardinality k, then D is a Vapnik—Cervonenkis class. Indeed, let us take some
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number n > k, fix an arbitrary set S(n) = {z1,...,2,} C X of cardinality n, and
introduce the class of subsets £ = £(S(n)) = {S(n) N D: D C D}. If D shatters no
subset of X of cardinality k, then & shatters no subset of .S (n) of cardinality k. Hence
by Sauer’s lemma the class € contains at most () + () +---+ ( " ) elements. Let me

remark that it is also proved that (§) + (1) +---+ (") < 1. 5(,€ 1), if n > k+ 1. This

estimate gives a bound on the parameter and exponent of a Vapnik—Cervonenkis class
which satisfies the above condition.

Moreover, Theorem 5.1 also has the following consequence. Take an (infinite) set
X and a class of its subsets D. There are two possibilities. Either there is some set
S(n) € X of cardinality n for all integers n such that £(S(n)) contains all subsets

of S(n), i.e. D shatters this set, or sup |E(S)| tends to infinity at most in a
S: SCX,|S|=n
polynomial order as n — oo, where |S| and |£(5)| denote the cardinality of S and £(S5).

The following Theorem 5.2, an important result of Richard Dudley, states that a
Vapnik—Cervonenkis class of functions bounded by 1 is an L;-dense class of functions.

Theorem 5.2. (A relation between the L;-dense class and Vapnik—Cervonen-
kis class property). Let f(y), f € F, be a Vapnik—Cervonenkis class of real valued

functions on some measurable space (Y,)) such that sup |f(y)| < 1 for all f € F.
yey

Then F is an Ly-dense class of functions on (Y,Y). More explicitly, if F is a Vapnik—
Cervonenkis class with parameter B > 1 and exponent K > 0, then it is an Li-dense
class with exponent L = 2K and parameter D = B2?(4CK)** with some universal
constant C' > 0.

Proof of Theorem 5.2. Let us fix some probability measure v on (Y,))) and a real
number 0 < & < 1. We are going to show that any finite set D(e,v) = {f1,...,fm} C F
such that [|f; — fi|dv > e if j # k, fj, fv € D(e,v) has cardinality M < De~! with
some D > 0 and L > 0. This implies that F is an Li-dense class with parameter D and
exponent L. Indeed, let us take a maximal subset D(e,v) = {f1,..., far} C F such that
the Lq(v) distance of any two functions in this subset is at least . Maximality means
in this context that no function fa;41 € F can be attached to D(e, ) without violating
this condition. Thus the inequality M < De~% means that D(e, v) is an e-dense subset
of F in the space Li(Y,),v) with no more than De~% elements.

In the estimation of the cardinality M of a (finite) set D(e,v) = {f1,..., fm}
with the property [|f; — fx|dv > € if j # k the Vapnik— Cervonenkis class property
of F is exploited in the following way. Let us choose relatively few p points (y;,1;),
yeY, —1<t<1,1<1<p,in the space (Y x [—1,1]) in such a way that the
set So(p) = {(y1,t1), 1 <1 < p} and graphs A(f;) = {(y,t): y € Y, min(0, f;(y)) <
t < max(0, f;(v))}, f; € D(e,v) C F have the property that all sets A(f;) N So(p),
1 < j < M, are different. Then the Vapnik—Cervonenkis class property of F implies
that M < BpX. Hence if there exists a set Sy(p) with the above property and with a
relatively small number p, then this yields a useful estimate on M. Such a set Sp(p)
will be given by means of the following random construction.
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Let us choose the p points (y;,t;), 1 <1 < p, of the (random) set Sy(p) indepen-
dently of each other in such a way that the coordinate ¥; is chosen with distribution v on
(Y,Y) and the coordinate ¢; with uniform distribution on the interval [—1, 1] indepen-
dently of y;. (The number p will be chosen later.) Let us fix some indices 1 < j, k < M,
and estimate the probability that the sets A(f;) N So(p) and A(fx) N So(p) agree,
where A(f) denotes the graph of the function f. Consider the symmetric difference
A(f;)AA(fr) of the sets A(f;) and A(fx). The sets A(f;) N So(p) and A(fr) N So(p)
agree if and only if (y;,t) ¢ A(f;)AA(fx) for all (y;,t;) € So(p). Let us observe
that for a fixed ! the estimate P((y;,t1) € A(f;})AA(fx)) = 5(v x N)(A(f)AA(fr)) =
% [1f; = fuldv > 5 holds, where A denotes the Lebesgue measure. This implies that
the probability that the (random) sets A(f;) N So(p) and A(fx) N So(p) agree can
be bounded from above by (1 — %)p < e P%/2. Hence the probability that all sets

A(fj) N So(p) are different is greater than 1 — (1\24)6_775/2 >1-— MT26_p5/2. Choose p
such that %6106/2 > ePt1)e/2 5 N2 > ¢Pe/2 Then the above probability is greater than
L and there exists some set Sy(p) with the desired property.

]
The inequalities M < Bp®X and M? > eP*/2 imply that M > eEMl/K/‘lBl/K, ie.
1/K 1/K . .
loif\fm > gegiw- As % < CM~Y2K for M > 1 with some universal con-
stant C' > 0, this estimate implies that Theorem 5.2 holds with the exponent L and

parameter D given in its formulation.

Let us observe that if F is an Li-dense class of functions on a measure space (Y, ))

with some exponent L and parameter D, and also the inequality sup |f(y)| < 1 holds
yey
for all f € F, then F is an Ly-dense class of functions with exponent 2L and parameter

D2%. Indeed, if we fix some probability measure v on (Y,)) together with a number

0<e<1,and D(e,v) ={f1,..., fm} is an %-dense set of F in the space L1(Y,),v),
M < 2%De=2L | then for all function f € F some function f; € D(e,v) can be chosen in
such a way that [(f— f;)*dv <2 [|f — fjldv < £2. This implies that F is an Ly-dense

class with the given exponent and parameter.

It is not easy to check whether a collection of subsets D of a set X is a Vapnik—
Cervonenkis class even with the help of Theorem 5.1. Therefore the following Theo-
rem 5.3 which enables us to construct many non-trivial Vapnik—Cervonenkis classes is
of special interest. Its proof is given in Appendix A.

Theorem 5.3. (A way to construct Vapnik—Cervonenkis classes). Let us con-
sider a k-dimensional subspace Gy of the linear space of real valued functions defined
on a set X, and define the level-set A(g) = {z: = € X, g(x) > 0} for all functions
g € Gi. Take the class of subsets D = {A(g): g € Gr} of the set X consisting of the
above introduced level sets. No subset S = S(k+1) C X of cardinality k+1 is shattered
by D. Hence by Theorem 5.1 D is a Vapnik-Cervonenkis class of subsets of X.

Theorem 5.3 enables us to construct many interesting Vapnik—Cervonenkis classes.
Thus for instance the class of all half-spaces in a Euclidean space, the class of all
ellipses in the plane, or more generally the level sets of k-order algebraic functions with
a fixed number k constitute a Vapnik—Cervonenkis class. It can be proved that if C
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and D are Vapnik-Cervonenkis classes of subsets of a set S, then also their intersection
CND ={CnD: C €C,D € D}, their union CUD = {CUD: C € C, D € D}
and complementary sets C¢ = {S\ C: C € C} are Vapnik-Cervonenkis classes. These
results are less important for us, and their proofs will be omitted. We are interested
in Vapnik-Cervonenkis classes not for their own sake. We are going to find Lo-dense
classes of functions, and Vapnik—Cervonenkis classes help us in finding such classes.
Indeed, Theorem 5.2 implies that if D is a Vapnik—Cervonenkis class of subsets of a set
S, then their indicator functions constitute an Li-dense, hence also an Ls-dense class
of functions. Then the results of Lemma 5.4 formulated below enable us to construct
new Lo-dense class of functions.

Lemma 5.4. (Some useful properties of Ly-dense classes). Let G be an Lo-dense
class of functions on some space (Y,)) whose absolute values are bounded by one, and let
f be a function on (Y,Y) also with absolute value bounded by one. Then f-G ={f-g: g €
G} is also an Lo-dense class of functions. Let Gi and Gy be two Lo-dense classes of
functions on some space (Y,)) whose absolute values are bounded by one. Then the
classes of functions Gi +Ga = {g1+92: 91 € G1, g2 € Ga}, G1-Go = {g192: 91 € G1, 92 €
G2}, min(Gi, Go) = {min(g1,92): g1 € G1, g2 € Ga}, max(G1, Ga) = {max(g1,92): g1 €
Gi1, g2 € Go} are also Lo-dense. If G is an Lo-dense class of functions, and G' C G, then
G’ is also an Lo-dense class.

The proof of Lemma 5.4 is rather straightforward. One has to observe for instance that
if 91,91 € G1, g2, G2 € Go then |min(gy, g2) —min(gs, g2)| < |91 — g1)| + |92 — g2/, hence if
g1,1,---,91,0, is an 5-dense subset of Gy and g2.1, ..., g2, 01, is an 5-dense subset of Gz in
the space Lo (Y, ), v) with some probability measure v, then the functions min(g1 ;, g2,),
1 <j< M, 1< k< M, constitute an e-dense subset of min(Gy,Gs) in Lo(Y, YV, v).
The last statement of Lemma 5.4 was proved after the Corollary of Theorem 4.1. The
details are left to the reader.

The above result enable us to construct some Lo dense class of functions. We give
an example for it in the following Example 5.5 which is a consequence of Theorem 5.2
and Lemma 5.4.

Example 5.5. Take m measurable functions fj(x), 1 <j < m, on a measurable space
(X, X) which have the property sup |f;(z)| <1 for all1 < j < m. Let D be a Vapnik-
zeX

Cervonenkis class consisting of measurable subsets of the set X. Define for all pairs
fi» 1 <7 <m, and D € D the function f;p(-) as fjp(x) = fi(x) if x € D, and
fip(x) =0ifx ¢ D, i.e. fjp(:) is the restriction of the function f;(-) to the set D.
The set of functions fjp, 1 <j<m, D €D, is an Ly-dense class of functions.

Besides, Theorem 5.3 helps us to construct Vapnik-Cervonenkis classes of sets. Let
me also remark that it follows from the result of this section that the random variables
considered in Lemma 4.5 are not only countably approximable, but the class of functions
Jur,ooupv1,...,0, aPpearing in their definition is Lo-dense.
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6. The proof of Theorems 4.1 and 4.2 on the supremum of random sums.

In this section we prove Theorem 4.2, an estimate about the tail distribution of the
supremum of an appropriate class of Gaussian random variables with the help of a
method, called the chaining argument. We also investigate the proof of Theorem 4.1
which can be considered as a version of Theorem 4.2 about the supremum of partial sums
of independent and identically distributed random variables. The chaining argument is
not a strong enough method to prove Theorem 4.1, but it enables us to prove a weakened
form of it formulated in Proposition 6.1. This result turned out to be useful in the proof
of Theorem 4.1. It enables us to reduce the proof of Theorem 4.1 to a simpler statement
formulated in Proposition 6.2. In this section we prove Proposition 6.1, formulate
Proposition 6.2, and reduce the proof of Theorem 4.1 with the help of Proposition 6.1
to this result. The proof of Proposition 6.2 which demands different arguments is
postponed to the next section. Before presenting the proofs of this section I briefly
describe the chaining argument.

Let us consider a countable class of functions F on a probabality space (X, X, u
which is Lo-dense with respect to the probability measure p. Let us have either a
class of Gaussian random variables Z(f) with zero expectation such that EZ(f)Z(g) =

[ f(x)g(z)pu(dz), f,g € F, or a set of normalized partial sums S, (f) = \/LE f:l (&),
j:

f € F, where &1,...,&, is a sequence of independent p distributed random variables
with values in the space (X, X'), and assume that Ef(¢;) = 0 for all f € F. We want

to get a good estimate on the probability P (sup Z(f)>u] orP (sup Sn(f) > u) if
fer fer

the class of functions F has some nice properties. The chaining argument suggests to
prove such an estimate in the following way.

Let us try to find an appropriate sequence of subset ;1 C Fo C --- C F such
oo

that |J Fn = F, Fn is such a set of functions from F with relatively few elements for
N=1 B
which fi%.f J(f—f)?dp < §n with an appropriately chosen number § for all functions
€SN

f € F, and let us give a good estimate on the probability P ( sup Z(f) > uN> or
fEFN

feFN
increasing sequence uy such that lim uy = w.
N—o0

P ( sup S, (f) >un | for all N = 1,2,... with an appropriately chosen monotone

We can get a relatively good estimate under appropriate conditions for the class
of functions F by choosing the classes of functions Fy and numbers dn and uy in an
appropriate way. We try to bound the difference of the probabilities

P( sup Z(f)>uN+1) —P(sup Z(f)>uN>

fEFN+1 feFN

or of the analogous difference if Z(f) is replaced by S,,(f). For the sake of completeness
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define this difference also in the case N = 1 with the choice Fy = (), when the second
probability in this difference equals zero.

This probability can be estimated in a natural way by taking for all functions
fini: € Fn41 a function f;, € Fy which is close to it, more explicitly [(fjy,, —
fin)?dp < 6%, and calculating the probability that the difference of the random vari-
ables corresponding to these two functions is greater than uny 41 —uy. We can estimate
these probabilities with the help of some results which give a relatively good bound on
the tail distribution of Z(g) or S, (g) if [ g? du is small. The sum of all such probabilities
gives an upper bound for the above considered difference of probabilities. Then we get

an estimate for the probability P ( sup Z(f) > upn | forall N =1,2,..., by summing
fEFN

up the above estimate, and we get a bound on the probability we are interested in by
taking the limit N — oo. This method is called the chaining argument. It got this
name, because we estimate the contribution of a random variable corresponding to a
function f;, , € Fn41 to the bound of the probability we investigate by taking the ran-
dom variable corresponding to a function f;, € Fn close to it, then we choose another
random variable corresponding to a function f;, , € Fy_; close to this function, and
so on we take a chain of subsequent functions and the random variables corresponding
to them.

First we show how this method supplies the proof of Theorem 4.2. Then we turn
to the investigation of Theorem 4.1. In the study of this problem the above method
does not work well, because if two functions are very close to each other in the Lo(u)-
norm, then the Bernstein inequality (or an improvement of it) supplies a much weaker
estimate for the difference of the partial sums corresponding to these two functions
than the bound suggested by the central limit theorem. On the other hand, we shall
prove a weaker version of Theorem 4.1 in Proposition 6.1 with the help of the chaining
argument. This result will be also useful for us.

Proof of Theorem 4.2. Let us list the elements of F as {fo, f1,...} = F, and choose

for all p = 0,1,2,... a set of functions F,, = {fa(1,p),--+»fa(m,p)} C F with m, <

(D + 1) 22PL5=L elements in such a way that 1<igf J(f = faiip)? dp < 27%02 for all
SJIsmyp

f € F,and let f, € F,. For all indices a(j, p) of the functions in F,,, p =1,2,..., define
a predecessor a(j’,p — 1) from the indices of the set of functions F,_; in such a way
that the functions f,(;,) and fu(;/ p—1)) satisfy the relation [(f; ) — f(j/,p_l))2 dp <
2-4(=1) 52 With the help of the behaviour of the standard normal distribution function
we can write the estimates

P(A(j,p)) =P <|Z(fa(j,p)) = Z(fa(jr p—1))| = 2_(1+p)U> < 2eXp{

9—2(p+1),,2
2274 1)g2 }

= 2ex —22PU2 1 m =1,2
ep{ 198 2} ] >Mp, P 5y 4y )

and
2

PBU) = P (2Uas0)] 2 5) <o {~g5 b 1<i<ma
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oo
The above estimates together with the relation |J F, = F which implies that

p=0
{1Z(f)| >u} C U Lj A(j,p) U UO B(s) for all f € F yield that
p=1j=1 s=1
oo Mp mo
(sup|Z( )|>u><P UUA]p UB(S)
fer p=1j4=1 s=1
<> > P(AGP) + ) P(B(s))
p=1j=1 s=1
00 2wl —L 22pu2 o u2
< 2 2(D+1)2 0" "exp q — 12352 +2(D+1)o” “exp =

If u > MLY?clog"/? 2 with M > 16 (and L > 1 and 0 < o < 1), then

2 2 2p 2
92pL ;—L exp {_55](;“2} < 92pL ,—L <2>2 M*L/256 < 9-pL < 9-p
o

for all p=0,1..., hence the previous inequality implies that

= 22Py? u?
P(sup|Z(f)|>u| <2(D+1)) 2 pexp{_%b‘a?}:4(D+1)6Xp{_25602}'

fer =

Theorem 4.2 is proved.

With an appropriate choice of the bound of the integrals in the definition of the
sets F), in the proof of Theorem 4.2 and some additional calculation it can be proved
that the coefficient i in the exponent of the right-hand side (4.7) can be replaced by
% with arbitrary small ¢ > 0 if the remaining (universal) constants in this estimate

are chosen sufficiently large.

The proof of Theorem 4.2 was based on a sufficiently good estimate on the proba-
bilities P(|Z(f) — Z(g)| > u) for pairs of functions f,g € F and numbers u > 0. In the
case of Theorem 4.1 only a weaker bound can be given for the corresponding probabil-
ities. There is no good estimate on the tail distribution of the difference S, (f) — S, (g)
if its variance is small. As a consequence, the chaining argument supplies only a weaker
result in this case. This result, where the tail distribution of the supremum of the
normalized random sums Sy, (f) is estimated on a relatively dense subset of the class of
functions f € F in the Lo(u) norm will be given in Proposition 6.1. Another result will
be formulated in Proposition 6.2 whose proof is postponed to the next section. It will
be shown that Theorem 4.1 follows from Propositions 6.1 and 6.2.

Before the formulation of Proposition 6.1 I recall an estimate which is a simple

consequence of Bernstein’s inequality. If S, (f) = \/%7 >~ f(&;) is the normalized sum of
j=1
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independent, identically random variables, P(|f(&1)| < 1) =1, Ef(&) =0, Ef(&)* <
02, then there exists some constant a > 0 such that

P(|Sn(f)] > w) < 2e7°/7" it 0 < u < no?. (6.1)

In Proposition 6.1 we give a good estimate on the probability P < sup |S,(f)| > %)
feFs

with some parameter A > 1 where F5 is an appropriate finite subset of a set of func-
tions JF satisfying the conditions of Theorem 4.1. We can give a good estimate for
the above probability not for all v > 0, but only for such numbers v which are in an
appropriate interval depending on the parameter o appearing in condition (4.2) of The-
orem 4.1 and the parameter A we chose in Proposition 6.1. This fact is closely related
to the condition imposed on the number « in formula (4.4) of Theorem 4.1. The choice
of the set of functions F5 C F depends of the number u appearing in the probability
we want to estimate. It is such a subset of relatively small cardinality of F whose
Lo(p)-norm distance from all elements of F is less than ¢ = (u) with an appropriately
defined number (u). To reduce the proof of Theorem 4.1 to that of Proposition 6.2
which will be formulated later we still need some upper and lower bounds on the value
of &(u). Proposition 6.1 also contains such estimates.

Proposition 6.1. Let us have a countable Lo-dense class of functions F with parameter
D > 1 and exponent L > 1 with respect to some probability measure p on a measurable
space (X, X) whose elements satisfy relations (4.1), (4.2) and (4.3) with this probability
measure [ and real number 0 < o < 1. Take a sequence of independent, p-distributed
random variables &1, ...,&,, n > 2, and define the normalized random sums S,(f) =

\/Lﬁ S f(&), for all f € F. Let us fiv some number A > 1. There exists some number
=1

M = M(A) such that with these parameters A and M = M(A) > 1 the following
relations hold.

For all numbers u > 0 such that no? > (%)2 > M(Llog% + log D) a number
g =20(u), 0 < <o <1, and a collection of functions Fz = {f1,...,fm} C F
with m < D&~ elements can be chosen in such a way that the sets D; ={f: f €
F,[If = fi12du <52}, 1 < j <m, satisfy the relation |J D; = F, and the normalized

7j=1
random sums Sy, (f), f € Fs, n > 2, satisfy the inequality

u u 2 e 2 2 2
> 1 < — _ > (L) > =
P (fseujgg |Sn(f)] > A) < 4exp{ « <10A0> } if no® > (%) > M(Llog £ +log D)

(6.2)
with the constants o in formula (6.1) and the exponent L and parameter D of the
Lo-dense class F, and also the inequality 1—16(%?)2 > no? > 6i4 (ALU)2 holds with the
number & = a(u). If the number u satisfies also the inequality

2 2
no? > <E> > M (L3/2 log — + (log D)3/2) (6.3)
o

g
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with a sufficiently large number M = M(A), then the relation ng? > Llogn + log D
holds, too. (Formula (6.3) is a stonger restriction than the previous condition im-
posed on the number ()2, since it contains constants L*/? and (log D)3/? instead of L

and log D, and the constant M = M (A) can be chosen larger in it.)

Proposition 6.1 helps to reduce the proof of Theorem 4.1 to the case when the Lo-
norm of the functions in the class F is bounded by a relatively small number . In more
detail, the proof of Theorem 4.1 can be reduced to a good estimate on the distribution

of the supremum of random variables sup |S,(f — f;)| for all classes D;, 1 < j < m,
f€D;

by means of Proposition 6.1. We also havé: to know that the number m of the classes

D; is not too large. Besides, we need some estimates on the number o which is the

upper bound of the Ly-norm of the functions f — f;, f € D;. To get such bounds for &

that we need in the applications of Proposition 6.1 we introduced a large parameter A

in the formulation of Proposition 6.1 and imposed a condition with a sufficiently large

number M = M(A) in formula (6.3). This condition reappears in Theorem 4.1 in the
conditions of the estimate (4.4).

Let me remark that one of the inequalities the number ¢ introduced in Proposi-
tion 6.1 satisfies has the consequence u > const./nd? with an appropriate constant,

and we want to estimate the probability P <sup Sn(f)| > uw | with this number u and
ferF

a class of functions F whose Ly norm is bounded by &. Formula (6.1), that will be
applied in the proof of Proposition 6.1 holds under the condition u < /no?, which is
an inequality in the opposite direction. Hence to complete the proof of Theorem 4.1
with the help of Proposition 6.1 we need a result whose proof demands an essentially
different method. Proposition 6.2 formulated below is such a result. I shall show that
Theorem 4.1 is a consequence of Propositions 6.1 and 6.2. Proposition 6.1 is proved
at the end of this section, while the proof of Proposition 6.2 is postponed to the next
section.

Proposition 6.2. Let us have a probability measure 1 on a measurable space (X, X)
together with a sequence of independent and p distributed random variables &1, ..., &,
n > 2, and a countable, Lo-dense class of functions f = f(x) on (X,X) with some
parameter D > 1 and exponent L > 1 which satisfies conditions (4.1), (4.2) and (4.3)
with some 0 < o < 1 such that the inequality no?® > Llogn + log D holds. Then there
exists a threshold index Ay > 5 such that the normalized random sums Sy, (f), f € F,
introduced in Theorem 4.1 satisfy the inequality

P <Sup 1S, (f)] > An1/202> <AVt /2 A > A, (6.4)
fer

I did not try to find optimal parameters in formula (6.4). Even the coefficient —A'/?
in the exponent at its right-hand side could be improved. The result of Proposition 6.2
is similar to that of Theorem 4.1. Both of them give an estimate on a probability of

35



the form P (sup |Sn(f)] > u) with some class of functions F. The essential difference
fer

between them is that in Theorem 4.1 this probability is considered for v < n
while in Proposition 6.2 the case u = An'/2¢62 with A > Ay is taken, where A is a
sufficiently large positive number. Let us observe that in this case no good Gaussian type
estimate can be given for the probabilities P(S, (f) > u), f € F. In this case Bernstein’s

inequality yields the bound P(S,,(f) > An'/?¢?) = P (Z f&) > an) < ¢—const. Ano?
=1

1/2 52

with u = Ay/no and V,, = \/no for each single function f € F which takes part in the
supremum of formula (6.4). The estimate (6.4) yields a slightly weaker estimate for the
supremum of such random variables, since it contains the coefficient A'/2 instead of A
in the exponent of the estimate at the right-hand side. But also such a bound will be
sufficient for us.

In Proposition 6.2 such a situation is considered when the irregularities of the
summands provide a non-negligible contribution to the probabilities P(|S,(f)| > w),
and the chaining argument applied in the proof of Theorem 4.2 does not give a good
estimate on the probability at the left-hand side of (6.4). This is the reason why we
separated the proof of Theorem 4.1 to two different statements given in Proposition 6.1
and 6.2.

In the proof of Theorem 4.1 Proposition 6.1 will be applied with a sufficiently
large number A > 1 and an appropriate number M = M (A) appearing in the for-
mulation of this result. Proposition 6.2 will be applied for the set of functions F =

Fi= {g;fj t g€ Dj} and number ¢ = &, with the number &, functions f; and sets of

functions D; introduced in Proposition 6.1 and with the parameter Ay appearing in the
formulation of Proposition 6.2. We can write
) (6.5)

(5792 (-54)),

where m is the cardinality of the set of functions F5; appearing in Proposition 6.1,
which is bounded by m < Dg=F. We Want to choose the number A in such a way
that the inequality ( 5 — —)u > Agy/na? holds, since this enables us to estimate the
second term in (6. 5) by Proposmon 6.2 with the choice A = Ay. This inequality

is equivalent to ng? < (ﬁ - m)%%)? On the other hand, ( T5=)? > na® by

Proposition 6.1, hence the desired inequality holds if 21 5 Al e A Hence with the

choice A = max(1, %) and a sufficiently large M = M (A) we can bound both terms
at the right-hand side of (6.5) with the help of Propositions 6.1 and 6.2.

| 2

fer fE€Fs

+ZP<sup

P (sup 1Sn(f)| > u) <P (SUP 1S ()] >

geD
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With such a choice of A we can write by Proposition 6.2

fi—yg 11 fi—9g .
i (p s (57)]= (G -a) ) =7 (p s (%77)) ZAWQ)

1/2 _
< e A M2 forall 1 < G < m.

(Observe that the set of functions ! o ¢ g € Dj, is an La-dense class with parameter

D and exponent L.) Hence Proposition 6.1 together with the bound m < D&~% and
formula 6.5 imply that

U 2 /2 _2
P S (A >u] <4 - _ D Le=Ad ma7/2, 6.6
(pmise1z ) < {oa ()"} ot oo

To get the estimate in Theorem 4.1 from inequality (6.6) we show that the inequality
no? > Llogn +logD (with L > 1, D > 1 and n > 2) which is valid under the
conditions of Proposition 6.1 implies that Do—F < end”, Indeed, we have to show that
logD+Llog% < na?. But we have ng? > Llogn > logn, hence % <, /@ < n, thus
log% < logn, and log D + Llog % log D + Llogn < na?, as we claimed.

u

1 2 : -
51(+5)%, proved in Proposi-

. . . . . . 72
This inequality together with the inequality no® > & (%

tion 6.1 imply that

) AL? A -2 ?
st (A1) ) <o {20 (1)

Hence relation (6.6) yields that

e w2 (A(l)/2—2) A
P(?‘QE’S”“)'Z“) S“Xp{‘m ;) }*exp{‘W@ »

and because of the relation Ag > 5 this estimate implies Theorem 4.1. Let me re-
mark that the condition y/no? > u > Mo(L**log!/? 2 + (log D)*/*) appears in for-
mula (4.4) because of condition (6.3) imposed in Proposition 6.1. (The parameter M
in formula (4.4) can be chosen as the double of the parameter M in (6.3).)

I finish this section with the proof of Proposition 6.1.

Proof of Proposition 6.1. Let us list the members of F, as fi, fo,..., and choose for all

p=0,1,2,... aset F, = {faq1p)-- s fampy.p)} CF with m,, < D 22°Ls—L elements in

such a way that 1<igf J(f = fagip)? dp < 27%02 for all f € F. For all indices a(j, p),
)My

p=1,2,...,1<j <m,, choose a predecessor a(j',p—1), 7' =j'(4,p), 1 < j < myp_1,
in such a way that the functions f,;,) and fu( p,—1) satisfy the relation i | faGip) —
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e 2
fa(j’,p—1)|2dM S 0-22—4(11—1). Then we have f (fa(ﬁ’m J;a(J 7p—1)> du S 40.22—4]? and
fa(p) (@)= fa(ir ,p—1)(®)

2

sup < 1. Relation (6.1) yields that

reX

' 1 9—(1+p)y, 2Py \
P(A(j,p)) =P (§|5n(fa(j,p> ~ fagrp-0))l 2 =55 — ) S Zexp {_O‘ (8[10)

2
if n02226p( ) 1<j<my, p=12..., (6.7)

16 Ao

and

Choose an integer number R = R(u), R > 1, by the inequality 206(F+1) (ﬁ)2 >

no? > 268 (ﬁ){ define 2 = 27*F¢2 and F5 = Fg. (As no? > (%)2 and 4 > 1
by our conditions, there exists such a number R > 1. The number R was chosen as
the largest number p for which the second relation of formula (6.7) holds.) Then the
cardinality m of the set F5 equals mp < D2?Flo=L = Ds— L and the sets D; are
D; ={f: f e F [(fagr — [)Pdp < 27*F6?}, 1 < j < mp, hence Y D; = F.
j=1
Besides, with our choice of the number R inequalities (6.7) and (6.8) can be applied
for 1 < p < R. Hence the definition of the predecessor of an index (j,p) implies that

{w: sup |8, (f)(w)| > %} < U U a6.pu U ). and

fEFs p=1j=1

R mp mo
P (fsgjgg S (f)] > z) <P pszl ]L:Jl A(j,p) U SL:JlB(s>
R mp mo 00 9Py, 2
<SS PAGE) + Y P(B(s) £ 3202 0 Fexp {—a (8 AJ) }
p=1j=1 s=1 p=1

+2Do Lexp {—a (%)2} .

If the relation (%)? > M (Llog 2 + log D) holds with a sufficiently large constant M
(depending on A), and ¢ < 1, then the inequalities

2Py \ 2 2Py 1\ 2
D22pL —L . _ < 9P . -
o exp{ Oé(SAO_) } < exp{ a<10A0> }
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hold for all p=1,2,..., and
2 uw \2
pr-ten {0 (1)) <o )}
’ eXp{ i) =PV " Q040
Hence the previous estimate implies that
P s sup= ) <3 2 0 e d—a (20
fep, =7 | = P 1040
u \2 u \2
sen o ()} <100 o (1)}
+ eXp{ T }— eXp{ “N104s

and relation (6.2) holds.
As 0% = 24252 the inequality

u \2 20(R+L) /gy N2 1 u \2
N« 52 = 9—4R, 52 < 9—4R <?> _ 1 .9—2R (?>
(A(;) =ne "= 256  \ Ao A

26R

_4R - —
256

holds, and this implies (together with the relation R > 1) that

() e ()
— (= no — [ =
64 \Aoc/ — — 16 \Ag/ ’

as we have claimed. It remained to show that under the condition (6.3) ng? > Llogn +
log D.

This inequality clearly holds under the conditions of Proposition 6.1 if & < n=1/3,
since in this case log 2 > 2% and ng? > L ()? > L M(L*?log 2 4 (log D)3/?) >
ooz M(L3/? logn + (log D)3/2) > Llogn + logD if M > My(A) with a sufficiently
large number My(A).

If o > n~ /3, we can exploit that the inequality 26% (%)2 < 256mo? holds because

w 2 2/3
of the definition of the number R. It can be rewritten as 2~ 4% > 9-16/3 [(Al)

no?

Hence ng? = 274fng? > 2;1%3 (no?)t/3 (%)4/3. Aslog2 >log2 > i the inequalities

no? > nl/3 and (%)2 > M(L*?log 2 + (log D)3/2) > 2 (L3/% + (log D)3/?) hold. They
yield that

A—4/3
., A /
no® >

4/3 A—4/3 2/3
(n02)1/3 <E) / > A50 nl/9 <%) (L3/2 i (logD)3/2)2/3
o

- M?/3pY9(L + log D)
- 100A44/3

> Llogn +log D
if M = M(A) is chosen sufficiently large.
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7. The completion of the proof of Theorem 4.1.

This section contains the proof of Proposition 6.2 with the help of a symmetrization
argument which completes the proof of Theorem 4.1. By symmetrization argument I
mean the reduction of the investigation of sums of the form ) f(§;) to sums of the
form > e;f(z;), where ¢; are independent random variables, independent also of the
random variables ¢;, and P(e; = 1) = P(e; = —1) = 5. First a symmetrization lemma
is proved, and then with the help of this result and a conditioning argument the proof
of Proposition 6.2 is reduced to the estimation of a probability which can be bounded
by means of the Hoeffding inequality formulated in Theorem 3.4. Such an approach
makes possible to prove Proposition 6.2.

First I formulate the symmetrization lemma we shall apply.

Lemma 7.1. (Symmetrization Lemma). Let Z,, and Z,, n = 1,2,..., be two
sequences of random variables independent of each other, and let the random variables
Zn,n=1,2,..., satisfy the inequality

P(|Z,| <a)>pB foralln=1,2,... (7.1)

with some numbers o > 0 and > 0. Then

1 _
P( sup |Zn\>u+a)§BP( sup ]Zn—Zn]>u) for all u > 0.

1<n<oco 1<n<oco

Proof of Lemma 7.1. Put 7 = min{n: |Z,| > u + a} if there exists such an index n,
and 7 = 0 otherwise. Then the event {7 = n} is independent of the sequence of random
variables Z1, Zs,... for all n =1,2,..., and because of this independence

P({r =n}) < %P({r —n} N {|Zs] < a}) < %P({r =1} N {|Zn — Za] > u})

for alln =1,2,.... Hence

P( sup |Zn|>u+oz>:ZP(T %Z {r=00n{Z — Zi| > u})
=1 =1

1<n<oo

oo

S%ZP({T:Z}O sup |Zn_Zn|>U})§%P< sup |Zn_Zn|>u>'

1<n<oo 1<n<oo

Lemma 7.1 is proved.
We shall apply the following Lemma 7.2 which is a of the symmetrization lemma.

Lemma 7.2. Let us fiz a countable class of functions F on a measurable space (X, X)
together with a real number 0 < o < 1. Consider a sequence of independent and
identically distributed random variables &1, ..., &, with values in the space (X, X) such
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that Ef(&) =0, Ef?(&1) < o2 for all f € F together with another sequence €1, ..., ¢ex

of independent random variables with distribution P(e; = 1) = P(e; = —1) = 1,
1 < j < n, independent also of the random sequence &1, ...,&,. Then
P sup f&)| > An'/?o?
\/_ feF ; !
(7.2)
3v2
< 4P sup eif(&)] > n'/2g? fA>—.
\/— fer ]2; J J \/—0_
Proof of Lemma 7.2. Let us construct an independent copy El, e ,En of the sequence
£1,...,&, in such a way that all three sequences &1,...,&n, &1,...,&, and €1,...,6p

are independent. Define the random variables S, (f) = % Z f(&) and S,(f) =

\/Lﬁ > (&) for all f € F. The inequality

j=1

fer ferF

P (sup 1Sn(f)] > Aﬁ02> <2P (sup 1S (f) — Sn(f)] > %A\/ﬁa2> : (7.3)

follows from Lemma 7 1 if it is applied for the countable set of random variables Z,,(f) =
Sn(f) and Z,(f) = Sn(f), f € F, and the numbers u = 24\/no? and o = 1A\/_0
since the random fields S, (f) and S, (f) are independent, and P(|S,(f)| < a) 1 for
all f € F. Indeed, a = $Ay/no? > V20, ES,(f)? < 0%, thus Chebishev’s inequahty
implies that P(|S,(f)| < a) > P(|S,(f)| < V20) > % for all f € F.

Let us observe that the random field

Sulf) = 5u(f) = =3 (f&) - £&)), feF (7.4)

n -
Jj=1

and its randomization
1 — B
e (&)~ 1E), JeF, (74
j=1

have the same distribution. Indeed, even the conditional distribution of (7.4") under the
condition that the values of the ¢;-s are prescribed agrees with the distribution of (7.4)
for all possible values of the €;-s. This follows from the observation that the distribution
of the random field (7.4) does not change if we exchange the random variables £; and
¢; for those indices j for which e; = —1 and do not change them for those indices j
for which €; = 1. On the other hand, the distribution of the random field obtained in
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such a way agrees with the conditional distribution of the random field defined in (7.4)
under the condition that the values of the random variables €; are prescribed.

The above relation together with formula (7.3) imply that

P sup f(&) >Anl/22
\/_fefz ’
2
<2P sup € FEN]] > S Ant/202
\/—fe]-‘zj 2l 3
1
< 2P | — sup eif(&)] > n'/2g?
x/ﬁ,fef'jgj T
+ 2P sup € § > nt/252
_ A /252
=4P sup Zgjfﬁj >

\/— fer i

Lemma 7.2 is proved.

First I ty to explain the method of proof of Proposition 6.2. A probability of the
form P (n_1/2 sup | > f(&)] >

fEF |j=1

u) has to be estimated. Lemma 7.2 enables us to re-
n
place this problem by the estimation of the probability P (n_l/ Zsup | &5 f(&)] > %)
feF |i=1
with some independent random variables ¢, P(e; = 1) = P(e; = —1) =1, j=1,...,n,
which are also independent of the random variables £;. We shall bound the conditional
probability of the event appearing in this modified problem under the condition that
each random variable &; has a prescribed values. This can be done with the help of
Hoeffding’s inequality formulated in Theorem 3.4 and the Ls-density property of the
class of functions F we consider. We hope to get a sharp estimate in such a way which
is similar to the result we got in the study of the Gaussian counterpart of this problem,
because Hoeffding’s inequality yields always a Gaussian type upper bound for the tail
distribution of the random sum we are studying.

Nevertheless, there appears a problem when we try to apply such an approach. To
get a good estimate on the conditional tail distribution of the supremum of the random
sums we are studying with the help of Hoeffding’s inequality we need a good estimate
on the supremum of the conditional variances of the random sums we are studying, i.e.

n
on the tail distribution of sup % >~ f2(&;). This problem is similar to the original one,
feF = j=1
and it is not simpler.
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But a more detailed study shows that our approach to get a good estimate with the
help of Hoeffding’s inequality works. In comparing our original problem with the new,
complementary problem we have to understand at which level we need a good estimate
on the tail distribution of the supremum in the complementary problem to get a good
tail distribution estimate at level u in the original problem. A detailed study shows that
to bound the probability in the original problem with parameter u we have to estimate

feF |j=1
defined Ls-dense class of bounded functions F’ and some number o > 0. We shall
exploit that the number u is replaced by a larger number u'T® in the new problem.
Let us also observe that if the sum of bounded random variables is considered, then
for very large values u the probability we investigate equals zero. On the basis of these
observations an appropriate backward induction procedure can be worked out. In its
n
n-th step we give a good upper bound on the probability P (n_1/2 sup | >, f(&)] > u)
feF |j=1
if u > T,, with an appropriately chosen number 7;,, and try to diminish the number T},
in each step of this induction procedure. We can prove Proposition 6.2 as a consequence

of the result we get by means of this backward induction procedure. To work out the
details we introduce the following notion.

n
the probability P <n_1/ 2sup | Y f(&)] > u'T | with some new nice, appropriately

Definition of good tail behaviour for a class of normalized random sums.
Let us have some measurable space (X, X) and a probability measure p on it together
with some integer n > 2 and real number o > 0. Consider some class F of functions
f(x) on the space (X, X), and take a sequence of independent and p distributed random
variables &1, . . ., &, with values in the space (X, X). Define the normalized random sums

Sn(f) = \/Lﬁ '21 f(&), f € F. Given some real number T' > 0 we say that the set of
]:

normalized random sums S,(f), f € F, has a good tail behaviour at level T (with
parameters n and o which will be fived in the sequel) if the inequality

P <sup 1Sn(f)| > A\/HJQ) < exp {—A1/2n02} (7.5)
fer

holds for all numbers A > T.
Now I formulate Proposition 7.3 and show that Proposition 6.2 follows from it.

Proposition 7.3. Let us fir a positive integer n > 2, a real number 0 < o < 1 and a

probability measure ju on a measurable space (X, X) together with some numbers L > 1

and D > 1 such that no? > Llogn + log D. Let us consider those countable Lo-dense

classes F of functions f = f(x) on the space (X, X) with exponent L and parameter D

for which all functions f € F satisfy the conditions sug f(@)] < 3, [ fl@)pu(dz) =0
xe

and [ f2(z)p(dz) < o
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Let a number T > 1 be such that for all classes of functions F which satisfy the above
conditions the set of normalized random sums S, (f) = \/Lﬁ > f(&), [ eF, defined with
j=1

the help of a sequence of independent u distributed random wvariables &1, ..., &, have a
good tail behaviour at level T*/3. There is a universal constant Ay such that if T > Ay,
then the set of the above defined normalized sums, S,(f), f € F, have a good tail
behaviour for all such classes of functions F not only at level T*/? but also at level T.

Proposition 6.2 simply follows from Proposition 7.3. To show this let us first observe
that a class of normalized random sums S,,(f), f € F, has a good tail behaviour at level
Ty = ﬁ if this class of functions F satisfies the conditions of Proposition 7.3. Indeed,

in this case P (sup IS.(f)| > Ayno? | < P <sup 1Sn(f)| > ‘/TE =0 for all A > Tj.
fer fer

Then the repetitive application of Proposition 7.3 yields that a class of random sums
Su(f), f € F, has a good tail behaviour at all levels 7' > Té3/4)J with an index j such
that T, 0(3/ 4’ > A if the class of functions F satisfies the conditions of Proposition 7.3.
Hence it has a good tail behaviour for T' = flg/ ®_ If a class of functions f € F satisfies the
conditions of Proposition 6.2, then the class of functions F = { f= {: ferF } satisfies

the conditions of Proposition 7.3, with the same parameters o, L and D. (Actually some
of the inequalities that must hold for the elements of a class of functions F satisfying
the conditions of Proposition 7.3 are valid with smaller parameters. But we did not
change these parameters to satisfy also the condition no? > Llogn + log D.) Hence
the class of functions S, (f), f € F, has a good tail behaviour at level T = flg/ % This
implies that the original class of functions F satisfies formula (6.4) in Proposition 6.2,
and this is what we had to show.

Proof of Proposition 7.3. Fix a class of functions F which satisfies the conditions of
Proposition 7.3 together with two independent sequences &1,...,&, and €1,...,e, of
independent random variables, where ; is p-distributed, P(e; = 1) = P(e; = —1) = 3,
1 <7 <n, and investigate the conditional probability

0
1
2

1 |— A
P(f, Al&r, ..., &) =P 7 ;sjf@j) > SVno? |6 G

for all functions f € F, A > T and values ({1, . ..,&,) in the condition. By the Hoeffding
inequality formulated in Theorem 3.4

LAZ 4
P(f, Alé1, .. &) < 2exp{—2§2(3]? &"_‘f' : )} (7.6)

with

n

S%(f, w1,y an) = %Zﬂ(a:j), feF.

Jj=1
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Let us introduce the set

H=H(A) = {(ml,...,xn): sup S2(f, 1, .., 2n) > (1—|—A4/3> 02}. (7.7)

fer

I claim that 2 s
P((&1,..., &) €H)<e A if AST. (7.8)

(The set H plays the role of the small exceptional set, where we cannot provide a good
estimate for P(f, A|¢1,...,&,) for some f € F.)

To prove relation (7.8) let us consider the functions f = f(f), f(z) = f%(z) —
[ f2(x)p(dx), and introduce the class of functions F = {f(f): f € F}. Let us show that

the Class of functions F satisfies the conditions of Proposition 7.3, hence the estimate
(7.5) holds for the class of functions F if A > T4/3.

The relation [ f(z)u(dz) =0 clearly holds. The Condltlon sup |f(z )| § % < Lalso

holds1fsup|f( )|<4,andff2 p(de) < [ fAo)p(de) < {5 [ (@) p(de) < & <

2 if f € F. It remained to show that ]-" is an L2 dense class with exponent L and
parameter D. For this goal we need a good estimate on [(f(z) — g(z))*p(dz), where
f, g€ F,and pis an arbltrary probability measure.

Observe that [(f(z) — g(z))?p(dz) < 2 [(f?(x) — ¢*())*p(dx) +2f f2 _

9°(x )) p(dx) < 2(Sup(|f( )| + 1g(2)])? (f(f(x)—g( ))*(p(dz) + p(da)) < [(f
g(2))?p(dx) for all f,g € F, f = f(f), 3 = §(g) and probability measure p, Where

p = pJFT“. This means that if {f1,..., fi} is an e-dense subset of F in the space
Ly(X, X, p), then {fl, ..., fm} is an e-dense subset of F in the space Lo(X, X, p), and
not only F, but also F is an Ls-dense class with exponent L and parameter D.

2

Because of the conditions of Proposition 7.3 we can write for the number A3 >
T4/3 and the class of functions F that

P((&1,...,6,) € H) =P | sup lzf(f)<§j)+%ZEf2(fj) > (1—|—A4/3> 52
Jj= j=1

=1
Zf(f) > A4/3p1/2 52 < 6—A2/3no27

i.e. relation (7.8) holds.
By formula (7.6) and the definition of the set H given in (7.7) the estimate

P(f, Alér, ... 6n) <201 g gy 6 ¢ H (7.9)

holds for all f € F and A > T > 1. (Here we used the estimate 1+ A%/3 < 24%/3.) Let
us introduce the conditional probability

A
P(JT_-aA‘gl?vgn): sSup —= \/— Zgjf 5] el g\/ﬁoz 517"'7€n

fer
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for all (&1,...,&,) and A > T. We shall estimate this conditional probability with the
help of relation (7.9) if (&1,...,&,) ¢ H.

Given a vector z(™ = (1,...,2,) € X", let us introduce the measure v =
v(zy,...,2,) = v(z(™) on (X,Xx) which is concentrated in the coordinates of the
vector (™ = (z1,...,2,), and v({z;}) = L for all points z;, j = 1,...,n. If

[ 2(w)v(du) < 6% for a function f, then \/lﬁ Soejf(xy

j=1

)| <2 [ f(u)|v(du) < nl/2.

As a consequence, we can write that

n n 02 )
T2 et - 7= Y ialey)| < Gviot it [ - gt antw) < (5F-)

(7.10)
Let us list the elements of the (countable) set F as F = {f1, f2,...}, fix a num-
ber § = Ang, and choose for all vectors z(™ = (x1,...,2,) € X™ a sequence of in-

dices p1(z(™),..., pm(x(™) taking positive integer Values with m = max(1,Dé~ 1) =
max(1, D(25)) elements in such a way that 1<1{1<f J(f ()= fp, imy (w))? dv(z(™)(u) <

62 for all f € F and 2™ € X™ with the above defined measure v(2(™) on the space
(X, X). This is possible because of the Lo-dense property of the class of functions F.
(This is the point where the Lo-dense property of the class of functions F is exploited in
its full strength.) In a complete proof of Theorem 7.3 we still have to show that we can
choose the indices pj(x(”)), 1 < j < m, as measurable functions of their argument z(™
on the space (X", X™). We shall show this in Lemma 7.4 at the end of the proof.

Put £ (w) = (&(w),...,&n(w)). Because of relation (7.10), the choice of the
number § and the property of the functions f, ) (-) we have

v

w Sup\/— Z JW)f(§ (W) =

fer

i

C U w: 28] M puetm )y (65 (W) | =
=1

This relation together with inequality (7.9) yield that

P(.F,A‘fl,...,én < Z fpl(§<"))7A‘€17'--7€n)

6 \" 2/3, 3
< 2max |1 D(A 2) e~ AT ot /144
o

if (§&1,...,&,) ¢ H and A >T.
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If A > Ay with a sufficiently large constant Ay, then this inequality together with
Lemma 7.2 and the estimate (7.8) imply that

= 1 A
P sup f(&: >Anl/2 2] <4P [ —=sup e f(&)] > ntl2g?
\/_fe}‘;(J \/ﬁfef;j AR

L
< max | 4,8D <A6 2) ) e_A2/3"“2/144 + 46_‘42/3”‘72 ifA>T.
o

(7.11)
By the conditions of Proposition 7.3 the inequalities no? > Llogn + log D hold with
some L > 1, D > 1 and n > 2. This implies that no? > Llog2 > %, (%)L <
(#)L < npl = ellogn < e’ if A > Ay with some sufficiently large constant Ay > 0,

and 2D = elog2+log D < 37" Hence the first term at the right-hand side of (7.11) can
be bounded by

L
max (4 8D (A62> )6 Aot 144 o =AM o104 yetno® o
g

if A > Ay with a sufficiently large Ag. The second term at the right-hand side of (7.11)
can also be bounded as 4e—A**no” < %e*Al/Q”C’Q with an appropriate choice of the

number A.
By the above calculation formula (7.11) yields the inequality

1/2
P sup f& > An1/2 2 < G_A no?
\/—fe]-‘ Jz::l ’

if A > T, and the constant Ay is chosen sufficiently large.

To complete the proof of Proposition 7.3 we still prove the following Lemma 7.4 to-
gether with some of its generalizations needed in the proof of Propositions 15.3 and 15.4.
The latter results are those multivariate versions of Proposition 7.3 that we need in the
proof of the multivariate version of Proposition 6.2. We formulated them not in their
most general possible form, but in the way as we need them in this work.

Lemma 7.4. Let F = {f1, f2,...} be a countable and Ly-dense class of functions
with some exponent L > 0 and parameter D > 1 on a measurable space (X,X). Fizx

some positive integer n, and define for all (") = (1,...,2,) € X™ the probability
measure v(z(™) = v(z1,...,2,) on the space (X, X) by the formula v(z™)(z;) = L,
1 <j<mn. Foranumber 0 < e <1 put m = m(e) = [De~L], where [] denotes

integer part. For all 0 < ¢ < 1 there exists m = m(e) measurable functions p;(z(™),
1 <1< m, on the measurable space (X™, X™) with positive integer values in such a way

that 1<1%1<f J(F ) = fo ey (W) (2™ (du) < &% for all 2™ € X™ and f € F.
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In the proof of Proposition 15.3 we need the following result.

Lemma 7.4A. Let F = {f1, f2,...} be a countable and Lo-dense class of functions
with some exponent L > 0 and parameter D > 1 on the k-fold product (X*, X*) of a
measurable space (X, X) with some k > 1. Fiz some positive integer n, and define for

all vectors (™ = (xl(j), 1<1<n,1<j<k)ec Xk, where x(j) € X for all j and 1
the probability measure p(x™) on the space (X*,X*) by the formula p(z(™)(x l(j_), 1<
J<k 1<l <n)= nik for all sequences (xl(ll),. a:l(f)) 1<j <k, 1<1l; <n, with

coordinates of the elements of the vector (") = (z, (9) 1 <1 <n, 1<j<k). Forall
0 < e <1 there exist m = m(e) = [De™1] measumble functions pr(ac( ), 1< r < m,
on the measumble space (XF7, XF™) with positive integer values in such a way that

1<11r1£ JUf W) = fp, @y (W) 2p(x™)(du) < €2 for all 2™ € X*" and f € F.

In the proof of Proposition 15.4 we need the following result.

Lemma 7.4B. Let F = {fi1, f2,...} be a countable and Lo-dense class of functions
with some exponent L > 0 and parameter D > 1 on the product space (X* x Y, X* x )
with some measurable spaces (X, X) and (Y,Y) and integer k > 1. Fix some positive in-

teger n, and define for all vectors (") = (ml(j’l),xl(j’_l), 1<1<n,1<j<k)ec X?kn,

where xl(j’il) € X for all j and | a probability measure o(x™) in the space (X* x

Y, X% x ) in the following way. Fix some probability measure p on the space (Y,)) and
two +£1 sequences 5§k) = (e1,1y.--,€k,1) and 5( ) — (€1,2,...,€k,2) of length k. Define

with their help first the following probability measures oy (x(™) = al(x("),egk) egk),p)

and az(z™) = ay (x(”),ag ) 8gk),p) on (XF x Y, Xk x V) for all z™) € X", Let
al(w(”))({x(l €1, 1)} NI, { l(,]: €k, 1)} > B) — % and az(x(n))({xl(ll,&,z)} X oeee X

oY ) B) = &2 with 1 < l; < n for all 1 < j < k and B € Y if 7
(.7 ]2)

and x; are the appropriate coordinates of the vector x(") € X2k Put a(x(”))

al(m‘("));az(x( Y For all0 < e < 1 there exist m = m(e) = [De~L| measurable functions

pr(x(™), 1 <r <m, on the measumble space (XZIm XZF1) with positive integer values

in such a way that 1nf f — fpr(atmy (1))? a(z™)(du) < 2 for all ™ € X7
and f € F.

Proof of Lemma 7.4. Fix some 0 < € < 1, put the number m = m(e) introduced in
the lemma, and let us list the set of all vectors (ji,...,Jm) of length m with positive
integer coordinates in some way. Define for all of these vectors (ji,...,Jm) the set
B(j1,..-yjm) C X™ in the following way. We have (") = (21,...,2,) € B(j1,..-,jm)
if and only if 1nf f — fi, ()2 dv(x™)(u) < €% for all f € F. Then all sets

B(jl,...,jm) are measurable and  |J B(ji,.-.,Jm) = X" because F is an Lo-
(J15-20m)

dense class of functions with exponent L and parameter D. Given a point (™ =

(z1,...,2,) let us choose the first vector (ji,...,j5m) = (j1(z™), ..., jm (™)) in our

list of vectors for which (™ € B(ji,...,jm), and define p;(z(™ )) = ji(x(™) for all
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1 <1 < m with this vector (ji, ..., jm). Then the functions p;(z(™) are measurable, and
the functions f}, ), 1 <1 < m, defined with their help together with the probability

measures v(z(™) satisfy the inequality demanded in Lemma 7.4.

The proof of the Lemmas 7.4A and 7.4B is almost the same. We only have to modify
the definition of the sets B(ji,...,jm) in a natural way. The space of arguments z(™)
are the spaces X*” and X 2" in these two cases, and we have to integrate with respect
to the measures p(x(™) in the space X* and with respect to the measures a(z(™) in the
space X* x Y respectively. The sets B(ji,...,jm) are measurable also in these cases,
and the rest of the proof can be applied without any change.

8. Formulation of the main results of this work.

Former sections of this work contain estimates about the tail distribution of normalized
sums of independent, identically distributed random variables and about the tail dis-
tribution of the supremum of appropriate classes of such random sums. These results
were considered together with some estimates about the tail distribution of the integral
of a (deterministic) function and of the supremum of such integrals. These two kinds of
problems are closely related, and to understand them better it is useful to investigate
them together with their natural Gaussian counterpart.

In this section we formulate the natural multivariate versions of the above men-
tioned results. They will be proved in the subsequent part of this work. To formulate
them we have to introduce some new notions. In the subsequent sections I discuss some
new problems whose solution helps to work out some methods that enable us to prove
the results of this section. I finish this section with a short overview about the content
of the remaining part of this work. I shall also briefly indicate why it helps us to prove
the results formulated in this section.

I start this section with the formulation of two results, Theorems 8.1 and 8.2 to-
gether with some of their simple consequences which yield a sharp estimate about the tail
distribution of a multiple random integral with respect to a normalized empirical distri-
bution and about the analogous problem when the tail distribution of the supremum of
such integrals is considered. These results are the natural versions of the corresponding
one-variate results about the tail behaviour of an integral or of the supremum of a class
of integrals with respect to a normalized empirical distribution. They can be formu-
lated with the help of the notions introduced before, in particular with the help of the
notion of multiple random integrals with respect to a normalized empirical distribution
function introduced in formula (4.8).

To formulate the following two results, Theorems 8.3 and 8.4 and their conse-
quences, which are the natural multivariate versions of the results about the tail distri-
bution of partial sums of independent random variables, and of the supremum of such
sums we have to make some preparation. First we introduce the so-called U-statistics
which can be considered as the natural multivariate generalizations of the sum of in-
dependent and identically distributed random variables. Moreover, we had a good
estimation about the tail distribution of sums of independent random variables only if
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the summands had expectation zero, and we have to find the natural multivariate ver-
sion of this property. Hence we define the so-called degenerate U-statistics which can be
considered as the natural multivariate counterpart of sums of independent and identi-
cally distributed random variables with zero expectation. Theorems 8.3 and 8.4 contain
estimates about the tail-distribution of degenerate U-statistics and of the supremum of
such expressions.

In Theorems 8.5 and 8.6 we formulate the Gaussian counterparts of the above
results. They deal with multiple Wiener-1t6 integrals with respect to a so-called white
noise. The notion of multiple Wiener—It6 integrals and their properties needed to have
a good understanding of these results will be explained in a later section. Still two
results are discussed in this section. They are Examples 8.7 and 8.8, which state that
the estimates of Theorems 8.5 and 8.3 are in a certain sense sharp.

To formulate the first two results of this section let us consider a sequence of
independent and identically distributed random variables &1, ...,&, with values in a
measurable space (X, X). Let 1 denote the distribution of the random variables &;, and
introduce the empirical distribution of the sequence &1, ... &, defined in (4.5). Given
a measurable function f(zy,...,z%) on the k-fold product space (X*, X*) consider its
integral J, ,(f) with respect to the k-fold product of the normalized empirical measure
Vn(pn — p) defined in formula (4.8). In the definition of this integral the diagonals
z; = x;, 1 < j <1<k, were omitted from the domain of integration. The following
Theorem 8.1 can be considered as the multiple integral version of Bernstein’s inequality
formulated in Theorem 3.1.

Theorem 8.1. (Estimate on the tail distribution of a multiple random integral
with respect to a normalized empirical distribution). Let us take a measurable
function f(x1,...,x) on the k-fold product (X*, X*) of a measurable space (X, X) with
some k > 1 together with a non-atomic probability measure p on (X, X) and a sequence
of independent and identically distributed random variables &1, . . ., &, with distribution p
on (X, X). Let the function f satisfy the conditions

[flle = sup [f(z1,...,z6)[ <1, (8.1)
r;eX, 1<j<k

and

12 = / P, ) p(dey) . p(diy) < 0 (8.2)

with some constant 0 < o < 1. There exist some constants C' = Cy, > 0 and o = a, > 0,
such that the random integral J,, (f) defined by formulas (4.5) and (4.8) satisfies the
inequality

P(|Jnk(f)] > u) < Cmax (e_a(“/")2/k,e_o‘("“2)1/(k+l)> (8.3)

for all w > 0. The constants C' = C}, > 0 and o = oy > 0 in formula (8.3) depend only
on the parameter k.

Theorem 8.1 can be reformulated in the following equivalent form.
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Theorem 8.1'. Under the conditions of Theorem 8.1
P(|Jp i (f)] > u) < Cea(u/o)*' for all 0 < u < nF/2gk+1 (8.3)

with a number o, 0 < o < 1, satisfying relation in (8.2) and some universal constants
C=Cr>0, a=a, >0, depending only on the multiplicity k of the integral Jp 1 (f).

Theorem 8.1 clearly implies Theorem 8.1’, since in the case u < nk/2gk+1 the
first term is larger than the second one in the maximum at the right-hand side of for-
mula (8.3). On the other hand, Theorem 8.1’ implies Theorem 8.1 also if u > n*/2gk+1,

Indeed, in this case Theorem 8.1’ can be applied with ¢ = (un*k/Q)l/(kH) >oifu<
n¥/2 hence also condition 0 < & < 1 is satisfied. This yields that P (|J, ()| > u) <

Cexp{_o‘ (%)M} = Cexp {—a(nu?)/FTDLif nk/2 > 4 > nk/26M1 ] and rela-

tion (8.3) holds in this case. If u > n*/2, then P(|J, x(f)| > u) = 0, and relation (8.3)
holds again.

Theorem 8.1 or Theorem 8.1' state that the tail distribution P(|J, 1 (f)| > w)
of the k-fold random integral J, ;(f) can be bounded similarly to the probability
P(|const. on®| > u), where 7 is a random variable with standard normal distribution
and the number 0 < ¢ < 1 satisfies relation (8.2), provided that the level u we consider
is less than n*/20%+1. As we shall see later (see Corollary 1 of Theorem 9.4), the value
of the number ¢? in formula (8.2) is closely related to the variance of J,, x(f). At the
end of this section an example is given which shows that the condition u < n¥/2g%*1 is
really needed in Theorem 8.1'.

The next result, Theorem 8.2, is the generalization of Theorem 4.1’ for multiple
random integrals with respect to a normalized empirical measure. In its formulation
the notions of Lo-dense classes and countably approximability introduced in Section 4
are applied.

Theorem 8.2. (Estimate on the supremum of multiple random integrals
with respect to an empirical distribution). Let us have a non-atomic probability
measure p on a measurable space (X, X) together with a countable and Lo-dense class F
of functions f = f(x1,...,zk) of k variables with some parameter D > 1 and exponent
L > 1 on the product space (X*, X*) which satisfies the conditions

[ flloe = sup |f(z1,. . 2e)] <1, forall feF (8.4)
z;€X, 1<j<k

and

||fH§ :EfQ(gl,...,gk) :/f2(x177xk):u(daj1>ﬂ’(dxk) < 02 fO’I” a’llf €F

(8.5)
with some constant 0 < o < 1. There exist some constants C = C'(k) > 0, a = a(k) > 0
and M = M (k) > 0 depending only on the parameter k such that the supremum of the
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random integrals Jp 1 (f), f € F, defined by formula (4.8) satisfies the inequality

2/k
P (sup | Jn i (f)] > u) < Cexp {—a <E> } for those numbers u
rer 4 (8.6)
2/k 92
for which no? > (E) > M(L*?1og = + (log D)3/?),
o o
where the numbers D and L agree with the parameter and exponent of the La-dense

class F.

The condition about the countable cardinality of the class F can be replaced by
the weaker condition that the class of random variables J,, ,(f), f € F, is countably
approximable.

The condition given for the number u in formula (8.6) appears in Theorem 8.2
for a similar reason as the analogous condition formulated in (4.4) in its one-variate
counterpart, Theorem 4.1. The lower bound is needed, since we have a good estimate
in formula (8.6) only for v > E sup |.J,, x(f)|- The upper bound appears, since we have

fer

a good estimate in Theorem 8.1" only for 0 < u < n*/2g%+1 If a pair of numbers (u, o)
does not satisfy condition (8.6) then we may try to get an estimate by increasing the
number o or decreasing the number wu.

To formulate such a version of Theorems 8.1 and 8.2 which corresponds to the
results about sums of independent random variables in the case & = 1 the following
notions will be introduced.

Definition of U-statistics. Let us consider a function f = f(x1,...,x5) on the
k-th power (X* X*) of a space (X,X) together with a sequence of independent and
identically distributed random variables &1, ...,&,, n > k, which take their values in
this space (X, X). The expression

Inil) = > JIC (5.7

T (liyeenli): 1<0<n, j=1,....k,
i AL if j#5'

15 called a U-statistic of order k with the sequence &1,...,&,, and kernel function f.

Remark. In later calculations sometimes we shall work with U-statistics with kernel
functions of the form f(x,,,...,xy,) instead of f(x1,...,xx), where {uy,...,ux} is an
arbitrary set with different elements. The U-statistic with such a kernel function will
also be defined, and it equals the U-statistic with the original kernel function f defined
in (8.7), i.e.

I (f(Tuys- s @uy) = Ink(f(z1, ..., zk)). (8.7)

(Observe that if we define the function fr(x1,...,2x) = f(Zr),. .., Tr@)) for all per-
mutations 7 of the set {1,...,k}, then I, x(fr) = I.x(f), hence the above definition is
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legitimate.) Such a definition is natural, and it simplifies the notation in some calcula-
tions. A similar convention will be introduced about Wiener—It6 integrals in Section 10.

Some special U-statistics, called degenerate U-statistics, will be also introduced.
They can be considered as the natural multivariate version of sums of identically dis-
tributed random variables with expectation zero. Degenerate U-statistics will be defined
together with canonical kernel functions, because these notions are closely related.

Definition of degenerate U-statistics. A U-statistic I,, 1 (f) of order k with a se-
quence of independent and identically distributed random wvariables &q,...,&, is called
degenerate if its kernel function f(x1,...,xx) satisfies the relation

E(f(fl,,ﬁk)|§1 = xl,...,fj,l = :Ej,1,5j+1 = l‘j+1,...,§k = Ik) = 0
foralll <j<kandzs € X, s#j.

Definition of a canonical kernel function. A function f(z1,...,xy) taking values
in the k-fold product of a measurable space (X,X) is called a canonical function with
respect to a probability measure p on (X, X) if

/f(:z:l,...,:cj_l,u,:z;j+1,...,xk)u(du):O forall1<j<k and zs,€ X, s #j.
(8.8)

For the sake of more convenient notations in the future we shall speak also of U-
statistics of order zero. We shall write I,, o(c) = ¢ for any constant ¢, and I, o(c) will
be called a degenerate U-statistic of order zero. A constant will be considered as a
canonical function with zero arguments.

It is clear that a U-statistic I,, x(f) with kernel function f and independent -
distributed random variables &1, ..., &, is degenerate if and only if its kernel function is
canonical with respect to the probability measure p. Let us also observe that

for all functions of k£ variables.

The next two results, Theorems 8.3 and 8.4, deal with degenerate U-statistics. The-
orem 8.3 is the U-statistic version of Theorem 8.1 and Theorem 8.4 is the U-statistic
version of Theorem 8.2. Actually Theorem 8.3 yields a sharper estimate than Theo-
rems 8.1, because it contains more explicit and better universal constants. I shall return
to this point later.

Theorem 8.3. (Estimate on the tail distribution of a degenerate U-statistic).
Let us have a measurable function f(x1,...,xx) on the k-fold product (X*, X*), k > 1,
of a measurable space (X, X) together with a probability measure p on (X, X) and a
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sequence of independent and identically distributed random variables &1, ...,&,, n >k,
with distribution p on (X, X). Let us consider the U-statistic I, 1 (f) of order k with
this sequence of random variables &1, . .., &, . Assume that this U-statistic is degenerate,
i.e. its kernel function f(x1,...,x) is canonical with respect to the measure p. Let us
also assume that the function f satisfies conditions (8.1) and (8.2) with some number
0 < o < 1. Then there exist some constants A = A(k) > 0 and B = B(k) > 0 depending
only on the order k of the U-statistic I, 1, (f) such that

u2/*

202/k (1 +B (un—k/20-—(k+1))1/k>

P(E'n=* 2|1, 1(f)] > u) < Aexp — (8.10)

for all 0 < u < nk/2gh+1,
Let us also formulate the following simple corollary of Theorem 8.3.

Corollary of Theorem 8.3 Under the conditions of Theorem 8.3 there exist some
universal constants C = C(k) > 0 and o = (k) > 0 that

2/k
P(E'm ™21, 1(f)] > u) < Cexp {—a <E> } for all 0 < u < n*/2c%+1 (8.10)
o

The following estimate holds about the supremum of degenerate U-statistics.

Theorem 8.4. (Estimate on the supremum of degenerate U-statistics). Let
us have a probability measure p on a measurable space (X, X) together with a countable
and Lo-dense class F of functions f = f(x1,...,x) of k variables with some parameter
D > 1 and exponent L > 1 on the product space (X*, X*) which satisfies conditions
(8.4) and (8.5) with some constant 0 < o < 1. Let us take a sequence of independent
w distributed random variables &1, ..., &, n > k, and consider the U-statistics I, i (f)
with these random variables and kernel functions f € F. Let us assume that all these
U-statistics I, 1 (f), f € F, are degenerate, or in an equivalent form, all functions
f € F are canonical with respect to the measure . Then there exist some constants
C=C(k)>0,a=alk) >0 and M = M(k) > 0 depending only on the parameter k
such that the inequality

u\ 2/k
P supn 2|1, x(f)| >u| < Cexp {—a <—> } holds for those numbers u
fer o

: 5 [(U\2/F 3/21. 2 3/2
for which no® > > M(L**log — + (log D)*/),
o o

(8.11)
where the numbers D and L agree with the parameter and exponent of the Lo-dense

class F.
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The condition about the countable cardinality of the class F can be replaced by the
weaker condition that the class of random wvariables n_k’/QIn,k(f), f € F, is countably
approximable.

Next I formulate a Gaussian counterpart of the above results. To do this I need
some notions that will be introduced in Section 10. In that section the white noise with a
reference measure p will be defined. It is an appropriate set of jointly Gaussian random
variables indexed by those measurable sets A € X of a measure space (X, X, u) with
a o-finite measure p for which p(A) < oo. Its distribution depends on the measure p
which will be called the reference measure of the white noise.

In Section 10 it will be also shown that given a white noise uy with a non-atomic
o-additive reference measure ;1 on a measurable space (X, X') and a measurable function
f(x1,...,zx) of k variables on the product space (X*, X*) such that

/fQ(:I;l, oo rpp(dey) ..o p(doy) < 0% < 0o (8.12)

a k-fold Wiener-Ito integral of the function f with respect to the white noise py

Zn(f) = %/f(xl,...,xk)uw(d:cl)...uw(dsck) (8.13)

can be defined, and the main properties of this integral will be proved there. It will be
seen that Wiener-It6 integrals have a similar relation to degenerate U-statistics and mul-
tiple integrals with respect to normalized empirical measures as normally distributed
random variables have to partial sums of independent random variables. Hence it is
useful to find the analogs of the previous estimates of this section about the tail dis-
tribution of Wiener-Ito integrals. The subsequent Theorems 8.5 and 8.6 contain such
results.

Theorem 8.5. (Estimate on the tail distribution of a multiple Wiener—It6
integral). Let us fix a measurable space (X, X) together with a o-finite non-atomic
measure p on it, and let py be a white noise with reference measure p on (X, X). If
f(x1,...,xx) is a measurable function on (X%, X*) which satisfies relation (8.12) with
some 0 < 0 < o0, then

1 /u

PIIZ(0)] >0 < Com {5 (2)7) (8.14)

for all uw > 0 with some constants C = C(k) depending only on k.

Theorem 8.6. (Estimate on the supremum of Wiener—Ito integrals). Let F
be a countable class of functions of k variables defined on the k-fold product (X*, x%)
of a measurable space (X, X) such that

/fz(.rl,...,:z:k)u(da:l) .op(dxy) <0 with some 0 <o <1 forall feF
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with some non-atomic o-additive measure p on (X, X). Let us also assume that F is
an Lo-dense class of functions in the space (X*, X*) with respect to the measure p*
with some exponent L > 1 and parameter D > 1, where p* is the k-fold product of the
measure . (The classes of Lo-dense classes with respect to a measure were defined in
Section 4.)

Take a white noise pwy on (X, X) with reference measure p, and define the Wiener—
Ito integrals Z,, 1 (f) for all f € F. Fiz some 0 < e < 1. The inequality

1/ (1—eu\*
P (Jscg)__kHZuk(f)] > u) < CDexp {—5 (—) } (8.15)

g

holds with some universal constants C = C(k) > 0, M = M (k) > 0 for those numbers u
for which u > MLF/21 log"/? 2. o logh/? 2

Formula (8.15) yields an almost as good estimate for the supremum of Wiener—Ito
integrals with the choice of a small ¢ > 0 as formula (8.14) for a single Wiener—Ito6
integral. But the lower bound imposed on the number u in the estimate (8.15) depends
on ¢, and for a small number € > 0 it is large.

The subsequent result presented in Example 8.7 may help to understand why The-
orems 8.3 and 8.5 are sharp. Its proof and the discussion of the question about the
sharpness of Theorems 8.3 and 8.5 will be postponed to Section 13.

Example 8.7. (A converse estimate to Theorem 8.5). Let us have a o-finite
measure (1 on some measure space (X, X) together with a white noise puyw on (X, X)
with counting measure u. Let fo(x) be a real valued function on (X,X) such that
[ fo(z)?u(dz) =1, and take the function f(z1,...,2x) = ofo(x1) - fo(zk) with some
number o > 0 together with the Wiener—Ito integral Z, ,(f) introduced in formula
(8.13).

Then the relation [ f(x1,...,xx5)% p(dzy) ... p(dey) = o holds, and the Wiener—
Ito integral Z,, 1, (f) satisfies the inequality

C 1 2/k
PRNZ,k(f)] >u) > Wexp {—5 <g> } for allu >0 (8.16)

with some constant C > 0.

The above results show that multiple integrals with respect to a normalized em-
pirical measure or degenerate U-statistics satisfy some estimates similar to those about
multiple Wiener—It6 integrals, but they hold under more restrictive conditions. The
difference between the estimates in these problems is similar to the difference between
the corresponding results in Section 4 whose reason was explained there. Hence this
will be only briefly discussed here. The estimates of Theorem 8.1 and 8.3 are similar
to that of Theorem 8.5. Moreover, for 0 < u < en®/25k+t1 with a small number € > 0
Theorem 8.3 yields an almost as good estimate about degenerate U-statistics as Theo-
rem 8.5 yields for a Wiener—It6 integral with the same kernel function f and underlying
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measure y. Example 8.7 shows that the constant in the exponent of formula (8.14) can-
not be improved, at least there is no possibility of an improvement if only the Ls-norm
of the kernel function f is known. Some results discussed later indicate that neither the
estimate of Theorem 8.3 can be improved.

The main difference between Theorem 8.5 and the results of Theorem 8.1 or 8.3
is that in the latter case the kernel function f must satisfy not only an Lo but also an
L., norm type condition, and the estimates of these results are formulated under the
additional condition u < n¥/2¢5*1 Tt can be shown that the condition about the L,
norm of the kernel function cannot be dropped from the conditions of these theorems,
and a version of Example 3.3 will be presented in Example 8.8 which shows that in the
case u > n*/2cF*1 the left-hand side of (8.10) may satisfy only a much weaker estimate.
This estimate will be given only for £ = 2, but with some work it can be generalized for
general indices k.

Theorems 8.2, 8.4 and 8.6 show that for the tail distribution of the supremum of a
not too large class of degenerate U-statistics or multiple integrals a similar upper bound
can be given as for the tail distribution of a single degenerate U-statistic or multiple
integral, only the universal constants may be worse in the new estimates. However, they
hold only under the additional condition that the level at which the tail distribution
of the supremum is estimated is not too low. A similar phenomenon appeared already
in the results of Section 4. Moreover, such a restriction had to be imposed in the
formulation of the results here and in Section 4 for the same reason.

In Theorem 8.2 and 8.4 an Ls-dense class of kernel functions was considered, and
this meant that the class of random integrals or U-statistics we consider in this result is
not too large. In Theorem 8.6 a similar, but weaker condition was imposed on the class
of kernel functions. They had to satisfy a similar condition, but only for the reference
measure j of the white noise appearing in the Wiener—It6 integral. A similar difference
appears in the comparison of Theorems 4.1 or 4.1’ with Theorem 4.2, and this difference
has the same reason in the two cases.

I still present the proof of the following Example 8.8 which is a multivariate version
of Example 3.3. For the sake of simplicity I restrict my attention to the case k = 2.

Example 8.8. (A converse estimate to Theorem 8.3). Let us take a sequence
of independent and identically distributed random variables &1, . .., &, with values in the
plane X = R? such that & = Mj1,m5,2), nj1 and nj 2 are independent random variables
with the following distributions. The distribution of n;1 is defined with the help of a
parameter o2, 0 < 02 < %, in the same way as the distribution of the random variables
Xj m Ea:ample 33, 1.€. nj1 = ﬁj,l _Eﬁj,l with P(ﬁj,l = 1) = 5'2, P(ﬁj,l = 0) =1 —5’2,
where 62 is that solution of the equation x? — x + 02 = 0, which is smaller than % The
distribution of the random variables is given by the formula P(njo = 1) = P(nj2 =
—1) = 1 for all 1 < j < n. Introduce the function f(z,y) = f((z1,22), (y1,92)) =
T1ys + Toy1, © = (x1,22) € R*, y = (y1,42) € R* if (z,y) is in the support of the
distribution of the random vector (£1,&3), i.e. if x1 and yy take the values 1 —&% or —&2
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and x4 and yo take the values £1. Put f(z,y) = 0 otherwise. Define the U-statistic
1 1
Ina(f) = 5 Y f(&.&) = 3 > (iamke + kan;z)
1<j,k<n, j#k 1<j,k<n, j#k

of order 2 with the above kernel function f and sequence of independent random variables

&1y. .y &n. Then I, 5(f) is a degenerate U-statistic, |sup f(z,y)| <1 and Ef*(&,&;) =
2

o°.

If u > Bino? with some appropriate constant By > 2, B;ln > u > Bon Y2 with
a sufficiently large fized number By > 0 and % > g% > #, and n is a sufficiently large
number, then the estimate

P(n 'L, 2(f) > u) > exp {—Bn1/3u2/3 log (L)} (8.17)

nos
holds with some B > 0.

Remark: In Theorem 8.3 we got the estimate P(n™'I,2(f) > u) < e %/ for the
above defined degenerate U-statistic I, o(f) if 0 < u < no3. In the particular case
u = no® we have the estimate P(n™11, 5(f) > no3) < e="7" On the other hand, the
above example shows that in the case u > no® we can get only a weaker estimate. It
is worth looking at the estimate (8.17) with fixed parameters n and u and to observe

the dependence of the upper bound on the variance o2 of I, o(f). In the case o2 =

u?/3n=2/3 we have the upper bound e—an'/Fut/? Example 8.8 shows that in the case

0% <« u?/3n=2/3 we can get only a relatively small improvement of this estimate. A
similar picture appears as in Example 3.3 in the case k = 1.

It is simple to check that the U-statistic introduced in the above example is degen-
erate because of the independence of the random variables 7; 1 and 7; 2 and the identity
Enj1 = En;2 = 0. Besides, Ef(£;,£;)? = o2, In the proof of the estimate (8.17) the
results of Section 3, in particular Example 3.3 can be applied for the sequence 7; 1,
7 =1,2,...,n. Besides, the following result known from the theory of large deviations
will be applied. If X;,..., X, are independent and identically distributed random vari-
ables, P(X; = 1) = P(X; = —1) = 1, then for any number 0 < o < 1 there exists some

numbers C; = C(«) > 0 and Cy = Co(«) > 0 such that P (Z X; > u) > Cpe—Cav?/n
j=1
for all 0 < u < an.

Proof of Example 8.8. The inequality
P(n 'o(f) >u) > P Znﬂ an,g >4nu | — P Zﬁj,lﬂjz > 2nu
j=1 j=1 j=1

holds. Because of the independence of the random variables 7,1 and n;2 the first
probability at the right-hand side of (8.18) can be bounded from below by bounding the
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multiplicative terms in it with v; = 4n'/3u?/3 and vy = n?/3u!/3. The first term will
be estimated by means of Example 3.3. This estimate can be applied with the choice
y = vy, since the relation v; > 4no? holds if u > Byno?® with B; > 1, and the remaining
conditions 0 < 02 < % and n > 4v; > 6 also hold under the conditions of Example 8.8.
The second term can be bounded with the help of the large-deviation result mentioned
after the remark, since vy < %n ifu< BQ_ Lp with a sufficiently large By > 0. In such a
way we get the estimate

n n n

n
P Z ni1 Z nj,2 >4nu | > P an’l > U1 P Z nj,2 > U9
j=1

J=1 Jj=1 Jj=1

> Cexp {—Blvl log ( . ) - Bz%} > Cexp {—33711/3“2/3 log <L3)}

v
no? no

with appropriate constants By > 1, By > 0 and B3z > 0. On the other hand, by applying
Bennett’s inequality, more precisely its consequence given in formula (3.4) for the sum
of the random variables X; = 1; 17,2 at level nu instead of level u we get the following
upper bound for the second term at the right-hand side of (8.18).

" u
P e >2nu | < {—K 1 —}
; 7’].77]_77972 nu S eXp nu Og 0_2

< exp {—2B4n1/3u2/3 log (%)} ,

no

since Enjine = 0, Enjz-’lnjz’2 = 02, nu > Bin%03 > 2no? because of the conditions

B; > 2 and no > 1. Hence the estimate (3.4) (with parameter nu) can be applied in
this case. Besides, the constant B4 can be chosen sufficiently large in the last inequality
if the number n or the bound B, in Example 8.8 us chosen sufficiently large. This
means that this term is negligible small. The above estimates imply the statement of
Example 8.8.

Let me remark that under some mild additional restrictions the estimate (8.17)
can be slightly sharpened, the term log can be replaced by log2/ 3 in the exponent of
the right-hand side of (8.17). To get such an estimate some additional calculation is

needed where the numbers v; and vy are replaced by 7; = 4n!/342/3 log_l/ 3 (#) and
Ty = n?/3u1/3 log1/3 (%)

no

At the end of this section I present a short overview about the content of the
remaining part of this work.

In our proofs we needed some results about U-statistics, and this is the main topic
of Section 9. One of the results discussed here is the so-called Hoeffding decomposition
of U-statistics to the linear combination of degenerate U-statistics of different order.
We also needed some additional results which explain how some properties (e.g. a
bound on the L; and L., norm of a kernel function, the Lo-density property of a
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class F of kernel function) is inherited if we turn from the original U-statistics to the
degenerate U-statistics appearing in their Hoeffding decomposition. Section 9 contains
some results in this direction. Another important result in it is Theorem 9.4 which yields
a decomposition of multiple integrals with respect to a normalized empirical distribution
to the linear combination of degenerate U-statistics. This result is very similar to the
Hoeffding decomposition of U-statistics. The main difference between them is that in
the decomposition of multiple integrals much smaller coefficients appear. Theorem 9.4
makes possible to reduce the proof of Theorems 8.1 and 8.2 to the corresponding results
in Theorems 8.3 and 8.4 about degenerate U-statistics.

The definition and the main properties of Wiener—Ito integrals needed in the proof
of Theorems 8.5 and 8.6 are presented in Section 10. It also contains a result, called
the diagram formula for Wiener—It6 integrals which plays an important role in our
considerations. Besides, we proved a limit theorem, where we expressed the limit of
normalized degenerate U-statistics with the help of multiple Wiener—It6 integrals. This
result may explain why it is natural to consider Theorem 8.5 as the natural Gaussian
counterpart of Theorem 8.5, and Theorem 8.6 as the natural Gaussian counterpart of
Theorem 8.6.

We could prove Bernstein’s and Bennett’s inequality by means of a good estimation
of the exponential moments of the partial sums we were investigating. In the proof of
their multivariate versions, in Theorems 8.3 and 8.5 this method does not work, because
the exponential moments we have to bound in these cases may be infinite. On the other
hand, we could prove these results by means of a good estimate on the high moments
of the random variables whose tail distribution we wanted to estimate. In the proof
of Theorem 8.5 the moments of multiple Wiener—Ito integrals have to be bounded,
and this can be done with the help of the diagram formula for Wiener—It6 integrals.
In Sections 11 and 12 we proved that there is a version of the diagram formula for
degenerate U-statistics, and this enables us to estimate the moments needed in the
proof of Theorem 8.3. In Section 13 we proved Theorems 8.3, 8.5 and a multivariate
version of the Hoeffding inequality. At the end of this section we still discussed some
results which state that in certain cases when we have, besides the upper bound of
their Lo and L., norm some additional information about the behaviour of the kernel
function f in Theorems 8.3 or 8.5, these results can be improved.

Section 14 contains the natural multivariate versions of the results in Section 6.
In Section 6 Theorem 4.2 is proved about the supremum of Gaussian random variables
and in Section 14 its multivariate version, Theorem 8.6. Both results are proved with
the help of the chaining argument. On the other hand, the chaining argument is not
strong enough to prove Theorem 4.1. But as it is shown in Section 6, it enables us to
prove a result formulated in Proposition 6.1, and to reduce the proof of Theorem 4.1
with its help to a simpler result formulated in Proposition 6.2. One of the results of
Section 14, Proposition 14.1 is a multivariate version of Proposition 6.1. We showed that
the proof of Theorem 8.4 can be reduced with its help to the proof of a result formulated
in Proposition 14.2, which can be considered a multivariate version of Proposition 6.2.
Section 14 contains still another result. It turned out that it is simpler to work with
so-called decoupled U-statistics introduced in this section than with usual U-statistics,
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because they have more independence properties. In Proposition 14.2" a version of
Proposition 14.2 is formulated about degenerate U-statistics, and it is shown with the
help of a result of de la Pena and Montgomery—Smith that the proof of Proposition 14.2,
and thus of Theorem 8.4 can be reduced to the proof of Proposition 14.2’.

Proposition 14.2’ is proved similarly to its one-variate version, Proposition 6.2. The
strategy of the proof is explained in Section 15. The main difference between the proof
of the two propositions is that since the independence properties exploited in the proof
of Proposition 6.2 hold only in a weaker form in the present case, we have to apply a
more refined and more difficult argument. In particular, we have to apply instead of the
symmetrization lemma, Lemma 7.1, a more general version of it, Lemma 15.2. It is hard
to check its conditions when we try to apply this result in the problems arising in the
proof of Proposition 14.2’. This is the reason why we had to prove Propositiont 14.2’
with the help of two inductive propositions, formulated in Propositions 15.3 and 15.4,
while in the proof of Proposition 6.2 it was enough to prove one such result, presented
in Proposition 7.3. We discuss the details of the problems and the strategy of the
proof in Section 15. The proof of Propositions 15.3 and 15.4 is given in Sections 16
and 17. Section 16 contains the symmetrization arguments needed for us, and the proof
is completed with its help in Section 17.

Finally in Section 18 we give an overview of this work, and explain its relation to
some similar researches. The proof of some results is given in the Appendix.

9. Some results about U-statistics.

This section contains the proof of the Hoeffding decomposition theorem, an important
result about U-statistics. It states that all U-statistics can be represented as a sum
of degenerate U-statistics of different order. This representation can be considered as
the natural multivariate version of the decomposition of a random variable as the sum
of a random variable with expectation zero plus a constant (which can be interpreted
as a random variable of zero variable). Some important properties of the Hoeffding
decomposition will also be proved. The properties of the kernel function of a U-statistic
will be compared to those of the kernel functions of the U-statistics in its Hoeffding
decomposition.

If the Hoeffding decomposition of a U-statistic is taken, then the Ly and L..-norms
of the kernel functions appearing in the U-statistics of the Hoeffding decomposition will
be bounded by means of the corresponding norm of the kernel function of the original
U-statistic. It will be also shown that if we take a class of U-statistics with an Lo-
dense class of kernel functions (and the same sequence of independent and identically
distributed random variables in the definition of each U-statistic), and we make the
Hoeffding decomposition of all U-statistics in this class, then the kernel functions of
the degenerate U-statistics appearing in these Hoeffding decompositions also constitute
an Lo-dense class. Another important result of this section is Theorem 9.4. It yields
a decomposition of a k-fold random integral with respect to a normalized empirical
measure to the linear combination of degenerate U-statistics. This result makes possible
to derive Theorem 8.1 from Theorem 8.3 and Theorem 8.2 from Theorem 8.4, and it is
also useful in the proof of Theorems 8.3 and 8.4.

61



Let us first consider the Hoeffding’s decomposition. In the special case k = 1 it
states that the sum S, = ) &; of independent and identically distributed random
j=1

n

variables can be rewritten as S, = > (§ — E§;) + (Z Eéj), i.e. as the sum of
Jj=1 Jj=1

independent random variables with zero expectation plus a constant. We introduced
the convention that a constant is the kernel function of a degenerate U-statistic of order
zero, and I, o(c) = c for a U-statistic of order zero. I wrote down the above trivial
formula, because Hoeffding’s decomposition is actually its adaptation to a more general
situation. To understand this let us first see how to adapt the above construction to
the case k = 2.

In this case a sum of the form 27, »(f) = > f(&;,&k) has to be consid-

1<j,k<n,j#k )

ered. Write £(&;,&) = [£(€,66) — E(F(&, €160+ B(f (5, &) &) = F1(E5,66) + i (&)
with f1(&;,8k) = f(§5,8k) — E(f(&5,8k)1€k), and f1(&k) = E(f(§;,&k)|Ek) to make the

conditional expectation of fi(§;, &) with respect to & equal zero. Repeating this pro-
cedure for the first coordinate we define fo(&;,&r) = f1(&5,8k) — E(f1(&5,&k)|€;) and
f2(&5) = E(f1(&5,8k)[&5)- Let us also write f1(&k) = [f1(&k) — Ef1(§k)] + Ef1(&k) and
f2(&) = [f2(&5) — Ef2(&5)] + Ef2(&;). Simple calculation shows that 21, o(f2) is a de-
generate U-statistics of order 2, and the identity 21, o(f) = 21,.2(f2) + Ln1((n— 1)(f1—
Efi)+In1((n—=1)((f2— Ef2))+n(n—1)E(fi + f>) yields the decomposition of I,, »(f)
into a sum of degenerate U-statistics of different orders.

Hoeftfding’s decomposition can be obtained by working out the details of the above
argument in the general case. But it is simpler to calculate the appropriate conditional
expectations with the help of the kernel functions of the U-statistics. To carry out such
a program we introduce the following notations.

Let us consider the k-fold product (X*, X%, 1*) of a measure space (X, X, 1) with
some probability measure u, and define for all integrable functions f(z1,...,xx) and
indices 1 < j < k the projection P;f of the function f to its j-th coordinate as

(P]f)(flfl,,.713]_1,.’13]+1,,513k):/f(331,,.Tk)/,b(dl’]), 1§j§]{7 (91)

Let us also define the operators QQ; = I — Pj i.e. Q;f = f — P;f for all integrable
functions on f on the space (X*, X% u*¥), 1 < j < k. In the definition (9.1) P;f is a
function not depending on the coordinate z;, but in the definition of (); we introduce the
fictive coordinate x; to make the expression @Q;f = f — P; f meaningful. The following
result holds.

Theorem 9.1. (The Hoeffding decomposition). Let f(x1,...,xx) be an integrable
function on the k-fold product space (X*, X*, u*) of a space (X, X, 1) with a probability
measure (. It has such a decomposition

f= Y fv, with fu(z;,jeV)= I »&2IIe| fe,....z)

Vc{l,.. k} je{l,.. k)\V  jev
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for which all functions fyv, V. C {1,...,k}, in (9.2) are canonical with respect to the
probability measure p, and the function fv depends on the arguments x;, j € V.

Let &,...,&, be a sequence of independent p distributed random wvariables, and
consider the U-statistics I, x(f) and I, |v|(fv) corresponding to the kernel functions f,
fv defined in (9.2) and random variables &1, . ..,&,. Then

KIne(f)= Y —=[V)n—=|V]=1)-(n—k+ 1)V v (fv) (9.3)
vc{l,...k}

is a representation of I, (f) as a sum of degenerate U-statistics, where |V| denotes the
cardinality of the set V.. (The product (n — |V|)(n — V| —=1)---(n —k + 1) is defined
as 1 for V.= {1,...,k}, i.e. if |V| = k.) This representation is called the Hoeffding
decomposition of I, 1 (f).
k
Proof of Theorem 9.1. Write f = [] (P; 4+ @Q;)f. By carrying out the multiplications in
i=1
this identity and applying the Comjmutativity of the operators P; and @) for different in-
dices j we get formula (9.2). To show that the functions fy in formula (9.2) are canonical
let us observe that this property can be rewritten in the form P;fy =0 (in all coordi-
nates z,, s € V' \ {j} if j € V). Since P; = P?, and the identity P;Q; = P; — P} =0
holds for all j € {1,...,k} this relation follows from the above mentioned commutativ-

ity of the operators P; and @Q);, as P, fy = ( IT P ] QS> P;Q;f =0. By
se{l,...,k}\V seVA\{j}
applying identity (9.2) for all terms f(;,,...,§;,) in the sum defining the U-statistic

I, 1(f) and then summing them up we get relation (9.3).

In the Hoeffding decomposition we rewrote a general U-statistic in the form of a
linear combination of degenerate U-statistics. In many applications of this result we still
we have to know how the properties of the kernel function f of the original U-statistic
are reflected in the properties of the kernel functions fi, of the degenerate U-statistics
taking part in the Hoeffding composition. In particular, we need a good estimate on
the Ly and Lo, norm of the functions fy by means of the corresponding norm of the
function f. Moreover, if we want to prove estimates on the tail distribution of the
supremum of U-statistics I, (f) for a nice class of kernel functions f € F which is an
Lo-dense class of functions with some exponent L and parameter D, then we may need
a similar estimate on the class of kernel functions fy, f € F, with some V € {1,...,k}
appearing in the Hoeffding decomposition of these functions. We have to show that this
class of functions is also Ls-dense, and we also need a good bound on the exponent and
parameter of this Lo-dense class. The next result formulates such a statement.

Theorem 9.2. (Some properties of the Hoeffding decomposition). Let us con-
sider a square integrable function f(x1,...,x)) on the k-fold product space (X*, X*, u*)
and take its decomposition defined in formula (9.2). The inequalities

/f?,(xj, jev) H p(drj) < /f2(:1:1,...,:L'k),u(dxl)...u(dxk) (9.4)

JjeVv
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and
sup |fv(zj, je V)| < oVl sup | f(21,. @) (9.4")
z;,j€V z;,1<j<k
hold for all V-C {1,...,k}. (In particular, f§ < [ f*(21,...,2x)p(d2r) ... p(dxy) for
V=>0.)

Let us consider an Lo-dense class F of functions with some parameter D > 1 and
exponent L > 0 on the space (X*, X*), take the decomposition (9.2) of all functions f €
F, and define the classes of functions Fy = {27 WVIfy: f € F} for all V C {1,...,k}
with the functions fy taking part in this decomposition. These classes of functions Fy
are also Lo-dense with the same parameter D and exponent L for all V C {1,...,k}.

Theorem 9.2 will be proved as a consequence of Proposition 9.3 presented below.
To formulate it first some notations will be introduced:

Let us consider the product (Y x Z,) x Z) of two measurable spaces (Y,)) and
(Z, Z) together with a probability measure p on (Z, Z) and the operator

Pf(y) /f y,2)u(dz), yeyY, zeZ (9.5)

defined for those y € Y for which the above integral is finite. Let I denote the identity
operator on the space of functions on Y x Z, i.e. let If(y,z) = f(y, z), and introduce
the operator @ =Q, =1I—-P=1-PF,

Quf(:2) = (I — P (4. 2) = f(y.2) — Puf(y.2) /f% (dz), (9.6)

defined for those points (y,z) € Y x Z whose first coordinate y is such that the ex-
pression P, f(y) is meaningful. (Here, and in the sequel a function g(y) defined on the
space (Y,)) will be sometimes identified with the function g(y, z) = g(y) on the space
(Y x Z,Y x Z) which actually does not depend on the coordinate z.) The following
result holds:

Proposition 9.3. Let us consider the direct product (Y x Z,Y x Z) of two measure
spaces (Y,Y) and (Z,2) together with a probability measure u on the space (Z,Z2).
Take the transformations P, and Q,, defined in formulas (9.5) and (9.6). Given any
probability measure p on the space (Y,)) consider the product measure p X p on (Y X
Z,Y x Z). Then the transformations P, and Q,, as maps from the space Lo(Y x Z,Y
Z.uxp)to Ly(Y,V,p) and Lo(Y X Z,Y X Z, p X ) respectively, have a norm less than
or equal to 1, i.e.

[ Putiotan) < [ .22 dpd ao), (9.7)

and

[ @urtv.2PotduCa /}y, il d) (9.8)

for all functions f € Lo(Y X Z,Y X Z,p X p).
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If F is an Ly-dense class of functions f(y, z) in the product space (Y x Z,Y x Z),
with some parameter D > 1 and exponent L > 0, then also the classes F, = {P,f, f €
FYand G, ={3Q.f = 2(f—P.f), f € F} are Lo-dense classes with the same exponent
L and parameter D in the spaces (Y,)) and (Y X Z,) x Z) respectively.

The following corollary of Proposition 9.3 is formally more general, but it is a simple
consequence of this result. Actually we shall need this corollary.

Corollary of Proposition 9.3. Let us consider the product (Y1 X Z x Yo, V1 X Z X Vs)
of three measurable spaces (Y1,V1), (Z,2) and (Ya,)s) with a probability measure p
on the space (Z,Z) and a probability measure p on Y1 X Y3,Y1 X Vo), and define the
transformations

P.f(y1,y2) = /f(yl,zayQ)M(dz)v y1 €Y1, 2 €4, yp €Y (9.5')

and

Quf(yl,zayQ) = (I - Pu)f(yhzayZ) = f(y17zay2) - P,uf(y1727y2)

9.6/
:f(ylvzayQ)_/f(y1727y2):u(dz)a y1€Y1, ZGZ; yQE}/Q ( )

for the measurable functions f on the space Y1 x Z X Yy integrable with respect the
measure p X p. Then

/ Py f (g1, 2)2p( dyr, dyz) < / £y 2)%(0 % ) (dyn, dz, dys) (9.7

for all probability measures p on (Y1 X Y3,M1 X Va), where p X p is the product of the
probability measure p on (Y1 X Yo, V1 X Va) and p is a probability measure on (Z, Z).
Also the inequality

/Quf(yl,z,yz)%(dyl, dyz)p(dz) < /f(yl,z,yz)%(dyl, dy2)p( dz) (9.8

holds for all functions f € Lo(Y X Z,Y X Z,p X p).

If F is an Lo-dense class of functions f(y1,z,y2) in the product space (Y1 X Z X
Yo, V1 X Z xYs), with some parameter D > 1 and exponent L > 0, then also the classes
Fuo=A{P.f, feF}and G, = {%Quf = %(f —P,f), f € F} are Ly-dense classes with
exponent L and parameter D in the spaces (Y1 xYa, Y1 XYVs) and (Y1 X Z XY, Y1 X ZXVs)
respectively.

This corollary is a simple consequence of Proposition 9.3 if we apply it with (Y,)) =
(Y1 x Y2, V1 x)s) and take the natural mapping f((y1,v2),2) — f(y1, z,y2) of a function
from the space (Y x Z,) x Z) to a function on (Y7 X Z X Y3,V X Z x Vs). Besides, we
apply that measure on (Y7 x Z x Y5, X Z x )s) which is the image of the product
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measure p X p with respect to the map induced by the above transformation on the
space of measures.

Proposition 9.3, more precisely its corollary implies Theorem 9.2, since it implies
that the operators Ps, Qs, 1 < s < k, applied in Theorem 9.2 do not increase the Lo (p)
norm of a function f, and it is also clear that the norm of P; is bounded by 1, the norm
of Qs = I — P, is bounded by 2 as an operator from L., spaces to L., spaces. The
corollary of Proposition 9.3 also implies that if F is an Ly-dense class of functions with
parameter D and exponent L, then the same property holds for the classes of functions

Fp, ={Psf: f € F}and Fo, = {3Qsf: f € F}, 1<s <k These relations together

with the identity fy = I P, ] Qs | f imply Theorem 9.2.
se{l,....,k\V seV

Proof of Proposition 9.3. The Schwarz inequality yields that P,(f)* < [ f(y,2)*u(dz),
and integrating this inequality with respect to the probability measure p(dy) we get
inequality (9.7). Also the inequality

/ Quf(y, 2 dy)u( dz) = / F2) — Puf(y, 2)2p( dy)ul dz)

< [ £ oldy)u( 2

holds, and this is relation (9.8). This follows for instance from the observation that the
functions f(y, z) — P, f(y,2) and P, f(y, z) are orthogonal in the space Lo(Y x Z,) x
Z,p X ).

Let us consider an arbitrary probability measure p on the space (Y,)). To prove
that F,, is an Lp-dense class with parameter D and exponent L if the same relation
holds for F we have to find for all 0 < e < 1 a set {fl,...,fm} CF,1<j53<m
with m < De™F elements, such that mf f fi— f)?dp <e?forall feF, Buta

similar property holds for F in the space Y x Z with the probability measure p x pu.
This property together with the Lo contraction property of P, formulated in (9.7) imply
that F, is an Lo-dense class.

To prove that G,, is also Lo-dense with parameter D and exponent L under the same
condition we have to find for all numbers 0 < ¢ < 1 and probability measures p on Y x Z
asubset {g1,...,9m} C G, with m < De™F elements such that mf f g;—g)?dp < &?

<<

for all g € G,,.

To show this let us consider the probability measure p = %(p +pxu) on (Y x
Z,Y x Z), where p is the projection of the measure p to (Y,)), i.e. p(A) = p(A x Z)
for all A € Y, take a class of function Fy(e,p) = {f1,..., fm} C F with m < De~ L
elements such that 1<i§1£mf(fj — f)?dp < & for all f € F, and put {g1,...,9m} =

{%Qufl, el %Qufm}. All functions g € G, can be written in the form g = % uf With
some f € F, and there exists some function f; € Fo(e, p) such that [(f — f)?
Hence to complete the proof of Proposition 9.3 it is enough to show that [

dj <
¢ 1 1 (Quf
Quf)*dp < [(f — f)?*dp for all pairs f, f € F. This inequality holds, since [ 3(Q,f

#>I|—t4>|>—‘
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Quf)2dp§f%(f f)2 p"’f%(P,uf_P,u]?)deva’ndf(P,uf_P,uf)de:f(Puf_
P.f)*dp < [(f—f)?d(pxp) by formula 9.7. The above relations imply that [ (Q,. f
Quf)?dp < [(f— f)*3d(p+px p) = [(f — f)*dp as we have claimed.

Now we shall discuss the relation between Theorem 8.1’ and Theorem 8.3 and
between Theorem 8.2 and Theorem 8.4. First we show that Theorem 8.1 (or Theo-
rem 8.1’) is equivalent to the estimate (8.10) in the corollary of Theorem 8.3 which
is slightly weaker than the estimate (8.10) of Theorem 8.3. We also claim that The-
orems 8.2 and 8.4 are equivalent. Both in Theorem 8.2 and in Theorem 8.4 we can
restrict our attention to the case when the class of functions F is countable, since the
case of countably approximable classes can be simply reduced to this situation. Let us
remark that integration with respect to the measure p,, — p in the definition (4.8) of the
integral J, 1 (f) yields some kind of normalization which is missing in the definition of
the U-statistics I, (f). This is the cause why degenerate U-statistics had to be con-
sidered in Theorems 8.3 and 8.4. The deduction of the corollary of Theorem 8.3 from
Theorems 8.1 or of Theorem 8.4 from Theorem 8.2 is fairly simple if the underlying
probability measure g is non-atomic, since in this case the identity I, x(f) = Jnx(f)
holds for a canonical function with respect to the measure p. Let us remark that the
non-atomic property of the measure p is needed in this argument not only because of
the conditions of Theorems 8.1" and 8.2, but since in the proof of the above identity we
need the identity [ f(z1,...,25)u(dz;) =0 in the case when the domain of integration
is not the whole space X but the set X \ {z1,...,zj_1,2j41,..., 2%}

The case of possibly atomic measures p can be simply reduced to the case of non-
atomic measures by means of the following enlargement of the space (X, X', ). Let us in-
troduce the product space (X, X, 1) = (X, X, u) x ([0,1], B, \), where B is the o-algebra
and ) is the Lebesgue measure on [0, 1]. Define the function f((z1,u1),..., (T, us)) =
f(z1,...,2;) in this enlarged space. Then I, x(f) = I, 1(f), the measure i = p x A
is non-atomic, and f is canonical with respect to fi if f is canonical with respect to p.
Hence the corollary of Theorem 8.3 and Theorem 8.4 can be derived from Theorems 8.1
and 8.2 respectively by proving them first for their counterpart in the above constructed
enlarged space with the above defined functions.

Also Theorems 8.1’ and 8.2 can be derived from Theorems 8.3 and 8.4 respectively,
but this is a much harder problem. To do this let us observe that a random integral
Jnk(f) can be written as a sum of U-statistics of different order, and it can also be
expressed as a sum of degenerate U-statistics if Hoeffding’s decomposition is applied
for each U-statistic in this sum. Moreover, we shall show that the multiple integral of
a function f of k variables with respect to a normalized empirical distribution can be
decomposed to the linear combination of degenerate U-statistics with the same kernel
functions fy which appeared in Theorem 9.1 with relatively small coefficients. This
is the content of the following Theorem 9.4. For the sake of a better understanding I
shall reformulate it in a more explicit form in the special case k£ = 2 in Corollary 2 of
Theorem 9.4 at the end of this section.

Theorem 9.4. (Decomposition of a multiple random integral with respect
to a normalized empirical measure to a linear combination of degenerate
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U-statistics). Let a non-atomic measure p be given on a measurable space (X, X)
together with a sequence of independent, p-distributed random variables &1, . ..,&,. Take
a function f(xq,...,x1) of k variables integrable with respect to the product measur p*
on the product space (X%, X*), and consider the empirical distribution pi,, of the sequence
&1,. .., & introduced in (4.5) together with the k-fold random integral J, i (f) of the
function f defined in (4.8). The identity

Roe(f) = Y, Clk, [V VIV, v (fv) (9.9)
vc{l,...k}

holds with the set of (canonical) functions fv(x;, j € V) (with respect to the measure
w) defined in formula (9.2) together with some appropriate real numbers C(n,k,p),
0 < p <k, where I, |v|(fv) denotes the (degenerate) U-statistic of order |V| with the
random variables &1, . .., &, and kernel function fy. The constants C(n, k,p) in formula
(9.9) satisfy the inequality |C(n, k,p)| < C(k) for alln >k and 0 < p < k with some
constant C(k) < oo depending only on the order k of the integral J,, 1 (f). The relations
nh—>Holo C(n,k,p) = C(k,p) hold with some appropriate constant C(k,p) for all 1 < p <k,

and C(n,k, k) = 1.

Remark. As the proof of Theorem 9.4 will show, the constant C(n, k, p) in formula (9.9)
is a polynomial order k — 1 of the argument n~'/2 with some coefficients depending on
the parameters k and p. As a consequence, C(k,p) equals the constant term of this
polynomial.

Theorems 8.1 and 8.2 can be simply derived from Theorems 8.3 and 8.4 respectively
with the help of Theorem 9.4. Indeed, to get Theorem 8.1" observe that formula (9.9)
implies the inequality

PPl >u) < Y }P(n_|v|/2|fn,|V|(fv)’>m> (9.10)

Vcil,..k

with a constant C(k) satisfying the inequality p!C(n,k,p) < k!C(k) for all coefficients
C(n,k,p), 1 < p <k, in (9.9). Hence Theorem 8.1" follows from Theorem 8.3 and
relations (9.4) and (9.4’) in Theorem 9.2 by which the Lo-norm of the functions fy is
bounded by the Ls-norm of the function f and the L.,-norm of fi, is bounded by the
2IVI_times the Loo-norm or f. It is enough to estimate each term at the right-hand
side of (9.10) by means of Theorem 8.3. It can be assumed that 2*C(k) > 1. Let us
first assume that also the inequality W > 1 holds. In this case formula (8.3') in

Theorem 8.1’ can be obtained by means of the estimation of each term at the right-hand
2/s 2/k

side of (9.10). Observe that exp {—a (W) } < exp {—a (W) } for all

s < kif srats 7o < 1, formula (8.3") holds again

with a sufficiently large C' > 0, because in this case its right-hand side of (8.3') is greater
than 1.

> 1. In the other case, when
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Theorem 8.2 can be similarly derived from Theorem 8.4 by observing that re-
lation (9.10) remains valid if |J, x(f)| is replaced by sup |J, x(f)| and |1, ;v (fv)| by
fer

sup |I,,|v|(fv)| in it, and we have the right to choose the constant M in formula (8.6)
veFv

of Theorem 8.2 sufficiently large. The only difference in the argument is that besides
formulas (9.4) and (9.4") the last statement of Theorem 9.2 also has to be applied in
this case. It tells that if F is an Ly-dense class of functions on a space (X*, X*), then
the classes of functions Fy, = {271Vl fy: f € F} are also Lo-dense classes of functions
for all V' C {1,...,k} with the same exponent and parameter.

I make some comments about the content of Theorem 9.4. The expression J, 1 (f)
was defined as a k-fold random integral with respect to the signed measure pu.,, — ut, where
the diagonals were omitted from the domain of integration. Formula (9.9) expresses the
random integral J, 1 (f) as a linear combination of degenerate U-statistics of different
order. This is similar to the Hoeffding decomposition of the U-statistic I, x(f) to the
linear combination of degenerate U-statistics defined with the same kernel functions fy .
The main difference between these two formulas is that in the expansion (9.9) of J,, x(f)
the terms I,, v|(fv) appear with small coefficients C(n, k,|V|)|V|in~IVI/2. As we shall
see, E(C(n,k, |[V)|V|'n=VI/2L, v(fv))? < K with a constant K < oo not depending
on n for each set V. C {1,...,k}, and this can be so interpreted that the random
variables C(n, k, |V|)|V[In=IVI/2L,, ,/(fv/) are of constant magnitude. The smallness of
these coefficients is related to fact that in the definition of J, j integration is taken
with respect to the signed measure u,, — p instead of the empirical pu,,, which means
some kind of normalization. On the other hand, these coefficients C(n, k, |V|) may have
a non-zero limit as n — oo also for |V| < k. In particular, the expansion (9.9) may
contain a constant term C'(n, k,0) separated from zero. In such a case also the expected
value EJ,, (f) is separated from zero. But even in such a case this expected value can
be bounded by a finite number not depending on the sample size n. Next I show an
example for a two-fold random integral J, o(f) such that E2J, o(f) = —1.

Let us choose a sequence of independent random variables &1, ...,&, with uni-
form distribution on the unit interval, let pu, denote its empirical distribution, let
f = f(z,y) denote the indicator function of the unit square, i.e. let f(x,y) = 1 if
0 <z,y<1,and f(x,y) = 0 otherwise. Let us consider the random integral 2.J,, o(f) =
N J sy J(@,9) (pn(dx) — do)(pn(dy) — dy), and calculate its expected value E2Jy 2(f).
By adjusting the diagonal x = y to the domain of integration and taking out the contri-
bution obtained in this way we get that E2.J, o(f) = nE(fO1 (pin(dz) — p(dz))* — n2-
% = —1. (The last term is the integral of the function f(z,y) on the diagonal x =y
with respect to the product measure p,, X p,, which equals (p, — 1) X (pn, — p) on the
diagonal.)

Now I turn to the proof of Theorem 9.4.

Proof of Theorem 9.4. Let us remark that for a canonical function g (with respect to
the measure ) of p variables the identity n=?/2p!I, ,(g9) = p!J,»(g) holds. (At this
point we also exploit that p is a non-atomic measure, which implies that the identity
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[ g(x1,...,2p)u(dx;) = 0 for all 1 < j < p remains valid for arbitrary arguments z,,
1 <u<p, u+#j,also if we omit finitely many points from the domain of integration.)
This relation implies that if we calculate the (random) integral p!J, ,(g) for a canon-
ical function g we do not change the value of this integral by replacing the measures
pn(dx;) — p(dx;) by pn(dxj;) for all 1 < j < p. The integral we get after such a
replacement equals p!n~='/21, ,(g). Since all functions fy appearing in formula (9.9)
are canonical, the above relation between U-statistics and random integrals has the
consequence that formula (9.9) can be rewritten in an equivalent form as

k'Jn,k<f) = Z C(n7k7|v|)|v|'Jn,\V\(fV) (9'11)

Here we use the convention that a constant ¢ is a canonical function of order zero, and
Jn,0(c) = c. We shall prove identity (9.11) by means of induction with respect to the
order k of the integral k!J, k(f)

Inthe case k =1 fyqy (= )—J f(x) = [ f(x)u(dz), and J, 1 (fr1y) =
[(f(z) = fo)(pn(dz) — (dac)) = nyl(f), since f un (dz) — (da:)) = 0. Hence for-
mula (9.11) holds for k¥ = 1 with C(n,1,1) = 1 and C(n,1,0) = 0. For k = 0 rela-
tion (9.11) holds with C'(n,0,0) = 1 if the convention fy = f is applied for a function
f of zero variables, i.e. if f is a constant function, and V' = (). In the case k > 2
we can write by taking the identity (9.2) formulated in the Hoeffding decomposition

k
Theorem 9.1, integrating it with respect to the product measure [] (un(dx;) —p(dx;))
j=1
and omitting the diagonals from the domain of integration that

K ok (f) = K (Froony) + > kU Tk (fv)- (9.12)

Vc{l,. .k}, V£{1,....k}

Observe that in the case V C {1,...,k}, V # {1,...,k} the function [ has strictly
less than k arguments. In this case we shall be able to rewrite k-fold integral J, (f;)
as the linear combination of random integrals of smaller multiplicity with the help of
the following

Lemma 9.5. Let us take a measure space (X,X,u) with a non-atomic probabil-
ity measure p and an integrable function f(xi,...,xp—1) on its k — 1-fold product,
(Xk=t xk=t y*=1) k > 2. Define (similarly to formula (9.1)) the operator P f(x;, j €
{1,..k=13\{l}) = [ f(@1,...,xp—1)pu(dxy) for all 1 <1 <k —1. Let us consider
the function f also as a function f(x1,...,xx) of k variables which does not depend on
its last coordinate xy. The identity

k—1
Ko (f) = —n "2 (k= Dk = 1) Jp i1 (f) = D (k= 2)W 0 p—2(P1f) (9.13)
=1

holds. (The function P, f has arguments with indices j € {1,...,k — 1} \ {l}, and in
the term Jp p—2(Pf) in (9.13) we take integration with respect to the product measure

n-(k=2)/2 I1 (dpn(x;) — p(dz;)).)
Je{l, BTN\ {1}
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Proof of Lemma 9.5. Formula (9.13) is equivalent to the identity

/ f(@ys e wp1)(pn(dar) — p(der)) - (pn(deg) — p(dog))

= _k ; 1 / flxr, oo xe—1) (pn(dey) — p(day)) ... (pn(dag—1) — p(drk—1))
=
B 5 lz:;/ {/ f(xla s 717@—1):“( dxl):| 1<p<:’[‘_[17p7£l(,un( dl’p) - :u( dwp))

The expressions at the two sides of this identity are linear combinations of terms of the

form
/ f(lL’1,--~,ka—1)HMn(d$z) H p(dxy)

lev 1e{1,... k—1}\V

with V' .C {1,...,k — 1}. A term of this form with |V| = p at the left-hand side of this
identity has coefficient (—1)*~P(1 — 2=2) = (—1)*"PZ_ the first term at the right-hand
side has coefficient (—1)*~?)2=1 and the second term has coefficient (—1)*=»=1) W.
Lemma 9.5 follows from these calculations.

Lemma 9.5 follows from simple elementary calculations. One may ask how its form
can be guessed. It may be worth observing that there are some diagram formulas that
play an important role in some subsequent proofs, and they also supply the identity
formulated in Lemma 9.5 together with its proof.

In these diagram formulas the product of some random integrals or U-statistics are
expressed by means of the sum of appropriately defined random integrals or U-statistics.
In the subsequent part of this lecture note I discuss the diagram formula for Wiener—
Ito integrals and U-statistics. I also mention that there is a diagram formula for the
product of multiple integrals with respect to a normalized empirical distribution, and
indicate what its form looks like. An explicit formulation and proof of this result can
be found in [32]. Lemma 9.5 can be obtained as a special case of this formula.

To get Lemma 9.5 with the help of the diagram formula take the function e(z) =1
on the space (X, X). Then we have J, 1(e) = 0. Given a function f(z1,...,xx_1) write
up the identity J, x—1(f)Jn,1(e) = 0, and rewrite its left-hand side by means of the
diagram formula. The identity we get in such a way agrees with Lemma 9.5.

Now I return to the proof of Theorem 9.4.

Completion of the proof of Theorem 9.4 with the help of Lemma 9.5. We shall prove
the following slightly more general version of (9.11). If f(z;, j € V) is an integrable
function with arguments indexed by a set V' C {1,...,k}, then

Rni(f) = D Clnk, |V [VIVIL, v (fr) (9.14)

vcv
with some coefficients C'(n, k, p, q), 0 < p,q < k such that |C(n, k,p,q)| < C(k) < oo for
all arguments n and 0 < p < g < k, the limit li_>m C(n,k,p,q) = C(k,p,q) exists, and
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C(n,k,k,k) = 1. In formula (9.14) the same canonical functions fy, V C {1,...,k},
appear as in (9.11) or the Hoeffding decomposition (9.2). The main difference between
formulas (9.14) and (9.11) is that now we also consider the k-fold integral J, x(f) of
such functions f which have less than k£ arguments by considering them as functions of
k arguments by means of the introduction of some additional fictive coordinates. But at
the right-hand side of (9.14) we take the integrals of the functions fy, only with respect
to their ‘real’ coordinates with indices I € V' C V. For the sake of simpler notations
first we restrict our attention to the case V = {1,..., ¢} with some 0 < g < k.

We shall prove (9.14) by means of induction with respect to k. This relation holds
for £k = 0, and to prove it for £ = 1 we still we have to check that it also holds in the
special case when f is a function of zero variable, i.e. if it is a constant, and V = (.
But relation (9.14) holds in this case with C(n,1,0,0) = 0, since J,,1(f) =0 if fis a
variable of zero arguments, i.e. if it is a constant.

We shall prove relation (9.14) for a general parameter k with the help of for-
mula (9.12), Lemma 9.5 and formula (9.2) in the Hoeffding decomposition which gives
the definition of the functions fy appearing in (9.12). I formulate a formally more gen-
eral result than relation (9.13) which follows from Lemma 9.5 if we reindex the variables
of the function f considered in it. I formulate this result, because this will be applied
in our calculations.

Let us take a number p € {1,...,k}, kK > 2, and a function f(x;, j € {1,...,k}\
{p}), integrable with respect to the appropriate direct product of the measure p together
with the functions P(f) = Pi(f)(x;, j € {1,...,k}\{l,p}) for all { € {1,...,k} \ {p}
that we get by integrating the function f with respect to the measure pu(dz;). The
following modified version of (9.13) holds in this case.

Klon(f) =—n"'2 (k= Dk = DJsa(F) = Y (k=2 ns—a(Pf) (9.15)
le{1,....k}\{p}

where J,, 1 (f) means integration with respect to the measure

=02 T ((pe(dey) — p(day))
Gl k I\ (P}

and J,, x—2(Pf) means integration with respect to the measure

B2 T (el day) — p(day)).
JE(L N i1}

(Naturally the diagonals are omitted from the domain of integration.)

We prove (9.14) first in the case V = {1,...,k}. We rewrite k!J,, x(f) by means
of (9.12) as a sum of random integrals of order & with kernel functions fy, V C
{1,...,k}. Bach term klJ, x(f;) with V C {1,...,k}, V # {1,...,k} appearing in
this sum (i.e. the integral k!J,, x(f{1,.. x}) is disregarded) can be rewritten as a linear
combination of multiple random integrals of the form J,, r—1(fy) and Jy, x—2(Pify) of
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order k — 1 and k — 2 respectively with the help of identity (9.15), and we can apply
formula (9.14) for them because of our inductive hypothesis. Let us understand what
kind of kernel functions appear in the integrals we get in such a way. If V. C V then
(fv)v = fy by formula (9.2). On the other hand, P, f; = fi (3, and in the expan-
sion of J,, (P fi)) by means of (9.14) we get a linear combination of random integrals
Jp 7 (fr) with V- C V\{I}. By applying all these identities, summing them up, adding
to them the term J, x(f{1,....x}) and applying formula (9.15) we get because of our in-
ductive assumptions a representation kl.J,, x(f) = > C(n,k,V)|V|!J, |y(fy) (where
vcv B
V ={1,...,k}) of the random integral k!J,, x(f) with such coefficients C(n, k, V') for

which |C'(n, k, V)| < C(k) and the limit C(, V) = 1i_>m C(n,k,V) exists. We still have to

show that these coefficients can be chosen in such a way that C(n, k,V) = C(n, k,|V]),
ie. C(n,k, V1) =C(n,k, Vo) if |V1| = |Val.

Given a set V C {1,...,k}, V # {1,...,k}, let us express the random integrals
Jnk—1(fy) and Jp k—2(P fy) for all p € {1,...,k} \ V in the above way, and write
Jnik(fy) and J,, (P, fy) as the average of these sums. Working with these expressions
for Jp k(fy) and J, (P fy) it can be seen that our inductive assumption also holds
with such coefficients C'(n, k, V') for which C'(n, k, V1) = C(n, k, Va) if |V1| = |Va|.

In the next step let us consider the case when f = f(z;, j € V) with a set V =
{1,...,q} such that 0 < ¢ < k. I claim that in this case the identity f;; = 0 holds
for those sets V C {1,...,k} for which VN {¢g+1,...,k} # 0, and as a consequence
Jien(fy) = 0 with probability 1 for such sets V. First I show that relation (9.14) can be
proved in the present case with the help of this relation similarly to the previous case.

In the present case formula (9.12) has the form k!J,, i (f) = > klJnr(f), and
vev

we can express each term klJ, »(fi), V C V., in this sum by means of formula (9.15)
by choosing f; as the function f and an integer p such that ¢ +1 < p < k (ie
pe{l,...,k}\V)init. In such a way we can write k!Jj ,(f) as the linear combination
of random integrals of the form (k — 1)!J, x—1(fy) and (K — 2Ty x—2(Pify) = (k —
2)Wn k—2(fir y) with some sets V C V and numbers [ € {1,...,k} \ {p}, where we
took some number p such that ¢ +1 < p < k. Then we can apply relation (9.14) for
parameters (k — 1) and k — 2 by our inductive hypothesis, and this enables us to write
Jnk(f) as the linear combination of random integrals W“Jnal‘_fl (fy) with sets V .C V.
Moreover, it can be seen, similarly to the previous case (by writing the above identities
for all p € {1,...,k}\ V and taking their average) that the coefficients in this linear
combination can be chosen in such a way as we demanded it in formula (9.14).

To prove the relation f, = 0 if Vn{g+1,... .k} #0and f = f(xy,...,xs) is the
extension of a function f = f(z;, j € {1,...,q}) with some ‘fictive’ coordinates take a
number r € V N {¢g+1,...,k}, observe that P,.f = f and Q,f = 0 with the operators
P, defined in (9.1) and @, = [ — P, since r ¢ V = {1,...,¢q}. The definition of the
function f is given in formula (9.2). Observe that in the present case the operator @,
and not the operator P, appears in the formula defining f;;. Hence formula (9.2) and
the exchangeability of the operators P; and (); imply that f; = 0.
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Formula (9.14) in the general case simply follows from the already proved results by
a reindexation of the variables of the function f. Since (9.11) is a special case of (9.14)
Theorem 9.4 is proved.

Two corollaries of Theorem 9.4 will be formulated. The first one explains the
content of conditions (8.2) and (8.5) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4. If I, (f) is a degenerate U-statistic of order k with
some kernel function f, then

B (n21,,() = 2= k,n,?_“ [sm 2wt dan) .l dn)

- kv/f w1, op)p(dey) - p(da), (9.16)

where 1 is the distribution of the random variables taking part in the definition of the U -
statistic I, 1 (f), and Sym f is the symmetrization of the function f. The k-fold multiple
random integral Ji ,(f) with an arbitrary square integrable kernel function f satisfies
the inequality

EJ,x(f)> <C(k /f Tiy..,xE)p(dry) ... p(dey)

with some constant C(k) depending only on the order k of the integral J,, (f).
Proof of Corollary 1 of Theorem 9.4. The identity

E(n~"21, x(f))* = (k')%nk Z /Ef(§l17 cs G ) s &) (9.17)

holds, where the prime in Z/ means that summation is taken for such pairs of k-tuples
(s eeosli)y (s s 1), 1< 15, 1% < m, for which I # [j and I; # U7, if j # j'. Indeed, the
degeneracy of the U-statistic I, x(f) implies that Ef(&,, ..., &) f (&, &) = 0 if
the two sets {l1,...,{x} and {l1,...,[} } differ. This can be seen by taking such an index
l; from the first k-tuple which does not appear in the second one, and by observing that
the conditional expectation of the product we consider equals zero by the degeneracy
condition of the U-statistic under the condition that the value of all random variables
except that of §; is fixed in this product. On the other hand,

Bf(Gtse o &) (e ) = / @1, 20) F@a (1), o Tl ) i day)

if (19,...,0,) = (n(lh),...,7(lx)) with some (7(1),...,n(k)) € I, where II; denotes
the set of all permutations of the set {1,...,k}. By summing up the above identities for
all pairs (I1,...,l;) and (11,...,[}) and by applying formula (9.17) we get the identity
at the left-hand side of formula (9.16). The second relation in (9.16) is obvious.

74



The bound for J,, x(f) follows from Theorem 9.4, formula (9.4) in Theorem 9.2 by
which the L-norm of the functions fy, is not greater than the Lo-norm of the function f
and the bound that formula (9.16) yields for the second moment of the degenerate U-
statistics n_|V|/2In7|V|(fV) appearing in the expansion (9.9).

In Corollary 2 the decomposition (9.9) of a random integral .J, o(f) of order 2
is described in an explicit form. This result follows for instance from the proof of
Theorem 9.4.

Corollary 2 of Theorem 9.4. Let the random integral J,, o(f) satisfy the conditions
of Theorem 9.4. In this case formula (9.9) can be written in the following explicit form:

2Jp2(f) = %In,Q(f{l,Z}) — % n1(fry) — %In,l(f{2}) — Jo

with the functions

fuar@w) = 1)~ [ f@utdn) - [ feoutan + [ feyndond),
fi (@) = [ seputdy) - [ Fa g doudy),
fr(v) = [ Sewutds) - [ Haepu(dou(dy).  and
fo= /f(x,y)u(dw)u(dy)-

Corollary 2 of Theorem 9.4 states that in the case k = 2 formula (9.9) holds with

O(n7272) = 17 C(n7 27 1) = _\/Lﬁ and C(nyzyo) = —1-
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10. Multiple Wiener—It6 integrals and their properties.

In this section I present the definition of multiple Wiener—It6 integrals and some of their
most important properties needed in the proof of the results formulated in Section 8.
First the notion of the white noise with some reference measure will be introduced,
then multiple Wiener—Ito integrals with respect to a white noise with some non-atomic
reference measure will be defined. A most important result in the theory of multiple
Wiener—It6 integrals is the so-called diagram formula presented in Theorem 10.2A. It
enables us to write the product of two Wiener—It6 integrals in the form of a sum of
Wiener—It6 integrals. The proof of the diagram formula is given in Appendix B.

Another interesting result about Wiener-Ito6 integrals, formulated at the end of this
section in Theorem 10.5 states that the class of random variables which can be written
in the form of a sum of Wiener-Ito integrals of different order is sufficiently rich. All
random variables with finite second moment which are measurable with respect to the
o-algebra generated by the (Gaussian) random variables appearing in the underlying
white noise in the construction of multiple Wiener-It6 integrals can be written in such
a form.

I shall also give a heuristic explanation of the diagram formula which may indicate
why it has the form appearing in Theorem 10.2A. It also helps to find the analog of
the diagram formula for (random) integrals with respect to the product of normalized
empirical measures. Such a result will be useful later. The diagram formula has a simple
and useful consequence formulated in Theorem 10.2, where the product of finitely many
Wiener—It6 integrals is written in the form of a sum of Wiener—Ito integrals. This more
general result will be also called the diagram formula. It has an important corollary
about the calculation of the moments of Wiener—Ito integrals. Theorem 8.5 can be
proved relatively simply by means of this corollary.

I shall give the proof of two other results about Wiener—Ito integrals in Appendix C.
The first one, Theorem 10.3, is called It6’s formula for Wiener—Ito integrals, and it
explains the relation between multiple Wiener-Ito integrals and Hermite polynomials
of Gaussian random variables. This result is a relatively simple consequence of the
diagram formula and some basic recursive relations about Hermite polynomials.

I shall give the proof of two other results about Wiener—It6 integrals in Appendix C.
The first one, Theorem 10.3, is called It6’s formula for Wiener—Ito integrals, and it
explains the relation between multiple Wiener-Ito integrals and Hermite polynomials
of Gaussian random variables. This result is a relatively simple consequence of the
diagram formula and some basic recursive relations about Hermite polynomials.

The other result proved in Appendix C, Theorem 10.4, is a limit theorem about
a sequences of appropriately normalized degenerate U-statistics. Here the limit is pre-
sented in the form of a multiple Wiener—Ito integral. This result is interesting for us,
because it helps to compare Theorems 8.3 and 8.1 with their one-variate counterpart,
Bernstein’s inequality. In the one-variate case Bernstein’s inequality provides a compari-
son of the distribution of sums of independent random variables and normal distribution
functions, i.e. the limit distribution in the central limit theorem. Theorem 8.3 yields
a similar result about degenerate U-statistics. Its comparison with Theorem 8.5 and
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the limit theorem proved in Appendix C about the limit distribution of degenerate U-
statistics show that degenerate U-statistics satisfy an estimate similar to Bernstein’s
inequality. The upper bound in it is similar to the estimate on the tail-distribution of
the limit distribution of normalized degenerate U-statistics, which equals the distribu-
tion of an appropriate multiple Wiener—It6 integral. Theorem 8.1 which is an estimate
of multiple integrals with respect to a normalized empirical distribution also has such
an interpretation.

My Lecture Note [29] contains a rather detailed description of Wiener—It6 integrals.
But in that work the emphasis was put on the study of a slightly different version of it.
The original version of this integral introduced in [24] was also only briefly discussed
there, not all details were worked out. In particular, the diagram formula needed in
this work was formulated and proved only for modified Wiener-Ito integrals. I shall
discuss the difference between these random integrals together with the question why a
modified version of Wiener—It6 integrals was discussed in [29] at the end of the section.

To define multiple Wiener—It6 integrals first the notion of a white noise has to be
introduced. This is done in the following definition.

Definition of a white noise with some reference measure. Let us have a o-finite
measure [ on a measurable space (X, X). A white noise with reference measure p is
a Gaussian random field pyw = {pw(A): A € X, u(A) < oo}, i.e. a set of jointly
Gaussian random variables indexed by the above sets A, which satisfies the relations
Euw (A) =0 and Epw (A)pw (B) = p(AN B) for all A,B € X such that p(A) < oo
and p(B) < oo.

It is worth making some comments about this definition.

Remark: In the definition of a white noise sometimes also the property uw (AU B) =
puw (A) + pw (B) with probability 1 if AN B = 0, and u(A) < oo, u(B) < oo is
mentioned. But this condition can be omitted, because it follows from the remaining
properties of the white noise. Indeed, simple calculation shows that E(uw (AU B) —
pw(A) — pw(B))? = 0if AN B =), hence puw (AU B) — puw (A4) — uw (B) = 0 with
probability 1 in this case. It also can be observed that if some sets Ay,..., Ay € X,
p(Aj) < oo, 1 <j <k, are disjoint, then the random variables py (4;), 1 < j <k, are
independent because of the uncorrelatedness of these jointly Gaussian random variables.

It is not difficult to see that for an arbitrary reference measure p on a space (X, X)
a white noise py with this reference measure really exists. This follows simply from
Kolmogorov’s fundamental theorem, by which if the finite dimensional distributions of
a random field are prescribed in a consistent way, then there exists a random field with
these finite dimensional distributions.

Now I turn to the definition of multiple Wiener—It6 integrals with respect to a
white noise with some reference measure. First I introduce the class of functions whose
Wiener—It6 integrals with respect to a white noise puy with a non-atomic reference
measure p will be defined.

Let us consider a measurable space (X, X), a non-atomic o-finite measure p on it
and a white noise py on (X, X) with reference measure u. Let us define the classes
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of functions H,, x, k = 1,2,..., consisting of functions of k variables on (X, X’) by the
formula

Hurk = {f(wl, o xk): f(z1, ..., xp) is an X* measurable, real valued
(10.1)
function on X*, and/fQ(xl, oo xp)p(der) .. p(deg) < oo}.

We shall call a o-finite measure p on a measurable space (X, X') non-atomic if for all sets
N

A € X such that ;(A) < oo and numbers € > 0 there is a finite partition A = |J B; of
s=1

the set A with the property u(B;) < ¢ for all 1 < s < N. There is a formally weaker
definition of a non-atomic measures by which a o-finite measure p is non-atomic if for
all measurable sets A such that 0 < u(A) < oo there exists a B C A with the property
0 < w(B) < p(A). But these two definitions of non-atomic measures are actually
equivalent, although this equivalence is far from trivial. I do not discuss this problem
here, since it is a little bit outside from the direction of the present work. In our further
considerations we shall work with the first definition of non-atomic measures.

The k-fold Wiener-It6 integrals of the functions f € H, j with respect to the white
noise puyy will be defined in a rather standard way. First they will be defined for some
simple functions, called elementary functions, then it will be shown that the integral
for this elementary functions have an Lo contraction property which makes possible to
extend it to the class of functions in H,, 1.

Let us first introduce the following class of elementary functions #H,, . of k variables.
A function f(z1,...,2%) on (X*, X*) belongs to H,, i, if there exist finitely many disjoint
measurable subsets Aq,..., Ay, 1 < M < oo, of the set X (i.e. A;NA; =0if j#j')
such that p(A;) < oo for all 1 < j < M, and the function f has the form

(C(jl,...,jk) if (ml,...,xk) GAjl X e XAjk
with some indices (j1,...,7k), 1<js <M, 1<s<k,
Flz,... z5) = such that all numbers jq,..., j; are different
0 if (z1,...,2%) ¢ U Aj, X - X Aj,
(1yenn): 154 <M, 1<s<k,
L and all ji,...,jx are different.

(10.2)
with some real numbers ¢(ji,...,Jk), 1 < js < M, 1 < s < k, if all ji,...,jr are
different numbers. This means that the function f is constant on all k-dimensional
rectangles A; X --- x Aj, with different, non-intersecting edges, and it equals zero on

the complementary set of the union of these rectangles. The property that the support
of the function f is on the union of rectangles with non-intersecting edges is sometimes
interpreted so that the diagonals are omitted from the domain of integration of Wiener—
1t6 integrals.

The Wiener-1t6 integral of an elementary function f(z1,...,zx) of the form (10.2)
with respect to a white noise py with the (non-atomic) reference measure p is defined
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by the formula

/f(.fl?l, . ,:Ij‘k),uw(dl’l) .. uw(d$k>

- Z (s de)pw (Asy) - pw (45,)- (10.3)

1<js <M, 1<s<k
all j1,...,7k are different

(The representation of the function f in (10.2) is not unique, the sets A; can be divided
to smaller disjoint sets, but its Wiener—It6 integral defined in (10.3) does not depend
on its representation.) The notation

Zyk(f) = %/f(xl,...,xk)uw(d:vl)...uw(dxk), (10.4)

will be used in the sequel, and the expression Z,, ;(f) will be called the normalized
Wiener—It6 integral of the function f. Such a terminology will be applied also for the
Wiener-It6 integrals of all functions f € H, 1, to be defined later.

If f is an elementary function in H,, ;, defined in (10.2), then its normalized Wiener—
It6 integral defined in (10.3) and (10.4) satisfies the relations

EE'Z, ,(f) =0,
E(k'ZMJC(f))z = Z Z C(jla'"7jk:)c(jﬂ'(1)7"';j7r(k))

(j17"'ajk): 1SJ5SM7 ISSSk,Wer
and all j1,...,j5 are different.

ENW(AJi) T HW (Ajk)/’LW (Ajﬂ-(l)) o pW (Ajﬂ-(k)) (10'5)

— k[ Sy P, mude) o)

< k!/fz(:z;l, cooxp)p(dey)..op(drg),

with Sym f(x1,...,z5) = % > f(Zz@)s---sTr)), where Il denotes the set of all
welly
permutations m = {7 (1),...,7(k)} of the set {1,...,k}.

The identities written down in (10.5) can be simply checked. The first relation
follows from the identity Epw (A;,) - - pw (A;, ) = 0 for disjoint sets A;,, ..., A;,, which
holds, since the expectation of the product of independent random variables with zero
expectation is taken. The second identity follows similarly from the identity

Epw (Aj,) - pw (Aj ) pw (Aj;) - pw (Aj ) =0
if the sets of indices {j1,...,Jx} and {j1,-..,J;} are different,
Epw (Ajy) - pw (A5 ) pw (Ajr) - pw (Ajr ) = p(Ajy) -+ - p(4j,)

with some permutation 7 € Il,
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which holds because of the facts that the py measure of disjoint sets are independent
with expectation zero, and Euy (A)? = u(A). The remaining relations in (10.5) can be
simply checked.

It is not difficult to check that

EZyk(f)Zpuw(g9) =0 (10.6)

for all functions f € H,  and g € H, i if k # k', and

Zuk(f) = Zuk(Sym f) (10.7)

for all functions f € H,, .

The definition of Wiener-Ito integrals can be extended to general functions f &€
M, with the help of the estimate (10.5). But to carry out this extension we still
have to know that the class of functions 7-_[% 1 is a dense subset of the class H, j in the
Hilbert space Lo(X%, X%, u*), where pu¥ is the k-th power of the reference measure p
of the white noise pyy . I briefly explain how this property of ﬂmk can be proved. The
non-atomic property of the measure p is exploited at this point.

To prove this statement it is enough to show that the indicator function of any
product set A; x --- x A such that p(A4;) < oo, 1 < j <k, but the sets A;,..., Ay
may be non-disjoint is in the Lo(u”) closure of H, ;. In the proof of this statement it
will be exploited that since p is a non-atomic measure, the sets A; can be represented
for all e > 0 and 1 < j < k as a finite union A; = |J B; s of disjoint sets B; ; with the

S
property p(Bj ) < €. By means of these relations the product A; x --- x Ay can be
written in the form

Ao Ay= | Buia x-x Bua (108)

S1,.--,8k

with some sets Bj s, such that u(Bjs,) < € for all sets in this union. Moreover, we

may assume, by refining the partitions of the sets A; if this is necessary that any two

sets Bj s, and By o in this representation are either disjoint, or they agree. Take such
J

a representation of A; x --- x A, and consider the set we obtain by omitting those
products By s, X -+ X By s, from the union at the right-hand side of (10.8) for which
B; s, = Bj,sj_for some 1 < ¢ < j < k. The indicator function of the remaining set is
in the class H, . Hence it is enough to show that the distance between this indicator
function and the indicator function of the set A; x --- x Ay, is less than const. ¢ in the
Lo (1*) norm with some const. which may depend on the sets A1,. .., A, but not on ¢.
Indeed, by letting € tend to zero we get from this relation that the indicator function
of the set A; x Ay x --- x Ay is in the closure of ﬁu,k in the Lo (") norm.

3Sj

Hence to prove the desired property of 7‘2“,/@ it is enough to prove the following
statement. Take the representation (10.8) of A; x --- x Ay (which depends on ¢€) and
an arbitrary pair of integers ¢ and j such that 1 < ¢ < 5 < k. Then the sum of the
measures p*(Bys, X -+ X By, ) of those sets By 5, X -+ X By s, at the right-hand side
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of (10.8) for which B; 5, = Bj s, is less than const. e. To prove such an estimate observe
that the p* measure of such a set can be bounded by the ;/*~! measure of the set we
obtain by omitting the i-th term from the product defining it in the following way:

k k—1
M (BLSl X X Bk,sk) < el (B1:31 X X Bi—LSi—l X Bi+17si+1 X X Bk»sk)'

Let us sum up this inequality for all such sets By s, X --- X By s, at the right-hand side
of (10.8) for which B;;, = Bj,. The left-hand side of the inequality we get in such
a way equals the quantity we want to estimate. The expression at its right-hand side

is less than ¢~ [[  p(A,), since e-times the p*~! measure of such disjoint sets are
1<s<k, s#i
summed up in it which are contained in the set A; X -+ X A;_1 X A;j41 X -+ X Ag. In

such a way we get the estimate we wanted to prove.

Knowing that 7, is a dense subset of H, ; in La(u*) norm we can finish the
definition of k-fold Wiener—ito integrals in the standard way. Given any function f €
H,.k, a sequence of functions f,, € ﬂu,k, n=1,2,..., can be defined in such a way that
[1f(z1, .. yzk) = fa(z, ..o 20) Pu(dey) .. p(dog) = 0 as n — oo. By relation (10.5)
the normalizations Z,, i (f,) of the already defined Wiener-It6 integrals of the functions
fny,m=1,2,..., constitute a Cauchy sequence in the space of square integrable random
variables on the probability space, where the white noise is given. (Observe that the
difference of two functions from the class H, 5 also belongs to this class.) Hence the
limit nh_)rgo Z, 1 (fn) exists in Ly norm, and this limit can be defined as the normalized

Wiener-Ito integral Z,, ;(f) of the function f. The definition of this limit does not
depend on the choice of the approximating functions f,, hence it is meaningful. It can
be seen that relations (10.5) and (10.6) remain valid for all functions f € H, ;. The
following Theorem 10.1 describes the properties of multiple Wiener—It6 integrals. It
contains already proved results. The only still non-discussed part of this Theorem is
Property f) of Wiener—It6 integrals. But it is easy to check this property by observing
that one-fold Wiener-Ito integrals are (jointly) Gaussian, they are measurable with
respect to the o-algebra generated by the white noise . Besides, the random variable
uw (A) for a set A € X, u(A) < oo, equals the (one-fold) Wiener-It6 integral of the
indicator function of the set A.

Theorem 10.1. (Some properties of multiple Wiener—Ité integrals). Let
a white noise pyw be given with some non-atomic, o-additive reference measure on
a measurable space (X,X). Then the k-fold Wiener—Ité integral of all functions in
the class H, i, introduced in formula (10.1) can be defined, and its normalized version

Zuw(f) =7 [ [, op)pw (dzy) ... pw (day) satisfies the following relations:
a) Zyp(af+89) =aZ, i, (f)+BZ,.k(g) for all f,g € H, i and real numbers o and .

b) If Ax, ..., Ay are disjoint sets, pu(A;) < oo, then the function fa, .. a, defined by th

relation fa,, . A (x1,...,x8) =1ifxy € Ay, ..., 2k € Ak, fa,,.. A (@1,...,08) =
0 otherwise, satisfies the identity

1

Zugo(far (@, o)) = pw (An) - pw (Ak).
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1 1
EZu(f) =0, and EZ2,(f) = —lISym fI3 < £

for all f € H,p, where || f13 = [ f2(z1,...,2x)pu(dzr) ... u(dog) is the square of
the Ly morm of a function f € H, k.

d) Relation (10.6) holds for all functions f € H,, and g € Hypr if k # K.
e) Relation (10.7) holds for all functions f € H,, .

f) The Wiener-Ité integrals Z,, 1(f) of order k =1 are jointly Gaussian. The small-
est o-algebra with respect to which they are all measurable agrees with the o-algebra
generated by the random variables uw (A), A € X, u(A) < oo, of the white noise.

We have defined Wiener—Ito integrals of order k for all k = 1,2,.... For the sake
of completeness let us introduce the class H, o for & = 0 which consists of the real
constants (functions of zero variables), and put Z, o(c) = c. Because of relation (10.7)
we could have restricted our attention to Wiener—Ito integrals with symmetric kernel
functions. But it turned out more convenient to work also with Wiener—Ito integrals of
not necessarily symmetric functions.

Now I formulate the diagram formula for the product of two Wiener—Ito integrals.
For this goal some notations have to be introduced. To present the product of the
multiple Wiener-Ito integrals of two functions f(x1,...,2,) € H,r and g(x1,...,27) €
M., in the form of sums of Wiener-Ito integrals a class of diagrams I' = I'(k, 1) will
be defined. The diagrams v € I'(k,[) have vertices (1,1),...,(1,k) and (2,1),...,(2,1),
and edges ((1,71),(2,41)), .-+, ((1,7s), (2, 7%)) with some 1 < s < min(k,[). The indices
J1,---,Js in the definition of the edges are all different, and the same relation holds for
the indices j1,...,j%. All such diagrams 7 belongs to I'(k,[). The set of vertices of the
form (1,7), 1 < j < k, will be called the first row, and the set of vertices of the form
(2,7"), 1 < j' <, the second row of a diagram. We demanded that edges of a diagram
can connect only vertices of different rows, and at most one edge may start from each
vertex of a diagram.

Given a diagram v € I'(k, ) with the set of edges
E(v) ={(1,51),(2,51)), -, (1, 4s), (2,45)}

let Vi(7) = {(L 1), (LI} {(Lj0)s o (1,70)} and Va(9) = {(2,1),..., (2,00} \
{(2,71),---,(2,75)} denote the set of vertices in the first and in the second row of the di-
agram -y respectively from which no edge starts. Put a4 (1,5) = (2,7) if ((1,7),(2,5')) €
E(v) and a4(1, j) = (1, j) if the diagram ~ contains no edge of the form ((1, j), (2,5")) €
E(7y). In words, the function o, (-) is defined on the vertices of the first row of the dia-
gram . It replaces a vertex to the vertex it is connected to by an edge of the diagram if
there is such a vertex, and it does not change those vertices from which no edge starts.
Put |y| = k+1—2s, i.e. || equals the number of vertices in v from which no edge starts.
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Given two functions f(z1,...,2x) € H,r and g(z1,...,2;) € H,, let us introduce their
product
F(x(l,l)v <o (L) T(2,1)y - - - 7x(2,l))
= Frg(Taays- - Ta ) T@1) - T20) (10.9)
= f(xay, - Tap)9(@ @), - T2,0))
together with its modification

F (zaj),: (1,7) € Vi(v), 2@21) - T(2,))

10.9a
= f(xaﬁ,(l,l)? e ,$a7(1,k))g($(2,1), e 715(2,1))- ( )

(Here the function f(x1,...,7x) is replaced by f(z(i 1),...,%@1,k)) and the function
g(x1,...,21) by g(x(2,1),-..,2(2,)).) With the help of the above introduced sets Vi (7),
Va(y) and function o, (-) let us introduce the functions F, = F,(f,g) as

F’y(x(l,j)am@,j’): (17.]) € ‘/1(’7)7 (273/) € ‘/2(’)/))
= /Fv(xaw(l,j)i (1,7) € Vi(7), 22,1y, - - - T(2,1))

H M(dﬂﬁ(z,j))
(Q,j)E{(271),.--,(2,1)}\‘/2(’Y)

(10.10)

for all diagrams v € I'(k,l). In words: We take the product defined in (10.9), then if
the index (1,75) of a variable z(; ;) is connected with the index (2,j’) of some variable
T (2,5, by an edge of the diagram -, then we replace the variable x(; ;) by (2 j+) in this
product. Finally we integrate the function obtained in such a way with respect to the
arguments with indices (2,71),...,(2, %), i.e. with those vertices of the second row of
the diagram  from which en edge starts. It is clear that F’, is a function of || variables.
It depends on those coordinates whose indices are such vertices of v from which no edge
starts.

For the sake of simpler notations we shall also consider Wiener—It6 integrals with
such kernel functions whose variables are more generally indexed. If the k-fold Wiener—
It6 integral with a kernel function f(z1,...,xy) is well-defined, then we shall say that
the Wiener—Ito6 integral with kernel function f(xy,,..., 2y, ), where {u1,...,ux} is an
arbitrary set with k different elements, is also well defined, and it equals the Wiener—Ito
integral with the original kernel function f(z1,...,xx). (We have right to make such a
convention since the value of a Wiener—Ito6 integral does not change if we permute the
indices of the variables of the kernel function in an arbitrary way.) In particular, we
shall speak about the Wiener-Ito6 integral of the function F, defined in (10.10) without
reindexing its variables z(; j) and x( -y ‘in the right way’. Now we can formulate the
diagram formula for the product of two Wiener—Ito integrals.

Theorem 10.2A. (The diagram formula for the product of two Wiener—
It6 integrals). Let a non-atomic o-finite measure p be given on a measurable space
(X, X) together with a white noise uyw with reference measure p, and take two func-
tions f(x1,...,2k) € Hur and g(x1,...,2;) € Hyy. (The classes of functions H,, i, and
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H 1 were introduced in (10.1).) Let us consider the class of diagrams I'(k,l) introduced
above together with the functions F, v € I'(k,l), defined by formulas (10.9), (10.9a)
and (10.10) with its help. They satisfy the inequality

[Ey]l2 < [[fll2llgllz  for all v € T'(k, 1), (10.11)

where the Lo norm of a (generally indexed) function h(xy,,...,x,,) is defined as

I = [ B2l o) g,

Besides, the product Z,, 1(f)Z,.1(g) of the normalized Wiener—Ité integrals of the func-
tions f and g (the notation Z, , was introduced in (10.4)) satisfies the identity

(K1 Zy e () (1124 (9)) = Z Y 21 (F) = Z V' Z 19 (Sym Fy ). (10.12)
~eT (k1) ver(k,l)

Theorem 10.2A will be proved in Appendix B. The following consideration yields
a heuristic explanation for it. Actually, it can also be considered as a sketch of proof.

In the theory of general It6 integrals when stochastic processes are integrated with
respect to a Wiener processes, one of the most basic results is It&’s formula about
differentiation of functions of It6 integrals. It has a heuristic interpretation by means
of the informal ‘identity’ (dWW)? = dt. In the case of general white noises this ‘identity’
can be generalized as (uw (dz))? = u(dx). We present a rather informal ‘proof’ of
the diagram formula on the basis of this ‘identity’ and the fact that the diagonals are
omitted from the domain of integration in the definition of Wiener—Ito integrals.

In this ‘proof’ we fix two numbers £ > 1 and [ > 1, and consider the product of
the Wiener—Ito integrals of the functions f and g of order k and I. This product is a
bilinear form of the functions f and g. Hence it is enough to check formula (10.12)
for a sufficiently rich class of functions. It is enough to consider functions of the form
flz,...,xk) = Ia, (1) -+ L4, (z) and g(z1,...,21) = I, (x1) - - Ip,(2;) with disjoint
sets Aq,..., Ay and disjoint sets By,..., B;, where I4(z) is the indicator function of a
set A. (Here we have exploited that the functions f and g disappear in the diagonals.)

Let us divide the sets A; into the union of small disjoint sets D](.m), 1 < j < k with
some fixed number 1 < m < M in such a way that u(DJ(-m)) < & with some fixed € > 0,
and the sets B; into the union of small disjoint sets F’ j(m), 1 < j <[, with some fixed
number 1 < m < M, in such a way that ,u(Fj(m)) < ¢ with some fixed ¢ > 0. Besides,
we also require that two sets D§m) and F' j(,m ") should be either disjoint or they should
agree. (The sets Dj(-m) are disjoint for different indices, and the same relation holds for
the sets Fj(,m/).)
Then the identity

k M M
Rz =11 (Z Mwwﬁ-m))) and  1Z,.1(9) = [ (Z uW(Fﬁ”’))) ,

'=1 \m'=1
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holds, and the product of these two Wiener—It6 integrals can be written in the form of
a sum by means of a term by term multiplication. Let us divide the terms of the sum
we get in such a way into classes indexed by the diagrams v € T'(k, 1) in the following

k
way: Each term in this sum is a product of the form [] ,uW(DJ(-mJ ) H pw (F) (m ))
j=1
Let it belong to the class indexed by the diagram ~ with edges ((1, j1), (2 jl)) , and
((1,74s),(2,7%)) if the elements in the pairs (D;T“ , Fj1 D U (D;:js , szé) agree, and
otherwise all terms are different. Then letting ¢ — 0 (and taking partitions of the sets
D; and F}: corresponding to the parameter ¢) the sums of the terms in each class turn
to integrals, and our calculation suggests the identity

(K Zu s (MW Za(9) = Y 2, (10.13)

~yel(k,l)

with

Zy = /f(xoz,y(l,l)w-~>xa7(1,k))g(x(2,1)>-~-;CU(Q,Z)) (10.13a)

W( dxaw(l,l)) .o -NW( dwaw(l,k)),UW( daj(Q’l)) ce ,uw( dx(g,l))

with the function o (-) introduced before formula (10.9). The indices a(1,j) of the
arguments in (10.13a) mean that in the case o (1,5) = (2, ') the argument x(; ;) has
to be replaced by (3 ;1. In particular, pw (dzaa j))pw(dze ) = ,LLW(d.T(Q’j/))Q =
p(dz (2 jy) in this case because of the ‘identity’ (uw (dx))* = p(dx). Hence the above
informal calculation yields the identity Z, = |v|!Z, |4/(F;). Hence relations (10.13)
and (10.13a) imply formula (10.12).

A similar heuristic argument can be applied to get formulas for the product of
integrals of normalized empirical distributions or (normalized) Poisson fields, only the
starting formula (uw (dr))? = p(dx) changes in these cases, some additional terms
appear which modify the final result. I return to this question in the next section.

It is not difficult to generalize Theorem 10.2A with the help of some additional
notations to a diagram formula about the product of finitely many Wiener—Ito integrals.
Let us consider m > 2 Wiener-1It6 integrals k,!Z,, x (f,), of functions fy(z1,...,zx,) €
H ik, of order k, > 1, 1 < p < m, and define a class of diagrams I' = I'(k1, ..., k) in
the following way.

The diagrams v € I' = T'(kq,. .., k) have vertices of the form (p,r), 1 < p < m,
1 <r < k,. The set of vertices {(p,r): 1 < r < k,} with a fixed number p will be
called the p-th row of the diagram . A diagram v € I' = I'(kq,..., k) may have
some edges. All edges of a diagram connect vertices from different rows, and from each
vertex there starts at most one edge. All diagrams satisfying these properties belong
to I'(k1,...,kn). If a diagram v contains an edge of the form ((p1,7r1), (p2,72)) with
p1 < po, then (p1,r1) will be called the upper and (ps,r2) the lower end point of this

edge. Let E(y) = {((pgu),rgu)), (pgu),rgu))) (u) < pg Wol<u< s} denote the set of
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all edges of a diagram v (the number of edges in v was denoted by s = |E(7)|), and let
us also introduce the sets V*(v) = {((py (u), (“)) 1 < u < s}, the set of all upper end

points and V?(y) = {((péu), (”)) 1<u < s}, the set of all lower end points of edges
in a diagram . Let V =V (y) = {(p,7): 1 <p <m,1 <r < k,} denote the set of all
vertices of v, and let |y| = k1 + -+ + kp, — 2|E(7)| be equal to the number of vertices
in « from which no edge starts. Vertices from which no edge starts will be called free
vertices in the sequel. Let us also define the function a. (p,r) for a vertex (p,r) of the
diagram < in the following way: a(p,r) = (p, ), if there is some pair of integers (p,7)
such that ((p, ), (,7)) € E(7) and p < p, ice. (p,7) € V¥(7) and ((p,1), (5,7)) € E(7),
and put ay(p,r) = (p,r) for (p,r) € V(y) \ V*(v). In words, the function a,(-) was
defined on the set of vertices V(v) in such a way that it replaces an upper end point
of an edge with the lower end point of this edge, and it does not change the remaining
vertices of the diagram.

With the help of the above quantities the appropriate multivariate version of the
functions given in (10.9), (10.9a) and (10.10) can be defined. Put

Frpmy,: 1<p<m1<r<ky)=Fp 5. (Zpn,: 1<p<m1<r<k,)

10.14
= pr('r(p,l)w"?x(p,kp))? ( )
ny(l'(p’r), : (p, 7") ( \ Vu H :)j’aw(p,l), N 7xaw(107kp))7 (10.14&)

and
E (@ (p.r) € V) \ (V2(3) UV (3))
- / Fytmy, 1) €VOOAV'() T] #ldeg).
(pr)EVH() (10.15)

With the help of the above notations the diagram formula for the product of finitely
many Wiener—It6 integrals can be formulated.

Theorem 10.2. (The diagram formula for the product of finitely many
Wiener—Ité integrals). Let a non-atomic o-finite measure p be given on a mea-
surable space (X, X) together with a white noise uw with reference measure . Take
m > 2 functions fp(z1,...,7k,) € Hyur, with some order k, > 1, 1 < p < m. Let us
consider the class of diagrams I'(k1, ..., k) introduced above together with the functions
F,, v€l(ky,... ,kn), defined by formulas (10.14), (10.14a) and (10.15) with its help.
The Lo-norm of these functions satisfies the inequality

1Pl < T[] Ifollz for ally € T(ka, ... k). (10.16)

p=1
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m

Besides, the product [] Z,x,(fp) of the normalized Wiener—Ito integrals of the func-
p=1

tions f,, 1 < p < m, satisfies the identity

H kp!Zpk, (fp) = Z Y1 Z 11 (Fr) = Z Y11y (Sym F ).
p=1

’YEF(kl,...,km) weI‘(kl,...,km)
(10.17)

Theorem 10.2 can be relatively simply derived from Theorem 10.2A by means of
induction with respect the number of terms whose product we consider. We still have
to check that with the introduction of an appropriate notation Theorem 10.2A remains
valid also in the case when the function f is a constant.

Let us also consider the case when f = c and g € H, ;. In this case we apply the
convention Z, o(c) = ¢, define the class of diagrams I'(0,/) that consists only of one
diagram  whose first row is empty, its second row contains the vertices (2,1),...,(2,1),
and it has no edges. Besides, we define F,(z(2,1),...,Z(21)) = cg(Z(2,1),--.,T(2,)) in
this case. With such a convention Theorem 10.2A can be extended to the case of the
product of two Wiener—Ito integrals of order £ > 0 and [ > 1. Theorem 10.2 can be
derived from this slightly generalized result by induction.

By statement c) of Theorem 10.1 all Wiener—It6 integrals of order k£ > 1 have
expectation zero. This fact together with Theorem 10.2 enable us to compute the
expectation of a product of Wiener—Ito integrals. Theorem 10.2 makes possible to
rewrite a product of Wiener—Ito integrals as a sum of Wiener—It6 integrals. Then its
expectation can be calculated by taking the expected value of each term and summing
them up. Only constant terms yield a non-zero contribution to this expectation. These
constant terms agree with the functions F, corresponding to diagrams with no free
vertices. The next corollary writes down the result we get in such a way.

Corollary of Theorem 10.2 about the expectation of a product of Wiener—
Ito integrals. Let a non-atomic o-finite measure p be given on a measurable space
(X, X) together with a white noise pyw with reference measure . Take m > 2 functions
fo(x1,...,2k,) € Hur,, and consider their Wiener—Ito integrals Z,, ., (fp), 1 <p < m.
The expectation of the product of these random variables satisfies the identity

E (ﬁ kplzu,kp(fp)) = Y P, (10.18)

’yef‘(kl ,...,k‘m)

where T'(ky, ..., kmn) denotes the set of all such diagrams v € T'(ky, ..., k) which have
no free vertices, i.e. |y| = 0. Such diagrams will be called closed in the sequel. (If

U(k1, ..., k) is empty, then the sum at the right-hand side of (10.17) equals zero.) The
functions F for v € I'(ki1,...,ky) are constants, and they satisfy the inequality

B < T Ifollz for ally € T(ky,. .. k). (10.19)

p=1
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Proof of the Corollary. Relation (10.18) is a straight consequence of formula (10.17),
part ¢) of Theorem 10.1 and the identity Z, o(F,) = F,, if |7| = 0. Relation (10.19)
follows from (10.16).

The next result 1 formulate is 1t6’s formula for multiple Wiener—It6 integrals. It
can also be considered as a consequence of the diagram formula. It will be proved in
Appendix C.

Theorem 10.3. (Itd’s formula for multiple Wiener—It6 integrals). Let a non-
atomic o-finite measure p be given on a measurable space (X, X') together with a white
noise py with reference measure . Let us take some real valued, orthonormal func-
tions v1(x), ..., pm(x) on the measure space (X, X,u). Let Hy(u) denote the k-th
Hermite polynomial with leading coefficient 1. Take the one-fold Wiener—Ito integrals
Ny = Zua(pp), 1 < p < m, and introduce the random variables Hy (1,), 1 < p < m,

P
with some integers k, > 1,1 <p <m. Put K, = Y ky, 1 <p <m, Ky =0. Then
j=1

N1y, Nm are independent, standard normal random variables, and the identity
m m Ky
H Hy, (np) = Kn!Z,, k., H H ©p(T;)
= ol N (10.20)
m Ky

=KnZux, |Sym (]| I ¢»l@)

p=1 \Jj=Kp-1+1

holds. In particular, for a single real valued function p(x) such that [ @?(x)u(dz) =

i ([ et (n) = [ o) plom(dn).ow(dn). (102)

I also formulate a limit theorem about the distribution of normalized degenerate
U-statistics. The limit distribution in this result can be described by means of multiple
Wiener—It6 integrals. It will be proved in Appendix C.

Theorem 10.4. (Limit theorem about normalized degenerate U-statistics).
Let us consider a sequence of degenerate U -statistics I, 1, (f) of orderk, n =k, k+1,...,
defined in (8.7) with the help of a sequence of independent and identically distributed
random variables &1,&a, ... taking values in a measurable space (X,X) with a non-
atomic distribution p and a kernel function f(xi,...,xx), canonical with respect to
the measure i, defined on the k-fold product (X%, X*) of the space (X,X) for which
ff xl, conxp)p(dey) . p(deg) < oco. Then the sequence of normalized U -statistics
21, k(f) converges in dzstmbutwn as n — o0, to the k-fold Wiener—Ito integral

Hk k'/f Tiy---5 :U/W(dxl) W(dxk)
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with kernel function f(x1,...,xr) and a white noise puw with reference measure f.

Remark. The limit behaviour of degenerate U-statistics I,, ;(f) with an atomic measure
1 which satisfy the remaining conditions of Theorem 10.4 can be described in the follow-
ing way. Take the probability space (U,U, \), where U = [0, 1], U is the Borel o-algebra,
and A is the Lebesgue measure on it. Introduce a sequence of independent random vari-
ables 71,72, . .. with uniform distribution on the interval [0, 1], which is independent also
of the sequence &1, &2, . ... Define the product space (X, X, 0) = (X xU, X xU,pux\
together with the functlon f(@,... ,Tk) = f((z1,u1), ..., (l‘k, ug)) = f(x1,...,x) with
the notation ¢ = (x,u) € X xU, and §; = (§5,7n;), j =1,2,.... Then Ink(f) wi(f)
(with the above defined function f and [ distributed random variables é ). Be81des
Theorem 10.4 can be applied for the degenerate U-statistics I, x(f), n = 1,2,

In the next result I give an interesting representation of the Hilbert space consisting
of the square integrable functions measurable with respect to a white noise py. An
isomorphism will be given with the help of Wiener—Ito integrals between this Hilbert
space and the so-called Fock space to be defined below. To formulate this result first
some notations will be introduced.

Let 7-[0 r C Hu r denote the class of symmetric functions in the space H, k,
kE=0,1,2,. f € M, is in its subspace 7-[27,c if and only if f(zq1,...,zr) =
Sym f(zx1,... ,xk). Let us introduce for all £ = 0,1,2,... the Hilbert space G consist-
ing of those random variables 7 (on the probability space where the white noise pyy is
defined) which can be written in the form

n=2Z,r(f k'/f 1y k) pw (dey) ... pw (drg)  with somefEHg’u

It follows from part a) and c) of Theorem 10.1 that the map f — Zu k(f) is a
linear transformation of Y ; to Gi, and L3 = EZ? () for all f € M), ,, where
| f|l2 denotes the usual Ly-norm of the function f with respect to the k-fold power of
the measure p. By the definition of Wiener-Ito integrals the set G; consists of jointly
Gaussian random variables with expectation zero. The spaces H,, ¢ and Gy consist of the
real constants. Let us define the space Exp (#,,) of infinite sequences f = (fo, f1,.-.),

o0

fr € 7“2,k> k =0,1,2,..., such that ||f]3 = %ka”% < o00. The space Exp (H,,)

with the natural addition and multiplication by a constant and the above introduced
norm || f||2 for f € Exp(H,) is a Hilbert space which is called the Fock space in the
literature.

Let G denote the class of random variables of the form
:ZZ ,k(fk)7 f:(f07f17f27"')EEXP(HH>'
k=0

The next result describes the structure of the space of random variables G. It is useful
for a better understanding of Wiener—Ito integrals, but it will be not used in the sequel.
In its proof I shall refer to some basic measure theoretical results.
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Theorem 10.5. (Isomorphism of the space of square integrable random vari-
ables measurable with respect to a white noise with a Fock space). Let a
non-atomic o-finite measure j be given on a measurable space (X,X) together with
a white noise pyw with reference measure p. Let us consider the class of functions
Hg,k, k=0,1,2,..., and Exp (H,) together with the spaces of random wvariables Gy,

k =0,1,2,..., and G defined above. The transformation Z: Z(f) = > Z,k(fx),
k=0

[ = (fo, fi, f2,...) € Exp(H,), is a unitary transformation from the Hilbert spaces
Exp (”HM) to G. The Hilbert space G consists of all random variables with finite second
moment, measurable with respect to the o-algebra generated by the random wvariables
uw(A), A e X, u(A) < co. This o-algebra agrees with the o-algebra generated by the
random variables Z,,1(f1), fi € 1)) ;.

Proof of Theorem 10.5. Properties a) and c) in Theorem 10.1 imply that the transforma-
tion fr — Zux(fx) is a linear transformation of 1) , to G, and || frll5 = EZ,x(f)*.
Besides, EZ, 1 (f)Zu e (fi) = 0if fi € ’Hg’k, and f;, € ’Hg’k, with k& # k' by proper-
ties d) and c). (The latter property is needed to guarantee this relation also holds if

k =0 or k' =0.) From these relations follows that the map Z: Z(f) = > Z, 1(fx),
k=0

f=(fo, f1, f2,...) € Exp (#,) is an isomorphism between the Hilbert spaces Exp (#,,)
and G.

It remained to show that G contains all random variables with finite second moment,

measurable with respect to the corresponding o-algebra. Let g;(u), j =1,2,..., be an
orthonormal basis in H;, ; = H,,1, and introduce the random variables 7; = Z,,1(g;),
j=1,2,.... By Itd’s formula for Wiener—It6 integrals (Theorem 10.3) these random

variables are independent with standard normal distribution, and all expressions of the
form H,, (n;,)...H,, (n;,) with 7y +--- 4+ 7, = k are in the space Gy, where H,(-)
denotes the Hermite polynomial of order r with leading coefficient 1. To prove the
desired statement by means of these relations we still need the following results from
the classical analysis:

a) Hermite polynomials constitute a complete orthonormal system in the Ly-space on
the real line with respect to the standard normal distribution. (This result will be
proved in Section C in Proposition C2.)

b) If a random variable ¢ is measurable with respect to the o-algebra generated by
some random variables 11,79, ..., then there exists a Borel measurable function
f(x1,29,...) on the infinite product of the real line (R*>°, B>) in such a way that

C=f(n,m2,...).

This means in our case that any random variable { measurable with respect to

the o-algebra generated by the random variables n; = Z,1(g;), j = 1,2,..., can be
written in the form ¢ = f(n1,72,...) with the above introduced independent, standard
normal random variables 11,79, .... If ( has finite second moment, then the function f

appearing in its representation is a function of finite Lo-norm in the infinite product of
the real line with the infinite product of the standard normal distribution on it. Hence
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some classical results in analysis enable us to expand the function f with respect to
products of Hermite polynomials, and this also yields the identity

C=> c(jir,. o) He(njy) - - He (1)

with some coefficients ¢(j1,71, ..., js,Ts) such that

YUt r) | Hey ()P [y, ()] < oo

(Actually it is known that || Hy(u)||? = k!, but here we do not need this knowledge.)
The above relations yield the desired representation of a random variable ¢ with
finite second moment, if it is measurable with respect to the o-algebra generated by the

random variables in G;. Indeed, the identity ( = > (i holds with
k=0

Ck = Z C(thl?'"7j87r8)H7"1<77j1)"'Hrs(njs)v
T1+"'+Ts:k

and (i € G by Ito’s formula.

To complete the proof it is enough to remark that the o-algebra generated by the
random variables 71,72,... and uw (A), A € X, u(A) < oo agree, as it was stated in
part f) of Theorem 10.1.

The results about Wiener—Ito integrals discussed in this Section are useful in the
study of non-linear functionals of a set of jointly Gaussian random variables defined by
means of a white noise. In my Lecture Note [29] similar problems were discussed, but
in that work a slightly different version of Wiener-Ito integrals was introduced. The
reason for it was that the solution of the problems studied in [29] demanded different
methods.

In work [29] stationary Gaussian random fields were considered, and the main
problem studied there was the description of the limit distribution of certain sequences
of non-linear functionals of such Gaussian random fields. In a stationary Gaussian
random field a shift operator can be introduced. The shift of all random variables
measurable with respect to the underlying stationary Gaussian random field can be
defined. In [29] we needed a technique which helps in working with the shift operator.
Fourier analysis is a useful tool in the study of the shift operator. In the work [29] we
tried to unify the tools of multiple Wiener—It6 integrals and Fourier analysis. This led
to the definition of a slightly different version of Wiener—Ito integrals.

The idea behind this definition was the observation that not only the correlation
function of a stationary Gaussian field can be expressed by means of the Fourier trans-
form of its spectral measure, but also a random spectral measure can be constructed
whose Fourier transform expresses the stationary Gaussian process itself. After the in-
troduction of this random spectral measure a version of the multiple Wiener—It6 integral
can be defined with respect to it, and all square integrable random variables, measurable
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with respect to the o-algebra generated by the underlying Gaussian stationary random
field can be expressed with its help. Moreover, it enables us to apply the methods
of multiple Wiener—Itd integrals and Fourier analysis simultaneously. In [29] such a
method was worked out. The modified Wiener—Ito integral introduced there shows a
behaviour similar to that of the original Wiener—Ito integral, only it has to be taken
into account that the random spectral measure behaves not like a white noise, but as
its ‘Fourier transform’. I omit the details. They can be found in [29].

The spaces Gy consisting of all k-fold Wiener—Ito integrals were introduced also
in [29], and this was done for a special reason. In that work the Hilbert space of square
integrable functions, measurable with respect to an underlying stationary Gaussian field
was studied together with the shift operator acting on this Gaussian field, which could
be extended to a unitary operators on this Hilbert space. It was useful to decompose
the Hilbert space we were working with to the direct sum of orthogonal subspaces,
invariant with respect to the shift operator. The spaces Gy were elements of such a
decomposition.

In the present work no shift operator was defined, and no limit theorem was studied
for non-linear functionals of a Gaussian field. Here the introduction of the spaces Gy
was useful because of a different reason. In the study of our problems we shall need
good estimates on the 2p-th moment of random variables, measurable with respect to
the underlying white noise for large numbers p. As it will be shown, the high moments
of the random variables in the spaces G, with different indices k£ show an essentially
different behaviour. For a large number p the p-th moment of a random variable in Gy,
behaves similarly to that of the k-th power £ of a Gaussian random variable ¢ with zero
expectation. An estimate of this type will be formulated in Proposition 13.1 or in its
consequence, in formula (13.2) and in a partial converse of this result, in Theorem 13.6.
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11. The diagram formula for products of degenerate U-statistics.

There is a natural analog of the diagram formula for the products of Wiener—
Ito integrals both for the products of multiple integrals with respect to normalized
empirical measures and for the products of degenerate U-statistics. These two results
are closely related. They express the product of multiple random integrals or degenerate
U-statistics as a sum of multiple random integrals or degenerate U-statistics respectively.
The kernel functions of these random integrals and U-statistics are defined, — similarly
to the case of Wiener—It6 integrals, — by means of diagrams. This the reason why
these results are called the diagram formula. The main difference between these diagram
formulas and their version for Wiener—Ito integrals is that in the present case we have to
work with much more diagrams. In this work the diagram formula for multiple integrals
with respect to a normalized empirical measure will be discussed only at an informal
level, while a complete proof of the analogous result about degenerate U-statistics will
be given. The reason for such an approach is that the diagram formula for the product
of degenerate U-statistics is more useful in the study of the problems discussed in this
work.

We want to prove the estimates about the tail distribution of degenerate U-statistics
and multiple integrals with respect to a normalized empirical distribution formulated in
Theorems 8.3 and 8.1 with the help of good bounds on the high moments of degenerate
U-statistics and multiple random integrals. In the case of degenerate U-statistics the
diagram formula yields an explicit formula for these moments. It expresses the product
whose expected value has to be calculated as a sum of degenerate U-statistics of different
order. Besides, the expected value of all degenerated U-statistics of order k£ > 1 equals
zero. Hence the expected value we are interested in equals the sum of the zero order
terms appearing in the diagram formula.

The analogous problem about the moments of multiple integrals with respect to
a normalized empirical measure is more difficult. The diagram formula enables us to
express these moments as the sum of the expectation of multiple random integrals of
different order also in this case. But the expected value of random integrals of order
k > 1 with respect to a normalized empirical distribution may be non-zero. It was
shown in an example before the proof of Theorem 9.4 that this is possible.

First I give an informal description of the diagram formula for the product of
two random integrals with respect to a normalized empirical measure. Its analog, the
diagram formula for the product of two Wiener—Ito integrals can be described in an
informal way by means of formulas (10.13) and (10.13a) together with the ‘identity’
(uw (dz))? = p(dr) in their interpretation. The diagram formula for the product of
two multiple integrals with respect to a normalized empirical measure has a similar
representation. (Observe that in the definition of the random integral J,, 1 (-) given in
formula (4.8) the diagonals are omitted from the domain of integration, similarly to the
case of Wiener—It6 integrals.) In this case such a version of formulas (10.13) and (10.13a)
can be applied, where the random integrals Z,, ;, are replaced by J, i, and the white
noise measures s are replaced by the normalized empirical measures v,, = /n(ju, — ).
But the analog of the ‘identity’ (uw (dx))? = u(dz) needed in the interpretation of these
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formulas has a different form. Namely, it states that (v,(dx))? = u(dz) + \/Lﬁl/n(dx).
Let us ‘prove’ this new ‘identity’.

Take a small set A, i.e. aset A such that p(A) is very small, write down the identity
(n(A))? = n(pn (A)2+n(p(A))? —2nu, (A)pu(A), and observe that only a second order
error is committed if the terms n(u(A))? and 2npu, (A)u(A) are omitted at the right-
hand side of this identity. Moreover, also a second order error is committed if n(u,, (A))?
is replaced by pu,(A), because it has second order small probability that there are at
least two sample points in the small set A. On the other hand, n(u,(A))? = pn(A)
if A contains only zero or one sample point. The above considerations suggest that
(v d))? = ia(de) = pu( dr) + L[/ ( der) — p( d))] = pu( dr) + L=, (da). (This
means that in the ‘identity’ expressing the square (1,(dz))? of a normalized empirical
measure a correcting term \/Lﬁl/n(drz:) appears. If the sample size n — oo, then the
normalized empirical measure tends to a white noise with counting measure p, and this
correcting term disappears.)

The diagram formula for the product of two multiple integrals with respect to
a normalized empirical measure was proved in paper [32] with a different notation.
Informally speaking the result in this work states that the identity suggested by the
above heuristic argument really holds. In this work we omit its proof, since we shall
not work with it. We shall prove instead a version of this result about the product
of degenerate U-statistics that we can better apply. This result is very similar to the
diagram formula for the products of multiple integrals with respect to a normalized
empirical distribution.

In this section first I formulate the diagram formula about the product of two
degenerate U-statistics in Theorem 11.1 then its generalization about the product of
finitely many degenerate U-statistics in Theorem 11.2. Their proofs is postponed to the
next section. I also present a Corollary of Theorem 11.2 about the expected value of the
product of degenerate U-statistics which follows from this result and the observation
that the expected value of a U-statistic of order k > 1 equals zero. This result together
with Lemma 11.3 which yields a bound on the Ls-norm of the kernel functions appearing
in the diagram formula will enable us to prove good estimates about the high moments
of degenerate U-statistics, and as a consequence to prove Theorem 8.3 about their
tail distribution. One might try to prove the analogous result, Theorem 8.1 about
the estimation of the tail distribution of multiple integrals with respect to a normalized
empirical distribution in a similar way with the help of the diagram formula for multiple
random integrals. But this would be much harder, since the diagram formula for multiple
integrals with respect to a normalized empirical distribution does not supply such a good
formula for the moments of random integrals as the analogous result about degenerate
U-statistics.

To describe the results of this section we introduce some new notions. In the
formulation of the diagram formula for the product of degenerate U-statistics a more
general class of diagrams have to be considered than in the case of multiple Wiener—Ito
integrals. We shall define them under the name coloured diagrams. The kernel functions
of the U-statistics appearing in the diagram formula will be defined with the help of
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these coloured diagrams.

To describe the results of this section we introduce some new notions. In the
formulation of the diagram formula for the product of degenerate U-statistics a more
general class of diagrams have to be considered than in the case of multiple Wiener—It6
integrals. We shall define them under the name coloured diagrams. The kernel functions
of the U-statistics appearing in the diagram formula will be defined with the help of
these coloured diagrams.

A class of coloured diagrams I'(kq,...,ky,) will be defined whose vertices will be
the pairs (p,r), 1 <p <m, 1 <r < k,, and the set of vertices (p,r), 1 <r < k,, with
a fixed number p will be called the p-th row of the diagram. To define the coloured
diagrams of the class I'(kq, ..., ky,) first the notions of chain and coloured chain will be
introduced. A sequence 8 = {(p1,71),-.-,(Ps,7s)} With 1 < p; < py < --- < ps <m
and 1 < r, < kp, for all 1 < u < s will be called a chain. The number s of the
pairs (py,7,) in this sequence, denoted by ¢(3), will be called the length of the chain
B. Chains of length ¢(3) = 1, i.e. chains consisting only of one element (p1,r;) are also
allowed. We shall define a function ¢() = 41 which will be called the colour of the
chain 3, and the pair (3, ¢(/5)) will be called a coloured chain. We shall allow arbitrary
colouring ¢(3) = +1 of a chain with the only restriction that a chain of length 1 can
only get the colour —1, i.e. ¢(f) = —11if ¢(8) = 1.

A coloured diagram v € T'(k1,...,km), v = {B(l1),...,B(ls)} is a partition of the
set {(p,7): 1 <p <m, 1 <r <k,} tothe union of some coloured chains 3(l1),. .., 5(ls),
i.e. each vertex (p,r) is the element of exactly one chain 3(l;) € v. Besides, each chain
B(l;) of a diagram ~ has a colour c¢,(5(l;)) = £1. The set I'(ky,...,k;) consists
of all partitions of the set of vertices {(p,7),1 < p < m,1 < r < k,} to coloured
chains, where an arbitrary colouring of the chains with the numbers +1 is allowed
with the only restriction that for a chain 5 € ~ of length ¢(8) = 1 of a diagram
v € I'(k1,...,kmn) cy(B) = —1. In our notation we have introduced an indexation
(enumeration) B(ls) = B(ls,v), 1 <13 < g < --- < s, of the chains of a coloured
diagram ~ € I'(ky,..., k). Both the number s and the indices [y, ...,l; may depend
on 7. Such a notation will be useful in our later considerations. It also turned out useful
to allow more general indexation of these chains with numbers [4,...,l; and not only
with the numbers 1,...,s.

We shall also introduce an enumeration of the vertices of a coloured diagram ~ €
[(ki,..., k) with the help of the enumeration of its chains. Given a coloured diagram
v = (B(l),...,B(s)) € I'(k1,...,kn) we define the indices a(p,r) of a vertex (p,r)
of this diagram by the formula o (p,r) = ; if (p,r) € B(l;). We shall divide the set
of indices {ly,...,ls} of the chains contained in a coloured diagram + into two disjoint
sets O(y) = {l;: 1 < j < s,¢cy(B(l;)) = —1}, called the set of open indices of the
diagram v and C(y) = {l;: 1 < j <'s, c¢y(B(l;)) = 1}, called the set of closed indices of
the diagram . We shall also list the elements of O(7y) in an increasing order, i.e. write
O() ={l,....Ljoey}, lh <lp < -+ <liogy)- (We shall denote the cardinality of a
finite set A by |A| in the sequel.) We defined the coloured diagrams and introduced their
open and closed indices, because, as we shall see, in the diagram formula such degenerate
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U-statistics appear whose kernel functions are defined with the help of these coloured
diagrams, and the indices of the arguments of the kernel function corresponding to the
coloured diagram v are closely related to the chains of v with colour —1, hence to the
open indices of ~.

In the diagram formula we express the product H;n’:l Ik, (fp) of degenerate U-
statistics with canonical kernel functions f, of k, variables as the sum of appropriate
degenerate U-statistics. The kernel functions of the degenerate U-statistics appearing
in this representation of the product of degenerate U-statistics will depend on the above
defined coloured diagrams -, and they will be denoted by F,, v € I'(k1, ..., k). In the
definition of these functions F, we shall apply the operators introduced below.

Given a function h(x,,,...,2,,) with coordinates in the space (X, X’) (the indices
ui,...,u, are all different, otherwise they can be chosen in an arbitrary way) and a
probability measure ;1 on the space (X, &) let us introduce its transforms P,;h and
Qu;h, 1 < j <r, by the formulas

(Pu;h)(Tuy: w € {ug, .. ur} \ {u;}) = /h(mul,...,xur)u(dacuj), 1<j<r (11.1)
and

(Qu;P)(@uys -y Tu,) = W( Ty 20, ) — /h(mul,...,xur),u(da:uj), 1<5<r

(11.2)
(These formulas are very similar to the definition of the operators P; and @Q; introduced
in formula (9.1) before the proof of the Hoeffding decomposition.)

First we consider the product of two degenerate U-statistics, i.e. the case m = 2.
Let us have a measurable space (X, X') with a probability measure p on it together with
two measurable functions fi(x1,...,2zx,) and fa(x1,...,2k,) of k1 and ko variables on
this space which are canonical with respect to the measure pu. Let &1,&,... be a
sequence of (X, X') valued, independent and identically distributed random variables
with distribution p. We want to express the product I, k, (f1)In k, (f2) of degenerate
U-statistics defined with the help of the above random variables and kernel functions f;
and fy as a sum of degenerate U-statistics. For this goal we introduce some notations.

Given two functions fi(z1,...,2k, ) and fa(z1,...,2k,) and a coloured diagrams
~v € I'(ky1, ko) consisting of s coloured chains §(l1), ..., 5(ls) we define the function

(fl © fQ),y(.Tll, SRR ZC’[S) = fl(waw(l,l); < 7xa7(1,k1))f2(xa7(2,1)7 o ?x()é»y(Q,kg))7 (113)

where . (p,r) denotes the index of the vertex (p,r) of the diagram ~ in their above
defined enumeration a. (In formula (11.3) all arguments of the functions f; and fo
have different indices. But the indices a(1,j) and a4(2, ;') may agree for some pairs
(7,7"). This happens if the vertices (1, ;) and (2, j’) belong to the same chain g € v of
length 2.) Let us also define the function

(frofo)y(@,, beo) = Il P Il @ | (o), (z,. . m,), (11.4)

peC(y)  p€O02(7)
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with the operators P, and @), defined (with a different indexation) in formulas (11.1)
and (11.2), where C(y) is the set of indices of the closed diagrams of v, and O2(y) C
O(7), defined as Oz(y) = {l: ¢, (8;) = —1, and ¢(B(l)) = 2}, is the set of indices of the
chains of v with colour —1 and length 2. are the above defined sets of open and closed
indices of the diagram 7. The arguments of the function (f; o f2), are the indices of
the open vertices of the diagram 7. Let us also remark that the operators P, and @,
in formula (11.4) are exchangeable, hence it is not important in what order we apply
them.

The function F,(f1, f2) we apply in the formulation of the diagram formula in the
special case when the product of two degenerate U-statistics is considered is similar
to the function (f; o f2), introduced in (11.4). We need a small technical step for its
definition. We want to work with such a function whose variables are indexed with the
numbers 1,2,...,|O(v)| while the indices of the function f; o fs), are the elements of
the set O(y) = {l1,...,ljo(y)}- Hence we define the function ¢ =t on the set O(y) by
the formula ¢({;) = j, 1 < j < |O(v)|, and introduce the function

Fy(f1, f2)(z1, 72, s 2 j0(y)) = (f10 f2)4(Ti1,), bp € O(7)). (11.5)

Let me remark that for different enumerations (1), ..., 8(ls) of the chains of a coloured
diagram + the function F,(fi, f2) we defined by formulas (11.1)-(11.5) may be slightly
different. One of them can be obtained by reindexing the variables x1,...,|0(,) in
these functions. But the value of the U-statistic I,, |0(n)|(Fy(f1, f2)) does not depend
on the indexation of the variables in its kernel function, hence on the enumeration of
the chains of 7. For a similar reason the value of I,, |0(n)(Fy(f1,f2)) depends only
on the cardinality of |O(7)|, |O2(7)| and |C(v)]| of the coloured diagram ~, and also a
reindexation of the arguments of f; or fo does not change the value of the U-statistic

In,|O(n)| (F’Y(fh fQ))

Next I formulate the diagram formula for the product of two degenerate U-statistics
with the help of the above defined quantities.

Theorem 11.1. (The diagram formula for the product of two degenerate U-
statistics). Let a sequence of independent and identically distributed random variables
&1,&2, ... be given with some distribution p on a measurable space (X, X') together with
two bounded canonical functions fi(x1,...,2zk,) and fo(x1,...,Tk,) with respect to the
probability measure p on the product spaces (X*1, X*1) and (X*2, X*2) respectively.
Let us take the class of coloured diagrams T'(ky,ks) introduced above together with the
functions Fy(f1, f2) defined in formulas (11.1)—(11.5).

For all v € T' Fy(f1, f2)y is a canonical function with respect to the measure p
with |O(7)| arguments, where O(vy) and C(vy) denote the set of open and closed indices
of the diagram . The product of the degenerate U-statistics I, , (f1) and I k,(f2),
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n > max(ky, k2), defined in (8.7) can be expressed as

("2 1T, g, (fl))( 7k2/2k2'fn Ko (f2))

oy 100 Dt
- Z H ( > (7)/2.n_‘O(W)W'O(V)|!In7|0(7)\(Fw(fhfz))
vl (k1,k2) J=1
(11.6)
with W(y) = k1 + ko — |O(7)| — 2|C(¥)| and s(v) = |O(y)| + |C(v)| (which equals the
number of coloured diagrams in ), where Z/(n) means that summation is taken only
for such coloured diagrams v € T'(ky, ko) which satisfy the inequality s(y) < n, and

1C(y)]

[I equals 1 in the case |C(v)| = 0. The term I, |0()|(Fy(f1, f2)) can be replaced by
j=1
I.10() (SymFy (f1, f2)) in formula (11.6).

Consider the Ly-norm of the functions Fy(fi1, f2) defined by the formula

B (s ) = I 0 12518 = (o f2l2Gan,. fp € O0) T nlda,)

l p€O(V)

The inequality

1% (f1s f)lle = [[(f1 0 fa)rylle < [l f1ll2ll follz &f W(y) =0 (11.7)

holds for this norm. The condition W (vy) = 0 in formula (11.7) means that the diagram
v € I'(k1, k2) has no chains 8 of length £() = 2 with colour ¢, () = —1. In the case of
a general diagram v € T'(ky, ka) the inequality

1B (1, f2)ll2 = I(fr o fa)yllz < 200 min(| fi2, || f2ll2) (11.8)

holds if the Loo-norm of the functions f1 and fo satisfies the inequalities ||f1]lcc < 1
and || fallco < 1. Relations (11.7) and (11.8) also hold for non-canonical functions fi
and fs.

Inequality (11.7) is actually a repetition of estimate (10.11) about the diagrams
appearing in the case of Wiener—It6 integrals. Inequality (11.8) yields a weaker bound
about the Ly-norm ||F, (f1, f2)||2 = ||(fi 0 f2)]|2 for a general diagram ~. In particular,
it depends not only on the Ls-norm, but also on the L.,-norm of the functions f;
and fo. This is closely related to the fact that in the estimates on the distribution of
U-statistics, — unlike the case of Wiener—It6 integrals, — a condition is imposed not
only on the Lo-norm of the kernel function f, but also on its L,,-norm. I return to this
question later.

Remark 1. The expression W(vy) = k1 + ko — |O(7)| — 2|C(v)| appearing in formu-
las (11.6), (11.7) and (11.8) has the following content. It equals the number of those
diagrams S(l;) € v for which ¢(8(l;)) = 2, and ¢ (8(l;)) = —1. Indeed, if W () denotes
the number of such chains, and W (v) equals the number of chains 8(I;) € v for which
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((B(1;)) = 1 (and as a consequence ¢ (B(l;)) = —1), then W (y) + W (y) = |O(v)|, and
2W (y)+W(v)+2|C(v)| = k1 +ko. These identities imply the statement of this remark.

Remark 2. The term I, |0()(F5(f1, f2)) appeared in the sum at the right-hand side
of (11.6) only if the condition s(y) < n was satisfied. This restriction in the summation
had a technical character, which has no great importance in our investigations. It is
related to the fact that a U-statistic I, x(f) exists only if n > k. As a consequence,
some U-statistics disappear at the right-hand side of (11.6) if the sample size n of the U-
statistics is relatively small. The term I, |o(yy(Fy(f1, f2)) appeared in (11.6) through

the Hoeffding decomposition of a U-statistic with kernel function (f; o fg),y defined
in (11.3). This function has s(y) arguments, and the U-statistic corresponding to it
appears in our calculations only if the sample size n is not smaller than this number.

Let us recall the convention introduced after the definition of canonical degenerate
U-statistics by which I, o(c) is a degenerate U-statistic of order zero, and I, o(c) = ¢ for
a constant c. By applying this convention we write F, ((f1, f2) = fi0f2 in relation (11.6)
for those diagrams « for which |O(v)| = 0, i.e. ¢y(8) = 1 for all chains 8 € v. We
shall introduce another convention which implies that Theorem 11.1 is valid also in the
degenerate case when the function f;, = ¢ with a constant ¢, and k1 = 0. In this case
I'(k1, k2) consists of only one diagram v containing the chains §; = {j} of length one
and colour ¢,({j}) = —1, 1 < j < kyo. We define I(F,(f1, f2)) = cfo in this case.
Besides, we have W (v) = k1 + ko — |O(7)| — 2|C(y)| = 0, |O(7)| = ka2, and |C(~)| = 0.
Hence formula (11.6) remains valid also in the case k; = 0. We have introduced this
convention because the following inductive argument leading to the proof of the diagram
formula for the product of degenerate U-statistics in the general case is valid under such
a convention.

Let us turn to the formulation of the general form of the diagram formula for the
product of degenerate U-statistics. First I define a function £, = F.(f1,..., fm) for each
coloured diagram v € I'(ky, ..., k,,) and collection of canonical functions (with respect
to a probability measure p on a measurable space (X, X)) f1,..., fm, with k1, ..., and
kp, variables. These functions F, will be the kernel functions of the degenerate U-
statistics at the right-hand side of the diagram formula.

These functions F, will be defined by induction with respect to the number m
of the components in the product. For m = 2 we have already defined the function
F,(f1, f2). Let the functions Fy(fi,..., fm—1) be defined for each coloured diagram
v €T(ki,...,km—1). Todefine F,(fi,..., fm) for a coloured diagram v € I'(k1, ..., k)
first we define the predecessor vy, = Ypr(v) € I'(k1, ..., km—1) of 7. We shall define the
coloured diagram 7y, together with an appropriate indexation of its element with the
help of the enumeration of the elements of v. Roughly speaking, the elements of v,
are the restrictions of the chains contained in 7 to the first m — 1 rows of the diagram,
i.e. to the set {(p,7): 1 <p<m—1,1<r <k,}. Butwe must define also the colour
of these restricted chains.

To define precisely the predecessor 7,, of v let us divide first the chains of the
coloured diagram v = {5(l1),...,8(ls)} € T'(k1,..., k) into two disjoint subsets v =
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Y1 U 72, defined as v = {B(;): B(;) € ~, B(l;) n{(m,1),...,(m,kn)} # 0} and
vo = {B(;): B(;) € v, B(l;) n{(m,1),...,(m, kn)} = 0}, i.e. a coloured chain § € v
belongs to 7 if it contains a vertex from the last row {(m,1),...,(m,ky)} of the
diagram, and it belongs to ~» if it does not contain such a vertex. We define with the
help of the chains 8(I;) € v the chains 3,,(I;) = 5(l;) \ {(m,1),...,(m, k,,)} and with
the help of the chains 3(l;) € 2 the chains £, (l;) = B(l;). (For those chains 3(l;) € 71
which consist only of one vertex of the form (m,r), 1 < r < k,,, the corresponding chain
Bpr(l;) would be the empty set. These empty sets are omitted from the set of chains
Bpr(1;) € vpr.) The set of all above defined chains f,,(1;) provides a partition of the set
of vertices {(p,r): 1 <p<m—1,1<r <k,}. The diagram ~,, will consist of these
chains 3,,(l;). To complete the definition of the coloured diagram ~,, we still have to
define the colour ¢, (B,r(l;)) of these chains.

We define the colour of these chains by the formulas ¢, (Bpr (1)) = —1if B(l;) € 71,
and ¢, (Bpr(l;)) = cy(B(l;)) if B(l;) € 2. In such a way we defined the predecessor
Ypr € T'(k1, ..., km—1) of the diagram ~ € I'(kq, ..., k). Moreover we gave an indexa-
tion of the chains of ~,, with the help of the indexation of the chains of 1.

With the help of the coloured diagram =, € I'(k1,. .., ky—1) we can define the func-
tion F,, = F, (f1,..., fm—1) which is a function of |O(v,,)| variables x1, ..., Z|0(y,,)-
We shall define the function F., = F,(f1,..., fm) similarly to the definition of F,(fi, f2)
given by formulas (11.3), (11.4) and (11.5) in the case m = 2. In this case F,  plays
the role of the function f; and f,, the role of the function f;. To define the function
F,(f1,..., fm) we still have to define a coloured diagram . = Y () € T(|O(Ypr)|, km.)
that we shall call the closing diagram of 7. The heuristic content of the diagram -~
is that it contains the additional information we need to reconstruct the diagram
v € I'(k1,...,ky) if we know its predecessor 7,,. We shall define it together with
an enumeration of its chains that depends on the enumeration of the chains of the
diagram ~.

To define the diagram -y, let us first consider the listing O(vp,) = {l1, .-, j0(y,.)(}-
1<lhi<ly<--< l‘o(ym, of the indices of the open indices of the diagram ~,, in
increasing order. Let us fix a vertex (1,7), 1 < j < |O(7,,)| in the first row of .. We
shall denote the chain of 7. containing this vertex by B (l;), i.e. this chain get the
index l_j, and define it together with its colour in the following way. Let us consider the
(open) chain B,,(I;) together with its ‘continuation’ 3(l;). Clearly, B,.(;) C B(l;). If
B(1;) € y1, then B(l;) = Bpr(I;) U {(m,r;)} with some integer 1 < r; < ky,. In this case
we define the chain containing the vertex (1,j) as the diagram B (l;) = {(1,5), (2,7;)}
with this number r;, and it gets the colour ¢, ,(Bu(l;)) = ¢y (B(1;)). If B(l;) € 72,
then B,,(l;) = B(l;), and we define the chain containing the vertex (1,j) as the chain
Ba(l;) = {(1,7)} of length 1 and with colour ¢, (B(l;)) = —1.

We still have to consider those vertices (2,7) of I'(|O(ypr)|, km), 1 < 17 < kyyy, for
which there exists a chain 3(;y) € 7 such that 3(l;¢)) = {m,7)}, because these are
the vertices of the set of vertices {(1,7): 1 < j < [O(vpr)|U{(2,7): 1 < r < ky,}
which are not contained in the previously defined chains (.(/;). To cover these vertices
with an (appropriately indexed) chain of . let us define the chains Be(l;(,)) = {(2,7)}

with the colour ¢, (Bei(lj())) = —1 for such vertices (2,7). The above defined coloured
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chains provide a partition of the set {(1,7): 1 < j < |O(7p)|U{(2,7): 1 <r < kp,},
and they are the elements of the coloured diagram ~,;.

We shall define the function F,(f1,..., fm) with the help of the above introduced
diagrams 7y,, and 7. in the following way. Put, similarly to formula (11.3),

(F’Ypr(fb""fm—l) Ofm),y(xlw"'axls)

(11.9)
= F50(Ta, ,(1,1)s - Tan, (1L10(rpr) ) m(Tay |, 2,1)5 - Ty, (2,k0m) )

where s = s(7¢) is the number of the chains contained in 7. The indices l1,[5 ..., and

ls of the variables at the left-hand side of (11.9) agree with the indices of the chains of

the diagram ., and a.,, (p,r) denotes the index of the vertex (p,r) of the diagram -,

which is induced by the enumeration of the indices of the chains in v.;. Next we define

with the help of formula (11.9), similarly to the relation (11.4), the function

(F’ypr(flv .- ~=fm71) © fm)’y(mpv pE O(’Vcl))

= I 2 II @ | (f. fuiofm) (@ p € O(a) UC(1a))
C(yer) O2(ver)
e e (11.10)

with the operators P, and @), defined (with a different indexation) in formulas (11.1)
and (11.2), where the sets O(+) and C(~.) are the sets of open and closed indices of the
diagram -y, and the set O2(~.) (for a general diagram with two rows) was defined after
formula (11.4). The function (£, (f1,..., fm—1)©° fm), depends only on the arguments
indexed by the open indices of the diagram ~,,;.

The function F,(fi,..., fm) will be defined by means of a reindexation of the
arguments of the function (F, (fi,...,fm-1)° fm)y(z1,, [, € O(7e)) which will be
made to get a function with arguments x1,z2,...,%|0(y,,)- It is defined, similarly to
formula (11.5), as

ny(fl, ceey fm)(xl, To, ... 7x|0(%1)|) = (F’Ypr(fb ceey fmfl) o fm)'y(xt(lp)a lp € O(%Z)),

(11.11)
where the indices t(I,,) are defined in the following way. We list the open indices of the
diagram 7., in an increasing order as O(ve) = {l1,-- -, Loy It <l2 <+ <Lo(ya))5

and define the function ¢(-) on the set O(yq) as t(l,) = p for 1 < p < |O(vq)|-

To complete the definition of the function Fy(fi,..., f,,) observe that |O(vy)| =
|O(7)|. (Even the sets O(v.) and O(v) agree with the enumeration of the chains of
these two diagrams we have chosen.) Hence we can write

F’y(fly ceey fm)(l'l,ZCQ, N ,.’B|0(,ycl)|> = F’y(fb e ,fm)(.rl,:cg, e ,z‘o(,y”). (1112)

Let me remark, that, just as in the case m = 2, also in the case m > 2 the value of the
U-statistic I,, |0 (Fy(f1,- .., fm)) does not depend on the enumeration of the chains
of the coloured diagram .
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To formulate the general form of the diagram formula for the product of degenerate
U-statistics we introduce some quantities which will be the version of the quantities
appearing in the coefficients of the right-hand side of (11.6) in Theorem 11.1. Put

W)= Y (tBL) -1+ D> (UBUp) —2), vET (k.. km), (11.13)

1,e0(v) ,eC(v)

where /() denotes the length of the chain g.

To define the next quantity we need let us first introduce the following notation.
Given a chain 8 = {(p1,71),..-,(pi,7)}, 1 < p1 < p2 < -+ < p; < m, in the set
{(p,r): 1 <p<m,1<r <k,} let us define its upper level u(f) = p1, and its deepest
level d(B) = l,. Let us define with their help for all diagrams v € I'(ky,..., k) and
integers p, 1 < p < m, the sets Bi(v,p) = {B: B € v, v(B) = 1,d(S) = p}, and
Ba(y,p) = {B: B €7, cy(B) = —1,d(B) < ptU{B: B €, ulB) <p, dB) > p}, ie.
B1(7,p) consists of those chains 5 € T" which have colour 1, all their vertices are in the
first p rows of the diagram, and contain a vertex in the p-th row, while By(y, p) consists
of those chains g € ~ which have either colour —1, and all their vertices are in the
first p rows of the diagram, or they have (with an arbitrary colour) a vertex both in the
first p rows both in the remaining rows of the diagram. Put Bi(v,p) = |Bi(v,p)| and
Bs(7,p) = |Ba(v,p)|- With the help of these numbers we define

Bi1(v,p) .
f[p (n—Bl(%p)—Bz(%p)ﬂ

n

Jn(7,p) = (11.14)

7j=1

for all 2 < p < m and diagrams v € I'(ky, ..., kn).
Theorem 11.2 will be formulated with the help of the above notations.

Theorem 11.2. (The diagram formula for the product of several degener-
ate U-statistics). Let a sequence of independent and identically distributed random
variables £1,&a, ... be given with some distribution p on a measurable space (X, X) to-
gether with m > 2 bounded functions fy(z1,...,2,) on the spaces (XFr X)), 1 <
p < m, canonical with respect to the probability measure . Let us consider the class
of coloured diagrams I'(ky, ..., kn) together with the functions F, = F,(f1,..., fm),
v € T'(k1,...,kn), defined in formulas (11.9)—(11.12) and the constants W(~y) and
Jn(7,0), 1 < p <m, given in formulas (11.18) and (11.14).

The functions Fy(fi,..., fm) are canonical with respect to the measure p with
|O(7)| variables, and the product of the degenerate U-statistics I, i (fp), 1 < p < m,

n > max kp, defined in (8.7) can be expressed as
1<p<m

H n_kp/2kp!In7kp (fkp> = Z/(nﬂn) (H Jn(fy,p)) n_W(’Y)/Q
p=1

YET (k1,....km) p=2
n~I9ON2|0() U, o) (By (frs -+ )
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where Z/(n’ ™) means that summation is taken for those v € T'(ky, ..., kn) which satisfy
the relation By (v,p) + Ba(v,p) < n for all 2 < p < m with the quantities Bi(v,p) and
Bs (7, p) introduced before the definition of J,,(y,p) in (11.14), and the expression W ()
was defined in (11.13). The terms I, |0y (Fy(f1,. .., fm)) at the right-hand side of
formula (11.15) can be replaced by I, |0 (Sym EFy(f1,. .., fm)).

In Theorem 11.2 the product of such degenerate U-statistics were considered, whose
kernel functions were bounded. This also implies that all functions F’, appearing at the
right-hand side of (11.15) are well-defined (i.e. the integrals appearing in their definition
are convergent) and bounded. In the applications of Theorem 11.2 it is useful to have
more information about the behaviour of the functions F,. We shall need some good
bound on their Lo-norm. Such a result is formulated in the following

Lemma 11.3. (Estimate about the L;-norm of the kernel functions of the
U-statistics appearing in the diagram formula). Let m functions f,(x1,...,7x,)
be given on the products (X*», X*») of some measurable space (X, X), 1 < p < m, with
a probability measure p on it, which satisfy inequalities (8.1) and (8.2) (if the index k is
replaced by the index k, in them), but these functions need not be canonical. Let us take
a coloured diagram v € I'(ky, ..., k), and consider the function Fy(fi,..., fm) defined
by formulas (11.9)—(11.12). The La-norm of the function F,(f1,..., fm) (with respect
to the power of the measure p to the space where Fy(f1,..., fm) is defined) satisfies the
mequality
1E (froeo Fdll2 < 2% T £l

peU(v)

where W () is given in (11.13), and the set U(y) C {1, ..., m} is defined in the following
way. Let us define for a coloured chain 8 = {(l1,71), (l2,72),...,(ls,75)} € v with
1<l <.+ <ls < m the set of its interior levels as and Int (B) = {la, ..., ls_1,1ls}
if ¢y(B) = —1 and Int(B) = {l2,...,ls—1} if c¢y(B) = 1. Then we define U(y) =

{1,...,m}\ (U Int(ﬁ)).

BEY

The last result of this section is a corollary of Theorem 11.2. In this corollary we give
an estimate on the expected value of product of degenerate U-statistics. To formulate
this result we introduce the following terminology. Let us call a (coloured) diagram
v € I'(ky,...,kn) closed if ¢, (8) = 1 for all chains 3 € . Let us denote the set of all
closed diagrams by T'(k1, . .., ky,). Observe that . (f1,..., f,) is constant (a function of
zero variable) for all closed diagram v € I'(kq, ..., kn), and I, jo(y)(Fy(f1, ..., fm)) =
Ino(Fy(fi,-- s fm)) = Fy(fi,..., fm) in this case. Now we formulate the following
result.

Corollary of Theorem 11.2 about the expectation of a product of degenerate
U-statistics. Let a finite sequence of functions fy(x1,...,7x,), 1 < p < m, be given on
the products (X*», X*») of some measurable space (X,X) together with a sequence of
independent and identically distributed random variables with value in the space (X, X)
which satisfy the conditions of Theorem 11.2.
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Let us apply the notation of Theorem 11.2 together with the notion of the above
introduced class of closed diagrams I'(ky, ..., kn). The identity

E (H kp!n-'fp/m,kp<fkp>> = Z’("’m) ( an,p)) nWOV2E (fi,. s )
p=1

(11.16)
holds. This identity has the consequence

E (H kp!n—’%/m,kp(fkp)>
p=1

< Y aVOREG, £l (117)
’yef‘(kl,.“,k‘?n)

Besides, if ||fpll2 < o for all 1 < p < m, then the numbers F.(f1,...,fm) at the
right-hand side of (11.17) satisfy the inequality

1Ey(fry oo f)| 2V OGUDN for all v € T(ky, .. k). (11.18)

In formula (11.18) the same number W () and set U(y) appear as in Lemma 11.53. The
only difference is that in the present case cy(B) =1 for all chains B € v which appear
in the definition of U(7y).

Remark: We have applied a different terminology for diagrams in this section and in
Section 10, where the theory of Wiener—It6 integrals was discussed. But there is a simple
relation between the terminology of these sections. If we take only those diagrams
from the diagrams considered in this section which contain only chains of length 1
or 2, the chains of length 1 have colour —1, and the chains of length 2 have colour 1,
then we get the diagrams considered in the previous section. Moreover, the functions
F, = F,(fi,..., fm) are the same in the two cases. Hence formula (10.18) in the
Corollary of Theorem 10.2 and formula (11.17) in the Corollary of Theorem 11.2 make
possible to compare the moments of Wiener—Ito integrals and degenerate U-statistics.

The main difference between these estimates is that formula (11.17) contains some
additional terms. They are the contributions of those diagrams v € T'(k1, ..., k) which
contain chains 3 € v with length £(3) > 2. These are those diagrams vy € ['(ky,. .., kn)
for which W(v) > 1. The estimate (11.18) given for the terms F, corresponding to
such diagrams is weaker than the estimate given for the terms £, with W (y) = 0, since
|U(y)] < m if W(y) > 1, while |U(y)| = m, if W(y) = 0. On the other hand, such
terms have a coefficient n="(7)/2 at the right-hand side of formula (11.17). A closer
study of these formulas may explain the relation between the estimates given for the
tail distribution of Wiener—Ito6 integrals and degenerate U-statistics.
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12. The proof of the diagram formula for U-statistics.

In this section the results of the previous section will be proved. First I prove its main
result, the diagram formula for the product of two degenerate U-statistics.

Proof of Theorem 11.1. In the first step of the proof the product ki!L,, &, (f1)ke!In 1, (f2)
of two degenerate U-statistics will be rewritten as a sum of not necessarily degenerate
U-statistics. In this step a term by term multiplication is carried out for the product
k1L, gy (f1)ke!Ip i, (f2), and the terms of the sum obtained in such a way are put in
different classes indexed by the (non-coloured) diagrams with two rows of length &y
and ko. This step is very similar to the heuristic argument leading to formulas (10.13)
and (10.13a) in our explanation about the diagram formula for Wiener-It6 integrals.

In this step of the proof we consider all sets of pairs

{(ug,ul)y o (uryul)}, 1 <r <min(ks, k2),
with the following properties: 1 < wuj < ug < -+ < u, < ky, the numbers v}, ..., u. are
different, and 1 < u, < ko, for all 1 < s <.
To a set of pairs {(uy,u)),..., (u,,u.)} with the above properties let us corre-

spond the following diagram ((u1,u}),. .., (us,u.)) € T(ki,ks), where T'(ky,ks) de-
notes the set of (non-coloured) diagrams with two rows of length k; and k5. The diagram
F((ug,ul), ..., (ur,ul)) has two rows, {1,...,k1}, and {2,..., ky}, its chains of length 2
are the sets {(1,us), (2,u})}, 1 < s <r, it contains the chains {(1,7)}, r € {1,... k1 }\
{us,...,ur},and {(2,7)}, r € {1,..., ka} \ {u),...,u.} of length 1. All (non-coloured)
diagrams 4 € ['(ky, k2) can be represented in the form ¥ = ¥((uy, u}),. .., (u,, ul.)) with
the help of a set of pairs {(u1,u}),..., (ur,ul)}, 1 < r < min(ky, ka), with the above

properties in a unique way.

To make the notation in the subsequent discussion simpler we fix, similarly to the
case of coloured diagrams, an indexation of the chains of a diagram 4 € T'(ky, k2), and
we define with its help an indexation of the vertices of this diagram 7, too. Let us take
the following natural indexation. Consider the diagram 7 = 5((uy,u}),..., (uy,u..)) €
['(k1,k2) which has s(j) = kj + ky — r chains. The chain 8 € # containing the
vertex (1,7) gets the index j, i.e. (1,5) € B(j) for 1 < j < k;. To define the in-
dex of the remaining chains of 4 which are chains of length 1 of the form (2, j) with
je{l, ..k} \ {u),...,u.} let us take the list {I1,...,lg,—r}, 1 <1y <+ <lgpy_p, of
the elements of the set {1,...,ka}\ {u],...,u.} in an increasing order. Then we define
the indices of the remaining chains by the formula (ke +j) = {(2,1;)}), 1 < j < ko —1.
After this we define the indexation of the vertices of the diagram + by the formula
as(p,r) = | with that index [ for which (p,r) € [(I). Let us also define the sets
Vi=Vi(y)=A{1,....k1 + ke — 7} \ {u1,...,u.} and Vo = V5(§) = {u1,...,u.}, i.e. 15
is the set of indices of the chains of 4 of length 1, and V5 is the set of indices of the
chains of 74 of length 2.

Let us consider the product k11, , (f1)k2! Ly k, (f2), and rewrite it in the form of the
sum we get by carrying out a term by term multiplication in this expression. We put the
terms obtained in such a way into disjoint classes indexed by the diagrams 5 € I'(kq, k2)
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in the following way: A product fi(&j,,..., & ) f2(&r,- -, &, ) belongs to the class in-
2

dexed by the diagram ¥ ((u1,u}), ..., (uy, u,.)) with the parameters (uy,u}),. .., (u,,u..),

1 < r < min(ky, k), where 1 < uy < ug < -+ < u, < ky, the numbers uf, ..., ul are
different, and 1 < ug < ko, for all 1 < s < r if the indices ji,..., jr,, 1, -, Jp, in the
arguments of the variables in fi(-) and fa(-) satisfy the relation j,, = j,,, 1 < s <,
and there is no more coincidence between the indices ji, ..., jr,,J1,- - - ,j,’cz.

It is not difficult to see by applying the above partition of the terms in the product
kil i, (f1)k2'Ip i, (f2), and exploiting that each diagram of I'(kq, k2) can be written in

the form 4((uy,u}),..., (ur,ul)) in a unique way that the identity

n_kl/gkl!ln,lﬁ (fl)kQ!n_k2/2In,k2 (f2) = Z /(n)n_(k1+k2)/2s(’7)!]n,s("y) ((fl o f2)’7)
~eT (k1,k2)
(12.1)
holds, where the functions (fi o f2)5 are defined in formula (11.3), s(¥) = ki+ka—|V2(7)|

denotes the number of chains in 7, (both chains of length 1 and 2) and the notation Z'(n)
means that summation is taken only for such diagrams 4 € T'(ky, ko) for which n > s(7).
(Let me remark that although formula (11.3) was defined for coloured diagrams, the
colours of the chains played no role in it.)

Relation (12.1) is not appropriate for our purposes, since the functions (fi o f2)5
in it may be non-canonical. To get the desired formula, Hoeffding’s decomposition will
be applied for the U-statistics I,, 55)((f1 © f2)5) appearing at the right-hand side of
formula (12.1). This decomposition becomes slightly simpler because of some special
properties of the function (f; o f2)5 related to the canonical property of the initial
functions f; and fs.

To carry out this procedure let us observe that a function f(z,,...,xy, ) is canon-
ical if and only if P, f(zu,,...,%y,) = 0 with the operator P, defined in (11.1) for all
indices ug, 1 < s < k. Besides, the condition that the functions f; and f are canonical
implies the relation P,(fi o f2)5 = 0 for v € V4(¥) for all diagrams ¥ € ['(k1, k2), and
this relation remains valid if the function (f; o f2)5 is replaced by such functions which
we get by applying the product of some transforms P,. and Q,/, v € P» for the function
(f1 o f2)s with the transforms P and @ defined in formulas (11.1) and (11.2).

The transforms P, or ), are also exchangeable with the operators P, or @), if
v # v, P, + @Q,) = I, where I denotes the identity operator, and P,Q, = 0, since
P,Q, =P, — Pg = 0. The above relations make possible the following decomposition
of the function (fi o f2)5 for all 4 € T'(k1, ka) to the sum of canonical functions (just as
it was done in the Hoeffding decomposition):

(fiofa)y = [[ (Po+Qu)(Fro fa)s

S%
=> 112 II @|(Fof)s= D> (fiof),
ACVz \vEA  weln\A ~er () (12.2)
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where the function (f; o f2), is defined in formula (11.4), and I'(¥) denotes the set of
those coloured diagrams v € I'(ky, k2) which consist of those chains (with a colour £1)
as the non-coloured diagram 7. (Clearly, s(y) = s(¥) for the number of chains of v

and 7 if v € I'(¥).) Indeed, given a set A C Vo, we have ([[ P, [I Qu)(fio fa)s =
’UEA ’UEVQ\A

(f10 f2), with that coloured diagram v € I'(¥) whose chains with colour 1 are the chains
B(l) € ¥ with [ € A, and which contains the remaining chains 5(l) € 4 with colour —1.
Then we get relation (12.2) by summing up this identity for all A C V5. The function
(f10 f2)y corresponding to the coloured diagram obtained with the help of the set A has
|O(y)| = k1 + k2 — |Va(7)| — |A| variables, where |O(7)]| is the number of open indices
in 7.

Let us consider the functions F,(f1, f2), v € I'(k1,k2), defined in (11.5) which
means a reindexation of the functions (fi o f2) to get functions with variables z, ...,
T|0(y)|- We claim that

7(k1+k2)/2|0( )|'In 5(%) ((flon)W)
Z n= k) 20 CO T ()| O U 100y (Fy (f1, f2)) (12.3)

vel'(y)

with J,(y) = 1if |C(y)| =0, and

|C ()] .
L= ] <w) if |C(v)| > 0. (12.4)

5 n
Jj=1

for all 4 € T'(ky, ko).

Since I, |0y (Fy(f1, f2)) = Injo(y)| (f1 © f2)y) relation (12.3) follows from rela-
tion (12.2) just as formula (9.3) follows from formula (9.2) in the proof of the Hoeffding
decomposition. Let us understand why the coefficient n!®(1.J,, (v) appears at the right-
hand side of (12.3).

This coefficient can be calculated in the following way. Take a general term (f; o
f2)4(&,, > lu € O(v)) in the U-statistic [O(y)['y,j0¢y)((f1 © f2)4), and calculate the
number of terms (f; o fa)5 &1+ &5 - --,fj’(,)) in the U-statistic |O(7)['L, 5(5)((f1 © f2)5)

s(¥
for which the sequence of indices (j1, ..., j’ (7)) satisfies the relation jlu =7, foralll, €
O(7). 1 claim that it equals nl®1J, (7). It can be seen that this number n!CM|J, ()
appears as the coefficient at right-hand side of (12.3).

Indeed, we have to calculate the number of such sequences j1, js, . . ., j. ) for which
the value j; = ji, is prescribed for the indices I, € O(7), and the other elements of
the sequence can take arbitrary integer value between 1 and n with the only restriction
that all elements of the sequence ji, 75, ..., j;( ) must be different. The number of such
sequences equals (n—|0(y)])(n—[0(7)|=1) -+ (n—|C(7)| = [O(y)| +1) = Ju(7)n“DL.
(In this calculation we exploited the fact that |O(v)| 4+ |C(v)] = s(v).)
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Let us observe that k1 + k2 — 2|C(y)| = |O(y)| + W (y) with the number W (v)
introduced in the formulation of Theorem 11.1. Hence

n~(k1tk2)/2|CV)| — [, =W (7)/2,,=10()]/2

Let us replace the left-hand side of the last identity by its right-hand side in (12.3), and
let us sum up the identity we get in such a way for all 4 € T'(ky, ko) such that s(¥) < n.
The identity we get in such a way together with formulas (12.1) and (12.4) imply the
identity (11.6). Clearly, I,, |0(y)|(Fy(f1, f2)) = In,jo(+) (SymE, (f1, f2)), hence the term
L, j0(7)|(F5(f1, f2)) can be replaced by I,, |0()|(SymF,(f1, f2)) in formula (11.6). We
still have to prove inequalities (11.7) and (11.8).

Inequality (11.7), the estimate of the Lo-norm of the function (f; o f2), follows
from the Schwarz inequality, and actually it agrees with inequality (10.11), proved at
the start of Appendix B. Hence its proof is omitted here.

To prove inequality (11.8) let us introduce, similarly to formula (11.2), the operators

Qujh(mul,...,xur):h(:cul,...,a:ur)—|—/h(:1:ul,...,xur)u(d:cuj), 1 <j<r (125)

in the space of functions h(xy,,...,,,) with coordinates in the space (X, X’). (The
indices u1, ..., u, are all different.) Observe that both the operators @, and the opera-
tors P,, defined in (11.1) are positive, i.e. these operators map a non-negative function

to a non-negative function. Besides, Q,; < Quj, and the norms of the operators Q; :

and P, are bounded by 1 both in the L;(u), the La(x) and the supremum norm.
Let us define the function

(fr0 fa)y(zj, 5 €O(y)) = II 2 ] @ (fcf), (s ieChH)uom)
JEC(y JEO2 (v
" ) (12.6)

with the notation of Section 11. The function ( flfc\; f2)~ was defined with the help of

(f1 0 f2)., similarly to (fi o fa), defined in (11.4), only the operators @; were replaced
by Qj in its definition.
In the proof of (11.8) it may be assumed that || fi||2 < || f2]|]2. The properties of the

operators P, and @, listed above together with the condition sup |fa(21,...,2)] <1
imply that

|((fro fa)y| < (Ifilelfal)y < ([fil 0 1)5, (12.7)
where ‘<’ means that the function at the right-hand side is greater than or equal to the
function at the left-hand side in all points, and the term 1 in (12.7) denotes the function
which equals identically 1. Because of the identity || F,(f1, f2)|l2 = [[(f1 © f2),|l2 and
relation (12.7) it is enough to show that

[([f1] 0 1)4[]2 = II 2 1] Q| 1Ah@e,ay e, @il

JjeC(y)  j€02(v) 9
<2V f1

(12.8)
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to prove relation (11.8). But this inequality trivially holds, since the norm of all opera-
tors P; in formula (12.8) is bounded by 1, the norm of all operators @; is bounded by 2
in the Lo(p) norm, and |O2(7y)| = W(y).

Proof of Theorem 11.2. Theorem 11.2 will be proved with the help of Theorem 11.1 by
induction with respect to the number of degenerate U-statistics k,!Ip, 1, (fp), 1 <p < m.
Formula (11.15) holds for m = 2 by Theorem 11.1. To prove it for a general parameter m
let us first fix a coloured diagram 4 € I'(kq, ..., k,,—1) and consider the set of diagrams
of m rows which are its ‘continuation’, i.e. let

Iy ={yvvel(k,....kn), Ypr =7}

(Here we work with the diagrams 7,, and 7.; introduced for a diagram v € I'(k1, ..., k)
in the previous section.) I claim that

n= OO N, 10065y (Fy (fis- oy fne1)) -0 2l i (fin)
‘ (701)'

Z/U 1 (Lﬂrﬂ) =W (ve)/2 (12.9)

yET(®) J=1

n_|O(’Y)|/2|O<’Y))|'In,|0(’y)|(F'Y(fl’ sy fm));

where Z/(n) means that summation is taken for such v € I'(¥) for which s(vq) <
YET(Y)
and H'C(%l)| equals 1, if |C'(y¢)| = 0.

Relation (12.9) can be checked by applying Theorem 11.1 for the pair of U-statistics
with kernel functions F5(fi,..., fm—1) and f,,. To get it first we show that there is
a mutual correspondence between the coloured diagrams v € I'(|O(%)|, k) and the
class of diagrams {7q: v € I'(¥)} in such a way that two dlagrams ~v € T'(7) and
v € T'(|O(%)|, km) correspond to each other if and only if v/ = ~,. We shall fix an
enumeration of the chains of the diagram 7, and we shall take such an enumeration of
the chains in all diagrams v € I'(¥) for which the enumeration of the chains of 4 and
Ypr agree. The correspondence between the above mentioned two classes of diagrams
depends on the enumeration of the chains of 4, but this will cause no problem. To get
it observe that for each v € T'() there is a diagram v = 7, € T'(|O(%)|, k). On the
other hand, I claim that for all diagrams +" € I'(|O(%)|, k., ) such a diagram v(v') € I'(¥)
can be found for which vy(v")a =7/

This diagram +(v') € I'(¥) will be defined in the following way. Let [1, 1, ... ,l_|0m|
be the indices of the chains of the diagram % with colour —1. The diagram ~(v) will
be defined so that the chains of colour 1 of 4 will be chains of colour 1 of y(v'), too.
If the vertex (1,j) of the diagram 4’ is contained in a chain of length 1, then the
diagram ~(v') contains the chain 3(I;) with colour —1. If this vertex is contained in a
chain {(1,7), (2,7;)} € 7' of length 2, then «(y') contains the diagram B(I;) U {(m,r;)}
with the same colour as the chain {(1, j), (2,7;)} has in 4. Finally, if the vertex (2,r) is
contained in the chain {(2,7)} of length 1 in 4/, then {(m,r)} will be a chain of length 1
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of v(v') with colour —1. In such a way we get such a diagram ~(v') € I'(¥) for which
Y et =7
We get relation (12.9) by applying Theorem 11.1 for the product

n~ IO\ 0O, 100y (Fy (fiy -+ o 1)) - 075 2k L i (fin)

and writing all diagrams v € T'(|O(¥)], k) in the form 7., where 7. is the closing
diagram of the diagram ~v(v’) € I'(¥) defined in the previous paragraph.

Relation (11.15) for the parameter m can be proved with the help of relation (12.9)
and the inductive assumption by which it holds for m — 1. Indeed, let us multiply

m—1
formula (12.9) by [ Jn(%,p)n~" /2 and sum up this identity for all such diagrams
p=2

v e (k... ,km—1) for which By(vy,p) + B2(7,p) < n for all 2 < p <m — 1. Then the
sum of the terms at the left-hand side equals the left-hand side of formula (11.15) for
parameter m.

I claim that the sum of the terms at the right-hand side equals the right-hand side of
formula (11.15) for parameter m. To see this it is enough to check that for all v € T'(¥) we

m=1 Cowl
have W(3) + W) = W (or) + W (o) = W), 1 a1 (22252050 ) =
p= 1=

m C(ver

[T Jn(7,p), where | (]1[ ! = 1if |C(v4)| = 0, and the relation By (v,p) + Ba2(7y,p) < n
p=2 j=1

holds for all 2 < p < m if and only if Bi(Vpr,p) + B2(Vpr,p) < n for all 2 < p <
m — 1, and s(v4) < n. But these relations can be simply checked. The identity
about the function W (-) can be checked by taking into account the definition of the
diagrams -y, and 7., in particular the colouring of the chains in these diagrams. The
remaining relations can be proved with the help of the observation that for a diagram
v E F(kla SR km) Bl(’ypTvp) = Bl(’}/?p) and BQ(PYPT?p) = B2(75p) for all 2 <p<m-— 1.
Besides, |C(ve)| = Bi(y,m) and |O(ve)| = Ba(y, m). Theorem 11.2 is proved.

Proof of Lemma 11.3. The proof is similar to that of formula (11.8) at the end of
Theorem 11.1. Let us define the functions Fy(fi,..., fp), v € I'(k1,..., k), recursively
for all 2 < p < m similarly to the definition of the functions F,(f1,..., fp) with the
difference that the operator Q,, = I — P, is replaced by Quj = I + P,; in the new
definition. Then we have |E,(f1,..., fm)| < Fy(Ifil,---,|fm|) in all points. Hence
IFS(f1y s fo)ll2 S NES(fis-- -5 fm)l2, and to prove Lemma 11.3 it is enough to show
that

peU(v)

with the same number W (v) and set U(v) which were considered in Lemma 11.3. Re-

lation (12.10) will be proved by induction with respect to m.

Relation (12.10) holds for m = 2. Indeed, if W(y) = 0, then U(y) = {1,2}, we
have F., = F,, and formula (11.7) supplies the estimate. If W () > 1, then U(vy) = {1},
and actually in the proof of relation (11.8) we proved this relation.
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In the case m > 2 this inequality will be proved by induction with the help of the
identity (with the notation of formula (11.3)

||Fw(|f1|,~~,!fm!>llz=H eI 6
PeC(vc)  PEOs(var) (12.11)

(B, (sl U fmeal) 0 1 fiml), (2, P € O(vet) U C(3t)

cl

2

In the case W(~y) = 0, i.e. if 7. contains no open chain of length 2 we have U(vy) =
U(Ypr) U{m}, W(v) = W(ypr), and formula (2.11) contains no operator Q,. In this
case inequality (12.10) follows from the representation of ||E,(|fi],. .., |fm|)||l2 given
in (12.11), relation (11.7) and from the inductive hypothesis by which inequality (12.10)

holds for ||(Ey,, (| fils-- - [fm=1])l2-

In the case W(vy) > 0 we have U(y) = U(ypr), W(v) = W(vpr) + W(va), and
inequality (12.10) can be proved similarly to the case W (~y.) = 0 with the only difference
that in this case instead of (11.7) we have to apply that strengthened version of (11.8)
which is contained in formula (12.10) in the special case m = 2. Lemma 11.3 is proved.

The corollary of Theorem 11.2 is a simple consequence of Theorem 11.2 and Lem-
ma 11.3.

Proof of the corollary of Theorem 11.2. Observe that F, is a function of |O(y)| ar-
guments. Hence a coloured diagram v € T'(kq,..., k) is in the class of closed di-
agrams, i.e. v € ['(k1,...,kn) if and only if F,(f1,...,fm) is a constant. Thus
formula (11.16) is a simple consequence of relation (11.15) and the observation that
ElL, j00))(Fy(f1,- .- fm)) =0if [O()] > 1, ie. if v € T(ky, ..., kp), and

Lnjom) | (Fy(fiy oo fm)) = Ino(Fy(f1, -5 ) = Fy(f1y o5 fin)
lf’YEf\(kl,,km)

Relations (11.17) and (11.18) follow from relation (11.16) and Lemma 11.3.
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13. The proof of Theorems 8.3, 8.5 and Example 8.7.

This section contains the proof of the estimates on the distribution of a multiple Wiener—
Ito integral or degenerate U-statistic formulated in Theorems 8.5 and 8.3 together with
the proof of Example 8.7. Besides, also a multivariate version of Hoeffding’s inequality
(Theorem 3.4) will be proved here. The latter result is useful in the estimation of the
supremum of degenerate U-statistics. The estimate on the distribution of a multiple
random integral with respect to a normalized empirical distribution given in Theorem 8.1
is omitted, because, as it was shown in Section 9, this result follows from the estimate
of Theorem 8.3 on degenerate U-statistics. This section will be finished with a separate
part Section 13 B, where the results proved in this section are discussed together with
the method of their proofs and some recent results.

The proof of Theorems 8.5 and 8.3 is based on a good estimate on high moments
of Wiener—Ito integrals and degenerate U-statistics. These estimates follow from the
corollaries of Theorems 10.2 and 11.2. Such an approach slightly differs from the clas-
sical proof in the one-variate case. The natural one-variate version of the problems
discussed here is an estimate about the tail distribution of a sum of independent ran-
dom variables. This estimate is generally proved with the help of a good bound on the
moment generating function of the sum. Such a method may not work in the multi-
variate case, because, as later calculations will show, there is no good estimate on the
moment-generating function estimate of U-statistics or multiple Wiener-It6 integrals
of order k£ > 3. Actually, the moment-generating function of a Wiener—Ito integral of
order k > 3 is always divergent, because the tail behaviour of such a random integral
is similar to that of the k-th power of a Gaussian random variable. On the other hand,
good bounds on the moments EZ?M of a random variable Z for all positive integers M
(or at least for a sufficiently rich class of parameters M) together with the application
of the Markov inequality for Z?M and an appropriate choice of the parameter M yield
a good estimate on the distribution of Z.

Propositions 13.1 and 13.2 give estimates on the moments of Wiener—Ito integrals
and degenerate U-statistics.

Proposition 13.1. (Estimate of the moments of Wiener—It6 integrals). Let
f(x1,...,xK) be a function of k variables on some measurable space (X, X) that satis-
fies formula (8.12) with some o-finite measure p. Take the k-fold Wiener—Ité integral
Z,1k(f) of this function with respect to a white noise pyw with reference measure p. The
mequality

E®|Z (DM <1-3-5---(2kM —1)0*™  forall M =1,2, ... (13.1)

holds.

By Stirling’s formula Proposition 13.1 implies that

kM
E(RNZ,6(f))?M < %gw <A (g) (kMM 52M (13.2)
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for any A > V2 if M > M, = My(A). Formula (13.2) can be considered as a sim-
pler, better applicable version of Proposition 13.1. It can be better compared with the
moment estimate on degenerate U-statistics given in (13.3).

Proposition 13.2 provides a similar, but weaker inequality for the moments of nor-
malized degenerate U-statistics.

Proposition 13.2. (Estimate on the moments of degenerate U-statistics).
Let us consider a degenerate U -statistic I, ;(f) of order k with sample size n and with
a kernel function f satisfying relations (8.1) and (8.2) with some 0 < 0% < 1. Fiz
a positive number n > 0. There erist some universal constants A = A(k) > /2,
C = C(k) > 0 and My = My(k) > 1 depending only on the order of the U-statistic
I, 1(f) such that

2M 2

kM
E (n_k/2k!In7k( f)) <A1+ Cym)*M <—) (kM) 52M

(&

(13.3)
for all integers M such that kMy < kM < nno?.

In formula (15.3) such a constant C = C(k) can be chosen which does not depend
on the order k of the U-statistic I,, 1 (f). For instance C =4 is an appropriate choice.

Theorem 13.2 yields a good estimate on E (n_k/Qk!In’k(f))QM with a fixed expo-

nent 2M with the choice n = M4 With such a choice of the number 7 formula (13.3)

no

2M
yields an estimate on the moments E (n_k/ 2k, k(f )) comparable with the estimate
on the corresponding Wiener-It6 integral if M < no?, while it yields a much weaker
estimate if M > no?.

Now I turn to the proof of these propositions.

Proof of Proposition 13.1. Proposition 13.1 can be simply proved by means of the
Corollary of Theorem 10.2 with the choice m = 2M, and f, = f for all 1 < p < 2M.
Formulas (10.18) and (10.19) yield that

M
E(k:!ka(f)QM) < (/fQ(xl,...,xk),u(dml)...u(dxk)) T2 (k)| < [Dons(k)|o*M,

where |T'257(k)| denotes the number of closed diagrams « in the class I'(k, ..., k) intro-
———
2M times

duced in the corollary of Theorem 10.2. Thus to complete the proof of Proposition 13.1
it is enough to show that |Taps (k)| < 1-3-5---(2kM — 1). But this can easily be seen
with the help of the following observation. Let 'ps(k) denote the class of all graphs
with vertices (I,7), 1 <1 < 2M, 1 < j < k, such that from all vertices (,7) exactly
one edge starts, all edges connect different vertices, but edges connecting vertices (I, 7)
and (I, j') with the same first coordinate [ are also allowed. Let |T2p7(k)| denote the
number of graphs in Taps(k). Then clearly [Taps (k)| < |Taar(k)|. On the other hand,
Tons (k) =1-3-5---(2kM — 1). Indeed, let us list the vertices of the graphs from
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[oar(k) in an arbitrary way. Then the first vertex can be paired with another vertex in
2kM — 1 way, after this the first vertex from which no edge starts can be paired with
2kM — 3 vertices from which no edge starts. By following this procedure the next edge
can be chosen 2kM — 5 ways, and by continuing this calculation we get the desired
formula.

Proof of Proposition 13.2. Relation (13.3) will be proved by means of relations (11.17)
and (11.18) in the Corollary of Theorem 11.2 with the choice m = 2M and f, = f for all
1 < p < 2M. Let us take the class of closed coloured diagrams I'(k, M) = T'(k,...,k).
This will be partitioned into subclasses I'(k, M,r), 1 < r < kM, where I'(M, k,r)
contains those closed diagrams v € I'(k, M) for which W(y) = 2r. Let us recall that
W (v) was defined in (11.13), and in the case of closed diagrams W (y) = > (¢(8) —2).

Bey
For a diagram v € I'(k, M), W () is an even number, since W (7)+2s(vy) = 2kM, where

s(y) denotes the number of chains in ~.

First we prove an estimate about the cardinality of T'(M, k,r). We claim that there
exist some constant A = A(k) > 0 and threshold index My = My(k) depending only
the order k of the U-statistic In, k(f) for which

kM
IT(k, M,r)| < A(QZM) (2) (EM)FMFT92r for all 0 < r < kM (13.4)
T (&

To prove formula (13.4) we define a map T: v — T'(7y) from the set of diagrams
~v € I'(k, M, r) to the set of paired diagrams in such a way that T'(y) # T'(v') if v # +/,
and give a good bound on the number of paired diagrams T'(vy), v € I'(k, M, r), obtained
in such a way. (We shall call a diagram ~ a paired diagram, if all of its chains have
length 2, i.e. they have the form g = {(p,r),(p',r")} € v, with p # p’. We shall
work with paired diagrams consisting of 2M rows, but we do not fix the length of
the rows.) To define the paired diagrams we shall work with first we introduce the

set W(v) = BLeJ {(p2(B),q2(B)),- -, (ps—1(B),qs—1(5))}, for all v € I'(k, M,r), where

B={1(8),q1(8))--.. (ps(B),qs(8))} with 1 < p1(B) <p2(B) < -+ <ps(B) < 2M for
all B8 € v, i.e. W(7) is the set of vertices we get by omitting the first and last vertices of

all chains 3 € v, and then taking the union of the vertices of these diminished chains.
Observe that WV ()| = W(y) for a closed diagram.

We take a copy (p,q,C) of all elements (p,q) € W(~) of a diagram v € I'(k, M, ).
First we define the set of vertices V(T'(y)) of the paired diagram T'(y). It is a set of ver-
tices consisting of 2M rows, and its p-th row is {(p,1),..., (p, k) } U{(p, ¢, C): (p,q) €
W(v)} for all 1 < p < 2M. We have |V (T (v)| = 2kM + |W(v)| = 2kM + 2r. We define
the paired diagram 7T'(vy) on the set V(7'(7)) in the following way. Given a chain § =

we correspond to it the following sets of pairs (chains of length 2) in V(T'(v)):

{((p1(6)7(h(5))7 ((p2(5)7Q2(6)7 C)}7 {((p2(6)7QQ(5))7 ((p?)(ﬁ):(k’)(ﬁ)a C)}7 ce
{((pS—Q(ﬁ)v QS—Q(ﬁ)% ((ps—l(ﬁ)a QS—1(5)7 C)}7 {((ps—l(ﬁ)7 QS—l(ﬁ»a ((ps(ﬁ), qs(ﬁ)}
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(In the case £(3) = 2, we map the chain f to itself.) Defining these pairs of vertices for
all 5 € v we get the paired diagram T'(y) with the desired properties.

The number of the above defined sets V(T'(v)), v € I'(k, M, r), is less than or equal
to (2';{\/"), and each of these sets V(T'(vy)) has 2kM + 2r vertices. Hence the number of
paired diagrams with vertices in a fixed set V(T'(y)) is bounded by 1-3-5--- (2kM —

2r — 1). The above considerations provide the bound

(13.5)

2kM 2kM\  (2kM + 2r)!
IF(k:,M,r)|§(l; )1-3-5---(2kn1+27~_1):(’“ ) (2kM + 2r)
T

or ) 2RMEr (KM + 1)l

Stirling’s formula yields that % <A (%)kMJrT (KM +r)*M+7 with some con-

stant A > /2 if M > My with some My = My(A). Since r < kM we can write
(kM —+ r)RM*r < (M )M (1 + ﬁ)kM (2kM)" < (kM)*M+rer2r . The above calcula-
tion together with (13.5) imply inequality (13.4).

For a diagram v € I'(k,M,r) we have W(y) = 2r, and the cardinality of the
set U(y) defined in the formulation of Lemma 11.3 satisfies the inequality |U(vy)
2M — W(y) = 2M — 2r. Hence by relation (11.18) n=W/2|F | < 22 =7gIV()
2% (no?) " oM < 2% (kM) ""o®M for v € D(k, M, r) if kM < nno? and o2 < 1.

This estimate together with relation (11.17) imply that for kM < nno?

| >
<

oM kM
E (n—’c/%un,k( fk)> < S WO R < STID(k, M, )2 (kM) M.
~yeT'(k,M) r=0

Hence by formula (13.4)

kM

E (n_’f/zk!In,k(fk)>2M <A (Z)kM (kM)FM 52M Z <2];7{V[> (47
r=0

<4(?) MO (1 4

if kMo < kM < nno?. Thus we have proved Proposition 13.2 with C' = 4.
It is not difficult to prove Theorem 8.5 with the help of Proposition 13.1.

Proof of Theorem 8.5. By formula (13.2) which is a consequence of Proposition 13.1
and the Markov inequality

E(K\Z 2M kMo2/RN\ "M
PRZ(0)] > 0) < ZEZEDT < (200 (13.6)

with some constant A > /2 if M > My with some constant My = My(A), and M is an
integer.
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Put M = M(u) = 5~ (%)Q/k, and M = M (u) = [M], where [x] denotes the integer
part of a real number x. Choose some number uq such that i (%)Q/k > My +1. Then
relation (13.6) can be applied with M = M (u) for u > wg, and this yields that

2k Mo2/k\ .
P(|E'Z,k(f)] >u) < A (%) < e FM < Aeke=RM
eu

2/k
:Aekexp{—% <ﬂ) } if u > ug.
o

Relation (13.7) means that relation (8.14) holds for u > wug with the pre-exponential
coefficient Ae*. By enlarging this coefficient if it is needed it can be guaranteed that
relation (8.14) holds for all w > 0. Theorem 8.5 is proved.

(13.7)

Theorem 8.3 can be proved similarly by means of Proposition 13.2. Nevertheless,
the proof is technically more complicated, since in this case the optimal choice of the
parameter in the Markov inequality cannot be given in such a direct form as in the
proof of Theorem 8.5. In this case the Markov inequality is applied with an only almost
optimal choice of the parameter M.

Proof of Theorem 8.3. The Markov inequality and relation (13.3) with n = % imply

that "
E (k%21 4 ()"
’U,2M

P(kin ™21 1 (f)] > u) <
kM (13.8)

Vo | \u

u

2
\/ 2/k
<Al okm <1+C kM) (%)
e
for all integers M > My with some My = My(A).
Relation (8.10) will be proved with the help of estimate (13.8) first in the case
D << n¥/26* with a sufficiently large constant D = D(k,C) > 0 depending on k

and the constant C' in (13.8). To this end let us introduce the number M by means of
the formula

_ 1 su\2/k 1 1 suN\2/k 1
EM = — [ — - = —
2 <a’) 1 _|_B(%)1/k 2 <a> 1 +B (un*k/Qa*(kJrl))l/k

no

with a sufficiently large number B = B(C) > 0 and M = [M], where [x] means the
integer part of the number z.

Observe that VEM < (%)Uk, fv}; AZ < (un—k/Qa—(kH))l/k <1, and

_\ 2 _

vVkM vV kM 1/k

1+Ck— < 1+Bk— <1+B (un_k/za_(k“))
Vno Vno
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with a sufficiently large B = B(C') > 0 if £ < nk/2ak . Hence

%-ZkM<1+C%>2<%)2/kgé.2kM<1+0%>2(%>2m
13.9
_! (rofE) 1 Y

¢ 14 B (un—k/2g-0+0)/E " e

if 2 < n¥/2g% If the inequality D < % also holds with a sufficiently large D = D(B, k) >
0, then M > My, and the conditions of inequality (13.8) hold. This inequality together
with inequality (13.9) yield that

P(EWm ™ 21, 1.(f)] > u) < Ae "M < Aeke kM

if D < 2 < nk/2g% e, inequality (8.10) holds in this case with a pre-exponential
constant Ae”. In the case * < D the right-hand side of (8.10) is larger than 1 if we
choose the pre-exponential term A sufficiently large. Hence inequality (8.10) holds for
all 0 < 2 < n*/2¢% with a sufficiently large pre-exponential term A. Theorem 8.3 is
proved.

Example 8.7 is a relatively simple consequence of [t0’s formula for multiple Wiener—
It6 integrals.

Proof of Example 8.7. We may restrict our attention to the case k£ > 2. Itd’s for-
mula for multiple Wiener-It6 integrals, more explicitly relation (10.21), implies that the
random variable k!Z,, x(f) can be expressed as k!Z, x(f) = oHy, ([ fo(z)pw (dz)) =
oHy(n), where Hy(x) is the k-th Hermite polynomial with leading coefficient 1, and
n = [ fo(x)uw(dz) is a standard normal random variable. Hence we get by explmtmg
that the coefficient of %=1 in the polynomial Hy(z) is zero that P(k!|Z, x(f)| > u) =
P(|Hi(n)] = %) > P (|n*| — DIn*~?| > ) with a sufficiently large constant D > 0 if
= > 1. There exist such positive constants A and B that

P(|n’“|—D\77'“‘2| > g) (!n |> = +A<U)(k QW) ifg > B.

Hence

Texpd —1 (& 2/k
= (> () (14(2) ) = A

g

with an appropriate C' > 0if £ > B. Since P(k!|Z,,x(f)| > 0) > 0, the above inequality
also holds for 0 < 2 < B if the constant C' > 0 is chosen sufficiently small. This means
that relation (8.16) holds.
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Next we prove a multivariate version of Hoeffding’s inequality. Before its formula-
tion some notations will be introduced.

Let us fix two positive integers k and n and some real numbers a(ji, ..., ji) for all
sequences of arguments {j1,...,jx} such that 1 < j, < n, 1 <1 <k, and j; # jp if
N

With the help of the above real numbers a(+) and a sequence of independent random

variables €1,...,&,, P(e; =1)=P(e; = —1) = %, 1 < j < n, the random variable
V= > a(ji,- - Jk)Ej - g (13.10)
(J1s--dk): 1< <n for all 1<i<k,
i it A

and number
52 = > a(j1, - Jr)- (13.11)
(J15-0x): 1<5i<n for all 1<I<k,
I i 1A
will be introduced.
With the help of the above notations the following result can be formulated.

Theorem 13.3. (The multivariate version of Hoeffding’s inequality). The
random variable V' defined in formula (13.10) satisfies the inequality

1 fu\2/k
P(|V| >u) < Cexp ) (§> for allu >0 (13.12)
with the constant S defined in (13.11) and some constants C > 0 depending only on the
parameter k in the expression V.

Theorem 13.3 will be proved by means of two simple lemmas. Before their formu-
lation the random variable

Z = >, la(jv, - - k) g, - i (13.13)
(G1s--rjn): 1<j1<n for all 1<I<k,
iy if 1A
will be introduced, where 71,...,n, are independent random variables with standard
normal distribution, and the numbers a(j1, ..., ji) agree with those in formula (13.10).

The following lemmas will be proved.

Lemma 13.4. The random variables V and Z introduced in (13.10) and (13.13) satisfy
the inequality
EV*M < EZ?M  forall M =1,2,.... (13.14)

Lemma 13.5. The random variable Z defined in formula (13.13) satisfies the inequality
EZ*M <1.3.5---(2kM — 1)S*™  for all M =1,2, ... (13.15)
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with the constant S defined in formula (153.11).

Proof of Lemma 13.4. We can write, by carrying out the multiplications in the expres-
sions EV?M and EZ?M | by exploiting the additive and multiplicative properties of the
expectation for sums and products of independent random variables together with the
identities Ea?kJrl =0 and E’n?kJrl =0 forall k=0,1,... that

2M : , 2m 2m
EV=Y = E A(gr, -y dsmay . my) Eel - Eel™ (13.16)
(j17""jl7m1""7ml):
1Sj5§'ﬂ, msZL ISSSla my+---+my=kM

and
EZ*M — > B(j1, .- ji,ma, ... omy)Ens™ - Enf™ (13.17)
(J1yesdi, M1,y ymy):
1Sj5§'ﬂ, msZL 1S5Sla m1++ml:kM
with some coefficients A(j1,...,75,m1,...,m;) and B(j1,...,Ji, m1,...,m;) such that

|A(j1, e ,jl,ml, Ce ,ml)\ S B(jb e ,jl,ml, e ,ml). (1318)

The coefficients A(-,-,-) and B(-,-,-) could be expressed explicitly, but we do not need
such a formula. What is important for us is that A(-,-, ) can be expressed as the sum of
certain terms, and B(-,-,-) as the sum of the absolute value of the same terms. Hence
relation (13.18) holds. Since Fe?™ < En;™ for all parameters j and m formulas (13.16),
(13.17) and (13.18) imply Lemma 13.4.

Proof of Lemma 13.5. Let us consider a white noise W (-) on the unit interval [0, 1]
with the Lebesgue measure A on [0, 1] as its reference measure, i.e. let us take a set of
Gaussian random variables W (A) indexed by the measurable sets A C [0, 1] such that
EW(A) =0, EW(A)W(B) = A(AN B) with the Lebesgue measure A for all measurable
subsets of the interval [0, 1]. Let us introduce n orthonormal functions ¢1(z),. .., @, ()
with respect to the Lebesgue measure on the interval [0, 1], and define the random
variables 1, = [, (z)W(dz), 0 < j < n. Then n,...,n, are independent random
variables with standard normal distribution, hence we may assume that they appear
in the definition of the random variable Z in formula (13.13). Besides, the identity
Njy N = [ @i (@1) @4 (xp)W(dz1) ... W(dzy) holds for all k-tuples (j1,...,jk),
such that 1 < jg3 < n for all 1 < s < k, and the indices ji, ..., js are different.
This identity follows from It6’s formula for multiple Wiener—It6 integrals formulated in
formula (10.20) of Theorem 10.3.

Hence the random variable Z defined in (13.13) can be written in the form

7= /f(ml, )W (dzy) .. W day)
with the function

f(@1,... zp) = > (i - Je)lesi (@1) - - 5, (k).
(1, rdi): 1< <n for all 1<I<k,
Ay if 1A
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Because of the orthogonality of the functions ¢;(x)
52:/ f2(a:'1,...,xk)dx1...dwk.
[0,1]%

Lemma 13.5 is a straightforward consequence of the above relations and formula (13.1)
in Proposition 13.1.

Proof of Theorem 13.3. The proof of Theorem 13.3 with the help of Lemmas 13.4
and 13.5 is an almost word for word repetition of the proof of Theorem 8.5. By
Lemma 13.4 inequality (13.15) remains valid if the random variable Z is replaced by
the random variable V' at its left-hand side. Hence the Stirling formula yields that

2kM)! 2\ "M
oM 2M ( oM < kM g2M
EVM < p7?M < (R )!S _C(e) (kM)*M 5

for any C > /2 if M > My(A). As a consequence, by the Markov inequality the

estimate AL
E 2M 2% M 2/k
pvi>u <2~ <¢ ( k <§) (13.19)

(& u

holds for all C' > /2 if M > My(C). Put kM = kM(u) = & (2)** and M = M(u) =
[M], where [x] denotes the integer part of the number x. Let us choose a threshold

number ug by the identity 5 (%)2/1C = My(C) + 1. Formula (13.19) can be applied

with M = M (u) for u > ug, and it yields that

i 2/k
P(|V| > u) < Ce ™™ < Cefe ™M = Ce¥ exp {—% (%) } if u > uyg.

The last inequality means that relation (13.12) holds for u > wg if the constant C is

replaced by Ce” in it. With the choice of a sufficiently large constant C' relation (13.12)
holds for all u > 0. Theorem 13.3 is proved.
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13. B) A SHORT DISCUSSION ABOUT THE METHODS AND RESULTS.

A comparison of Theorem 8.5 and Example 8.7 shows that the estimate (8.15) is sharp.
At least no essential improvement of this estimate is possible which holds for all Wiener—
Ito integrals with a kernel function f satisfying the conditions of Theorem 8.5. This
fact also indicates that the bounds (13.1) and (13.2) on high moments of Wiener-Ito6
integrals are sharp. It is worth while comparing formula (13.2) with the estimate of
Proposition 13.2 on moments of degenerate U-statistics.

Let us consider a normalized k-fold degenerate U-statistic n=*/2k!I,, ;. (f) with some
kernel function f and a p-distributed sample of size n. Let us compare its moments with
those of a k-fold Wiener-Ito integral k!Z,, (f) with the same kernel function f with
respect to a white noise uy with reference measure p. Let o denote the Lo-norm of the
kernel function f. If M < eno? with a small number ¢ > 0, then Proposition 13.2 (with
an appropriate choice of the parameter n which is small in this case) provides an almost
as good bound on the 2M-th moment of the normalized U-statistic as Proposition 13.1
provides on the 2M-th moment of the corresponding Wiener—Ito integral. In the case
M < Cno? with some fixed (not necessarily small) number C' > 0 the 2M-th moment
of the normalized U-statistic can be bounded by C(k)* times the natural estimate on
the 2M-th moment of the Wiener—It6 integral with some constant C'(k) > 0 depending
only on the number C'. This can be so interpreted that in this case the estimate on the
moments of the normalized U-statistic is weaker than the estimate on the moments of
the Wiener-It6 integral, but they are still comparable. Finally, in the case M > no?
the estimate on the 2M-th moment of the normalized U-statistic is much worse than
the estimate on the 2M-th moment of the Wiener—It6 integral.

A similar picture arises if the distribution of the normalized degenerate U-statistic
Fo(u) = P(n=* 2k L, ()] > u)
is compared to the distribution of the Wiener-Ito integral
G(u) = P(EZuk(F)] > u).

A comparison of Theorems 8.3 and 8.5 shows that for 0 < u < en®/25k+1 with a small
e > 0 an almost as good estimate holds F),(u) as for G(u). In the case 0 < u < nk/2gk+1
the behaviour of F),(u) and G(u) is similar, only in the exponent of the estimate on
F,,(u) in formula (8.10) a worse constant appears. Finally, if u > n*/2¢%+1 then — as
Example 8.8 shows, at least in the case k = 2, — the (tail) distribution function F,(u)
satisfies a much worse estimate than the function G(u). Thus a similar picture arises as
in the case when the estimate on the tail-distribution of normalized sums of independent
random variables, discussed in Section 3, is compared to the behaviour of the standard
normal distribution in the neighbourhood of infinity. To understand this similarity
better it is useful to recall Theorem 10.4, the limit theorem about normalized degenerate
U-statistics. Theorems 8.3 and 8.5 enable us to compare the tail behaviour of normalized
degenerate U-statistics with their limit presented in the form of multiple Wiener—Ito
integrals, while the one-variate versions of these results compare the distribution of sums
of independent random variables with their Gaussian limit.
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The above results show that good bounds on the moments of degenerate U-statistics
and multiple Wiener—It6 also provide a good estimate on their distribution. To under-
stand the behaviour of high moments of degenerate U-statistics it is useful to have
a closer look at the simplest case k = 1, when the moments of sums of independent
random variables with expectation zero are considered.

Let us consider a sequence of independent and identically distributed random vari-
n

ables &1,...,&, with expectation zero, take their sum S, = > ;, and let us try to
j=1

give a good estimate on the moments ES2M for all M = 1,2,.... Because of the

independence of the random variables {; and the condition E¢; = 0 the identity

ES?M — > E¢ - B (13.20)

(J1seesdsslisesls)
Jit+is=2M, 5, >2, for all 1<u<s

ly#l, if uru’

holds. Simple combinatorial considerations show that a dominating number of terms
at the right-hand side of (13.20) are indexed by a vector (ji,...,Jnm; l1,-..,ln) such
that j, = 2 for all 1 <wu < M, and the number of such vectors is equal to (ﬁ[) (22%)!

M % The last asymptotic relation holds if the number n of terms in the random

sum S,, is sufficiently large. The above considerations suggest that under not too re-
strictive conditions ES2M ~ (naz)M % = Enfbﬁ/‘g, where 02 = FE¢? is the variance
of the terms in the sum S,,, and n,, denotes a random variable with normal distribution
with expectation zero and variance u. The question arises when the above heuristic

argument gives a right estimate.

For the sake of simplicity let us restrict our attention to the case when the absolute
value of the random variables &; is bounded by 1. Let us observe that even in this case
the above heuristic argument holds only under the condition that the variance o of the
random variables §; is not too small. Indeed, let us consider such random variables £, for
which P(§;, =1)=P({; =—1) = %2, P(¢; =0) = 1—02. Then these random variables
¢; have variance 02, and the contribution of the terms Esz.M , 1 <7 <n, to the sum in

(13.20) equals no?. If 02 is very small, then it may happen that no? > (na2)M %,

and the approximation given for ES2M in the previous paragraph does not hold any
longer. Hence the asymptotic relation for a very high moment ES?M suggested by the
above heuristic argument may only hold if the variance o2 of the summands satisfies an
appropriate lower bound.

In the proof of Proposition 13.2 a similar picture appears in a hidden way. In
the calculation of the moments of a degenerate U-statistic the contribution of certain
(closed) diagrams, more precisely of some integrals defined with their help, has to be
estimated. Some of these diagrams (those in which all chains have length 2) appear also
in the calculation of the moments of multiple Wiener—Ito6 integrals. In the calculation of
the moments of sums of independent random variables the terms consisting of products
of second moments play such a role in the sum in formula (13.20) as the ‘nice’ diagrams
consisting of chains of length 2 play in the calculation of the moments of degenerate
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U-statistics in formula (11.17). In nice cases the remaining diagrams do not give a
much greater contribution than these ‘nice’ diagrams, and we get an almost as good
bound for the moments of a normalized degenerate U-statistic as for the moments of
the corresponding multiple Wiener—Ito integral. The proof of Proposition 13.2 shows
that such a situation appears under very general conditions.

Let me also remark that there is an essential difference between the tail behaviour
of Wiener—It6 integrals and normalized degenerate U-statistics. A good estimate can
be given on the tail distribution of Wiener—Ito integrals which depends only on the
Lo-norm of the kernel function, while in the case of normalized degenerate U-statistics
the corresponding estimate depends not only on the Lo-norm but also on the L., norm
of the kernel function. In Theorem 8.3 such an estimate is proved.

For k > 2 the distribution of k-fold Wiener-1t6 integrals are not determined by the
Lo-norm of their kernel functions. This is an essential difference between Wiener—Ito
integrals of order k¥ > 2 and £ = 1. In the case k = 1 a Wiener-It6 integral is a
Gaussian random variable with expectation zero, and its variance equals the square of
the Lo-norm of its kernel function. Hence its distribution is completely determined by
the Lo-norm of its kernel function. On the other hand, the distribution of a Wiener—Ito
integral of order k > 2 is not determined by its variance. Theorem 8.5 yields a ‘worst
case’ estimate on the distribution of Wiener—Ito integrals if we have a bound on their
variance. In the statistical problems which were the main motivation for this work
such estimates are needed, but it may be interesting to know what kind of estimates
are known about the distribution of a multiple Wiener—Ito integral or degenerate U-
statistic if we have some additional information about its kernel function. Some results
will be mentioned in this direction, but most technical details will be omitted from their
discussion.

H. P. Mc. Kean proved the following lower bound on the distribution of multiple
Wiener-Ito6 integrals. (See [29] or [42].)

Theorem 13.6. (Lower bound on the distribution of Wiener—Ité integrals).
All k-fold Wiener—Ito integrals Z,, 1. (f) satisfy the inequality

P(1Zu ()] > u) > Ke= 4" (13.21)

with some numbers K = K(f, ) >0 and A= A(f,p) > 0.

The constant A in the exponent Au?/* of formula (13.21) is always finite, but Mc. Kean’s

proof yields no explicit upper bound on it. The following example shows that in certain
cases if we fix the constant K in relation (13.21), then this inequality holds only with a
very large constant A > 0 even if the variance of the Wiener—It6 integral equals 1.

Take a probability measure p and a white noise puy with reference measure p on
a measurable space (X, X), and let @1, ps,... be a sequence of orthonormal functions
on (X, X) with respect to this measure u. Define for all L = 1,2, ..., the function

L
flxe, .. k) = fole, ... ) = (KHY2L7Y/?2 Z wi(x1) - pi(zr) (13.22)
j=1
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and the Wiener—Ito integral

Zowlf) = Zuilfi) = %/mazl, ) () - (day).

Then EZik(f) = 1, and the high moments of Z, ;(f) can be well estimated. For a
large parameter L these moments are much smaller, than the quantities suggested by
Proposition 13.1. (The calculation leading to the estimation of the moments of Z,, 1 (f)
will be omitted.) These moment estimates also imply that if the parameter L is large,
then for not too large numbers u the probability P(|Z, x(f)| > u) has a much better
estimate than that given in Theorem 8.5. As a consequence, for a large number L and
fixed number K relation (13.21) may hold only with a very big number A > 0.

We can expect that if we take a Gaussian random polynomial P(&q, ..., &,) whose
arguments are Gaussian random variables &1, . . ., &,, and which is the sum of many small
almost independent terms, then a similar picture arises as in the case of a Wiener—
It6 integral with kernel function (13.22) with a large parameter L. Such a random
polynomial has an almost Gaussian distribution by the central limit theorem, and we can
also expect that its not too high moments behave so as the corresponding moments of a
Gaussian random variable with expectation zero and the same variance as the Gaussian
random polynomial we consider. Such a bound on the moments has the consequence
that the estimate on the probability (P(&1,...,&,) > u) given in Theorem 8.5 can be
improved if the number u is not too large. A similar picture arises if we consider Wiener—
Ito integrals whose kernel function satisfies some ‘almost independence’ properties. The
problem is to find the right properties under which we can get a good estimate that
exploits the almost independence property of a Gaussian random polynomial or of a
Wiener—It6 integral. The main result of R. Latala’s paper [26] can be considered as a
response to this question. I describe this result below.

To formulate Latala’s result some new notions have to be introduced. Given a finite
set A let P(A) denote the set of all its partitions. If a partition P = {By,...,Bs} €
P(A) consists of s elements then we say that this partition has order s, and write
|P| = s. In the special case A = {1,...,k} the notation P(A) = P, will be used.
Given a measurable space (X, X)) with a probability measure p on it together with a
finite set B = {b1,...,b;} let us introduce the following notations. Take j different
copies (Xp,., Xp,.) and pup,., 1 < r < j, of this measurable space and probability measure
indexed by the elements of the set B, and define their product (X(B),X(B),M(B)) =

j j j
(H Xo,, [T A, 11 ,ubT>. The points (2, , . ..,2,) € XB) will be denoted by z(B) €
r=1 r=1 r=1

XB) in the sequel. With the help of the above notations I introduce the quantities
needed in the formulation of the following Theorem 13.7.

Let a function f = f(z1,...,7%) be given on the k-fold product (X*, X%, uk)
of a measurable space (X, X) with a probability measure pu. For all partitions P =
{Bi,...,Bs} € Py of the set {1,...,k} consider the functions g, (x(BT’)) on the space
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X(Br) 1 <r < s, and define with their help the quantities

a(P)=a(P, f,p) = sup /f(w1,---,xk)g1 <x(31)> "t gs (x(BS)> p(day) ... p(de);
91y 9s
where supremum is taken for such functions g1, ...,9s, ¢ XP — R!

for which /gf (:C(BT)> /L(BT) (dx(BT)> <1 foralll<r<s,

(13.23)
and put

as= max «a(P), 1<s<k. (13.24)
PePy, |P|:S

In Latata’s estimation of Wiener—It6 integrals of order k£ the quantities ag, 1 < s < k,
play a similar role as the number 2 in Theorem 8.5. Observe that in the case |P| = 1,
ie if P = {1,...,k} the identity a®(P) = [ f*(z1,...,2x)p(dz1). .. u(dzy) holds,
which means that a; = 0. The following estimate is valid for Wiener—Ito integrals of
general order.

Theorem 13.7. (Latala’s estimate about the tail-distribution of Wiener—Ito
integrals). Let a k-fold Wiener—It6 integral Z, 1(f), k > 1, be defined with the help
of a white noise puyw with a non-atomic reference measure p and a kernel function f of
k-variable such that [ f*(z1,...,z)p(dey). .. p(dxy) < oo. There is some universal
constant C(k) < oo depending only of the order k of the random integral such that the
inequalities

2M
Bl 1) < (O max (M%) (13.25)
and
u 2/s
P(Zu()] > 1) < C (k) exp {—ﬁ i (z) } (13.26)

hold for all M = 1,2,... and u > 0 with the quantities o, defined in formulas (153.23)
and (13.24).

Inequality (13.26) is a simple consequence of (13.25). In the special case when o <
M=6=D/2 for all 1 < s < k, then inequality (13.25) says that the moment EZ, x(f)*M
has the same magnitude as the 2M-th moment of a standard Gaussian random variable
multiplied by a constant, and it implies a good estimate on P(|Z, x(f)| > u) given
in (13.26). Actually the result of Theorem 13.7 can be reduced to the special case
when ay, < M~6=1/2 for all 1 < s < k. Thus it can be interpreted so that if the
quantities ay of a k-fold Wiener—Ito integral are sufficiently small, then these ‘almost
independence’ conditions imply that the 2M/-th moment of this integrals behaves like a
one-fold Wiener—It6 integral with the same variance.

Actually Latala formulated his result in a different form, and he proved a slightly
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weaker result. He considered Gaussian polynomials of the following form:

P(e, 1§j§n71§8§k¢)=% 3 a(jis .- )€ - €,
(J15edi): 1<Gs <n, 1< <k
(13.27)
where 53(-5), 1 <j<nand1l < s < k, are independent standard normal random
variables. Latala gave an estimate about the moments and tail-distribution of such
random polynomials.

The problem about the behaviour of such random polynomials can be reformulated
as a problem about the behaviour of Wiener—Ito integrals in the following way: Take a
measurable space (X, X) with a non-atomic measure p on it. Let Z, be a white noise

with reference measure p, let us choose a set of orthogonal functions h;s) (x),1<j<n,
1 < s <k, on the space (X, X) with respect to the measure p, and define the function

Pl ) = > ali gD ) A () (13.28)

D (Jrseendn): 1<55<n, 1<s<k

together with the Wiener-It6 integral Z, ,(f). Since the random integrals fj(.s) =

fhés)(x)Zu(dx), 1 <j<n,1<s <k, are independent, standard Gaussian random
variables, it is not difficult to see with the help of 1t6’s formula (Theorem 10.3 in this
work) that the distributions of the random polynomial P(SJ(-S), 1<j<n, 1<s<k)
and Z, 1(f) agree. Here we reformulated Latala’s estimates about random polynomials

of the form (13.27) to estimates about Wiener—It6 integrals with kernel function of the
form (13.28).

These estimates are equivalent to Latala’s result if we restrict our attention to the
special class of Wiener-It6 integrals with kernel functions of the form (13.28). But
we have formulated our result for Wiener—Ito integrals with a general kernel function.
Latata’s proof heavily exploits the special structure of the random polynomials given
in (13.27), the independence of the random variables 59(8) for different parameters s in
it. (It would be interesting to find a proof which does not exploit this property.) On the
other hand, this result can be generalized to the case discussed in Theorem 13.7. This
generalization can be proved by exploiting the theorem of de la Pena and Montgomery—
Smith about the comparison of U-statistics and decoupled U-statistics (formulated in
Theorem 14.3 of this work) and the properties of the Wiener—Itd integrals. I omit the
details of the proof.

Latata also proved a converse estimate in [26] about random polynomials of Gaus-
sian random polynomials which shows that the estimates of Theorem 13.7 are sharp. We
formulate it in its original form, i.e. we restrict our attention to the case of Wiener—It6
integrals with kernel functions of the form (13.28).

Theorem 13.8. (A lower bound about the tail distribution of Wiener—Ito
integrals). A random integral Z, ;(f) with a kernel function of the form (13.28)
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satisfies the inequalities

B 2 (0 s 00 ay))

and

u 2/s

forall M =1,2,... andu > 0 with some universal constant C (k) > 0 depending only on
the order k of the integral and the quantities as, defined in formula (13.23) and (13.24).

Let me finally remark that there is a counterpart of Theorem 13.7 about degenerate
U-statistics. Adamczak’s paper [1] contains such a result. Here we do not discuss it,
because this result is far from the main topic of this work. We only remark that some
new quantities have to be introduced to formulate it. The appearance of these conditions
is related to the fact that in an estimate about the tail-behaviour of a degenerate U-
statistic we need a bound not only on the Ls-norm but also on the supremum norm
of the kernel function. In a sharp estimate the bound about the supremum of the
kernel function has to be replaced by a more complex system of conditions, just as the
condition about the Ly-norm of the kernel function was replaced by a condition about
the quantities ag, 1 < s <k, defined in formulas (13.23) and (13.24) in Theorem 13.7.

14. Reduction of the main result in this work.

The main result of this work is Theorem 8.4 or its multiple integral version Theorem 8.2.
It was shown in Section 9 that Theorem 8.2 follows from Theorems 8.4. Hence it is
enough to prove Theorem 8.4. It may be useful to study this problem together with its
multiple Wiener—It6 integral version, Theorem 8.6.

Theorems 8.6 and 8.4 will be proved similarly to their one-variate versions, Theo-
rems 4.2 and 4.1. Theorem 8.6 will be proved with the help of Theorem 8.5 about the
estimation of the tail distribution of multiple Wiener—It6 integrals. A natural modifi-
cation of the chaining argument applied in the proof of Theorem 4.2 works also in this
case. No new difficulties arise. On the other hand, in the proof of Theorem 8.4 several
new difficulties have to be overcome. I start with the proof of Theorem 8.6.

Proof of Theorem 8.6. Fix a number 0 < € < 1, and let us list the elements of the
countable set F as f1, fa,.... For all p = 0,1,2,... let us choose by exploiting the
conditions of Theorem 8.6 a set F, = {fa(1,p),---sfa(m,p)} C F of function with

m, < 2D2@PHDLe=Lo=L clements in such a way that inf [(f — faip)?dp <

1<j<myp
2748252 for all f € F, and let f, € F,. For all indices a(j,p), p = 1,2,...,
1 < j <'m,, choose a predecessor a(j’,p—1), j' = 7'(j,p), 1 < j <myp_1, in such a way
that the functions fo(;j ) and fo ;7 p—1) satisfy the relation [ |fo(jp) — faiirp—1)* dp <
£2g22=4P+1) " Theorem 8.5 with the choice @ = @(p) = 2~ P*Vey and 7 = 7(p) =
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272P2¢4 yields the estimates
PG =F <k!|Z“’k’(fa(j7p) — fa(yr p-1)| = 2_(1+p)€u>

1 2p—|—1u 2/k (141)
< Cexp ——( ) : 1 <7 <my,

2 o

forallp=1,2,..., and

PB()) = P (MZu a2 (1 - 5) u) < Cexp d =3

|
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—_
Q‘
[ ][
SN—"
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[\
~
>

1 S S S mo.
(14.2)
Since all f € F is the element of at least one set F,, p = 0,1,2,..., (We made a
construction, where f,, € F,), the definition of the predecessor of an index a(j,p) and
of the events A(j,p) and B(s) in formulas (14.1) and (14.2) together with the previous
estimates imply that

P (Sup KN Z, k6 (f)] > u) <Pl U A(j,p) U U B(s)

feF it
§§:§§HAUmD+§:HB®D (14.3)

2/k
1 1—%5)u
+ 21 ECDe Lo L exp —5 (—( 2) )

Standard calculation shows that if u > MLk/Q% logk/2 % . crlogk/2 % with a sufficiently
large constant M, then the inequalities

1, \ 2/k 2/k
QQPMﬂ%LJLema{—}-<%H»u) }:gzp{—fl<£32523) }
2 o 2 o

hold for all p=1,2..., and

2/k 2/k
1/ (1—¢ 1/(1-
21~ LoLoxpd —= (( 2)”) < exp{—— (( 5)“) }
2 o 2 o




These inequalities together with relation (14.3) imply relation (8.15). Theorem 8.6
is proved.

The proof of Theorem 8.4 is harder. In this case the chaining argument in itself does
not supply the proof, since Theorem 8.3 gives a good estimate about the distribution
of a degenerate U-statistic only if it has a not too small variance. The same difficulty
appeared in the proof of Theorem 4.1, and the method applied in that case will be
adapted to the present situation.

A multivariate version of Proposition 6.1 will be proved in Proposition 14.1, and
another result which can be considered as a multidimensional version of Proposition 6.2
will be formulated in Proposition 14.2. It will be shown that Theorem 8.4 follows
from Propositions 14.1 and 14.2. Most steps of these proofs can be considered as a
simple repetition of the corresponding arguments in the proof of the results in Section 6.
Nevertheless, I wrote them down for the sake of completeness.

The result formulated in Proposition 14.1 can be proved in almost the same way
as its one-variate version, Proposition 6.1. The only essential difference is that now
we apply a multivariate version of the Bernstein inequality given in the Corollary of
Theorem 8.3. In the calculations of the proof of Proposition 14.1 the term (%)2/ k shows
a behaviour similar to the term (%)? in Proposition 6.1. Theorem 14.1 contains the
information we can get by applying Theorem 8.3 together with the chaining argument.
Its main content, inequality (14.4), yields a good estimate on the supremum of degener-
ated U-statistics if it is taken for an appropriate finite subclass F5 of the original class
of kernel functions F. The class of kernel functions F5 is a relatively dense subclass of
F in the Ly norm. Proposition 14.1 also provides some useful estimates on the value of

the parameter ¢ which describes how dense the class of functions Fj5 is in F.

Proposition 14.1. Let the k-fold power (X*, X*) of a measurable space (X, X) be given
together with some probability measure p on (X, X') and a countable, Lo-dense class F of
functions f(z1,...,x) of k variables with some exponent L > 1 and parameter D > 1
with respect to the measure p on the product space (X*,X*) which has the following
properties. All functions f € F are canonical with respect to the measure j, and they
satisfy conditions (8.4) and (8.5) with some real number 0 < o < 1. Take a sequence of
independent, p-distributed random variables &1, ..., &,, n > max(k,2), and consider the
(degenerate) U-statistics I, 1 (f), f € F, defined in formula (8.7), and fix some number
A=A > 2.

There is a number M = M(A, k) such that for all numbers u > 0 for which the
inequality no? > (%)Z/R > M(Llog 2 + log D) holds, a number & = 6(u), 0 < 5 <
o <1, and a collection of functions F5 = Fzw)y = {f1,---, fm} C F with m < D&t
elements can be chosen in such a way that the sets D; = {f: f € F, [|f—f;|?dp < 52},

m
1 < j <'m, satisfy the relation F = |J Dj, and for the (degenerate) U-statistics I, 1(f),
j=1
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I € Fs(u), the inequality

2/k
(o §) <o {-o ()}

fe]-‘6<u) A 10140'

2/k 2
if no®> ( ) > M (Llog— —|—logD) (14.4)
g ag

holds with the constants o = «a(k), C = C(k) appearing in formula (8.10") of the
Corollary of Theorem 8.3 and the exponent L and parameter D of the Lo-dense class
F. Besides, also the inequality 4 (%)Q/k > no? > 614 (A—) 2/k holds for this number
g =ao(u). If the number u satisfies also the inequality

2/k 2
no >< ) > M(L¥?log = + (log D)*/?) (14.5)
g g

with a sufficiently large number M = M (A, k), then the relation ng? > Llogn + log D
holds, too.

Proof of Proposition 14.1. Let us list the elements of the countable set F as f1, fo,....
For all p = 0,1,2,... let us choose, by exploiting the Ls-density property of the
class F, a set Fp, = {fa(1p)>--+»fam,p)} C F with m, < D 2?2PLg=L clements in
such a way that 1<ijrifm J(f = fagp)?dp < 27%02 for all f € F. For all indices

a(j,p), p = 1,2,..., 1 < j < m,, choose a predecessor a(j',p — 1), 5/ = 5'(j,p),

1 <j" <my_1, in such a way that the functions f,(; ;) and f,(;/ ,—1) satisfy the relation
S 2

[ fatip)—Ffaiip—1)|? dp < 02274P=1 Then the inequalities | (f“(“’) };“(J ”””) dp <

fa(j,p) (ml“"’mk)_fa(j/apfl)(‘Tlr“vwk)
2

40224 and sup
v, €X,1<j<k

Theorem 8.3 yields that

< 1 hold. The Corollary of

. _ 27(1+p)u
P(A(j,p)) =P (n P2\ Lk (fagip) = FaGrp-1)| = T)

2py \ 2/ 2Py \ 2/* 14.6
< Cexp {—a (81{%) } if 4no?27% > (é) , ( )

1<ji<my, p=1,2,...,

and

P(B(s)) = P (n™" 2| L (fo.)| =

N——

u \2/k
<C’exp{—o¢(2?> }, 1 < s < mg,

U
24 Ao
u
240

if no >( )2/k. (14.7)
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Introduce an integer R = R(u), R > 0, which satisfies the relations

9(4+2/k)(R+1) <Ai>2/k > 92+6/k,, -2 > 9(4+2/k)R <Ai>2/k,
g o

and define 62 = 27*%¢? and F, = Fp (this is the class of functions Fp introduced at
the start of the proof with p = R). We defined the number R, analogously to the proof
of Theorem 6.1, as the largest number p for which the condition formulated in (14.6)
holds. As no? > (%)2/ k, and A > 2F by our conditions, there exists such a positive
integer R.) The cardinality m of the set F, is clearly not greater than D&~ and
U D; = F. Besides, the number R was chosen in such a way that the inequalities
7j=1

(14.6) and (14.7) hold for 1 < p < R. Hence the definition of the predecessor of an
index a(j,p) implies that

R mp
P ( sup n*2|1 k<f>12£) (U UsB
(fefa A p=1j=1
R mp mo 00 - . 2y 2/k
< P(A(j3,p)) + P(B(s)) < CD2°P ex
<303 PlAGa) + 3 PE) <3 p (&%)

+ CDo Fexp {—a (i)wk} .

If the condition 7(%)2/ g > M(Llog % +log D) holds with a sufficiently large constant M
(depending on A), then the inequalities

9Py, 2/k 9Py, 2/k
D2%rLg—L —a | 22 < 9P — _
o exp{ a<8Aa> } < exp{ a<10A0>

hold for all p=1,2,..., and
2/k U 2/k
Dot — (L) < — ( _ ) .
o exp{ o e <expl —« e
Hence the previous estimate implies that
2pu 2/k
P —k2|1, > <) o277 -
e B R

roon ()"} <20em e (5)" )

and relation (14.4) holds.
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The estimates

L 7w 2/k< —2-6/ko2k/R [ U Q/k: —4R  o(4+2/k)R—2—6/k [ W 2/k
() s2main(g) =2 (%)

61\ 1o g -
< ng? =2 4By 52 < 9—4R  9(4+2/k)(R+1)-2-6/k (i)z/k
N a Ao
2/k u \2/k w \2/k
— 92-4/k  92R/k (_i) _ 92-4/k  9—2R/k <__> <4 (__)
Ao Ao — \As

hold because of the relation R > 1. This means that no? has the upper and lower
bound formulated in Proposition 14.1. It remained to show that ng? > Llogn + D if

relation (14.5) holds.

This inequality clearly holds under the conditions of Proposition 14.1 if o < n=1/3,
since in this case lo_g% > lo%", and ng? > 6—14 (%)2/]C > éfl_z/kM(Lg/Q log_% +
(log D)3/2)3/2 > L A=2/FM(L3/%logn + (log D)3/?) > Llogn +log D if M = M(A, k)
is sufficiently large.

If o > n~'/3, then the inequality 2(4+2/k) R (—j‘;)z/k < 2216/kpg2 can be applied.
()2 4/(4+2/k)
This implies that 2-41 > 2-4(2+6/k))/(4+2/k) [“"—2] , and
no

2-16/3 uy2/k7 4 2
9 _ 5—4R, 2 21— ) B
no” = 2 no Zw(no) ’YK;) } W1th7—4+%2§.
The inequalities no? > n'/? and no? > (%)2/’C > M(L*/?log %—I—(log D)3/2) > %(L3/2+
(log D)?/2) hold, (since log 2 > 1). They yield that for sufficiently large M = M (A, k)

o2 (2] 2 oty [0 = o [(2)7] ", ana

g g g

1—4/3 2/3
gt 5 A ke [ ()2
- 50 o

A—4/3 M\ 23
> Tnl/S(ZkJrl) (7) (L2 + (log D)*/?)*/3 > Llogn + log D.

A multivariate analog of Proposition 6.2 is formulated in Proposition 14.2, and it
will be shown that Propositions 14.1 and 14.2 imply Theorem 8.4.

Proposition 14.2. Let a probability measure p be given on a measurable space (X, X)
together with a sequence of independent and p distributed random wvariables &1, ... ,&,
and a countable Ly-dense class F of canonical (with respect to the measure ) kernel
functions f = f(x1,...,xK) with some parameter D > 1 and exponent L > 1 on the
product space (X*,X%). Let all functions f € F satisfy conditions (8.1) and (8.2)
with some 0 < o < 1 such that no® > Llogn + D. Let us consider the (degenerate)
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U-statistics I, 1 (f) with the random sequence &i,...,&,, n > max(2,k), and kernel
functions f € F. There exists a threshold index Ay = Ag(k) > 0 and two numbers
C =C(k) >0 and v =~(k) > 0 depending only on the order k of the U-statistics such
that the degenerate U-statistics I, (f), f € F, satisfy the inequality

P (Sup |n_k/2In7k(f)| > Ank/QakH) < Ce=7A* o’ if A> Ap. (14.8)
fer

Proposition 14.2 yields an estimate for the tail distribution of the supremum of
degenerate U-statistics at level u > Aonk/zakH, i.e. in the case when Theorem 8.3 does
not give a good estimate on the tail-distribution of the single degenerate U-statistics
taking part in the supremum at the left-hand side of (14.8).

Formula (8.11) will be proved by means of Proposition 14.1 with an appropriate
choice of the parameter A in it and Proposition 14.2 with the choice 0 = ¢ = 7(u) and
the classes of functions F; = {Q_Tfj: g e Dj} with the number &, functions f; and sets
of functions Dj, 1 < j < m, introduced in Proposition 14.1. Clearly,

P (sup n~2 L ()] 2 u) <P (sup n L (f) 2 %)

fEF fEF5

| L (14.9)
ne (552)]2 (57 24) )

where m is the cardinality of the set of functions F; appearing in Proposition 14.1. We
shall estimate the two terms of the sum at the right-hand side of (14.9) by means of
Propositions 14.1 and 14.2 with a good choice of the parameters A and the corresponding

M = M(A) in Proposition 14.1 together with a parameter A > Aj in Proposition 14.2.

We shall choose the parameter A > Ag in the application of Proposition 14.2 so that
it satisfies also the relation v A'/2* > 2 with the number y appearing in Proposition 14.2,
hence we put A = max(A,, (%)%) After this choice we want to define the parameter

+

P | sup n~k/2
9€D;

1M

A in Proposition 14.1 in such a way that the numbers u satisfying the conditions of
Proposition 14.1 also satisfy the relation (% — Q—IA)U > An*/25%+1 with the already fixed
number A. This inequality can be rewritten in the form A=2/%(1 — ﬁ)wk(%)wk > no?.
On the other hand, under the conditions of Proposition 14.1 the inequality 4(%&)2/ k>
n&? holds. Hence the desired inequality holds if A=%/*(} — J)%/* > 442/k_ Thus the
number A = 281 A 4 1 is an appropriate choice.

With such a choice of A (together with the corresponding M = M (A, k)) and A
we can write
P — 1 1
P | sup n~k/2 Ik (fj g)’ > <— — —_) U
ey 2 2 24
< P | sup n=k/2
9€D;




for all 1 < j < m. (Observe that the set of functions fj;g, g € D;, is an La-dense class
with parameter D and exponent L.) Hence Proposition 14.1 (relation (14.4) together
with the inequality m < D& ~%) and formula (14.8) with our A > Ay and r elation (14.9)

imply that

1% (SUP nF 2 L (f)] > u) < 2C exp {—a (

ferF

)2/k} +CDgFem 1A,

(14.10)

We show by repeating an argument given in Section 6 that D—F < end”, Indeed,
we have to show that log D + Llog% < no?. But, as we have seen, the relation
ng? > Llogn + logD with L > 1 and D > 1 implies that ng? > logn, hence
log% < logn, and log D + Llogé < logD + Llogn < n&?. On the other hand,
v A2k > 2 by the definition of the number A, and by the estimates of Proposition 14.1

_ 2/k . . _ = =
ng? > —614 (—; ) / . The above relations imply that DG~ Le—AY*na’ < e~ YA n5? /2 <
g

exp {—%Al/%ﬁ_wk (g)wk} Hence relation (14.10) yields that

10A0

P | sup n*k/2|]n7k(f)| >
feF

o u\2/k _ Vo c1/2k ok (W 2/F
<92 e (v Ny LY e
= CeXp{ (104)2 <a) }+CeXp{ 12870 (o—) ’

and this estimate implies Theorem 8.4.

To complete the proof of Theorem 8.4 we have to prove Proposition 14.2. It will be
proved, similarly to its one-variate version Proposition 6.2, by means of a symmetriza-
tion argument. We want to find its right formulation. It would be natural to formulate
it as a result about the supremum of degenerate U-statistics. However, we shall choose
a slightly different approach. There is a notion, called decoupled U-statistic. Decoupled
U-statistics behave similarly to U-statistics, but it is simpler to work with them, be-
cause they have more independence properties. It turned out to be useful to introduce
this notion and to apply a result of de la Pena and Montgomery—Smith which enables
us to reduce the estimation of U-statistics to the estimation of decoupled U-statistics,
and to work out the symmetrization argument for decoupled U-statistics.

Next we introduce the notion of decoupled U-statistics together with their ran-
domized version. We also formulate a result of de la Pena and Montgomery—Smith in
Theorem 14.3 which enables us to reduce Proposition 14.2 to a version of it, presented
in Proposition 14.2". It states a result similar to Proposition 14.2 about decoupled
U-statistics. The proof of Proposition 14.2" is the hardest part of the problem. In Sec-
tions 15, 16 and 17 we deal essentially with this problem. The result of de la Pena and
Montgomery—Smith will be proved in Appendix D.

Now we introduce the following notions.

The definition of decoupled and randomized decoupled U-statistics. Let us
have k independent copies éj), e 7(3), 1 <5 <k, of a sequence &1,...,&, of inde-
pendent and identically distributed random variables taking their values in a measurable
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space (X, X) together with a measurable function f(xi,...,zx) on the product space
(X%, X% with values in a separable Banach space. The decoupled U-statistic I, x(f)

determined by the random sequences Eﬁj), ceey 7(3'), 1 < j <k, and kernel function f is
defined by the formula
= 1 1 k
L) = > TGRSR (14.11)
T (lnyeelp): 1K1 <0y G=1,..0,k,
Ll it G5

Let us have besides the sequences fij), e ,fflj), 1 < j <k, and function f(xq,... ,xk)l
a sequence of independent random wvariables € = (e1,...,ey), Ple; = 1) = P(g; =
-1) = %, 1 <1 < n, which is independent also of the sequences of random variables

gj), . ,553), 1 < j < k. The randomized decoupled U-statistic I,, x(f,c) (depending on

the random sequences fij), e ,f,(zj), 1 <3 <k, the kernel function f and the randomiz-
ing sequence €1, . ..,&y,) is defined by the formula

L (f) = % > e e S (5{11), .. ,5}5)) . (14.12)

T (L) 11 <n, G=1,...,k,
lj?’élj’ if j?éj/

A decoupled or randomized decoupled U-statistics (with real valued kernel function)
will be called degenerate if its kernel function is canonical. This terminology is in full
accordance with the definition of (usual) degenerate U-statistics.

A result of de la Pena and Montgomery—Smith will be formulated below. It gives an
upper bound for the tail distribution of a U-statistic by means of the tail distribution of
an appropriate decoupled U-statistic. It also has a generalization, where the supremum
of U-statistics is bounded by the supremum of decoupled U-statistics. It enables us to
reduce Proposition 14.2 to a version formulated Proposition 14.2’, which gives a bound
on the tail distribution of the supremum of decoupled U-statistics. It is simpler to prove
this result than the original one.

Before the formulation of the theorem of de la Pena and Montgomery—Smith I make
some remark about it. It considers more general U-statistics with kernel functions taking
values in a separable Banach space, and it compares the norm of Banach space valued U-
statistics and decoupled U-statistics. (Decoupled U-statistics were defined with general
Banach space valued kernel functions, and the definition of U-statistics can also be
generalized to separable Banach space valued kernel functions in a natural way.) This
result was formulated in such a general form for a special reason. This helped to derive
formula (14.14) of the subsequent theorem from formula (14.13). It can be exploited in
the proof of formula (14.14) that the constants in the estimate (14.13) do not depend
on the Banach space, where the kernel function f takes its values.

Theorem 14.3. (Theorem of de la Pena and Montgomery—Smith about the
comparison of U-statistics and decoupled U-statistics). Let us consider a se-
quence of independent and identically distributed random variables &1, . . ., &, with values
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in a measurable space (X, X) together with k independent copies fij), e ,féj), 1 <5<k,
of this sequence. Let us also have a function f(x1,...,xx) on the k-fold product space
(X*, X*) which takes its values in a separable Banach space B. Let us take the U-
statistic and decoupled U -statistic I, x(f) and I, x(f) with the help of the above random

sequences &1, . .., &n, ;j), ey 7(3), 1 < j <k, and kernel function f. There exist some
constants C' = C(k) > 0 and v = (k) > 0 depending only on the order k of the
U -statistic such that

P ([l (HIl > w) < CP (| Lo ()] > yu) (14.13)

for allu > 0. Here || - || denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functions fs, s =1,2,..., taking

their values in the same separable Banach-space, then

P< sup [ Lnx(fs)]| > u) < C’P( sup || Lk (fs)| > *yu) . (14.14)

1<s<o0 1<s<o0

Now I formulate the following version of Proposition 4.2.

Proposition 14.2'. Let a probability measure p be given on a measurable space (X, X)
together with a sequence of independent and p distributed random variables &1, ..., &,
n > max(k,2), and a countable Ly-dense class F of canonical (with respect to the mea-
sure p) kernel functions f = f(x1,...,x) with some parameter D > 1 and exponent
L > 1 on the product space (X*,X*). Let all functions f € F satisfy conditions (8.1)
and (8.2) with some 0 < o < 1 such that no? > Llogn +log D. Let us take k indepen-
dent copies 59), e 7(3), 1 <7 <k, of the random sequence &1, ...,&,, and consider

the decoupled U-statistics I, 1 (f), f € F, defined with their help in formula (14.11).

There ezists a threshold index Ay = Ag(k) > 0 depending only on the order k of the
decoupled U-statistics I, x(f), f € F, such that the (degenerate) decoupled U-statistics
Ik (f), [ € F, satisfy the following version of inequality (14.8):

P (Sup n 2L, k()] > Ank/QJk‘H) < g2 AV AY g if A> Ag.  (14.15)
fer

It is clear that Proposition 14.2" and Theorem 14.3, more explicitly formula (14.14)
in it, imply Proposition 14.2. Hence the proof of Theorem 8.4 was reduced to Proposi-
tion 14.2" in this section. The proof of Proposition 14.2" is based on a symmetrization
argument. Its main ideas will be explained in the next section.
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15. The strategy of the proof for the main result of this work.

In the previous section the proof of Theorem 8.4 was reduced to that of Proposition 14.2".
Proposition 14.2" is a multivariate version of Proposition 6.2, and its proof is based on
similar ideas. An important step in the proof of Theorem 6.2 was a symmetrization

n
argument in which we reduced the estimation of the probability P (sup > f(&) > u)
feF j=1

n
to the estimation of the probability P | sup ) e;f(§;) > § |, where &1,...,&, is a
feF j=1
sequence of independent and identically distributed random variables, and ;, 1 < j < n,
is a sequence of independent random variables with distribution P(e; = 1) = P(e; =
-1) = %, independent of the sequence ;. Let us understand how to formulate the
corresponding symmetrization argument in the proof of Proposition 14.2" and how to
prove it.

The symmetrization argument applied in the proof of Proposition 6.2 was carried
out in two steps. We took a copy &f,..., &, of the sequence &1, ...,&,, i.e. a sequence
of independent random variables which is independent also of the original sequence
&1, ...,&,, and has the same distribution. In the first step we compared the tail distri-

n n
bution of the expression sup »_ [f(&;) — f(£;)] with that of sup »_ f(&;). This was done
feF j=1 feFj=1
with the help of Lemma 7.1. In the second step, in Lemma 7.2, we proved a ‘randomiza-
n

tion argument’ which stated that the distribution of the random fields > [f(§;) — f(})]
j=1

n
and ) &;[f(&;) — f(&))], f € F, agree. The symmetrization argument was proved with
j=1
the help of these two observations.

In the proof of Proposition 14.2" we would like to reduce the estimation of the

tail distribution of the supremum of decoupled U-statistics sup I, x(f) defined in for-
ferF

mula (14.11) to the estimation of the tail distribution of the supremum of randomized

decoupled U-statistics sup I< , (f) defined in formula (14.12) by means of a similar ar-
fer 7
gument. To do this first we have to understand what kind of random fields should be

introduced instead of ) [f(&;) — f(£3)], f € F, in the new case. In formula (15.1) we
=1

j_
shall define such a random field. Its definition reminds a bit to the definition of Stieltjes
measures. In Lemma 15.1 we will show that a version of the ‘randomization argument’
of Lemma 7.2 can be applied when we are working with this random field.

The adaptation of the first step of the symmetrization argument in the proof of
Proposition 6.2 to the present case is much harder. The proof of Proposition 6.2 was
based on the symmetrization lemma, Lemma 7.1, which does not work in the present
case. Hence we shall prove a generalization of this result in Lemma 15.2. The proof
of symmetrization argument is difficult even with the help of this result. The hardest
part of our problem appears at this point. I return to this point after the formulation
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of Lemma 15.2.
To formulate Lemma 15.1 needed in our proof we introduce some notations.

Let Vi denote the set of all sequences (v(1),...,v(k)) of length k such that v(j) =
+lorwv(j) =—-1forall 1l <j <k Let m),v=(v),...,u(k)) € Vg, denote the
number of digits —1 in the sequence v. Let a (real valued) function f(x1,...,zx) of k
variables be given on a measurable space (X, X') together with a sequence of independent
and identically distributed random variables &1, ..., &, with values in the space (X, X)

and 2k independent copies 59’1),..., T(Lj’l) and 59’_1),..‘, T(Lj’_l), 1 < j <k, of this
sequence. Let us have beside them another sequence ¢ = (e1,...,¢,), P(e; = 1) =
P(e; = —1) = %, of independent random variables, also independent of all previously

introduced random variables. With the help of the above quantities we introduce the
random variables

fa) =7 S0 (- > £, gl s)

T weVy (1, 1) 1<l,.<n, r=1,... k,
1-#L,., if r#r’
and
T 1 m(v 1,v(1 kao(k
(D) =5 >y > e (60
T veVy (I, lg): 1<1,.<0, =1, K,

Up#£L, if r#r’
(15.2)

The number m(v) in the above formulas denotes the number of the digits —1 in the +1
sequence v of length k, hence it counts how many random variables & l(j ’1), 1 <5 <k, were

replaced by the ‘secondary copy’ & l(jj Dforave V. in the inner sum in formulas (15.1)
or (15.2).
The following result holds.

Lemma 15.1. Let us consider a (non-empty) class of functions F of k wvariables
f(z1,...,21) on the space (X* X*) together with the random variables I, x(f) and

ifm(f) defined in formulas (15.1) and (15.2) for all f € F. The distributions of the
random fields fn,k(f), feF, and I;ik(f), f € F, agree.

Let me recall that we say that the distribution of two random fields X (f), f € F,
and Y(f), f € F, agree if for any finite sets {f1,..., f,} € F the distribution of the
random vectors (X (f1),...,X(fp)) and (Y (f1),...,Y (fp)) agree.

Proof of Lemma 15.1. 1 even claim that for any fixed sequence u = (u(1),...,u(n)),
u(l) = £1, 1 <1 < n, of length n the conditional distribution of the field I~5L7k(f), fewrF,
under the condition (e1,...,6,) = u = (u(1),...,u(n)) agrees with the distribution of
the field of I, 1(f), f € F.

Indeed, the random variables fn,k( f), f € F, defined in (15.1) are functions of a
random vector with coordinates ( l(J) }m) = (fl(J’l),ﬁl(J’_l)), 1<1<n,1<j<k, and
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the distribution of this random vector does not change if the coordinates ( l(j ) _l(j )) =

( l(j’l), l(j’_l)) with such indices (I, j) for which u(l) = —1 (and the index j is arbitrary)
are replaced by (_l(j) l(j)) = (£l(j’_1),£l(j’1)), and the coordinates ( l(j) _l(j)) with such
indices ([, j) for which u(l) = 1 are not changed. As a consequence, the distribution of
the random field I,, . (f|u), f € F, we get by replacing the original vector ( l(j), _l(j)), 1<
[ <n,1<j <k, in the definition of the expression fnk(f) in (15.1) for all f € F by this
modified vector depending on w has the same distribution as the random field fmk( f),
f € F. On the other hand, I claim that the distribution of the random field I, . (f|u),
f € F, agrees with the conditional distribution of the random field I};’k( f), f e F,
defined in (15.2) under the condition that (e1,...,&,) = u with u = (u(1),...,u(n)).

To prove the last statement let us observe that the conditional distribution of
the random field fg’k(f), f € F, under the condition (e1,...,&,) = u is the same as
the distribution of the random field we obtain by putting u(l) =&, 1 <1 < n, in all
coordinates g; of the random variables I, (f). On the other hand, the random variables
we get in such a way agree with the random variables appearing in the sum defining
I x(f]u), only the terms in this sum are listed in a different order. Lemma 15.1 is
proved.

Next we prove the following generalization of Lemma 7.1.

Lemma 15.2. (Generalized version of the Symmetrization Lemma). Let Z,
and Zp, p = 1,2,..., be two sequences of random wvariables on a probability space
(Q, A, P). Let a o-algebra B C A be given on the probability space (2, A, P) together
with a B-measurable set B and two numbers o > 0 and > 0 such that the random
variables Z,, p =1,2,..., are B measurable, and the inequality

P(1Z,) < a|B)(w) > B forall p=1,2,... if we B (15.3)
holds. Then

1 _
P( sup |Z,| >a—|—u> < —P( sup |Z, — Zp| >u> +(1—P(B)) forallu>0.
1<p<oo B 1<p<oo
(15.4)

Proof of Lemma 15.2. Put 7 = min{p: |Z,| > a+u) if there exists such an index p > 1,
and put 7 = 0 otherwise. Then

P({r =p} N B) < /{ o P2, < alB)dP = SP({r =p} {2, < a} 1 B)

1 _
< BP({T:p}ﬂﬂZp —Zp| >u}) foralp=1,2,....
Hence

P( s 1z0>avu)-a-rm)<p({ s 1z/>ara}ns)

1<p<oco 1<p<oo
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=Y PUr=p0B) < 5 Y PUr=p} {12, = 2] > u)

p=1 p=1
1

< —P( sup |Z, — Z,| > u)
B \i<p<oo

Lemma 15.2 is proved.

To find a symmetrization argument useful in the proof of Proposition 14.2" we

want to bound the probability P [ sup |, x(f)] >u | by C - P { sup [, x(f)] > cu
fer fer

plus a negligible error term with some appropriate numbers C' < oo and 0 < ¢ < 1. The
random variables I, 1 (f) and I,, x(f) appearing in these formulas were defined in (14.11)
and (15.1). (Actually we work with a slightly modified version of formula (14.11) where

the random variables & l(j ) are replaced by the random variables £ l(j 2 .) We shall prove the
above mentioned estimate with the help of Lemma 15.2. To find the random variables Z,
and Z, we want to work with in Lemma 15.2 let us list the elements of the class of
functions F as F = {fi, f2,...}. We shall apply Lemma 15.2 with the choice Z, =
I i (fp) and Z, = L, k(fp) — Lnk(fp), p = 1,2,..., together with the o-algebra B =
B 1<1<n, 1<j<k).

Let us observe that Z,, is a decoupled U-statistic depending on the random variables
fl(j ’1), 1< <k, 1< <n, while Zp is a linear combination of decoupled U-statistics,
whose arguments contain not only the random variables of the form & l(j ’_1), but also the

random variables of the form fl(j D Asa consequence, the random variables Z, and Zp
are not independent. This is the reason why we cannot apply Lemma 7.2 in the proof
of Proposition 14.2’.

We shall show that Lemma 15.2 with the choice of the above defined random
variables Z, and Zp and the o-algebra B may help us to prove the estimates we need in
our considerations. To apply this lemma we have to show that condition (15.3) holds
with an appropriate pair of numbers (o, 3) and a B measurable set B of probability
almost 1. To check this condition is a hard but solvable problem.

In Lemma 7.2 condition (7.1) played a role similar to the condition (15.3) in
Lemma 15.2. In that case we could check this condition by estimating the second

moment EZ2. In the present case we shall estimate the supremum sup E(Z2|B) of
fp€F

conditional second moments. In this formula Z, is a (complicated) random variable
depending on the function f, € F. The estimation of the supremum of the conditional
second moments we want to work with is a hard problem, and the main difficulties of
our proof appear at this point.

The conditional second moments whose supremum we want to estimate can be
expressed as the integral of a random function that can be written down explicitly.
In such a way we get a problem similar to our original one about the estimation of

sup I, x(f). It turned out that these two problems can be handled similarly. We can
fer
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work out a symmetrization argument with the help of Lemma 15.2 in both cases, and
an inductive argument similar to Proposition 7.3 can be formulated and proved which
supplies the results we want to prove.

We shall prove Proposition 14.2" as a consequence of two inductive propositions
formulated in Propositions 15.3 and 15.4. Here we apply an approach similar to the
proof of Proposition 6.2 which was done with the help of an inductive proposition
formulated in Proposition 7.3. The main difference is that now we have to prove two
inductive propositions simultaneously, because we also have to bound the supremum
of some conditional variances, which demands special attention. To formulate these
propositions first we introduce the notions of good tail behaviour for a class of decoupled
U -statistics and good tail behaviour for a class of integrals of decoupled U -statistics.

Definition of good tail behaviour for a class of decoupled U-statistics. Let
some measurable space (X, X) be given together with a probability measure p on it. Let

us consider some countable class F of functions f(x1,...,xr) on the k-fold product
(X*, XF) of the space (X,X). Fir some positive integer n > k and a positive number
0 <o <1, and take k independent copies é]), e ,&(Lj), 1 <j <k, of a sequence of inde-

pendent p-distributed random variables &1, . .., &,. Let us introduce with the help of these
random variables the decoupled U-statistics I, x(f), f € F, defined in formula (14.11).
Given some real number T > 0 we say that the set of decoupled U -statistics determined
by the class of functions F has a good tail behaviour at level T (with parameters n and
o2 which are fized in the sequel) if

P (sup In =21, 1 (f)] > Ank/20k+1> < exp {—Al/%nag} for all A>T. (15.5)
fer

Definition of good tail behaviour for a class of integrals of decoupled U-
statistics. Let us have a product space (X* x Y, X* x V) with some product measure
uF x p, where (X*, X% k) is the k-fold product of some probability space (X, X, 1), and
(Y, ), p) is some other probability space. Fix some positive integer n > k and a positive
number 0 < o < 1, and consider some countable class F of functions f(z1,...,Tk,y) on
the product space (X* <Y, X* x Y, u¥ x p). Take k independent copies 59), e ,59), 1<
J <k, of a sequence of independent, u-distributed random variables &1,...,&,. For all
f€F andy €Y let us define the decoupled U-statistics I, i (f,y) = Inx(f,) by means

of these random variables 5@, ce ,fy(Lj), 1 < j <k, the kernel function fy(x1,...,z) =

f(z1,..., 2k, y) and formula (14.11). Define with the help of these U-statistics I, 1 (f,y)
the random integrals

Hoi(f) = / Lox(f.9)2p(dy), feF. (15.6)

Choose some real number T > 0. We say that the set of random integrals H, 1 (f),
f € F, has a good tail behaviour at level T (with parameters n and o* which we fix in
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the sequel) if

P (sup n_an,k(f) > A2nk02k+2> < exp {—Al/(2k+1)na2} forall A>T. (15.7)
feF

Propositions 15.3 and 15.4 will be formulated with the help of the above notions.

Proposition 15.3. Let us fix a positive integer n > max(k,2), a real number 0 < o <
2=+ 4 probability measure u on a measurable space (X, X) together with two real
numbers L > 1 and D > 1 such that no? > Llogn+log D. Let us consider those count-
able Lo-dense classes F of canonical kernel functions f = f(xq,...,xk) (with respect
to the measure j) on the k-fold product space (X*, X*) with exponent L and parame-

ter D for which all functions f € F satisfy the inequalities sup | f(x1,...,28)| <
T, €X,1<j<k

2=+ and [ f2(z1,. .., 2k)pu(dzy) ... p(dey) < o2,

There is some real number Ag = Ag(k) > 1 such that if for all classes of functions
F which satisfy the above conditions the sets of decoupled U-statistics I, (f), f € F,
have a good tail behaviour at level T*/3 for some T > Ag, then they also have a good
tail behaviour at level T.

Proposition 15.4. Fix some positive integer n > max(k,2), a real number 0 < o <
2=(k+1) 4 product space (X* x Y, X% x V) with some product measure ¥ x p, where
(XF*, Xk uk) is the k-fold product of some probability space (X, X, ), and (Y,),p) is
some other probability space together with two real numbers L > 1 and D > 1 such that
no? > Llogn +log D hold.

Let us consider those countable La-dense classes F consisting of canonical func-
tions f(x1,...,7k,y) on the product space (X* x Y, X* x V) with exponent L > 1 and
parameter D > 1 whose elements f € F satisfy the inequalities

sup (@1, )| < 27FY (15.8)
z;€X,1<j<k,yeY
and
/fz(:z:l, ooz, y)p(dey) .. op(dey)p(dy) < o forall f € F. (15.9)

There exists some number Ag = Ag(k) > 1 such that if for all classes of functions
F which satisfy the above conditions the random integrals Hy 1 (f), f € F, defined
in (15.6) have a good tail behaviour at level TZF+1/2k with some T > Ay, then they
also have a good tail behaviour at level T'.

Remark: To complete the formulation of Proposition 15.4 we still have to clarify when
we call a function f(z1,...,z,y) defined on the product space (X* x Y, X* x Y, ¥ x p)
canonical. Here the definition is slightly differs from that given in formula (8.8).
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We say that a function f(x1,. .., 7, y) on the product space (X*xY, X*x Y, u* x p)
is canonical if

/f(l'l,...,IL'j_l,u,CL'j+1,.--,xk,y),u(du) =0
forall1<j<k,zs€ X, s#jandyeY.

In this definition we do not require the analogous identity if we integrate with respect
to the variable Y with fixed arguments z; € X, 1 <j <k.

Let me also remark that the estimate (15.7) we have formulated in the definition of
the property ‘good tail behaviour for a class of integrals of U-statistics’ is fairly natural.
We have applied the natural normalization, and with such a normalization it is natural

to expect that the tail behaviour of the distribution of sup n="H, (f) is similar to
ferF

that of const (ank)2, where 7 is a standard normal random variable. Formula (15.7)

expresses such a behaviour, only the power of the number A in the exponent at the

right-hand side was chosen in a non-optimal way. Formula (15.5) in the formulation

of the property ‘good tail behaviour for a class of decoupled U-statistics’ has a similar

interpretation. It says that sup [n=*/21, (f)| behaves similarly to const, s|n*| with a
€F

standard normal random varfiable 7.

We wanted to prove the property of good tail behaviour for a class of integrals of
decoupled U-statistics under appropriate, not too restrictive conditions. Let me remark
that in Proposition 15.4 we have imposed besides formula (15.8) a fairly weak condition
(15.9) about the Lo-norm of the function f. Most difficulties appear in the proof,
because we did not want to impose more restrictive conditions.

It is not difficult to derive Proposition 14.2" from Proposition 15.3. Indeed, let
us observe that the set of decoupled U-statistics determined by a class of functions F
satisfying the conditions of Proposition 15.3 has a good tail-behaviour at level Ty =
o~ *1) since under the conditions of this Proposition the probability at the left-hand
side of (15.5) equals zero for A > o~(*+1) Then we get from Proposition 15.3 by
induction with respect to the number j, that this set of decoupled U-statistics has a

good tail-behaviour also for all T' = T; => T0(3/4)J = o~ DG/ 5 = 0,1,2,...,
with such indices j for which T} = o~ (k+1)(B/4)7 > Ap. This implies that if a class
of functions F satisfies the conditions of Proposition 15.3, then the set of decoupled
U-statistics determined by this class of functions has a good tail-behaviour at level

T = Ag/ 3, i.e. at a level which depends only on the order k£ of the decoupled U-
statistics. This result implies Proposition 14.2’, only it has to be applied for the class
of function F/ = {2=(k*D f  f c F} instead of the original class of functions F which
appears in Proposition 14.2" with the same parameters o, L and D.

Similarly to the above argument an inductive procedure yields a corollary of Propo-
sition 15.4 formulated below. Actually, we shall need this corollary of Proposition 15.4.

Corollary of Proposition 15.4. If the class of functions F satisfies the conditions
of Proposition 15.4, then there exists a constant Ay = Ag(k) > 0 depending only on k
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such that the class of integrals Hy (f), f € F, defined in formula (15.6) have a good
tail behaviour at level Ag.

The main difficulty in the proof of Proposition 15.3 arises in the application of the
symmetrization procedure corresponding to Lemma 7.2 in the one-variate case. This
difficulty can be overcome by means of Proposition 15.4, more precisely by means of its
corollary. It helps us to estimate the conditional variances of the decoupled U-statistics
we have to handle in the proof of Proposition 15.3. The proof of Propositions 15.3
and 15.4 apply similar arguments, and they will be proved simultaneously. The fol-
lowing inductive procedure will be applied in their proof. First Proposition 15.3 and
then Proposition 15.4 is proved for k = 1. If Propositions 15.3 and 15.4 are already
proved for all ¥ < k for some number k, then first we prove Proposition 15.3 and then
Proposition 15.4 for this number k.

The proof both of Proposition 15.3 and 15.4 applies a symmetrization argument
that will be proved in Section 16. In Section 17 Propositions 15.3 and 15.4 will be
proved with its help. They imply Proposition 14.2’, hence also Theorem 8.4.

16. A symmetrization argument.

The proof of Propositions 15.3 and 15.4 applies some ideas similar to the argument in the
proof of Proposition 7.3. But here some additional technical difficulties have to be over-
come. As a first step, two results formulated in Lemma 16.1A and 16.1B will be proved.
They can be considered as a randomization argument with the help of Rademacher
functions analogous to Lemma 7.2 which was applied in the proof of Propositions 7.3.
Lemma 16.1A will be applied in the proof of Proposition 15.3 and Lemma 16.1B in the
proof of Proposition 15.4. In this section these lemmas will be proved. Their proofs
will be based on some additional lemmas formulated in Lemmas 16.2A, 16.2B, 16.3A
and 16.3B. By exploiting the structure of Propositions 15.3 and 15.4 we may assume
when proving them for parameter k that they hold (together with their consequences)
for all parameters k' < k.

Lemma 16.1A is a natural multivariate version of Lemma 7.2. Lemma 7.2 enabled
us to replace the estimation of the distribution of the supremum of a class of sums of
independent random variables with the estimation of the distribution of the supremum
of the randomized version of these sums. Lemma 16.1A will enable us to reduce the
proof of Proposition 15.3 to the estimation of the tail-distribution of the supremum of
an appropriately defined class of randomized decoupled, degenerate U-statistics. This
supremum will be estimated by means of the multi-dimensional version of Hoeffding’s
inequality given in Theorem 13.3. Lemma 16.B plays a similar role in the proof of
Proposition 15.4. But its application is more difficult. In this result the probability
investigated in Proposition 15.4 is bounded by the distribution of the supremum of
some random variables W(f), f € F, which will be defined in formula (16.7). The
expressions W (f), f € F, are rather complicated, and they are worth studying more
closely. This will be done in the proof of Corollary of Lemma 16.1B which yields a more
appropriate bound for the expression we want to estimate in Proposition 15.4, than
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Lemma 16.1B. In the proof of Proposition 15.4 the Corollary of 16.1B will be applied
instead of the original lemma 16.1B.

The proof of Lemmas 16.1A and 16.1B is similar to that of Lemma 7.2. First

we introduce k additional independent copies é] ), . ,553 ) besides the k (independent
and identically distributed) copies 5@, ey 7(3.), 1 < j <k, of the sequence &1,...,&,
and construct with their help some appropriate random sums. We shall prove in Lem-
mas 16.2A and 16.2B that these random sums have the same distribution as their ran-
domized versions we shall work with in the proof of Lemmas 16.1A and 16.1B. These
Lemmas formulate a natural multivariate version of an important argument in the proof
of Lemma 7.2. In the proof of this lemma we have exploited that the random sums de-
fined in (7.4) have the same joint distribution as their randomized versions defined
in (7.4’). Lemmas 16.2A and 16.2B formulate a multivariate version of this statement.
They enable us (similarly to the corresponding argument in the proof of Lemma 7.2)
to reduce the proof of Propositions 16.1A and 16.1B to the study of some simpler ques-
tions. This will be done with the help of Lemmas 16.3A and 16.3B. In Lemma 16.3A the
supremum of some conditional variances is estimated under appropriate conditions. This
lemma plays a similar role in the proof of Lemma 16.1A as condition (7.1) plays in the
proof of Lemma 7.1. Its result together with the generalized form of the symmetrization
Lemma, Lemma 15.2, enable us to prove Lemma 16.1A. Lemma 16.1B can be proved
similarly, but here the conditional distribution of a more complicated expression has to
be estimated. This can be done with the help of Lemma 16.3B. In Lemma 16.3B the
supremum of the conditional expectation of some appropriate expressions is bounded.

The main results of this section are the following two lemmas.

Lemma 16.1A. (Randomization argument in the proof of Proposition 15.3).
Let F be a class of functions on the space (X*, X*) which satisfies the conditions of
Proposition 15.3 with some probability measure . Let us have k independent copies

g‘j), ceey T(ij), 1 < j <k, of a sequence of independent p distributed random variables

&1,...,&n, and a sequence of independent random variables € = (e1,...,e,), P(e =
1) =P =-1) = %, 1 <1 < n, which is independent also of the random sequences
gj), ey 7(19')7 1 < j < k. Consider the decoupled U-statistics I, x(f), f € F, defined

with the help of these random variables by formula (14.11) together with their randomized
version I, (f) defined in formula (14.12).

There ezists some constants Ag = Ag(k) > 0 and v = v, > 0 such that the
mequality

P | sup n~*/2 Lo ()] > AnPF/2gk+
fer

< 2k+1P (Sup n—lc/2 |I_1i k(f)| > 2—(k‘—|—1)Ank/20,k—|—1> + 2knk_1e_7kf41/(2k_1>n02/k
fer '

(16.1)
holds for all A > Ay.
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It may be worth remarking that the second term at the right-hand side of for-
mula (16.1) yields a small contribution to the upper bound in this relation because of
the condition no? > Llogn + log D.

To formulate Lemma 16.1B first some new quantities have to be introduced. Some
of them will be used somewhat later. The quantities I_X x(f,y) introduced in the sub-
sequent formula (16.2) depend on the sets V' C {1,...,k}, and they are the natural
modifications of the inner sum terms in formula (15.1). Such expressions are needed in
the formulation of the symmetrization result applied in the proof of Proposition 15.4.
Their randomized versions T flvlf)( f,y), introduced in formula (16.5), correspond to the
inner sum terms in formula (152) The integrals of these expressions will be also intro-
duced in formulas (16.3) and (16.6).

Let us consider a class F of functions f(x1,...,7x,y) € F on a space (X* x Y, X* x
Y, u* x p) which satisfies the conditions of Proposition 15.4. Let us take 2k independent
copies éj), e ,&(Lj), éj), e ,Eﬁﬂ'), 1 <7 <k, of a sequence of independent p distributed
random variables &1, ..., &, together with a sequence of independent random variables
(e1,...,6n), Ples = 1) = P(e; = —=1) = 3, 1 < 1 < n, which is also independent

of the previous random sequences. Let us introduce the notation §l(j D l(j ) and

¢V = g9 1<1<n, 1<j<k Forall subsets V C {1,...,k} of the set {1,...,k}
let |V | denote the cardinality of this set, and define for all functions f(z1,...,z%,y) € F
and V C {1,...,k} the decoupled U-statistics

_ 1 61 (V k6, (V
I (fy) = 4 > FER O g ) (162)

C(lnyeenly): 1K1 <0, j=1,..k
AL i 55
where 0;(V) =+1,1<j <k, §;(V)=1if j € V,and 6;(V) = —1if j ¢ V, together
with the random variables

() = [ IGPoldy). fe (163

We shall consider I)Y, (f,y) defined in (16.2) as a random variable with values in the
space Lo(Y, Y, p).

Put

Low(foy) = I (Fy), Haw(f) = HE M (), (16.4)

i.e. Ini(f,y) and H, x(f) are the random variables I, (f,y) and HY ,(f) with V =
{1,...,k}, which means that these expressions are defined with the help of the random
variables fl(j) = l(j’l), 1<j<k 1<I<n.

Let us also define the ‘randomized version’ of the random variables I}, (f,y) and
HX,k(f ) as

(Ve 1
I"(q,‘,/lé )(f/y)zy E 5l1glkf(él(ll’él(‘/));755576k(v>)?y)7 fef,
C(lnyeenl): 1<1;<n, j=1,...,k
Ll if 5
(16.5)
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and
a2 (f) / IO (foy)?p(dy), feF, (16.6)

where §;(V) =11if j € V, and 6;(V) = —1if j € {1,...,k} \ V. Similarly to for-
mula (16.2), we shall consider In " (f,y) defined in (16.5) as a random variable with
values in the space Ly(Y, Y, p).

Let us also introduce the random variables

W= [ | X M| sdn. Fer 6)

Vc{l,.. k}

With the help of the above notations Lemma 16.1B can be formulated in the following
way.

Lemma 16.1B. (Randomization argument in the proof of Proposition 15.4).
Let F be a set of functions on (X x Y, X% x V) which satisfies the conditions of
Proposition 15.4 with some probability measure u* x p. Let us have 2k independent
copies fij’il), cee ,(f’i”, 1 <35 <k, of a sequence of independent u distributed random
variables 1, . .., &, together with a sequence of independent random variables €1, ..., en,
P(ej=1)=P(e; = -1) = %, 1 < j < n, which is independent also of the previously
considered sequences.

Then there exists some constants Ay = Ag(k) > 0 and v = ~y, such that if the
integrals Hy, 1 (f), f € F, determined by this class of functions F have a good tail
behaviour at level T**+V/2k for some T > Ay, (this property was defined in Section 15
in the definition of good tail behaviour for a class of integrals of decoupled U -statistics
before the formulation of Propositions 15.8 and 15.4), then the inequality

A2
P sup |Hox(f)] > A2n256204D | < 2P [ sup W) > A2k p2(k41)
e fer 2 (16.8)

+ 22k+1nk—16—7kA1/2kn0'2/k

holds with the random variables H,, 1 (f) introduced in the second identity of relation
(16.4) and with W (f) defined in formula (16.7) if v > 0 is a sufficiently small positive
number for all A > T.

A corollary of Lemma 16.1B will be formulated which can be better applied than
the original lemma. Lemma 16.B is a little bit inconvenient, because the expression at
the right-hand side of formula (16.8) contains a probability depending on sup |W(f)],

fer

and W (f) is a too complicated expression. Some new formulas (16.9) and (16.10) will be
introduced which enable us to rewrite W (f) in a slightly simpler form. These formulas
yield such a corollary of Lemma 16.B which is more appropriate for our purposes. To
work out the details first some diagrams will be introduced.
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Let G = G(k) denote the set of all diagrams consisting of two rows, such that both
rows of these diagrams are the set {1,...,k}, and these diagrams contain some edges
{(j1,71) -+ (4s,35)}, 0 < s < k, connecting a point (vertex) of the first row with a
point (vertex) of the second row. The vertices j,...,js which are end points of some
edge in the first row are all different, and the same relation holds also for the vertices
Jis---, 7. in the second row. Given some diagram G € G let e(G) = {(j1,41) ---, (Us, J%)}
denote the set of its edges, and let v1(G) = {j1,...,Js} be the set of those vertices in
the first row and v2(G) = {j1,..., .} the set of those vertices in the second row of the
diagram G from which an edge of G starts.

Given some diagram G € G and two sets Vi,Vo C {1,...,k}, we define the
following random variables H,, x(f|G, Vi, V2) with the help of the random variables

91),. @1 9’_1),..., T(Lj’_l), 1<j<k, and € = (e1,...,&,) taking part in the

c ey QMn 9

definition of the random variables W (f):

H, 5(f|G, V1, Va) = > I = Il =

(Lt eslis Uy 1) Jell, kN0 (Q)  je{l,....kP\va(Q)
1§lj§n7lj¢lj/ lfj;é]/algjajléka
1<l <n, £, if j#5,1<5,5" <k,

l]_l , 1f (4,9’ Ge(G) lﬁéll»/ if (5,5)¢e(G)

0 k,o
le/ff(l 1(V1))7_“,€( £ (V1)) y)

,01(Va 056 (Va
e gt ) ) p(dy), (16.9)

where 0;(V1) =1ifj e V4,6;(Vi)=—-1if j ¢ Vi, and 6;(Vo) =1if j € V, §;(Va) = —
if j ¢ Vo. (Let us observe that if the graph G contains s edges, then the product
of the e-s in (16.9) contains 2(k — s) terms, and the number of terms in the sum
(16.9) is less than n?*=%) As the Corollary of Lemma 16.1B will indicate, in the
proof of Proposition 15.4 we shall need a good estimate on the tail distribution of the
random variables Hy, (f|G,V1,Vs) for all f € F and G € G, V4,Va> C {1,...,k}. Such
an estimate can be obtained by means of Theorem 13.3, the multivariate version of
Hoeffding’s inequality. But the estimate we get in such a way will be rewritten in
a form more appropriate for our inductive procedure. This will be done in the next
section.

The identity

W(f) = > (D)2l g, (F1G VA, VR) (16.10)
Geg, Vl,VQC{l,...,k'}

will be proved.
To prove this identity let us write first

148



Let us express the products I_T(L"/,i’s)(f, y)fﬁ‘y/,z’s)(f, y) by means of formula (16.5). Let
k k
us rewrite this product as a sum of products of the form oz [] e, f(--+) I1] q;f(- )
j=1 j=1
and let us define the following partition of the terms in this sum. The elements of this
partition are indexed by the diagrams G € G, and if we take a diagram G € G with
the set of edges e(G) = {(j1,71),-- -, (s, Jo)}, then the term of this sum determined by
the indices ly,..., 1, I}, ...,1} belongs to the element of the partition indexed by this
diagram G if and only if [;, = lg-, for all 1 < u < s, and no more numbers between the

indices Iy, ...,lx, 1] ... 1}, may agree. Since g, e = 1forall 1 <u < s and the set of
Ju

indices of the remaining random variables ¢;, is {l;: j € {1,...,k} \ v1(G)}, the set of

indices of the remaining random variables ¢, is {G g e{1,... k} \ v2(G)}, we get by

integrating the product I_T(L‘/,;’E)(f, y)I_T(LV,j’E)(f, y) with respect to the measure p that

/ I (I (el dy) = Y Hok(F1G, V1, Va)

Geg

for all V1,V5 € {1,...,k}. The last two identities imply formula (16.10).

Since the number of terms in the sum of formula (16.10) is less than 24¥k!, this
relation implies that Lemma 16.1B has the following corollary:

Corollary of Lemma 16.1B. (A simplified version of the randomization ar-
gument of Lemma 16.1B). Let a set of functions F satisfy the conditions of Propo-
sition 15.4. Then there exist some constants Ay = Ag(k) > 0 and v = v, > 0 such that
if the integrals Hy, 1(f), f € F, determined by this class of functions F have a good tail
behaviour at level TR+V/2k for some T > Ay, then the inequality

P | sup |Hyk(f)| > A2n2k 52(k+1)
feF

A2n2k 264D\ (16,11
<2 > P (sup [Ho i (F1G V2 Vo) | > =y ( )
GEG, Vi,VaC{1,....k} fer !
4 22k Ikl gy Al Hno [k

holds with the random wvariables H, 1(f) and H, x(f|G,V1,Va) defined in formulas
(16.4) and (16.9) for all A >T.

In the proof of Lemmas 16.1A and 16.1B the result of the following Lemmas 16.2A
and 16.2B will be applied.

Lemma 16.2A. Let us take 2k independent copies
&V, EPY and 7TV €D, 1< <,
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of a sequence of independent p distributed random variables &1, ... ,&, together with a
sequence of independent random variables (1, ...,&,), P(e; = 1) = P(g; = —1) = 1,
1 <1 < n, which is also independent of the previous sequences.

Let F be a class of functions which satisfies the conditions of Proposition 15.3.
Introduce with the help of the above random variables for all sets V- C {1,...,k} and
functions f € F the decoupled U -statistic

T 1 ,01 0
IX,k(f) = Z f (Sl(ll (V)),...,Sl(f ’“(V))> (16.12)

T (lnyeenl): 1K1 <0y G=1,..0,k,
LAl if j#5'

and its ‘randomized version’

(Ve 1
1) = > e e f (600N pe
C(lnyeelk): 1<1;<n, j=1,...,k,
Ll if j#5!
(16.12")

where §;(V) ==x1, and §;(V)=1ifjeV,and 6;(V)=—-1if je {1,... .k} \ V.
Then the sets of random variables

S(Hy=">  (=n)*IVIIV.(f), ferF, (16.13)
vc{l,...k}
and
S(H= Y nEWIIhIg), fer (16.13)
vc{l,...,k}

have the same joint distribution.

Lemma 16.2B. Let us take 2k independent copies

0V, L9 and €07V, €0TY, 1< <k,

of a sequence of independent, u distributed random variables &1, ... ,&, together with a
sequence of independent random variables (1, ...,&,), P(e; = 1) = P(g; = —1) = 1,
1 <1 < n, which is also independent of the previous sequences.

Let us consider a class F of functions f(x1,...,zx,y) € F on a space (XFxY, X*x

Y, u* x p) which satisfies the conditions of Proposition 15.4. For all functions f € F and
V e {l,...,k} consider the decoupled U -statistics ka(f, y) defined by formula (16.2)

with the help of the random variables ‘f%j’l), e 757(11',1) and ng’_l), ce 7(1‘7"_1), and define
with their help the random variables

2

W(f) = / S (C)EVDY, ()| pldy), feF (16.14)

Vc{l,.. k}

150



Then the random vectors {W (f): f € F} defined in (16.14) and {W (f): f € F} defined
in (16.7) have the same distribution.

Proof of Lemmas 16.2A and 16.2B. Lemma 16.2A actually agrees with the already
proved Lemma 15.1, only the notation is different. The proof of Lemma 16.2B is very
similar to the proof of Lemma 15.1. It can be shown that even the following stronger
statement holds. For any +1 sequence u = (uy,...,uy) of length n the conditional
distribution of the random field W (f), f € F, under the condition (e1,...,&,) = u =
(u1,...,u,) agrees with the distribution of the random field W(f), f € F.

~ To see this relation let us first observe that the conditional distribution of the field
W (f) under this condition agrees with the distribution of the random field we get by
replacing the random variables ¢; by u; for all 1 < [ < n in formulas (16.5), (16.6)
and (16.7). Besides, define the vector (E(u)l(j’l),f(u)l(j’_l)), 1<j<k,1<1<n,bythe
formula (f(u)gj’l),f(u)l(“_l)) = ( (J’_l), Z(J’l)) for those indices (j,1) for which u; = —1,
and (f(u)l@’l)f(u)l@’_l)) = ( l(J’l),ﬁl(]’_l)) for which u; = 1 (independently of the value
of the parameter j). Then the joint distribution of the vectors (f(u)l@’l),ﬁ(u)l(]’_l)),
1<j <k 1<1<n,and (553’1),@(‘7’_1)),71 < j <k 1<1<n, agree. Hence
the joint distribution of the random vectors ka(f, y), f€F, VC{l,... k} defined
in (16.2) and of the random vectors W (f), f € F, defined in (16.14) do not change
if we replace in their definition the random variables fl(J 1 and {l(j Dy ¢ (u)l(‘7 1 and

S(u)l(J’_l). But the set of random variables W (f), f € F, obtained in this way agrees
with the set of random variables we introduced to get a set of random variables with the
same distribution as the conditional distribution of W (f), f € F under the condition
(€1,...,en) = u. (These random variables are defined as the square integral of the same
sum, only the terms of this sum are listed in a different order in the two cases.) These
facts imply Lemma 16.2B.

In the next step we prove the following Lemma 16.3A.

Lemma 16.3A. Let us consider a class of functions F satisfying the conditions of

Proposition 15.3 with parameter k together with 2k independent copies éj’l), cee ﬁlj’l)
and ggj"”, cee ,Sj"”, 1 <7 <k, of a sequence of independent, p-distributed random
variables &1, ...,&,. Take the random variables I_Xk(f), feF, Vc{l,... k}, defined
with the help of these quantities in formula (16.12). Let B = B(fgj’l), ceey ,(Lj’l); 1< <
k) denote the o-algebra generated by the random variables éj’l), cee ,(3"1) , 1 <5<k,

i.e. by the random variables with upper indices of the form (j,1), 1 < j < k. There
exists a number Ag = Ao(k) > 0 such that for all V C {1,...,k}, V # {1,...,k}, the
nequality

. (?23 E (I ,.(f)? B) > 2—(3k+3)A2n2k02k+2> < pk—le—1AY FDno? /i (16.15)

holds with a sufficiently small v, > 0 if A > Ap.
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Proof of Lemma 16.3A. Let us first consider the case V' = (). In this case the estimate

E(T0,(0)2]B) = B(T2,(f)?) < %o < 25n%*0**+2 holds for all f € F. In the

above calculation it was exploited that the functions f € F are canonical, which implies
certain orthogonalities, and also the inequality no? > % holds, because of the relation
no? > Llogn + log D. The above relations imply that for V = () the probability at the
left-hand side of (16.15) equals zero if the number Ay is chosen sufficiently large. Hence
inequality (16.15) holds in this case.

To avoid some complications in the notation let us first restrict our attention to
sets of the form V = {1,...,u} with some 1 < u < k, and prove relation (16.15) for
such sets. For this goal let us introduce the random variables

. 1 1,1 w,1) o(utl,—1 k,—1
Irzk(fvlwi-lv"'?lk):y Z f(gl(l )7---7 l(u )7 l(u_; )7a€l(k )>
(I1,-lw):
1<l <n, j=1,..., u,
Ly it ]
for all f € F and sequences l(u) = (ly41,...,l;) with the properties 1 < ; < n for all

u+1<j<kandl; #1; if j # j/, i.e. let us fix the last k—u coordinates fl(:jll’_l)

g ey

l(f’_l) of the random variable IV, (f) and sum up with respect the first u coordinates.
Then we can write

2
E (I ,(f)?|B) = E Z I (foluga, ) | B
(lu+1,...,lk)i 1§lJSTL j:qul,...,k,
Ly i 5
= Z E(I_Xk(falu+17"'alk)2|6)‘
(Lugtseoli): 1<1<n, j=u+1,....k, (16.16)
lj7£lj’ if j#5'
The last relation follows from the identity
E (I_Xk'(.ﬂ lu-‘rla s 7lk)I_1§,/,k(f7 ':1,—1—1’ s 7“@')‘ B) =0
if (lug1s---5lk) # (U1, --,13), which holds, since f is a canonical function. We still

exploit that the random variables fl(j ’1), 1 < j < u are B measurable, while the random
variables §l(j ’_1), u+1 < j <k, are independent of the o-algebra B. These facts enable

us to calculate the above conditional expectation in a simple way.
It follows from relation (16.16) that

{w: sup E (I?{:k(f)Q‘ B) (w) > 2(3k+3)A2n2ka2k+2}
fer

v ) A2n2ko.2k—|—2
C U w: ?EEE(Imk(f?lu-ﬁ-l"“?Zk) ‘B) (CU) > W
(Tug1seensle):
1<l <n, j=u+1,....k.
LAl if 75

(16.17)
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The probability of the events in the union at the right-hand side of (16.17) can be
estimated with the help of the Corollary of Proposition 15.4 with parameter u < k
instead of k. (We may assume that Proposition 15.4 holds for u < k.) We claim that
this corollary yields that

A2nk+u0'2k+2 1/(2u+1 2
P (;ggE( nk(f> u—|—17-~-;lk)2‘ B) > W) < e—’ykA /CutD) (ntu—k)o

(16.18)
with an appropriate 75 > 0 for all sequences (ly4+1,...,0k), 1 <l <n,u+1<j <k,
and such that [; # ;/ if j # 7.

Let us show that if a class of functions f € F satisfies the conditions of Propo-
sition 15.3, then it also satisfies relation (16.18). For this goal introduce the space
(Y, V,p) = (XF~u, xk=v k=) the k — u-fold power of the measure space (X, X, ),
and for the sake of simpler notations write y = (xy41,...,xy) for a point y € Y. Let us
also introduce the class of those function F in the space (X% x Y, X% x Y, u% x p) consist-
ing of functions f of the form f(z1,...,2y,y) = f(x1,...,2) with y = (Tyi1,...,28)
and some function f(z1,...,z;) € F. If the class of function F satisfies the condi-
tions of Proposition 15.3 (with parameter k), then the class of functions F satisfies the
conditions of Proposition 15.4 with parameter u < k. Hence the Corollary of Proposi-
tion 15.4 can be applied for the class of functions F by our inductive hypothesis. We
shall apply it for decoupled U-statistics with the class of kernel functions F and pa-

rameters n + k — u and u (instead of n and k), and with the expressions In( +L oo ( 1D

and Hi(:fl k u( f) defined below with the help of the independent random sequences

l(‘j’l), 1<j<ule{l,....n}\{lut1,---,l} of independent, u-distributed random
variables of length n+u— k, where the set of numbers {l,,41,...,1;} is the set of indices
appearing in formula (16.18). It can be seen that with the definition of the random

variables I (+L & u(f, y) and Hi(j:L & u(f) we shall give below the identity

= u! 2 “l(u _ u! 2 w _
E (I 1 (folugts - )% B) = (y) /Iqll(+zt—k,u(fay)2p(dy) = <y) Hfl(—i—zt—k,u(f)

(16.19)
holds. In formula (16.19) the function f € F is defined by the formula f(x1, ..., 2., y) =
f(xy,...,xx) with y = (zy41,...,2k), and the random variables ffl(ﬁzt_k’u(f, y) and
Hfl(ﬁi_ku(f) are defined, similarly to (16.2)-(16.4), by the formulas

I - 1 1,1 u,1
In(—FL—k,u(f?y) = J Z f(é( )7"'7 l(u )7y>

T (el e n I\ {lut 15l }s G=1,.u
i £l if j#5

and

Hﬁl—k,u(ﬂ—/ I (Fy)?(dy), felF.
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The value of H'*) (f) depends on the choice of the sequence [(u), but its distri-

n+u—k,u
bution does not depend on it. We can give the following estimate by the corollary of
Proposition (15.4) for u < k and relation (16.19). Choose a sufficiently small v =~ > 0.

We have

_ N\ 2/(2u
P (SUP E(LY 1 (fylug1s - 1)?(B) > <—,> 7;3/(2 VA (n 4 u— k)2u02u+2>
feF L
=P (Surz (n+u— k)" H, (1) = D A% (4w — k)“aw)
feF

It is not difficult to derive formula (16.18) from relation (16.20). It is enough to
2, kit 2k+2

check that the level ‘42(3,3—%) in the probability at the left-hand side of (16.18)
can be replaced by 7,3/(21‘“)142 (ﬂ)2 (n + u — k)?*o?**2 if 45, > 0 is chosen suf-

u!
ficiently small. This statement holds, since 72/(2u+1)A2 (k—')Q (n 4+ u — k)?4o?ut? <

u!
2 2 k+u 2k+2 . .
7,3/(2k+1)A2 (B nPuo?ut? < ATQ(T& if the constant 7 > 0 is chosen sufficiently

small, since no? > Llogn < % by the conditions of Proposition 15.3.
Relations (16.17) and (16.18) imply that

P (sup E (L 1.(f)?| B) (w) > 2‘(3k+3)A2n2k02k+2> < ph—ue=mAY D (nu—k)o®
fe]: ; =

Since e~ WA @ T (ntu—k)o? < =AY Ino® kg < 1, n > kand A > A
with a sufficiently large number Ay, inequality (16.15) holds for all sets V' of the form
V=A{1,...,u}, 1 <u<k.

The case of a general set V C {1,...,k}, 1 < |V| < k, can be handled similarly,
only the notation becomes more complicated. Moreover, the case of general sets V' can
be reduced to the case of sets of form we have already considered. Indeed, given some set
V c{l,...,k}, 1 <|V| <k, let us define a new class of function Fy we get by applying
a rearrangement of the indices of the arguments x1, ...,z of the functions f € F in
such a way that the arguments indexed by the set V' are the first |V| arguments of the
functions fir € Fy, and put V = {1,...,|V|}. Then the class of functions Fy also
satisfies the condition of Proposition 15.3, and we can get relation (16.15) with the set
V by applying it for the set of function Fy and set V.

Now we prove Lemma 16.1A. It will be proved with the help of Lemma 16.2A, the
generalized symmetrization lemma 15.2 and Lemma 16.3A.

Proof of Lemma 16.1A. First we show with the help of the generalized symmetrization
lemma, i.e. of Lemma 15.2 and Lemma 16.3A that

- A
P | sup n=k/2 Lok (f)| > AnP2R ) < 2P [ sup |S(f)| > =nFokt!
feF feF 2 (16.21)

4 ank—le—%Al/@’“*l)na?/k
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with the function S(f) defined in (16.13). To prove relation (16.21) introduce the ran-

dom variables Z(f) = It} "™ (f) and Z(f) = - D (1) VILV, (f)
VE{l, ok}, V{1 k)
for all f € F, the o-algebra B considered in Lemma 16.3A and the set

B= () {w: sup E (IV,(£)?| B) (w) < 2(3k+3)A2n2k02k3+2} '
V(L. k} fer
VA{L..k}

Observe that S(f) = Z(f) — Z(f), f € F, B € B, and by Lemma 16.3A the
inequality 1 — P(B) < 2hph—1e=eAY " Ino®/k o1ds. To prove relation (16.21) apply
Lemma 15.2 with the above introduced random variables Z(f) and Z(f), f € F, (both
here and in the subsequent proof of Lemma 16.1B we work with random variables Z(-)
and Z(-) indexed by the countable set of functions f € F, hence the functions f € F
play the role of the parameters p when Lemma 15.2 is applied) random set B and
a = dnkoktl y = 4nkahtl Tt is enough to show that

P (|Z(f)| > énkak“w) (w) < % forall f € F ifweB. (16.22)

_ 2(k41) 71V, 2 w
But P (|I71(1)] > 27 #+D Ankoh 1 B) (w) < Tt < 90 for al

functions f € F and sets V C {1,...,k}, V # {1,...,k}, if w € B by the ‘conditional
Chebishev inequality’, hence relations (16.22) and (16.21) hold.

Lemma 16.1A follows from relation (16.21), Lemma 16.2A and the observation that
the random variables fﬁ‘fk’s) (f), f € F, defined in (16.12") have the same distribution for
all V. .C {1,...,k} as the random variables I_f%k(f), defined in formula (14.12). Hence

Lemma 16.2A and the definition (16.13') of the random variables S(f), f € F, imply
the inequality

fer feF

A - A
P (sup 1S(f)] > EnkakH) =P <sup 1S(f)] > gnkaH)
<okp (sup I ()] > 2(k+1)Ankak+1) .
fer

Lemma 16.1A is proved.

Lemma 16.1B will be proved with the help of the following Lemma 16.3B, which is
a version of Lemma 16.3A.

Lemma 16.3B. Let us consider a class of functions F satisfying the conditions of

Proposition 15.4 together with 2k independent copies 59’1), cee 7(3’1) and 5?’71), cee
,(37_1), 1 < j < k, of a sequence of independent, u-distributed random variables
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&,...,&,. Take the random variables I_Xk(f, y) and ka(f), feF, Vc{l,.. k}
defined in formulas (16.2) and (16.3) with the help of these quantities. Let B =

B(fij’l),..., ,(zj 1), 1 < j < k) denote the o-algebra generated by the random wvari-

ables 59’1), e (J 1) 1 <35 <k, i.e. by those random variables which appear in the
definition of the mndom variables In’k(f, y) and HY (f) introduced in formulas (16.2)
and (16.3), and have second argument 1 in their upper index.

a) There exist some numbers Ay = Ao(k) > 0 and v = v, > 0 such that for all
Vc{l,...,k}, V#{1,...,k}, the inequality

P <Sup E(ka(f)’[))) > 2—(4k+4)A(2k—1)/kn2kO_2k+2) < nk_le—’YkAl/2an2/k
feF ’

(16.23)
holds if A > Ayp.

b) Given two subsets Vi,Vo C {1,...,k} of the set {1,...,k} define the integrals (of
random kernel functions)

Hyw () = /|1V1( L% (fy)le(dy),  feF, (16.24)

with the help of the functions I_Xk(f, y) defined in (16.2). There ezist some number
Ao = Ao(k) > 0 and v = vy such that if the integrals Hy, 1(f), f € F, determined
by this class of functions F have a good tail behaviour at level TF+1/2E for some
T > Ag, then the inequality

P (SUP E(HEL‘E’VQ)(JC”B) > 2_(2k+2)A2n2k02k+2> < opk—Lle= A/ *no®/k
feF ’
(16.25)
holds for any pairs of subsets Vi,Va C {1,...,k} with the property that at least one of
them does not equal the set {1,...,k} if the number A satisfies the condition A > T.

Proof of Lemma 16.3B. Part a) of Lemma 16.3B can be proved in almost the same way
as Lemma 16.3A. Hence I only briefly explain the main step of the proof. In the case
V =0 the identity E(HXk( )IB) = (HXk(f)) holds, hence it is enough to show that

E(HV (f) < n " < 2k ”2k“2k+2 for all f € F under the conditions of Proposition 15.4.
(This relation holds because the functions of the class F are canonical.) The case of a
general set V., V # ) and V # {1,...,k}, can be reduced to the case V = {1,...,u}
with some 1 < u < k.

Given a set V = {1,...,u}, 1 < u < k, let us define for all f € F and sequences
l(w) = (ly41,--.,lx) with the properties 1 <[; <nforallu+1<j <k andl; #l; if
j # j' the random variable

T 1 u u+1,— —
I’/‘lf,k‘(f?lu-l—l;--wlkay):E Z f<€(11)7 '-7€l(u’1)a€l(u:_11 1)7"'7£(k 1) )

0 #l g if j#£g
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It can be shown, similarly to the proof of relation (16.16) in the proof of Proposi-
tion 16.3A that because of the canonical property of the functions f € F

EEGNB) = Y[ B oy B) pldy),

(lu+1, alk)
1<l <n, j=u+1,..., k,

Uj#1L0if j#5'
and the proof of part a) of Lemma 16.3B can be reduced to the inequality

~ ARE=1)/ky k+u ;2k+2
P (sup E </IXk(f7 lu+17 s 7lk7 y)210( dy)‘ B) > 2(4k+4)

feF

< 7’YkA(2k_1)/2k(2u+1)(’I’L+U/7k‘)0'2
<e

with a sufficiently small 75 > 0. This inequality can be proved, similarly to relation
(16.18) in the proof of Lemma 16.3A with the help of the Corollary of Proposition 15.4.
Only here we have to work in the space (X% x Y, X% x ), p x p) where Y = XFuxy,
Y = Xkuxy, p = puF~"xp with the class of functlon f € F consisting of the functions f
defined by the formula f(x1,...,7.,9) = f(x1,..., 2k, y) with some f(z1,...,2,79) €
F, where §y = (zy41,-..,%k,y). Here we apply the following version of formula (16.19).

Bt bon?8) = (1) [ 10 F02o0) = (1) Huva sl

with the function f € F for which the identity f(z1,...,24,%) = f(21,..., 2k, y) holds
with § = (y41,...,%k,y) and the random variables In(+ib % u(f,g) and Hyty—ku(f)
defined similarly as the corresponding terms after formula (16 19), only y is replaced by
7, the measure p by p, and the presently defined f € F are considered in the present
case. I omit the details.

Part b) of Lemma 16.3B will be proved with the help of Part a) and the inequality
1/2 1/2
sup E(H,""(f)|B) < <sup E(H, (f >18>) (supE<HV2 (f >|B>>
feF feF feF

which follows from the Schwarz inequality applied for integrals with respect to condi-
tional distributions. Let us assume that Vi # {1,...,k}. The last inequality implies
that

P (sup E(HS/,;VZ)(fﬂB) > 2_(2k+2)A2n2k02k+2)
fer ’

<P (sup E(Hxlk( )|B) > 2_(4k+4)A(Qk_l)/kn2k02k+2>
feF

+ P (sup E(HV2 (f)|IB) > A(2k+1)/kn2k02k+2>
ferF
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Hence if we know that also the inequality

: (,?Ey;E(H,Z;(an) > ACE/ k”2k02k+2> < bl A et (1 96)

holds, then we can deduce relation (16.25) from the estimate (16.23) and the last in-
equality. Relation (16.26) follows from Part a) of Lemma 16.3B if V5 # {1,...,k} and
A > 1, since in this case the level ARk+1/kp2ks2k+2 can be replaced by the smaller
number 27 (4k+2) AGk=1)/ky 2k 52k+2 in the probability of formula (16.26). In the case
Vo ={1,...,k} it follows from the conditions of Part b) of Lemma 16.3B if the number
v is chosen for some 7, < 1. Indeed, since AGk+1/2k  TEk+1)/2k by the condi-
tions of Proposition 15.4 the estimate (15.7) holds if the number A is replaced in it by
ABEFD/2k (at both side of the inequality), and this relation implies inequality (16.26)
in this case.

Now we turn to the proof of Lemma 16.1B.

Proof of Lemma 16.1B. By Lemma 16.2B it is enough to prove that relation (16.8)
holds if the random variables W (f) are replaced in it by the random variables W (f)
defined in formula (16.14). We shall prove this by applying the generalized form of

the symmetrization lemma, Lemma 15.2, with the choice of Z(f) = HT(:/,{’V)( ),V =
{L...k}, Z(5) = Z()) - W(f), f € F, B =BE",....&0" 1< j < k) a=
ATn%UQkH, U= ‘%77,2’1“02"“r2 and the set

B = ﬂ {w: sup E(Hfbf/,i’VQ)(f)|B)(w) < 2—(2k+2)A2n2k02k+2} .
(Vi,Va): Vie{l,....k}, j=1,2, fer
Vl;é{]. ..... ]C} or Vz?é{l ..... k‘}

By part b) of Lemma 16.3B the inequality 1 — P(B) < 92k+1pk—1o=yk AV * no? /k

holds. Observe that Z(f) = Hi‘;’v)(f) = H,, 1(f) for all f € F. Hence to prove Lemma
16.1B with the help of Lemma 15.2 it is enough to show that

_ AZ
P <|Z(f)| > 77,L2ko_21€4r2

1
B) (w) < 5 for all f € Fifwe B. (16.27)
To prove this relation observe that because of the definition of the set B

_ A2
Vi, Vs
E(Z(f)|IB)(w) < > BH ™ (DIB)(w) < Fnto™
(V17V2): ‘/Je{]- 77777 k}7 j:1727
Vl?é{l,...,k'} or V27£{1,...,k}

if w € B forall f € F. Hence the ‘conditional Markov inequality’ implies that
P (|Z(f)| > ATQTL%JQ(]“‘H)‘ B) (w) < % < 1 ifw € B, and inequality (16.27)
holds. Lemma 16.1B is proved.
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17. The proof of the main result.

This section contains the proof of Proposition 15.3 together with Proposition 15.4. They
complete the proof of of Theorem 8.4, of the main result of this work.

A.) THE PROOF OF PROPOSITION 15.3.

The proof of Proposition 15.3 is similar to that of Proposition 7.3. It applies an induc-
tion procedure with respect to the parameter k. In the proof of Proposition 15.3 for
parameter k£ we may assume that Propositions 15.3 and 15.4 hold for u < k. In the
proof we want to give a good estimate on the expression

P | sup |I;, . (f)] > 9~ (k+D) gpk gkl
feF 7

appearing at the right-hand side of the estimate (16.1) in Lemma 16.1A. To estimate
this probability we introduce (using the notation of Proposition 15.3) the functions

S2 (N’ 1<i<n 1< <k) = S <x§j>,...,x§f>), fer
1<l;<n, j=1,...k,
LAl if 55
(17.1)

with xl(j) € X,1<1<n,1<j <k Wedefine with the help of this function the
following set H = H(A) C X*" for all A > T similarly to the set defined in formula (7.7).

H:H(A):{(acl(j),lglgn, 1<j<k):
‘ (17.2)
sup S,?L’k(f)(xl(j), 1<1<n,1<j<k)> 2kA4/3nk02}.

feF

We want to show that
Plw: (P (w),1<j<n 1<j<k)eH}) <2ke A" ira>T  (17.3)

To prove relation (17.3) we take the Hoeffding decomposition of the U-statistics

with kernel functions f?(z1,...,21), f € F, given in Theorem 9.1, i.e. we write
fPlry,..o)= Y fv(z;jeV), feF, (17.4)
vc{l,....k}

with fv(z;,7 € V)= ] P; [I1 Q;f*(z1,...,xx), where P; is the projection defined in
jgv =~ jev
formula (9.1), and Q; = I — P; agrees with the operator ); defined in formula (9.2).
The functions fy appearing in formula (17.4) are canonical (with respect to the

measure p), and the identity Sfl,k(f)(fl(j) 1 <1< n1<j<k)=1I,,(f* holds for
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all f € F with the expression I, ;(-) defined in (14.11). By applying the Hoeffding

decomposition (17.4) for each term f2( 1(11) e ,£(k)) in the expression S? ,(f) we get
that

P <sup (f)(ﬁm, 1<i<n, 1<j<k)> 2kA4/3nk02>
feF

(17.5)

Vv
< Y P Mgy nt VI, ()] > AYOnko
k) kD fer

with the functions fy appearing in formula (17.4). We want to give a good estimate
for each term in the sum at the right-hand side in (17.5). For this goal first we show
that the classes of functions {fy: f € F} in the expansion (17.4) satisfy the conditions
of Proposition 15.3 for all V' C {1,... k}.

The functions fy are canonical for all V' C {1,...,k}. It follows from the conditions
of Proposition 15.3 that |f?(x1,...,zx)| < 272*+1D and

/f4 z1,. . xp)p(dey) ... p(dey) < 27 FFD g2

Hence relations (9.4) and (9.4’) of Theorem 9.2 imply that | sup fy(z;,j€ V)| <
r;eX,jev
27 k+2) < o=+ for all V. C {1,...,k} and [ f2(zj,5 € V) [[ u(dx;) <2-¢k+Ng2 <
JjeV
o2 forall V C {1,...,k}. Finally, to check that the class of functions Fy = {fy: f € F}
is Lo-dense with exponent L and parameter D observe that for all probability measures p
on (X*, X*) and pairs of functions f,g € F the inequality [(f? —g?)%dp <272F [(f
g)%dp holds. This implies that if {fi,..., fm}, m < De~ %, is an e-dense subset of
F in the space Lo(X*, X%, p), then the set of functions {2 f2, ... 2¥f21 is an e-dense
subset of the class of functions ' = {2* f2: f € F}, hence F' is also an Ly-dense class of
functions with exponent L and parameter DD. Then by Theorem 9.2 the class of functions
Fy is also La-dense with exponent L and parameter D for all sets V' C {1,...,k}.
For V = (), the function fy is constant fv = [ z1,...;zp)p(dey) .. p(deg) <
o? holds, and I |V|( fivpl=fv < o? Therefore the term corresponding to V () in the
sum of probabilities at the right- hand side of (17.5) equals zero under the conditions of
Proposition 15.3 with the choice of some Ay > 1. I claim that the remaining terms in
the sum at the right-hand side of (17.5) satisfy the inequality

vie o _
P (’k_"”k V1 sup | L, v (fv)] > A4/3n’“02>
! feF

§ k!
< P sup | Ly (fr)] > AV onlVighIt ) < o= A% ey < y| < k.
feF v (17.6)

The first inequality in (17.6) holds, since o!VIH! < ¢2 for |[V| > 1, and n > k > |V]|.
The second inequality follows from the inductive hypothesis if |V| < k, since in this
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case the middle expression in (17.6) can be bounded with the help of Proposition 15.3
by e~(AYVPRYIVIN'ZVIne® < o—A*no 3¢ 4 Ao (k) in Proposition 15.3 is chosen
sufficiently large. In the case V = {1,...,k} it follows from the inequality A > T and
the inductive assumption by which the supremum of decoupled U-statistics determined
by such a class of kernel-functions which satisfies the conditions of Proposition 15.3
has a good tail behaviour at level T4/3. Relations (17.5) and (17.6) together with the
estimate in the case V = () imply formula (17.3).

Ifzk(f)‘ > 2_(k+2)Ank/20k+1> with respect to

the random variables fl(j ), 1<1<n,1<j<kwe get with the help of the multivariate
version of Hoeffding’s inequality (Theorem 13.3) that

By conditioning the probability P (

P (‘I_flk(f)‘ > 2_(k+2)Ankak+1‘ El(j)(w) = xl(j), 1<i<n1<j< k:)

e 1 A2p2k 52(k+1) Y
<Cexpg —= i
2 22k+45721’k(1.l(ﬂ)’ 1< < n,1<73< k’)/k"

(17.7)

< Ce2 TYRATERGEN  Ene® g ) ferF if (ml(j), 1<1<n,1<j<k)¢H

with some appropriate constant C' = C(k) > 0.

Define for all 1 < j < k and sets of points xl(j) € X, 1 <[ < n, the probability

measures pj = p; (@9, 1<1<n)’ 1 < j < k, uniformly distributed on the set of points

{xl(j), 1 <1< n},ie. let pj(xl(j)) % for all 1 <1 <n. Let us also define the product

p = p(xl(j), 1 <i<n1<j<k)=p X X pg of these measures on the space
(Xk, &%), If f is a function on (X*, X*) such that [ f2dp < §2 with some ¢ > 0, then

_ . k

u; € RF, 1< j <k, and as a consequence

sup I o (F)(@”, 1< U<, 1< 5 < k)= I (g) (2, 1 <1<, 1< < k)l

E14..3En

< 9= (+42) gpkghtl i / (f —9)%dp < (2~ D142, (17.8)

where ffl’k(f)(xl(j), 1 <1< n,1<j<k)equals the expression I7 , (f) defined in (14.12)
if we replace 5;5) by xl(j) forall 1 <j <k,and 1 <[; <ninit, and p is the measure
p= p(:cl(j), 1 <1< n,1<j<k) defined above.
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Let us fix the number § = 2= +t2ElAgk+1 and let us list the elements of the set
Fas F = {fl,fg,...}. Put

m = m(8) = max(1, D6~ %) = max(1, D(2*+2) (k)71 A=W g=(k+1) Ly,

and choose for all vectors (™) = (:U(j), 1<i<n,1<j<k)e XF " such a sequence of
positive integers py(z(™), ..., py(2™)) for which

1 Si?gfm / (f(u) = fpy(amy(u)? dp(z™) < 6% for all f € F.
(Here we apply the notation p(z(™) = p(xl(J), 1<1<n,1<j<k).) This is possible,
since F is an Lo-dense class with exponent L and parameter D, and we can choose
m = D&~', if § < 1, Besides, we can choose m = 1 if § = 1, since [|f — g|*dp <
sup |f(z) — g(x)|? < 272% < 1 for all f,g € F. Moreover, it follows from Lemma 7.4A
that the functions p;(2(™), 1 < I < m, can be chosen as measurable functions of the
argument (™ e X*n

Let us introduce the random vector £ (w) = (fl(])(w), 1<l1<n,1<j<k).
By arguing similarly as we did in the proof of Proposition 7.3 we get with the help of
relation (17.8) and the property of the functions f,, ,m)(-) constructed above that

{“’: sup |12 4 (F)(@)] = 2-+D Anto W}

feF

—(k E (k
- U{ 5 k(o (e () @) > 2742 Anfo +1)}.

The above relation and formula (17.7) imply that

P (sup (£ @)] > 27 C D Ankab 1 g0 w) =2 1 <1< 1< < k)
feF

m Ankgk+1
Z ( (foemn @@ > —Zmz—

(6) 9~ 4— 4/kA2/3k(k|)1/kno_

| N

D (w) =z, 1§l§n,1§j§k)

IN
Q

C( +D(2k+2A (k!)_lo_—(k:—&-l))L)6—2*4*4/"“142/3"“(k!)l/km-r2 (179)
if {27, 1<1<n 1<j<k}¢H.

Relations (17.3) and (17.9) imply that

P sup |I_§ k(f)| > 2—(k+1)AnkUk+1 < C(l + D(2k+2A—1(k!)—lo__(k+1))L)
fer (17.10)

_o—4—4/k 22/3k(.\1/k, 2 _A2/3k, 2,
e 2 A (kY "no —|—2k€ A no ifA>T.
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Proposition 15.3 follows from the estimates (16.1), (17.10) and the condition no? >
Llogn +logD, L,D > 1, if A > Ay with a sufficiently large number Agy. Indeed,

. . 1 _ (k+1)/2
in this case no? > %, (2M2A4- (k') lg=(k+H L < (W)L < plk+D/2

eLlogn~(k:—|—1)/2 < e(k+1)n02/2, D = elogD < 6”02, and

€_A1/2kn02

C(l + D(2k+2A—1(k!)—10_—(k—|—1))L)€—27474/kA2/3k(k!)l/kna2 <

W =

The estimation of the remaining terms in the upper bound of the estimates (16.1)
and (17.10) leading to the proof of relation (15.5) is simpler. We can exploit that
e—AQ/?’an2 < €—A1/2kn0'2 and as nk—l < e(k—l)no2

2knk71€f’yk141/(2k_1)n02/k: < 2k€(k71)na2e*’ykAl/(%_l)nUQ/k < efAl/anch
for a large number A.
Now we turn to the proof of Proposition 15.4.
B.) THE PROOF OF PROPOSITION 15.4.

Because of formula (16.11) in the Corollary of Lemma 16.1B to prove Proposition 15.4
i.e. inequality (15.7) it is enough to choose a sufficiently large parameter Ay and to
show that with such a choice the random variables H,, (f|G, Vi, V2) defined in formula
(16.9) satisfy the inequality

A2 2k 52(k+1) o
P <sup \Hp i (FIG V2, Vo) > o T T ) < ght1p=AY? o

s piktiE ) = (17.11)
foral GeG and Vi,Voe{l,...;k} if A>T > A
under the conditions of Proposition 15.4.
Let us first prove formula (17.11) in the case |e(G)| = k, i.e. when all vertices

of the diagram G are end-points of some edge, and the expression H, ,(f|G, Vi, V2)
contains no ‘symmetrizing term’ €;. In this case we apply a special argument to prove
relation (17.11).

It can be seen with the help of the Schwarz inequality that for a diagram G such
that |e(G)| =k

1/2

1
Ho i (£1G. V1, Vo) < o > /f () gD o dy)

(T1yeesly):
1<1;<n, 1<j<k,

LA it AT
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1/2

1
i > L/f2€“5“%” G ) ) p( dy)

(GININE
1<l;<n, 1<5<k,

lﬁélj, if j#5
(17.12)

with 5J<‘/1) =1 lfj € ‘/1, 5J(‘/1) =-1 lf] ¢ ‘/1, and (SJ(VQ) =1 lfj < VQ, 5J(V2) = —
if j ¢ Va.

Relation (17.12) can be proved for instance by bounding first each integral in for-
mula (16.9) by means of the Schwarz inequality, and then by bounding the sum ap-
pearing in such a way by means of the inequality Y- |a;b;| < (Y a )1/2 > 62)1/2
Observe that in the case |(e(G)| = k the summation in (16.9) is taken for such vectors
(L, . U, 1, oo ) for which (19, ...,1}) is a permutation of the sequence (li,...,1x)
determined by the diagram G. Hence the sum we get after applying the Schwarz in-
equality for each integral in (16.9) has the form ) a;b; where the set of indices j in this
sum agrees with the set of vectors (l,...,l;) such that 1 < I, <nforalll <p<Ek,
and [, # I,y if p # p'.

By formula (17.12)

A2p2k 5 (2(k+1)
{w: ?161?:|Hn,k(f|G»V17V2>(w)| Z T odktig)

C {w: sup /f2 f(l 51(‘/1))( ), ...,fl(f’ak(vl))(w),y)/)(dy)

Kf(m,m
1<l;<n, 1<5<k,
lj;élj, if j£5

A202k 52(k+1) L)
24k—|—1

U {w: sup /f2 (1 61(‘/2)) (W), ...,ﬁl(f’ék(VZ))(w),y)p( dy)

f
Fer ) lk)
1<l <n, 1<5<k,
il if j#5'

A2n2k 52(k+1) k|
24k+1 ’

hence

A272k 5 2(k+1)
P ( sup |Hp o(FIG, Vi, Vo) > A O~ 17.13
fegl £(fIG, V1, V2))| AR TIL] (17.13)
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1 M) ey o Ao
< 2P sup > hy(€ s 6) >
FEF ™ (1o li): 1< <, 1<5<k,

Ll if 7'

with the functions hy(z1,...,zx) = [ f2(@1,...,25,9)p(dy), f € F. (In this upper
bound we could get rid of the terms 6;(V1) and §;(V2), i.e. on the dependence of the
expression H,, 1(f|G,V1,V2) on the sets Vi and V3, since the probability of the events
in the previous formula do not depend on them.)

I claim that

P (sup | Lk (hg)| > 2kAnk02) < k=AY e g 4 > Ao (17.14)
fer

if the constant Ay = Ag(k) is chosen sufficiently large in Proposition 15.4. Relation
2k 2(k+1)

(17.14) together with the relation A%2=3——— > 2*An*o? (if A > Ay with a sufficiently
large Ap) imply that the probability at the right-hand side of (17.13) can be bounded
by 2k+1e=A"* 10 "and the estimate (17.11) holds in the case |e(G)| = k.

Relation (17.14) is similar to relation (17.3) (together with the definition of the
random set H in formula (17.2)), and a modification of the proof of the latter estimate
yields the proof also in this case. Indeed, it follows from the conditions of Proposi-
tion 15.4 that 0 < [hg(z1,...,z5)pu(dzy) ... u(deg) < o? for all f € F, and it is
not difficult to check that sup |hs(z1,...,2;)| < 272*+1 and the class of functions
H = {2*hy, f € F} is an Lo-dense class with exponent L and parameter D. Hence
by applying the Hoeffding decomposition of the functions hy, f € F, similarly to for-
mula (17.4) we get for all V' C {1,...,k} such a set of functions {hy)y, f € F}, which
satisfies the conditions of Proposition 15.3. Hence a natural adaptation of the estimate
given for the expression at the right-hand side of (17.5) (with the help of (17.6) and the
investigation of Ijy|(fv) for V = 0) yields the proof of formula (17.14). We only have to
replace Sy k(f) by Ink(hy), then I, jv|(fv) by I v|((hf)y) and the levels 2k A4/ 3k g2
and A*3nFo? by 28 AnFo? and AnFo?. Let us observe that each term of the upper
bound we get in such a way can be directly bounded, since during the proof of Proposi-
tion 15.4 for parameter £ we may assume that the result of Proposition 15.3 holds also
for this parameter k.

In the case e(G) < k formula (17.11) will be proved with the help of the multivariate
version of Hoeffding’s inequality, Theorem 13.3. In the proof of this case an expression,
analogous to S? , (f) defined in formula (17.1) will be introduced and estimated for all
sets V1,Va C {1,...,k} and diagrams G € G such that |e(G)| < k. To define it first
some notations will be introduced.

Let us consider the set Jo(G) = Jo(G, k,n),

Jo(G) = {1, U, Uy D) V<0515 <my 1< g <y 1y # 1y if 5 # 5
AU i g # 5, =1 if (7.5) € e(G), I £ 1 if (4, §') ¢ e(G)}.
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The set Jo(G) contains those sequences (11, ...,lx,1],...,1}) which appear as indices in
the summation in formula (16.9) for a fixed diagram G. We also introduce an appro-
priate partition of it.

For this aim let us first define the sets M;(G) = {j(1),...,j(k — |e(G)])} =
(1o kP 01(G), J(1) < -+ < j(k — [e(@)]), and Ma(G) = {3(1), 30k — [e(GI)} =
{1,...,k} \ v2(G), (1) < --- < 7(k — |e(G]), the sets of those Vertices of the first and
second row of the diagram G in increasing order from which no edge starts. Let us also
introduce the set V(G) = V(G,n, k),

V(G) = {(l]’(l), e ,lj(k,|€(g)|),l3(1), .. "lg(k |e(G)|)) 1< l](p)alg(p) <n,
L<p <k =G Liw) # Lo, L) # L 0 # 9, 1 <p.p" <k —e(G)),
L) # Uy, 1 < ,0" <k —[e(G)]}.

The set V(G) consists of those vectors which can appear as the restriction of some
vector (Iy,...,0, 05, ..., 1) € Jo(G) to the coordinates indexed by the elements of the
set M1(G) U M2(G). The elements of V(G) are such vectors whose coordinates are
indexed by the set M;(G)U My (G), and they take different integer values between 1 and
n. Given a vector v € V(G) put v = (v, v@)) with v = {v(r), 1 <r <k — |e(G)]|},
and v = {o(r), 1 < r < k —|e(G)|}, where v(1) and v(? denote the set of coordinates
of v indexed by the elements of the set M;(G) and Ms(G) respectively. For all vectors
v € V(G) define the set

Eg(w)={(l1,..., i, 15, .., 1p): 1<y <n, 1 <1 <m, for 1 <j,7<E,
Li#lpitj#5, G5#0 it 747,
lj =15if (j,7) € e(G) and I; # 17 if (j,]) & e(G),
iy = 0(r), Uy =0(r), 1 <r <k —le(G)|}, veV(G),

where {j(1),...,j(k — |e(G)))} = Mi(G), {j(1),....,7(k — |e(G)])} = Ma2(G), v
(v, @) with v = (v(1),...,v(k — |e(@)])) and @ = (B(1),...,0(k — |e(G)|)
in the last line of this definition. Besides, let us define

EL(w) ={(y,....lk): (I1,..., U, 1},....1,) € Eg(v)}

and
Eé(v) ={(l],.- L) (Ip - b, 1y, 1) € Eg(v)}.

Given a vector v € V(G), v = (v(V),v?)), the set Eg(v) consists of those vectors
0= (I, ol 1,0, 10) € Jo(G) whose restrictions to M (G) and Ms(G) equal v
and v respectively. More explicitly, £ € Eq(v), if for j € M;(G) its coordinate I;
agrees with the corresponding element of v(1)| for 7 € My(G) its coordinate I agrees
with the corresponding element of v(?), and the remaining coordinates of ¢ satisfy the
following properties. The indices of the remaining coordinates of ¢ can be partitioned
into pairs (js,7s), 1 < 5,8 < |e(G)] in such a way that (js,Js) € e(G). The identity
lj, =1} , holds for such pairs (js, Js), and if (js, 7s) ¢ (&), then the coordinates [;, and
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I7 , are different. Otherwise, the coordinates [;, and [}

/

_, can be freely chosen from the
set {1,...,n}\ {v), v}, The sets E}(v) and E%(v) consist of the vectors containing
the first k£ and the second k coordinates of the vectors £ € Eg(v).

The sets Eg(v), v € V(QG), constitute a partition of the set Jo(G), and the random
variables H,, 1 (f|G, Vi, Vz2) defined in (16.9) can be rewritten with their help as

k—le(G)| k—le(@)]
Hy (G, V1, Va) (W) = > II avo@ I e, @
’U*(’U(l) ’U(z))EV(G) s=1 s=1
/f 5(1 61 vl)) (@), .. 5(k 61 (V1) (@), 1) (17.15)

(l17 alkal/ l/ )EEG(U)

FE Y @), g W), y)p( dy),

where 5J<‘/1) =1 lfj € ‘/1, 5J(V1) =-—1 lfj ¢ Vl, and 5J(V2) =1 lfj € ‘/2, 6J(V2) = —
if j ¢ Va.
Let us fix some G € G and V;,V, C {1,...,k}. The inequality

P (S2(FIG, VA, Va) > 22 A%/ 0 gt ) < ok 1em 4770 g 4> Ay and e(G) < k

(17.16)
will be proved for the random variable

1 1 1 1
S2(F|G, Vi, Va) = sup - W 3 ( Z / Fleor ) gy

f(é(l m g ) dy>>2,
(17.17)

where 63(‘/1) =1 lf_] € ‘/1, 53(‘/1) =-1 lf] ¢ Vl, and 5](‘/2) =1 lfj € ‘/2, 5](‘/2) =-1
if j ¢ V5. The random variable S?(F|G, V1, Vs) defined in (17.17) plays a similar role in

the proof of Proposition 15.4 as the random variable sup 82 L (f) with S2, (f) defined
feF ’
in formula (17.1) played in the proof of Proposition 15.3.

To prove formula (17.16) let us first fix some v € V(G), and let us show that the
following inequality similar to relation (17.12) holds.

( 3 /f@u SO gk

(I1,-.., lk,lll ..... Z;C)EEG(’U)

2
751 2 76 2
Pl gt dy))

IN

Z /fz 5(1 61<v1>>,”_75<k: Be(V0) ) o( dy)

(lla 7lk)eE (U)
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3 /fz (€0 BTy p(dy) (17.18)

(1,-- 1) EEZ (v)

for all f € F and v € V(G). Indeed, observe that for a vector v = (v1,02) € Eg(v) with
o1 € EL(v) and 3 € E3(v), the coordinates of the vector o in the set M;(G) and the
coordinates of the vector vy in the set Ms(G) are prescribed, while the coordinates of v;
in the set v1(G) are given by a permutation of the coordinates v, in the set v3(G). (The
sets v1(G) and v2(G) were defined before the introduction of formula (16.9) as the sets
of those vertices in the first and second row of the diagram G respectively from which an
edge of G starts.) This permutation is determined by the diagram G. Inequality (17.18)
can be proved on the basis of the above observation similarly to formula (17.12).

We shall prove with the help of formula (17.18) the following inequality.

S*(F|G, V1, Va)

< sup Z Z /f f(l 61(\/1)),_._75(1@ 06 (V1)) L) p(dy)

feF

veV(G) k! (I1,--,lk)EEL (v)

1 61 2 76 2
1 [P ot ay (17.19)
S\ 6E2 (v)

1 (51 1 5 1

< sup -~ /f2 5(1 (V)),---af(k *V) ) p( dy)
feFx v (I1,0 ) 1<z <n,1<j<k,
s ;él iy 1fj7$j
1 ) k.8
sup - 2 /f (&g ) p(dy)
feF h: ’
(U senslly): 1<V, <n, 1< <k,
l GAV, i £

The first inequality of (17.19) is a simple consequence of formula (17.18) and the def-
inition of the random variable S%(F|G, V1, V2). To check its second inequality let us

observe that it can be reduced to the simpler relation, where the expression sup is
ferF
omitted at each place. The simplified inequality obtained after the omission of the ex-

pressions sup can be checked by carrying out a term by term multiplication between the
products of sums appearing in (17.19). At both sides of the inequality a sum consisting
of terms of the form

51 i k05 (V1 ,01 (Vs k Ok (Vo
(17.20)
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appears. It is enough to check that if a term of this form appears in the middle term of
the simplified version formula of (17.19), then it appears with multiplicity 1, and it also
appears at the right-hand side of this formula. To see this, observe that each term of
the form (17.20) which appears in the sum we get by carrying out the multiplications
in middle term of (17.19) determines uniquely the index v = (v, v)) € V(G) in the
outer sum of the middle term in the inequality (17.19). Indeed, if the random variables
defining this expression of the form (17.20) have indices £ = (ly,..., 1, l},...,1}), then
this vector ¢ uniquely determines the vector v = (v(),v®?) € V(Q), since v must
agree with the restriction of the vector [ = (I1,...,lx) to the coordinates with indices
in M;(G) and v® must agree with the restriction of the vector I’ = (I},...,1}) to
the coordinates with indices in M5(G). Besides, by carrying out the multiplication at
the right-hand side of (17.19) we get such a sum which contains all such terms of the
form (17.20) which appeared in the sum expressing the middle term in inequality (17.19).
The above arguments imply inequality (17.19).

Relation (17.19) implies that
P(S*(F|G, V1, V3)) > 2%A8/3n2ka4) < 2P (sup Ly i (hy) > 2kA4/3nk02)
fer

with hy(z1,...,25) = [ f*(x1,...,2k,y)p(dy). (Here we exploited that in the last
formula S?(F|G, Vi, Vs) is bounded by the product of two random variables whose
distributions do not depend on the sets V; and V5.) Thus to prove inequality (17.16) it
is enough to show that

2f’<supigk(hf)>>2@A%BnF02) < okHle=Ane® g 4 > 4. (17.21)
fer

Actually formula (17.21) follows from the already proven formula (17.14), only the
parameter A has to be replaced by A*/3 in it.

With the help of relation (17.16) the proof of Proposition 15.4 can be completed
similarly to Proposition 15.3. The following version of inequality (17.7) can be proved
with the help of the multivariate version of Hoeffding’s inequality, Theorem 13.3, and
the representation of the random variable H,, ;. (f|G, V1, V2) in the form (17.15).

P (|Hn,k(f|G, Vi, Va)| > n2k?k D) 5 < <p 1<) < k) (w)

gak+2]
—2ORRA G G2(F|GL VA, Va)(w) < 22K A8/3n2ket and A > Ay
(17.22)
with an appropriate constant C' = C'(k) > 0 for all f € F and G € G such that |e(G)| < k
and V1,V C {1,...,k}. (Observe that the conditional probability estimated in (17.22)

can be represented in the following way. In a point w € € fix the values of fl(‘j ED (w) for
all indices 1 <! <n and 1 < j < k in the random variable H,, (f|G, V1, V%), and the
conditional probability in this point w equals the probability that the random variable,

< Ce
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(depending on the random variables ;, 1 < [ < n), obtained in such a way is greater
2

than s n?Fo*HD)

Indeed, in this case the conditional probability considered in (17.22) can be bounded
because of the multivariate version of the Hoeffding inequality (Theorem 13.3) by

4, 4k _4(k+1) 1/2j a/3, 2k _ak\ 1/27 .

Cexp {—% <28k+4(k!5352(-7;7|G,V1,Vz)/(k:!)Q> < Cexp {_% (‘4213—1@’) with an
appropriate C' = C(k) > 0, where 2j = 2k — 2|e(G)], and 0 < |e(G)| < k — 1. Since

) 4/3 . . . o
j <k, no?® > %, and also Q‘ﬁ)—kH > 2 if Ag is chosen sufficiently large we can write in

the above upper bound for the left-hand side of (17.22) j = k, and in such a way we get
inequality (17.22).

The next inequality in which we estimate sup H,, 1 (f|G, V1, V2) is a natural version
ferF

of formula (17.9) in the proof of Proposition 15.3.

j,+ .
P (;22|Hn7k(f|G,V1,V2)| > 24k+1k!n2k’0.2(k+1) gl(] 1)7 1<1< n,1<j< k‘) (w)
24k+3 L L o= (642/k) £2/3k, 2
if S2(F|G, V1, Va))(w) < 228433054 and A > Ay (17.23)

for all G € G such that |e(G)| < k and Vi, Vo C {1,...,k}.

To prove formula (17.23) let us fix two sets Vi, Vo C {1,...,k} and a diagram G
such that |e(G)| < k. Let us define for all vectors z(") = (xl(j’l),a:l(j’_l), 1<1<n, 1<
j < k) € X?*" some probability measure a(z(™) on the space X* x Y (with the space Y’
which appears in the formulation of Proposition 15.4) with which we can work similarly

as with the probability measures v(z(™ and p(z(™ in the proof of Propositions 7.3
and 15.3.

To do this let us consider some vector z(™ = (xl(j’l),xl(j’_l), 1 <1 <n 1<
j < k) € X?7 and define first the probability measures I/J(-l) = 1/](1)(:8(”),‘/1) and
1/](2) = VJ(?) ((™), V4) in the space (X, X) for all 1 < j < k which are uniformly distributed

in the set of points xl(j’éj(vl)), 1 <1!<nand xl(j’6j(v2)), 1 <1 < n, respectively. This
means that we define for all 1 < j < k (and sets V; and V4) the probability measures

1/](-1) < xl(j’éj(vl))}> = 1 and VJ(-Z) <{xl(j’5j(v2))}> = 1.1 <1 < n, where §;(V;) = 1 if

Jje Vi, 0;(Vi) =—-1if j ¢ Vi, and similarly 6;(V2) = 11if j € V5 and 6;(V2) = —1 if
§ ¢ Va. Let us consider the product measures a; = a1 (2™, V}) = I/P) X e X 1/,21) x p and
ay = an(z™ ;) = I/§2) X e X y,(f) X p on the product space (X* xY, X* x ), where p is
that probability measure on (Y, )) which appears in Proposition 15.4. With the help of
the measures oy and s define the measure o = a(z(™) = a(z(™, V7, Vo) = 4192 in the
space (X* x Y, X% x)). Let us also define the measure & = a(z(™) = a(z™, 1, 13) =

y](-l) X "'Vl(cl) X 1/52) % .uylgz) x p in the space (X2¥ x Y, X% x)).
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Let us define H, x(f|G,V1,V2) as a function in the product space (X2Fn, x2kn)
(with arguments a:(] Y and I‘(J7_1) 1 <j <k, 1<1<n)by means of formula (17.15)

(J 3;(V1))

by replacing the random variables & (3:05 (Vl))( ) by T and the random variables

§(J 03 Vz))( ) by x(] %(V2)) i it for all 1 <j<kandl1 < l;,l < n. With such a notation

]’J

we can write for any pairs f,¢g € F and z(") = (mg’l),xl( 1)7 1<j<k 1<i1<n)e
X2k by exploiting the properties of the above defined measure & the inequality

sup | Hy 1 (f|G, Vi, Va)(z™) — Hy, 1 (fIG, Vi, Vo) (™)

< 2 2

U—(’U(l) (2))€V(G) (ll lk,l' ..,l;c)EEG(’U)

0 k.6 6 k.o
kﬂ/’f (a0 k<v1>>,y)f(xl(/11 ) l( L) )
1,61 (V1 .ok (V1 1,61 (Va k.01 (Va
(xl(l ( ))""’xl(k k(V1)) y)g(:l:(, ( )),.”7 l(’ k( )) y)|p( dy)

1
< n2k / |f(51?1, s 7mk7y)f($k+17 s ,I'Qk,y) - g(xl’ U ’xk’y)g(mk+1’ U ’ka,y”

a(dry, ..., dxrag, dy).
(17.24)
Besides, since both sup |f(x1,...,zk,y)| < 1 and sup |g(x1,..., 2k, y)| < 1, we have

\f(x1, 2k, y) f(Tha1, - ok, ) — (21, - oo Ty ) 9(Thg1s - - 5 T2k, Y)|
<|f(@i, I (@rt1, - T2, y) — 9Tk, - - T2r, Y)|
+19@ht1 -2 (21, 2k, y) — 921, 2, )|
<|f(@kt1, -5 T2k, Y) — 9(Tht1, - - T2k, V)|
+ | f(x1, . 2k, y) — g(21, .o T, )

It follows from this inequality, formula (17.24) and the definition of the measures &, aq,
as and « that

sup |Hy ik (f|G, Vi, Vo) (™) — H, ik (f|G, Vi, Vo) (z(™))]

<0 [(F s vaksn) = gl 20,0
+ | f(x1,. . 2k, y) — g(x1, ..o 2k, y)|)a(day, . . ., deoy, dy)
= [ ony) = gl )
(a1(dxy,. .., deg, dy) + ag(dry, ..., dzg, dy)) (17.25)

= 2n2k/]f(a:1,...,xk,y) —g(x1,..., 2K, y)|a(dxy, . .., dog, dy)

1/2
2n2k (/lf(xlaaxkvy) _g<l’1,...,IL’k,y)|2a’(dw17---7 dilfk, dy))
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with the previously defined probability measure a = a(z(™). Put 6§ = %, list the

elements of F as F = {f1, fa,...}, and choose a set of indices p; (™), ..., pm(z™)

taking positive integer values with m = max(1, D6~ %) elements such that sup [ f(u)—
1<i<m

fpl(x<n))(u))2a(:c(”))(du) < 62 for all f € F. Such a choice of the indices p;(z(™),
1 <1 < m, is possible, since F is Lo-dense with exponent L and parameter D. Moreover,
by Lemma 7.4B we may chose the functions p; (:L‘(”)), 1 <1 < m, as measurable functions
of their argument z(™ e X2k,

Put £ (w) = (§l(j’il)(w), 1 <1<mn,1<j<k). By arguing similarly as we did
in the proof of Propositions 7.3 and (15.3) we get with the help of relation (17.25) and
the property of the functions f, ;) () constructed above that

A2p,2k g 2(k+1)
{w: ]Srlel?: |Hp ik (f|G, V1, Vo) (w)] > C 9(k+1)E!

A2n2k 52(k+1)
C U{ D Hpk pl(g(")(w)|G Vi, Va)(w)(w)] > W}

Hence
A2p2hg2041) | ‘
P(?gg’Hn,k(f|G,v1,V2)’>W 7 1<l<n, 1<j<k|(w)
m A2p2k g2(k+1)
< Z ( E(fpuem @G Vi, Va)l > — g —

G 1 <1<, 1§j§k)(w)

for almost all w. The last inequality together with (17.22) and the inequality m =
24k+3k'

L
max(1, D5 L) <1+ D (m) imply relation (17.23).
It follows from relations (17.16) and (17.23) that

A2n2k02(k+1) 2/3k, 2
P HonlfIG VI, Vo) > 2 O | < gktle=a"%no
(?22' nk(f1G V1, V)l gikrip ) =2 ¢

94k+3 | L _o—(642/k) g2/3k, 2 |

for all V1, Vo C {1,...,k} and diagram G € G such that |e(G)| < k — 1. This inequality
implies that relation (17.11) holds also in the case |e(G)| < k — 1 if the constants
Ag is chosen sufficiently large in Proposition 15.4, and we this completes the proof of
Proposition 15.4. To prove relation (17.11) in the case |e(G)| < k — 1 we still have to
show that D(%)L < econst-no® if A > Ay with a sufficiently large Ao, since this
implies that the second term at the right-hand of our last estimation is not too large.
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This follows from the inequality no? > Llogn + log D which implies that

4k+3 L k+1 L
28k < TL( 1) < 6(Ic+1)Llogn < 6(k+1)n02
A252040) ) =\ (2po2)(BHD) ) = =

if Ay is sufficiently large, and D = el°8 P < eno”

18. An overview of the results in this work.

I discuss briefly the problems investigated in this work, recall some basic results related
to them, and also give some references. I also write about the background of these
problems which may explain the motivation for their study.

I met the main problem considered in this work when I tried to adapt the method
of proof of the central limit theorem for maximume-likelihood estimates to some more
difficult questions about so-called non-parametric maximum likelihood estimate prob-
lems. The Kaplan-Meyer estimate for the empirical distribution function with the
help of censored data investigated in the second section is such a problem. It is not
a maximum-likelihood estimate in the classical sense, but it can be considered as a
non-parametric maximum likelihood estimate. In the estimation of the empirical distri-
bution function with the help of censored data we cannot apply the classical maximum
likelihood method, since in the solution of this problem we have to choose our estimate
from a too large class of distribution functions. The main problem is that there is no
dominating measure with respect to which all candidates which may appear as our es-
timate have a density function. A natural way to overcome this difficulty is to choose
an appropriate smaller class of distribution functions, to compare the probability of the
appearance of the sample we observed with respect to all distribution functions of this
class and to choose that distribution function as our estimate for which this probability
takes its maximum.

The Kaplan—-Meyer estimate can be found on the basis of the above principle in
the following way: Let us estimate the distribution function F'(x) of the censored data
simultaneously together with the distribution function G(x) of the censoring data. (We
have a sample of size n and know which sample elements are censored and which are
censoring data.) Let us consider the class of such pairs of estimates (F,,(z),Gp(x))
of the pair (F(z),G(x)) for which the distribution function F),(x) is concentrated in
the censored sample points and the distribution function G, (x) is concentrated in the
censoring sample points; more precisely, let us also assume that if the largest sample
point is a censored point, then the distribution function G, (x) of the censoring data
takes still another value which is larger than any sample point, and if it is a censoring
point then the distribution function F,,(x) of the censored data takes still another value
larger than any sample point. (This modification at the end of the definition is needed,
since if the largest sample points is from the class of censored data, then the distribution
G(x) of the censoring data in this point must be strictly less than 1, and if it is from
the class of censoring data, then the value of the distribution function F'(x) of the
censored data must be strictly less than 1 in this point.) Let us take this class of
pairs of distribution functions (F),(x), G, (z)), and let us choose that pair of distribution
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functions of this class as the (non-parametric maximum likelihood) estimate with respect
to which our observation has the greatest probability.

The above extremal problem for the pairs of distribution functions (F),(x), G, (x))
can be solved explicitly, (see [25]), and it yields the estimate of Fj,(z) written down
in formula (2.3). (The function G, (z) satisfies a similar relation, only the random
variables X; and Y, and the events §; = 1 and ¢; = 0 have to be replaced in it.)
Then, as I have indicated, a natural analog of the linearization procedure in the proof
of the central limit theorem for the classical maximum likelihood estimate works also
in this case, and there is only one really hard part of the proof. We have to show that
the linearization procedure gives a small error. The estimation of this error led to the
problem about a good estimate on the tail distribution of the integral of an appropriate
function of two variables with respect to the product of a normalized empirical measure
with itself. Moreover, as a more detailed investigation showed, we actually need the
solution of a more general problem where we have to bound the tail distribution of the
supremum of a class of such integrals. The main subject of this work is to solve the
above problems in a more general setting, to estimate not only two-fold, but also k-fold
random integrals and the supremum of such integrals for an appropriate class of kernel
functions with respect to a normalized empirical distribution for all £ > 1.

The proof of the limit theorem for the Kaplan—Meyer estimate explained in this
work applied the explicit form of this estimate. It would be interesting to find such
a modification of this proof which only exploits that the Kaplan—Meyer estimate is
the solution of an appropriate extremal problem. We may expect that such a proof
can be generalized to a general result about the limit behaviour for a wide class of
non-parametric maximum likelihood estimates. Such a consideration was behind the
remark of Richard Gill I quoted at the end of Section 2.

A detailed proof together with a sharp estimate on the speed of convergence for
the limit behaviour of the Kaplan—Meyer estimate based on the ideas presented in
Section 2 is given in paper [38]. Paper [39] explains more about its background, and it
also discusses the solution of some other non-parametric maximum likelihood problems.
The results about multiple integrals with respect to a normalized empirical distribution
function needed in these works were proved in [30]. These results were satisfactory
for the study in [38], but they also have some drawbacks. They do not show that if
the random integrals we are considering have small variances, then they satisfy better
estimates. Besides, if we consider the supremum of random integrals of an appropriate
class of functions, then these results can be applied only in very special cases. Moreover,
the method of proof of [30] did not allow a real generalization of these results, hence I
had to find a different approach when tried to generalize them.

I do not know of other works where the distribution of multiple random integrals
with respect to a normalized empirical distribution is studied. On the other hand, there
are some works where the distribution of (degenerate) U-statistics is investigated. The
most important results obtained in this field are contained in the book of de la Pena
and Giné Decoupling, From Dependence to Independence [7]. The problems about the
behaviour of degenerate U-statistics and multiple integrals with respect to a normalized
empirical distribution function are closely related, but the explanation of their relation
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is far from trivial. The main difference between them is that integration with respect to
tn — i instead of the empirical distribution g, means some sort of normalization, while
this normalization is missing in the definition of U-statistics. I return to this question
later.

The main part of this work starts at Section 3. A general overview of the results
without the hard technical details can be found in [33].

First the estimation of sums of independent random variables or one-fold random
integrals with respect to a normalized empirical distribution and the supremum of such
expressions is investigated in Sections 3 and 4. This question has a fairly big literature.
I would mention first of all the books A course on empirical processes [11], Real Analysis
and Probability [12] and Uniform Central Limit Theorems [13] of R. M. Dudley. These
books contain a much more detailed description of the empirical processes than the
present work together with a lot of interesting results.

Section 3 deals with the tail behaviour of sums of independent and bounded random
variables with expectation zero. The proof of two already classical results, Bernstein’s
and Bennett’s inequalities is given there. (Their proofs can be found e.g. in Theo-
rem 1.3.2 of [13] and [5]). We are also interested in the question when they give such
an estimate which the central limit theorem suggests. Actually, as it is explained in
Section 3, Bennett’s inequality gives a bound suggested by a Poissonian approximation
of partial sums of independent random variables. Bernstein’s inequality provides an
estimate suggested by the central limit theorem if the variance of the sum we consider
is not too small. (The results in Section 3 explain this statement more explicitly.) If the
variance of the sum is too small, then Bennett’s inequality provides a slight improve-
ment of Bernstein’s inequality. Moreover, as Example 3.3 shows, Bennett’s inequality
is essentially sharp in this case.

The estimate on the tail distribution of a sum of independent random variables
is weak if this sum has a small variance. This means that in this case the probability
that the sum is larger than a given value may be much larger than the (rather small)
value suggested by the central limit theorem. Such a behaviour may occur, because the
contribution of some unpleasant irregularities to this probability may be non-negligible
in the case of a small variance.

In the study of the supremum of sums of independent random variables a good
control is needed on the tail distribution of the (supremum of) sums of independent
random variables even if they have small variance. The solution of this problem (and
of its natural multivariate version) turned out to be the hardest part of this work. The
results based on the similar behaviour of partial sums and their Gaussian counterpart
is not sufficient in this case, some new ideas have to be applied. In the proof of sharp
estimates in this case we also use some kind of symmetrization arguments. The last
result of Section 3, Hoeffding’s inequality presented in Theorem 3.4 is an important
ingredient of these symmetrization arguments. It is also a classical result whose proof
can be found for instance in [23].

Section 4 contains the one-variate version of our main result about the supremum
of the integrals of a class F of functions with respect to a normalized empirical measure
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together with an equivalent statement about the tail distribution of the supremum of a
class of random sums defined with the help of a sequence of independent and identically
distributed random variables and a class of functions F with some nice properties. These
results are formulated in Theorems 4.1 and 4.1’. Also a Gaussian version of them is
presented in Theorem 4.2 about the distribution of the supremum of a Gaussian random
field with some appropriate properties. The content of these results can be so interpreted
that if we take the supremum of random integrals or of random sums determined by a
nice class of functions F in the way described in Section 4, then the tail distribution of
this supremum satisfies an almost as good estimate as the ‘worst element’ of the random
variables taking part in this supremum. I also discussed a result in Example 4.3 which
shows that some rather technical conditions of Theorem 4.1 cannot be omitted.

The most important condition in Theorem 4.1 was that the class of functions F
we considered in it is Lo-dense. This property was introduced before the formulation of
this result. One may ask whether one can prove a better version of this result, where
we prove similar bound with a different, possibly larger class of functions F. It is worth
mentioning that Talagrand proved results similar to Theorem 4.1 for different classes of
functions F in his book [52]. These classes of functions are very different of ours, and
Talagrand’s results seem to be incomparable with ours. I return to this question later.

In the above mentioned results we have imposed the condition that the class of
functions F or what is equivalent, the set of random variables whose supremum we
estimate is countable. In the proofs this condition is really exploited. On the other
hand, in some important applications we also need results about the supremum of a
possibly non-countable set of random variables. To handle such cases I introduced the
notion of countably approximable classes of random variables and proved that in the
results of this work the condition about countability can be replaced by the weaker
condition that the supremum of countably approximable classes is taken. R. M. Dudley
worked out a different method to handle the supremum of possibly non-countably many
random variables, and generally his method is applied in the literature. The relation
between these two methods deserves some discussion.

Let us first recall that if we take a class of random variables S, t € T, indexed
by some index set T" and consider a set A, measurable with respect to the o-algebra
generated by the random variables S;, ¢ € T, then there exists a countable subset
T" =T'(A) C T such that the set A is measurable also with respect to the smaller o-
algebra generated by the random variable S;, t € T'. Besides, if the finite dimensional
distributions of the random variables Sy, ¢t € T', are given, then by the results of classical
measure theory the probability of the events measurable with respect to the o-algebra
generated by these random variables S;, t € T', is also determined. But we cannot get
the probability of all events we are interested in such a way. In particular, if 7" is a non-

countable set, then the events {w: sup S¢(w) > u p are non-measurable with respect to
teT
the above o-algebra, and generally we cannot speak of their probabilities. To overcome

this difficulty Dudley worked out a theory which enabled him to work also with outer
measures. His theory is based on some rather deep results of the analysis. It can be
found for instance in his book [13].
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I restricted my attention to such cases when after the completion of the prob-
ability measure P we can also speak of the real (and not only outer) probabilities

P (sup Sy > u) I tried to find appropriate conditions under which these probabilities
teT
really exist. More explicitly, we are interested in the case when for all © > 0 there

exists some set A = A, measurable with respect to the o-algebra generated by the
random variables S;, ¢ € T, such that the symmetric difference of the sets A, and

{w: sup Si(w) > u} is contained in a set measurable with respect to the o-algebra gen-
teT
erated by the random variables Sy, t € T, which has probability zero. In such a case

the probability P (sup Sy > u) can be defined as P(A,). This approach led me to the
teT
definition of countable approximable classes of random variables. If this property holds,

then we can speak about the probability of the event that the supremum of the random
variables we are interested in is larger than some fixed value. I proved a simple but
useful result in Lemma 4.4 which provides a condition for the validity of this property.
In Lemma 4.5 I proved with its help that an important class of functions is countably
approximable. It seems that this property can be proved for many other interesting
classes of functions with the help of Lemma 4.4, but I did not investigate this question
in more detail.

The problem we met here is not an abstract, technical difficulty. Indeed, the dis-
tribution of such a supremum can become different if we modify each random variable
on a set of probability zero, although the finite dimensional distributions of the ran-
dom variables we consider remain the same after such an operation. Hence, if we are
interested in the probability of the supremum of a non-countable set of random vari-
ables with described finite dimensional distributions we have to describe more explicitly
which version of this set of random variables we consider. It is natural to look for such
an appropriate version of the random field S, t € T, whose ‘trajectories’ Si(w), t € T,
have nice properties for all elementary events w € ). Lemma 4.4 can be interpreted as
a result in this spirit. The condition given for the countable approximability of a class
of random variables at the end of this lemma can be considered as a smoothness type
condition about the ‘trajectories’ of the random field we consider. This approach shows
some analogy to some important problems in the theory of stochastic processes when
a regular version of a stochastic process is considered and the smoothness properties of
its trajectories are investigated.

In our problems the version of the set of random variables S;, t € T', we shall work
with appears in a simple and natural way. In these problems we have finitely many
random variables &1,...,&, at the start, and all random variables S;(w), t € T, we
are considering can be defined individually for each w as a function of these random
variables &1 (w), ..., & (w). We take the version of the random field Sy(w), t € T, we
get in such a way and want to show that it is countably approximable. In Section 4
this property is proved in an important model, probably in the most important model
in possible applications we are interested in. In more complicated situations when
our random variables are defined not as a function of finitely many sample points, for
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instance in the case when we define our set of random variables by means of integrals
with respect to a Gaussian random field it is harder to find the right regular version of
our sets of random variables. In this case the integrals we consider are defined only with
probability 1, and it demands some extra work to find their right version. But in the
problems we study in this work such an approach is satisfactory for our purposes, and
it is simpler than that of Dudley; we do not have to follow his rather difficult technique.
On the other hand, I must admit that I do not know the precise relation between the
approach of this work and that of Dudley.

In Section 4 the notion of L,-dense classes, 1 < p < 0o, also has been introduced.
The notion of Lo-dense classes appeared in the formulation Theorems 4.1 and 4.1’. It can
be considered as a version of the e-entropy, discussed at many places in the literature.
On the other hand, there seems to be no standard definition of the e-entropy. The
term of Lo-dense classes seemed to be the appropriate object to work with in this work.
To apply the results related to Ls-dense classes we also need some knowledge about
how to check this property in concrete models. For this goal I discussed here Vapnik—
Cervonenkis classes, a popular and important notion of modern probability theory.
Several books and papers, (see e.g. the books [13], [44], [53] and the references in them)
deal with this subject. An important result in this field is Sauer’s lemma, (Lemma 5.1)
which together with some other results, like Lemma 5.3 imply that several interesting
classes of sets or functions are Vapnik—Cervonenkis classes.

I put the proof of these results to the Appendix, partly because they can be found in
the literature, partly because in this work Vapnik-Cervonenkis classes play a different
and less important role than at other places. Here Vapnik—Cervonenkis classes are
applied to show that certain classes of functions are Ls-dense. A result of Dudley
formulated in Lemma 5.2 implies that a Vapnik-Cervonenkis class of functions with
absolute value bounded by a fixed constant is an L;, and as a consequence, also an
Lo-dense class of functions. The proof of this important result which seems to be less
known even among experts of this subject than it would deserve is contained in the main
text. Dudley’s original result was formulated in the special case when the functions we
consider are indicator functions of some sets. But its proof contains all important ideas
needed in the proof of Lemma 5.2.

Theorem 4.2, which is the Gaussian counterpart of Theorems 4.1 and 4.1" is proved
in Section 6 by means of a natural and important technique, called the chaining argu-
ment. This means the application of an inductive procedure, in which an appropriate
sequence of finite subsets of the original set of random variables is introduced, and a
good estimate is given on the supremum of the random variables in these subsets by
means of an inductive procedure. The subsets became denser subsets of the original
set of the random variables at each step of this procedure. This chaining argument is a
popular method in certain investigation. It is hard to say with whom to attach it. Its
introduction may be connected to some works of R. M. Dudley. It is worth mentioning
that Talagrand [52] worked out a sharpened version of it which yields in the study of
certain problems a sharper and more useful estimate. But it seems to me that in the
study of the problems of this work this improvement has a limited importance, it turns
out to be useful in the study of different problems.
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Theorem 4.2 can be proved by means of the chaining argument, but this method is
not strong enough to supply a proof of Theorem 4.1. The chaining argument provides
only a weak estimate in this case, because there is no good estimate on the probability
that a sum of independent random variables is greater than a prescribed value if these
random variables have too small variances. As a consequence the chaining argument
supplies a much weaker estimate than the result we want to prove under the conditions
of Theorem 4.1. Lemma 6.1 contains the result the chaining argument yields under
these conditions. In Section 6 still another result, Lemma 6.2 is formulated. It can be
considered as a special case of Theorem 4.1 where only the supremum of partial sums
with small variances is estimated. It is also shown that Lemmas 6.1 and 6.2 together
imply Theorem 4.1. The proof is not difficult, despite of some non-attractive details.
It has to be checked that the parameters in Lemmas 6.1 and 6.2 can be fitted to each
other.

Lemma 6.2 is proved in Section 7. It is based on a symmetrization argument.
This proof applies the ideas of a paper of Kenneth Alexander [2], and although its
presentation is different from Alexander’s approach, it can be considered as a version
of his proof.

A similar problem should also be mentioned at this place. M. Talagrand wrote a
series of papers about concentration inequalities, (see e.g. [50] or [51]), and his research
was also continued by some other authors. I would mention the works of M. Ledoux [27]
and P. Massart [41]. Concentration inequalities give a bound about the difference be-
tween the supremum of a set of appropriately defined random variables and the expected
value of this supremum. They express how strongly this supremum is concentrated
around its expected value. Such results are closely related to Theorem 4.1, and the
discussion of their relation deserves some attention. A typical concentration inequality
is the following result of Talagrand [51].

Theorem 18.1. (Theorem of Talagrand). Consider n independent and identically
distributed random variables &1, ..., &, with values in some measurable space (X, X).
Let F be some countable family of real-valued measurable functions of (X, X) such that

1 flloe < b < o0 for every f € F. Let Z = sup > f(&) and v = E | sup > f2(&)
feFi=1 feFi=1

Then for every positive number x,

1 x xb
P(Z > FEZ+ x) SKexp{—Fglog (1—|—7)}

and

113'2

where K, K', ¢1 and ¢y are universal positive constants. Moreover, the same inequalities
hold when replacing Z by —Z.

Theorem 18.1 yields, similarly to Theorem 4.1, an estimate about the distribution of
the supremum for a class of sums of independent random variables. It can be considered
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as a generalization of Bernstein’s and Bennett’s inequalities when the distribution of
the supremum of partial sums (and not only the distribution of one partial sum) is
estimated. A remarkable feature of this result is that it assumes no condition about
the structure of the class of functions F (like the condition of Ly-dense property of the
class F imposed in Theorem 4.1.) On the other hand, the estimates in Theorem 18.1

n
contain the quantity EZ = E | sup > f(&) |. Such an expectation of some supremum
feEFi=1
appears in all concentration inequalities. As a consequence, they are useful only if we
can bound the expected value of the supremum we want to estimate. This is a hard
question in the general case. There is a paper [16] which provides a useful estimate
about the expected value of the supremum of random sums under the conditions of
Theorem 4.1. But I preferred a direct proof of this result. Let me remark that because
of the above mentioned concentration inequality the condition u > const.alogl/ 2%
with some appropriate constant which cannot be dropped from Theorem 4.1 can be
interpreted so that under the conditions of Theorem 4.1 const. alogl/ 22

= is an upper
bound for the expected value of the supremum we are studying.

It is also worth mentioning Talagrand’s work [52] which contains several interesting
results similar to Theorem 4.1. But despite their formal similarity, they are essentially
different from the results of this work. This difference deserves some special discussion.

Talagrand proved in [52] by working out a more refined, better version of the chain-

ing argument a sharp upper bound for the expected value E sup &; of the supremum of
teT

countably many (jointly) Gaussian random variable with zero expectation. This result is
sharp. Indeed, Talagrand proved also a lower bound for this expected value, and the pro-
portion of his upper and lower bound is bounded by a universal constant. By applying

N

similar arguments he also gave an upper bound for E sup > f(&) in Proposition 2.7.2
fEF k=1

of his book, where &1,...,&n is a sequence of independent, identically distributed ran-

dom variables with some known distribution p, and F is a class of functions with some
nice properties. Then he proved in Chapter 3 of his book some estimates with the help
of this result for certain models which solved some problems that could not be solved
with the help of the original version of the chaining argument.

Let us make some short comparison between the results of these work and those of
Talagrand. Talagrand investigated in his book [52] the expected value of the supremum
of partial sums, while we gave an estimate on its tail distribution. But this is not a
great difference. Talagrand’s results also give an estimate on the tail distribution of the
supremum by means of concentration inequalities, and actually his proofs also provide
a direct estimate for the tail distribution we are interested in without the application of
these results. The main difference between the two works is that Talagrand’s method
gives a sharp estimate for different classes of functions F.

Talagrand could prove sharp results in such cases when the class of functions F for
which the supremum is taken consists of smooth functions. An example for such classes
of function which he thoroughly investigated is the class of Lipschitz 1 functions. On
the other hand we can give sharp results in such cases when F consists of non-smooth
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functions. (See Example 5.5.)

This difference in the conditions of the results in these two books is not a small
technical detail. Talagrand heavily exploited in his proof that he worked with such
classes of functions F from which he could select such a subclass of functions of relatively
small cardinality which is dense in F not only in the Ls(p)-norm with the probability
measure!y he was working with, but also in the supremum norm. He needed this
property, because this enabled him to get sharp estimates on the tail distribution of
the differences of functions he had to work with by means of the Bernstein’s inequality.
He needed such estimates to apply (a refined version of) the chaining argument. On
the other hand, we considered such classes of functions F which may have no small
subclasses which are dense in F in the supremum norm. I would characterize the
difference between the results of the two works in the following way. Talagrand proved
the sharpest possible estimates which can be obtained by a refinement of the chaining
argument, while our main problem was to get sharp estimates also in such cases when
the chaining argument does not work.

The main results of this work are presented in Section 8. A weaker version of
Theorem 8.3 about an estimate of the distribution of a degenerate U-statistic was first
proved in a paper of Arcones and Giné in [3]. The result of Theorem 8.3 in the present
form is proved in my paper [36]. Its version about multiple integrals with respect to
a normalized empirical measure formulated in Theorem 8.1 is proved in [32]. This
paper contains a direct proof. On the other hand, Theorem 8.1 can be derived from
Theorem 8.3 by means of Theorem 9.4 of this paper. Theorem 8.5 is the natural
Gaussian counterpart of Theorem 8.3. The limit theorem about degenerate U-statistics,
Theorem 10.4 (and its version about limit theorems for multiple integrals with respect
to normalized empirical measures, presented in Theorem 10.4" of Appendix C) was
discussed in this work to explain better the relation between degenerate U-statistics (or
multiple integrals with respect to normalized empirical measures) and multiple Wiener—
Ito integrals. A proof of this result based on similar ideas as that discussed here can be
found in [14]. Theorem 6.6 of my lecture note [29] contains such a weakened version of
Theorem 8.5 which does not take into account the variance of the random integral.

Example 8.7 is a natural supplement of Theorem 8.5. It shows that the estimate of
Theorem 8.5 is sharp if only the variance of a Wiener—It6 integral is known. At the end
of Section 13 I also mentioned the results of papers [1] and [26] without proof which also
have some relation to this problem. I discussed mainly the content of [26] and explained
its relation to some results discussed in this work. The proof of these papers apply a
method different of those of this work. It would be interesting to prove them with the
methods discussed here. These papers contain such a refinement of Theorems 8.5 and 8.3
respectively whose estimates depend on some other rather complicated quantities. In
some cases they supply a better estimate. On the other hand, in the problems discussed
here they have a restricted importance because their conditions are hard to check.

Theorems 8.2 and 8.4 yield an estimate about the supremum of (degenerate) U-
statistics or of multiple random integrals with respect to a normalized empirical measure
when the class of kernel functions in these U-statistics or random integrals satisfy some
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conditions. They were proved in my paper [34]. Earlier Arcones and Giné proved a
weaker form of this result in paper [4], but their work did not help in the proof of
the results of this note. They were based on an adaptation of Alexander’s method
to the multivariate case. Theorem 8.6 contains the natural Gaussian counterpart of
Theorems 8.2 and 8.4.

Example 8.8 in Section 8 shows that the condition v < const.no® imposed in
Theorem 8.3 in the case k = 2 cannot be dropped. The paper of Arcones and Giné [3]
contains another example explained by Talagrand to the authors of that paper which
also has a similar consequence. But that example does not provide such an explicit
comparison of the upper and lower bound on the probability investigated in Theorem 8.3
as Example 8.8. Similar examples could be constructed for all £ > 1.

Example 8.8 shows that at high levels only a very weak (and from practical point
of view not really important) improvement of the estimation on the tail distribution of
degenerate U-statistics is possible. But probably there exists a multivariate version of
Bennett’s inequality, i.e. of Theorem 3.2 which provides such an estimate. Moreover,
there is some hope to get a similar strengthened form of Theorems 8.2 and 8.4 (or
of Theorem 4.2 in the one-dimensional case). This question is not investigated in the
present work.

Section 9 deals with the properties of U-statistics. Its first result, Theorem 9.1, is
a rather classical result. It is the so-called Hoeffding decomposition of U-statistics to
the sum of degenerate statistics. Its proof first appeared in the paper [22], but it can be
found at many places. The explanation of this work contains some ideas similar to [49]. I
tried to explain that Hoeffding’s decomposition is the natural multivariate version of the
(trivial) decomposition of sums of independent random variables to sums of independent
random variables with expectation zero plus the sum of the expectations of the original
random variables. Moreover, even the proof of the Hoeffding’s decomposition shows
some similarity to this simple decomposition.

Theorem 9.2 and Proposition 9.3 can be considered as a continuation of the investi-
gation of the Hoeffding’s decomposition in Theorem 9.1. They tell how the properties of
the kernel function of the original U-statistic are inherited in the properties of the kernel
functions of the degenerate U-statistics taking part in its Hoeffding decomposition. In
several applications of Hoeffding’s decomposition we need such results.

The last result of Section 9, Theorem 9.4, enables us to reduce the estimation of
multiple random integrals with respect to normalized empirical measures to the estima-
tion of degenerate U-statistics. This result is a version of Hoeffding’s decomposition,
where multiple integrals with respect to a normalized empirical distribution are decom-
posed to the sum of degenerate U-statistics. Multiple random integrals with respect to
a normalized empirical measure can be simply written as sums of U-statistics, and by
applying the Hoeffding decomposition for each term of these sums we get the desired
decomposition. Theorem 9.4 yields the result we get in such a way. This formula is very
similar to the original Hoeffding decomposition. The main difference between them is
that the coefficients of the degenerate U-statistics in the decomposition of Theorem 9.4
are relatively small. The cancellation effect caused by integration with respect to a
normalized empirical measure is reflected in the appearance of small coefficients in the
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decomposition given in Theorem 9.4. Theorem 9.4 was proved in [34]. The proof given
in this note is essentially different from that of [34].

Theorem 8.1 can be derived from Theorem 8.3 and Theorem 8.2 from Theorem 8.4
by means of Theorem 9.4. The proof of the latter results is simpler. The results of
Sections 10-12 contain the results needed in the proof of Theorem 8.3 and its Gaussian
counterpart Theorems 8.5 and 8.7. The proof of these results is based on good estimates
of high moments of degenerate U-statistics and multiple Wiener—Ito integrals. The
classical proof of the one-variate counterparts of these results is based on a good estimate
of the moment generating function. This method was replaced by the estimate of high
moments, because the moment generating function of a k-fold Wiener—Ito integral is
divergent for k > 3, and this property is also reflected in the behaviour of degenerate U-
statistics. On the other hand, good estimates on high moments can replace the estimate
of the moment generating function. A good estimate can be given for all moments of
a Wiener—Ito integral, while we have a good estimate only on not too high moments of
degenerate U-statistics. This has the consequence that we can give a good estimate on
the tail distribution of degenerate U-statistic only for not too large values. We met a
similar situation in Section 3 in the study of Bernstein’s and Bennett’s inequality.

I know of two deep methods to study high moments of multiple Wiener—It6 in-
tegrals. Both of them can be adapted to the study of the moments of degenerate
U-statistics. They deserve a more detailed discussion.

The first one is called Nelson’s inequality named after Edward Nelson who published
it in his paper [43]. This inequality simply implies Theorem 8.5 about multiple Wiener—
Ito integrals, although with worse constants. Later Leonhard Gross discovered a deep
and useful generalization of this result which he published in the work Logarithmic
Sobolev inequalities [19]. In that paper Gross compared two Markov processes with the
same infinitesimal operator but with possibly different initial distribution, where the
second Markov process had stationary distribution. He could give a sharp bound on the
Radon—Nikodym derivative of the distribution of the first Markov process with respect
to the (stationary) distribution of the second Markov process at all time 7" on the basis
of the properties of the infinitesimal operator of the Markov processes. With the help
of this result he could prove a more general form of Nelson’s inequality. In particular,
his result may help to prove (a weaker version of) Theorem 8.3 (with worse universal
constants). Let me also remark that Gross’ method works not only in the study of these
problems, but in several hard problems of the probability theory. (See e.g [20] or [27]).
Nevertheless, in the present note I applied a different method, because this seemed to
be more appropriate here.

I applied a method related to the names of Kyoshi Itd6 and Roland L’vovich Do-
brushin. This is the theory of multiple Wiener-It6 integrals with respect to a white
noise. This integral was introduced in paper [24]. It is useful, because every random
variable measurable with respect to the o-algebra generated by the Gaussian random
variables of the underlying white noise with finite second moment can be written as
the sum of Wiener—Ito integrals of different order. Moreover, if only Wiener—It6 inte-
grals of symmetric kernel functions are taken, then this representation is unique. An
important result, the so-called diagram formula, formulated in Theorem 10.2, expresses
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products of Wiener—It6 integrals as a sum of such integrals. This result which shows
some similarity to the Feynman diagrams applied in the statistical physics was proved
in [9]. Actually this paper discussed a modified version of Wiener—It6 integrals which
is more appropriate to study the action of shift operators for non-linear functionals of
a stationary Gaussian field. But these modified Wiener—Ito integrals can be investi-
gated in almost the same way as the original ones. The diagram formula has a simple
consequence formulated in Corollary of Theorem 10.2 of this note. It enables us to
calculate the expectation of products of Wiener—Ito integrals, in particular it yields an
explicit formula about the moments of a Wiener—It6 integral. This result was applied
in the proof of Theorem 8.5, i.e. in the estimation of the tail-distribution of Wiener—Ito
integrals. It6’s formula for multiple Wiener—It6 integrals (Theorem 10.3) was proved
in [24].

The diagram formula has a natural and useful analog both for degenerate U-
statistics and multiple integrals with respect to a normalized empirical measure. They
enable us to express the product of degenerate U-statistics and multiple integrals as
the sum of such expressions. These results enable us to adapt several useful methods
in the study of non-linear functionals of a Gaussian random field to the study of non-
linear functionals of normalized empirical measures. A version of the diagram formula
was proved for degenerate U-statistics in [36] and for multiple random integrals with
respect to a normalized empirical measures in [32]. Let me remark that in the formula-
tion of the result in the work [36] a different notation was applied than in the present
note. In that paper I wanted to formulate version of the diagram formula for U-statistics
with the help of such diagrams which appear in the classical form of diagram formula
presented for Wiener—It6 integrals. I could do this only in a somewhat artificial way.
In this work I formulated this result by introducing first more general diagrams which
may contain some chains. The formulation of the result with the help of such more gen-
eral diagrams seems to be more natural. Let me also remark that the study of results
similar to the diagram formula for Wiener—Ito integrals did not get such an attention
in the literature as it would deserve in my opinion. I know only of one work where
such questions were investigated. It is the paper of Surgailis [46], where a version of the
diagram formula is proved for Poissonian integrals. The Corollary of Theorem 11.2 is
of special interest for us, because it enables us to prove such moment estimates which
are useful in the proof of Theorem 8.3.

It is worth mentioning that the problems about Wiener-It6 integrals are closely
related to the study of Hermite polynomials or to their multivariate version, to the so-
called Wick polynomials. (See e.g. [29] or [40] for the definition of Wick polynomials.)
Appendix C contains the most important properties of Hermite polynomials needed in
the study of Wiener—It6 integrals. In particular, it contains the proof of Proposition C2
which states that the set of all Hermite polynomials is a complete orthogonal system
in the Hilbert space of the functions square integrable with respect to the standard
Gaussian distribution. This result can be found for instance in Theorem 5.2.7 of [48].
In the present proof I wanted to show that this result is closely related to the so-
called moment problem, i.e. to the question when a distribution is determined by its
moments uniquely. This method, with some refinement, can be applied to prove some
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generalizations of Proposition C2 about the completeness of orthogonal polynomials
with respect to more general weight functions.

[to0’s formula creates a relation between Wiener-Ito integrals and Hermite poly-
nomials. The results about multiple Wiener—Ito integrals have their analogs for Wick
polynomials. Thus for instance there is a diagram formula for the product of Wick
polynomials which also has some interesting generalizations. Such questions are stud-
ied both in probability theory and statistical physics, see [40] and [45]. The relation
between Wiener-It6 integrals and Hermite polynomials also has a natural counterpart
in the study of other multiple random integrals. The so-called Appell polynomials,
(see [47]), appeared in such a way.

Theorems 8.3, 8.5 and 8.7 were proved on the basis of the results in Sections 10—
12 and in Section 13. Section 13 also contains the proof of a multivariate version
of Hoeffding’s inequality, formulated in Theorem 13.3. This result is needed in the
symmetrization argument applied in the proof of Theorem 8.4. A weaker version of it
(an estimate with a worse constant in the exponent) which would be satisfactory for
our purposes would simply follow from a classical result, called Borell’s inequality. But
since this result is not discussed in this note, and I was interested in a proof which yields
the best estimate in the exponent of this estimate I have chosen another proof, given
in [35] which is based on the results of Sections 10-12. Later I have learned that this
estimate is contained in an implicit form also in the paper [6] of A. Bonami.

Sections 14-17 are devoted to the proof of Theorems 8.4 and 8.6. They are based
on a similar argument as their one-variate counterparts, Theorems 4.1 and 4.2. The
proof of Theorem 8.6 about the supremum of Wiener—Ito6 integrals is based, similarly
to the proof of Theorem 4.2 on the chaining argument. In the proof of Theorem 8.4
the chaining argument yields only a weaker result formulated in Proposition 14.1 which
helps to reduce Theorem 8.4 to the proof of Proposition 14.2. In the one-variate case
a similar approach was applied. In that case the proof of Theorem 4.1 was reduced
to that of Proposition 6.2 by means of Proposition 6.1. The next step in the proof
of Theorem 8.4 has no one-variate counterpart. The notion of so-called decoupled U-
statistics was introduced, and Proposition 14.2 was reduced to a similar result about
decoupled U-statistics formulated in Proposition 14.2'.

The adjective ‘decoupled’ in the expression decoupled U-statistic refers to the fact
that it is such a version of a U-statistic where independent copies of a sequence of inde-
pendent and identically distributed random variables are put into different coordinates
of the kernel function. Their study is a popular subject of some mathematicians. In par-
ticular, the main subject of the book [7] is a comparison of the properties of U-statistics
and decoupled U-statistics. A result of de la Pefia and Montgomery—Smith [8] formu-
lated in Theorem 14.3 helps in reducing some problems about U-statistics to a similar
problem about decoupled U-statistics. In this lecture note the proof of Theorem 14.3 is
given in Appendix D. It follows the argument of the original proof, but several steps are
worked out in detail where the authors gave only a very short explanation. Paper [§]
also contains some kind of converse results to Theorem 14.3, but as they are not needed
in the present work, I omitted their discussion.

Decoupled U-statistics behave similarly to the original U-statistics. Besides, some
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symmetrization arguments becomes considerably simpler if we are working with decou-
pled U-statistics instead of the original U-statistics. This can be exploited in some
investigations. For example the proof of Proposition 14.2’ is simpler than a direct proof
of Proposition 14.2. On the other hand, Theorem 14.3 enables us to reduce the proof
of Proposition 14.2 to that of Proposition 14.2’, and we have exploited this possibility.

The proof of Theorem 8.4 was reduced to that of Proposition 14.2" in Section 14.
Sections 15-17 deal with the proof of this result. It was proved in my paper [34]. The
proof is similar to that of its one-variate version, Proposition 6.2, but some additional
difficulties have to be overcome. The main difficulty appears when we want to find
the multivariate analog of the symmetrization argument which could be carried out by
means of the Symmetrization Lemma, Lemma 7.1 and Lemma 7.2 in the one-variate
case.

In the multivariate case Lemma 7.1 is not sufficient for us. We work instead of
it with a generalized version of this result, formulated in Lemma 15.2. The proof of
Lemma 15.2 is not hard. The real difficulty arises when we want to apply it in the
proof of Proposition 14.2'. We have to check its condition given in formula (15.3),
and this means in this case a non-trivial estimation of some complicated conditional
probabilities. This is the hardest part in the proof of Proposition 14.2’.

Proposition 14.2" was proved by means of an inductive procedure formulated in
Proposition 15.3, which is the multivariate analog of Proposition 7.3. A basic ingredient
of both proofs was a symmetrization argument. But while this symmetrization argument
could be simply carried out in the one-variate case, its adaptation to the multivariate
case in the proof of Theorem 15.3 was a most serious problem. To overcome this
difficulty another result was formulated in Proposition 15.4. Propositions 15.3 and 15.4
were proved simultaneously by means of an appropriate inductive procedure. Their
proofs were based on a refinement of the arguments in the proof of Proposition 7.3. We
also had to apply Theorem 13.3, a multivariate version of Hoeffding’s inequality, and
some properties of the Hoeffding decomposition of U-statistics proved in Section 9.
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Appendix A.

The proof of some results about Vapnik—Cervonenkis classes.

Proof of Theorem 5.1. (Sauer’s lemma). This result has several different proofs. Here
I write down a relatively simple proof of P. Frankl and J. Pach which appeared in [15].
It is based on some linear algebraic arguments.

The following equivalent reformulation of Sauer’s lemma will be proved. Let us
take a set S = S(n) consisting of n elements and a class £ of subsets of S consisting
of m elements Ey,...,E,, C S. Assume that m > mg + 1 with mg = mg(n, k) =
(5)+ (1) +---+(.",)- Then there exists a set F C S of cardinality k which is shattered
by the class of sets £. Actually, it is enough to show that there exists a set F' of
cardinality greater than or equal to £ which is shattered by the class of sets £, because
if a set has this property, then all of its subsets have it. This latter statement will be

proved.

To prove this statement let us first list the subsets Xo,..., X,,, of the set S of
cardinality less than or equal to £ — 1, and correspond to all sets E; € £ the vector
ei = (€i1,---,€im), 1 <i<m, with elements

{1 if X, C B,
eij_

) 1<i<m, and 1 <5 < my.
0 leJZE’L

Since m > myg, the vectors eq,...,e,, are linearly dependent. Because of the
definition of the vectors e;, 1 < ¢ < m, this can be expressed in the following way:
There is a non-zero vector (f(F1),..., f(E;)) such that

Z f(E;) =0 foralll<j<my. (A1)
E;: E;DX,

Let F', FF C S, be a minimal set with the property

Y f(E)=a#0. (A2)

Such a set F really exists, since every maximal element of the family {F;: 1 < i <
m, f(E;) # 0} satisfies relation (A2). The requirement that F' should be a minimal set
means that if F' is replaced by some H C F';, H # F, at the left-hand side of (A2), then
this expression equals zero. The inequality |F'| > k holds because of relation (A1) and
the definition of the sets X;.

Introduce the quantities

for all H C F.
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Then Zp(F) = «, and for any set of the form H = F'\ {z}, z € F,

Ze(H)= Y fE)= > fE)- Y fE)=0-a=-a

E;: E;NF=H E;: E;OH E;: E;OF

because of the minimality property of the set F'.
Moreover, the identity

Zp(H) = (—1)’a for all H C F such that |H| =|F|—p, 0 <p < |F|. (A3)

holds. To show relation (A3) observe that

p

Zp(H) = Z f(Ei) = Z(—l)j Z Z f(E:)  (A4)

E;: E;NF=H j=0 G: HCGCF, |G|=|H|+j E:: E;2G

for all sets H C F with cardinality |H| = |F| — p. Identity (A4) holds, since the term
l

f(E;) is counted at the right-hand side of (A4) > (—1)7 (;) = (1 —1)! = 0 times if

j=0
E;NF = G with some H C G C F with |G| = |H| + [ elements, 1 < [ < p, while
in the case F; N F = H it is counted once. Relation (A4) together with (A2) and the
minimality property of the set F' imply relation (A3).

It follows from relation (A3) and the definition of the function Zp(H) that for all
sets H C F there exists some set F; such that H = E; N F, i.e. F is shattered by £.
Since |F'| > k, this implies Theorem 5.1.

Proof of Theorem 5.3. Let us fix an arbitrary set F' = {z1,...,241} of the set X,
and consider the set of vectors Gi(F) = {(g(z1),...,9(xk+1)): g € G} of the k + 1-
dimensional space R**1. By the conditions of Theorem 5.3 Gy(F) is an at most k-

dimensional subspace of R¥*1. Hence there exists a non-zero vector a = (ay,...,ax 1)
k+1

such that ) ajg(xz;) = 0 for all g € G,. We may assume that the set A = A(a) =
i=1

{j: a; < 0,1 < j < k+ 1} is non-empty, by multiplying the vector a by —1 if it is

necessary.

Thus the identity

Z a;g(x;) = Z (—aj)g(x;), for all g € Gx (A5)

JEA JE{1,... . k+1}\A

holds. Put B = {x;: j € A}. Then B C F, and F'\ B # {x: g(z) > 0} N F for all
g € Gi. Indeed, if there were some g € Gj, such that F'\ B = {x: g(z) > 0} N F, then
the left-hand side of the equation (A5) would be strictly positive (as a; < 0, g(z;) <0
if j € A, and A # ()) its right-hand side would be non-positive for this g € G, and this
is a contradiction.

The above proved property means that D shatters no set F' C X of cardinality k+1.
Hence Theorem 5.1 implies that D is a Vapnik-Cervonenkis class.
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Appendix B. The proof of the diagram formula for Wiener—It6 integrals.

We start the proof of Theorem 10.2A (the diagram formula for the product of two
Wiener—Ito6 integrals) with the proof of inequality (10.11). To show that this relation
holds let us observe that the Cauchy inequality yields the following bound on the func-
tion F, defined in (10.10) (with the notation introduced there):

F’?(x(l,j)vx(lj’)v (17.7) € Vl(’y)v (27]/) € V2(7))

< /f2(xo¢.y(1,1)a~--733047(1716)) H p(dzz ;)
(2,)€{(2,1),0 (2,1) \Va () (B1)

/92@(2,1)7 e 790(2,1)) H H(dﬂc(z,j))-

(27j)€{(271) 7777 (Zvl)}\V2(7)

The expression at the right-hand side of inequality (B1) is the product of two functions
with different arguments. The first function has arguments z(; ;) with (1, j) € Vi1() and
the second one x5 ;) with (2, ') € V2(v). By integrating both sides of inequality (B1)
with respect to these arguments we get inequality (10.11).

Relation (10.12) will be proved first for the product of the Wiener-It6 integrals of
two elementary functions. Let us consider two (elementary) functions f(x1,...,x) and
g(x1,...,x;) given in the following form: Let some disjoint sets Ay, ..., Ay, p(As) < oo,
1 < s < M, be given together with some real numbers ¢(sq, ..., si) indexed with such
k-tuples (s1,...,s5), 1 <s; < M, 1< j <k, for which the numbers s1,...,s; in a k-
tuple are all different. Put f(z1,...,2%) = c¢(s1,..., sk) on the rectangles Ay, x---x A,
with edges As, indexed with the above k-tuples, and let f(z1,...,zr) = 0 outside
of these rectangles. Take similarly some disjoint sets Bji,..., By, u(By) < oo, 1 <
t < M’, and some real numbers d(ty,...,t;), indexed with such I-tuples (¢1,...,%),
1 <ty <M, 1<j <I for which the numbers t1,...,¢; in an [-tuple are different.
Put g(x1,...,2;1) = d(t1,...,t;) on the rectangles B, x --- x By, with edges indexed
with the above introduced [-tuples, and let g(z1,...,2;) = 0 outside of these rectangles.

Let us take some small number € > 0 and rewrite the above introduced functions

f(z1,...,xx) and g(z1,...,x;) with the help of this number € > 0 in the following way.
M(e)
Divide the sets Ay, ..., Ay to smaller sets Af,..., A5, U AS U A, in such a

way that all sets Af,..., A5, are disjoint, and u(As) < 5 1 <s< M( ). Similarly,

M’ (g) M’

take sets Bf,..., By, U Bf = U By, in such a way that all sets Bf,..., B},
t=1 t=1

are disjoint, and u(Bf) < e, 1 <t < M’(e). Besides, let us also demand that two sets

A and Bf, 1 <s < M(e), 1 <t < M'(e), are either disjoint or they agree. Such a
partition exists because of the non-atomic property of measure u. The above defined
functions f(x1,...,xx) and g(z1,...,2;) can be rewritten by means of these new sets
A5 and Bj. Namely, let f(z1,...,2%) = c°(s1,...,5%) on the rectangles A5 x---x A5
with 1 <s; < M(e), 1 < j <k, with different indices s1, ..., s, where ¢*(s1,...,s,) =
c(p1, ..., pr) with those indices (p1,...,px) for which A x---x A5 C A, x---x Ay,
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The function f disappears outside of these rectangles. The function g(z1,...,x;) can be
written similarly in the form g(z1,...,2;) = d°(t1,...,t;) on the rectangles Bf x---x Bf
with 1 <t;; < M'(e), 1 <j <, and different indices, ¢1,...,t;. Besides, the function
g disappears outside of these rectangles.

The above representation of the functions f and g through a parameter ¢ is useful,
since it enables us to give a good asymptotic formula for the product k!Z, »(f)I!'Z,,(g)
which yields the diagram formula for the product of Wiener—It6 integrals of elementary
functions with the help of a limiting procedure ¢ — 0.

Fix a small number € > 0, take the representation of the functions f and g with its
help, and write

K Zun(DUZui(9) = D Zy(e) (B2)
veT'(k,l)
with
v (3 g g g 13 g
Zy(e) = 3¢ (1, s (b, ot (AS,) g (AZ i (B, ) o (BE),
(B3)
where T'(k,[) denotes the class of diagrams introduced before the formulation of The-
orem 10.2A, and >_7 denotes summation for such k + I-tuples (s1,...,8k,t1,...,t),

1<s; <M(),1<j<kandl <ty <Mf(e),1<j <l for which Aij = ij, if

((1,4),(2,5)) € E(7), Le. if it is an edge of 7, and otherwise all sets A7 and Bi, are

disjoint. (This sum also depends on ¢.) In the case of an empty sum Z, () equals zero.
For all v € I'(k, 1) the expression Z,(¢) will be written in the form

Zy(e) = ZM(e) + 2P (e), ~eT(k,1), (B4)
with ,
ZM(e) =Y (s1,.. . s6)d (B, . 1)
T wwas) I ww(B)
J (LI)EVA() i (2.5)€Va(r) (B5)
11 p(As)
j: (lvj)e{(lvl)7"'7(17k)}\vl('7)
and
.,
ZP(e) =Y (s, s6)d (B, . 1)
g (L) eVi(y) 7' (2,57)€Va ()
[ 11 v (45,) 11 v (B,)
VE (17j)€{(171)""7(17k)}\vl('Y) g’ (2’.7./)6{(2’1)7"'5(2’”}\6‘/2(’Y)

- 11 (4|, (B6)

j: (17.j)€{(171)7"'7(17k)}\vl ('7)
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where Vi (y) and Va(7) (introduced before formula (10.9) during the preparation to the
formulation of Theorem 10.2A) are the sets of vertices in the first and second row of
the diagram v from which no edge starts.

I claim that there is some constant C' > 0 not depending on ¢ such that
2
E <|7|!ZMM|(F7) - zg%)) < Ce forall v e T(k,1) (B7)

with the Wiener-It6 integral with the kernel function F, defined in (10.9), (10.9a) and
(10.10), and

2
E (z@(g)) < Ce forall v € T'(k,1). (BS)

Relations (B7) and (B8) imply relation (10.12) if f and g are elementary functions.
Indeed, they imply that

lim | V' Zy 1y (Fy) — Zy ()|, = 0 for all v € T'(k, 1),

and this relation together with (B2) yield relation (10.12) with the help of a limiting
procedure € — 0.

To prove relation (B7) let us introduce the function

FS(xa ), 2251, (1,7) € Vi(7), (2,5") € Va(v))
= F,(z(15), 22, (1.7) € Vi(7), (2.5') € Va(7))
if 215 € A5, for all (1,7) € Vi(v),
(2,5 € By, for all (2,7") € Va(v)), and
all sets A5, (1,7) € Vi(v), and Bf ,, (2,j) € Va(7) are different.

with the function F, defined in (10.9a) and (10.10), and put
FE(xa ), 22,4, (1,7) € Vi(v), (2,5") € Va(y)) =0  otherwise.

The function FY is elementary, and a comparison of its definition with relation (B5)
and the definition of the function F, yield that

Z0(€) = 111,11 (F). (B9)

The function FY slightly differs from F.,, since the function F., may not disappear in
such points (z(1 jy, 22,5, (1,7) € Vi(7), (2,5") € Va(y)) for which there is some pair
(J,7") with the property z(, ;) € A5, and z( ;1) € B;, with some sets A;, and Bf , such
that Azj = ij/, while £~ must be zero in such points. On the other hand, in the case
7| = max(k,l) — min(k,l), i.e. if one of the sets Vi(y) or Va(v) is empty, F, = FZ,
Zgl) = [7['Z,,,|y|(Fy), and relation (B7) clearly holds for such diagrams ~.
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In the case |y| = max(k,l) — min(k,l) > 0 such an estimate will be proved for the
probability of the set where F, # F which implies relation (B7).
M(e) M’ (g)
Let us define the sets A = |J A% and B = |J B{. These sets A and B do not
t=1

s=1

depend on the parameter £. Besides, u(A) < oo, and pu(B) < oo. Define for all pairs
(Jo,Jo) such that (1,70) € Vi(7), (2,4)) € Va(7) the set

D(jo,j(l)) = {(33(1,3')7513(2,]")7 (1,5) € Vi(), (QJI) € Va(v)):
T(1,50) € Aijo, T(1,5) € ij{) for some s;, and ¢, such that Aijo = ij(l)

r(1,5) € Afor all (1,7) € Vi(y), and (3 ;) € B for all (2,5") € Va(v)}.

Introduce the notation z7 = (z(1 ), (2,;1), (1,7) € Vi(v), (2,5') € Va(y)) and put

koo
D, = {z7: FS(x7) # F,(z7)}. The relation D, C 'Ul 'Ul D(jo, ji) holds, since if
Jj=1j'=
F2(xY) # F,(27) for some vector 7, then it has some coordinates (1, jo) € Vi(v) and
(2,70) € Va(y) such that z(; ;) € A3, and 1 j0) € Bf, with some sets AT = Bj ,

0 (0]

and the relation in the last line of the definition of D(j, j)) must also hold for this
vector x7, since otherwise F,(z,) = 0 = F3(z,). I claim that there is some constant
(' such that

u'vl('Y)'HVQ(”)'(D(jg,j(’))) < Cie for all sets D(jo, j4),

where p!ViI+IV21 denotes the direct product of the measure p on some copies of the

original space (X, X') indexed by (1, ) € Vi(v) and (2, ') € Va(v). To see this relation

one has to observe that > ,u(AijO (B, ) <> en(As ,0) = epu(A). Thus the set
As  =B¢ 7o !

Pt
J
0 Jo

D(jo, j}) can be covered by the direct product of a set whose p measure is not greater
than eu(A) and of a rectangle whose edges are either the set A or the set B.

The above relations imply that
M|V1(7)|+|V2(7)|(D7) < Oge (B10)

with some constant Cy > 0.

Relation (B9), estimate (B10), the property c) formulated in Theorem 10.1 for
Wiener-It6 integrals and the observation that the function F., = F.(f, g) is bounded in
supremum norm if f and g are elementary functions imply the inequality

2 2
B (12 (F) = Z0(0)) = WIPE (2 (Fy = F£))* < WIIF, - 53
< KM|V1(7)|+|V2(7)I(D7) < Ce.
This means that relation (B7) holds.
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2
To prove relation (B8) write £ <Z§2)(5)> in the following form:

2 T Y -
E<Z<2> ): E(51, 1) (e 8 (B, 50 (T
v (8) Z Z c (517 75k)d (tlv 7tl)c (Sla 7S]€)d (tla 7tl) (Bll)
EU(Sl,...,Sk,tl,...,tl,gl,...,gk,fl,...,tl)
with
U(Sl,...,Sk,tl,...,tl,gl,...,§k,1?1,...,fl)

= I ma) II wwB)

7 (L) EVi(y) 3" (2,5")€Va(v)
J: (lvj)evl(fY) j/: (27.7/)6‘/2(7)
I1 o (45 11 pow (B7,)
J: (1aj)€{(171)7-~~5(17k)}\V1(’Y) J' (Q,j/)G{(Q,l),...,(2,l)}\€V2(’Y)

- I 45

j: (lvj)e{(171)a""(17k)}\vl('7)

[ 11 v (A 11 o (BE,)
70 (L) e{(1,1),...,(LE) ]\ Vi (V) 7:(2,7)€{(2,1),...,(2,)}\eVa()

- 1 45 (B12)

72 (L) e{(1,1),...,(L,E) \Vi(v)

The double sum Y7 7 in (B11) has to be understood in the following way. The first
summation is taken for vectors (si,..., Sk, t1,...,%;), and these vectors take such values
which were defined in Y7 in formula (B3). The second summation is taken for vectors
(81,...,8k,t1,...,1;), and again with values defined in the summation >_".

Relation (B8) will be proved by means of some estimates about the expectation
of the above defined random variable U(-) which will be presented in the following
Lemma B. Before its formulation I introduce the following Properties A and B.

Property A. A sequence si,...,85,t1,...,t1,81,...,8%,t1,...,t;, with elements 1 <
$j,87 < M(e), for 1 < 4,7 <k, and 1 < t;,ty < M'(e) for 1 < j,7 <1, satisfies
Property A (depending on a fixed diagram ~v and number € > 0) if the sequences of sets
{45, 87, (1,7) € Vi(7),(2,7") € Va(v)} and {45, Bf ,(1,]) € Vi(7),(2,7) € Va(7)}

agree. (Here we say that two sequences agree if they contain the same elements in a
possibly different order.)

Property B. A sequence si,...,Sk,t1,...,t1,81,...,8k,t1,...,1;, with elements 1 <
$j, 85 < M(e), for 1 < 3,7 <k, and 1 < tj,ty < M'(e) for 1 < j.7 <1, satisfies
Property B (depending on a fixed diagram v and number € > 0) if the sequences of sets

{45, Br,, (L) € {1, D), ... . (LE\Vi(7), (2,5) €{(2,1),.... (2D} \ Va(1)}
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and
{45, Bi,, (LD € {(L1),....(LEI\Vi(9), (2,7) €{(2,1),..., (2, D)} \ Va(7)}

have at least one common element.

(In the above definitions two sets A% and Bf are identified if AS = B;.)
Now I formulate the following

Lemma B. Let us consider the function U(-) introduced in formula (B12). Assume that
its arquments $1,...,8k,t1,...,t1,81,...,8k,t1,...,t; are chosen in such a way that the
function U(-) with these arguments appears in the double sum >." > in formula (B11),
ie. Ay = B, if ((1,4),(2,5) € E(v), otherwise all sets AS and Bi, are disjoint,

and an analogous statement holds if the coordinates s1, ..., sk, t1,...,t; are replaced by
51,...,§k,?,?1,...,fl. Then
EU(Sl,...,Sk,tl,...,tl,gl,...,gk,fl,...,fﬂ =0 (Bl?))

if the sequence of the arguments in U(-) does not satisfies either Property A or Prop-
erty B.

If the sequence of the arguments in U(-) satisfies both Property A and Property B,
then

‘EU(Sl,...,Sk,tl,...,tl,gl,...,Ek,fh...,tl)’
/
< = T (A2 (A2 B2, (B2, )

with some appropriate constant C' = C(k,l) > 0 depending only on the number of
variables k and | of the functions f and g. The prime in the product H’ at the right-
hand side of (B14) means that in this product the measure p of those sets A5, AZ,
ij, and ij/ are considered, whose indices are listed among the arguments sj, 55,15

(B14)

or ty of U(+), and the measure pu of each such set appears exactly once. (This means
e.g. that if Aij = ij/ or Aij = Bf  for some indices j and j' or 7, then one of the
J
terms between pu(Ag)) and u(ij,) or p(Bs ) is omitted from the product. For the sake
J

of definitiveness let us preserve the set u(A3,) in such a case.)

Remark. The content of Lemma B is that most terms in the double sum in formula (B11)
equal zero, and even the non-zero terms are small.

The proof of Lemma B. Let us prove first relation (B13) in the case when Property A
does not hold. It will be exploited that for disjoint sets the random variables py (As)
and pw (By) are independent, and this provides a good factorization of the expectation
of certain products. Let us carry out the multiplications in the definition of U(-) in
formula (B12), and show that each product obtained in such a way has zero expecta-
tion. If Property A does not hold for the arguments of U(-), and also the arguments
S1y.vvySkot1, ...y t1,81,..., 8k, t1,...,1; satisfy the remaining conditions of Lemma B,
then each product we consider contains a factor uw (A5, ), (1,j0) € Vi(y), which is
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independent of all those terms in this product which are in the following list: iy (AS))
with some j # jo, 1 < j < k, or pw(Bf,), 1 < j < I, or pw (AS,) with (1,]) € Vi(), or
pw (B ) with (2,7) € Va(7y). We will show with the help of this property that the ex-
pectatijon of each term has a factorization with a factor either of the form Epp (A*‘;j0 )=0
or £ MW(A‘ZjO )3 = 0, hence it equals zero. Indeed, although the above properties do not
exclude the appearance of such a pair of arguments A%, (L7 e {(1,1), ..., (1L, E)\Vi(y)
and Bf, (2,7) € {(2,1),...,(2,0)} \ Va(7) in the product for which Aj, = B} = Ag |
and in such a case a term of the form E,uW(A;O) will not appear in the product, but if
this happens, then the product contains a factor of the form EMW(A§j0)3 = 0. Hence
an appropriate factorization of each term of FU(-) contains either a factor of the form
E,uW(A;O) =0or EuW(AijO)?’ = 0 if U(-) does not satisfy Property A.

To finish the proof of relation (B13) it is enough consider the case when the ar-
guments of U(+) satisfy Property A, but they do not satisfy Property B. The validity
of Property A implies that the sets {Af ,j € Vi} U {ij,, j" € Vo} and {A5, j €

Vi Uu{Bs , j' € Vo} agree. The conditions of Lemma B also imply that the elements of
J

these sets are such sets which are disjoint of the sets A, B, AZ and Bf | with indices

(Lj)a (17.?) S {<17 1)7 s (17 k)} \ Vl(’}/) and (27.7/)7 (277) S {(27 1)7 R (27 l)} \ VQ(’}/) If

Property B does not hold, then the latter class of sets can be divided into two sub-

classes in such a way that the elements in different subclasses are disjoint. The first
subclass consists of the sets A7 and ij,, and the second one of the sets AZ and

Bf = with indices such that (1,7),(1,7) € {(1,1),...,(1,k)} \ Vi(y) and (2,5'),(2,7) €
{(2,1),...,(2,0)} \ Va(y). These facts imply that EU(-) has a factorization, which con-
tains the term

E [ | 11 pw (AS,) 11 pw (BE,)

J: (Lj)e{(Ll)’“'v(l,k)}\Vl(7) J' (2,j’)E{(Q,l),..4,(2,l)}\€V2(’y)

- 11 uz)| =o.

g (Li)e{(1,1),....,(LE) I\ Vi(y)

hence relation (B13) holds also in this case. The last expression has zero expec-
tation, since if we take such pairs A‘;j,Bf,' for the sets appearing in it for which
J

that ((1,7),(2,5")) € E(y), i.e. these vertices are connected with an edge of v, then
Aij = Bj in a pair, and elements in different pairs are disjoint. This observation al-

lows a faétorization in the product whose expectation is taken, and then the identity
Epw (A3)) ,uW(ij,) = p(A;,) implies the desired identity.

To prove relation (B14) if the arguments of the function U(-) satisfy both Prop-
erties A and B consider the expression (B12) which defines U(-), carry out the term
by term multiplication between the two differences at the end of this formula, take ex-
pectation for each term of the sum obtained in such a way and factorize them. Since
Euw (A)? = u(A), Epw (A)* = 3u(A)? for all sets A € X, u(A) < oo, some calculation
shows that each term can be expressed as constant times a product whose elements
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are those probabilities p(AS) and p(B§) or their square which appear at the right-hand
side of (B14). Moreover, since the arguments of U(-) satisfy Property B, there will be
at least one term of the form pu(A%)? in this product. Since u(A%)? < eu(AZ), these
calculations provide formula (B14). Lemma B is proved.

Relation (B11) implies that

E<Z<2> ) < K> 'S IEUGs1, . skttt SiFr, )| (BIS)

with some appropriate K > 0. By Lemma B it is enough to sum up only for such terms

U(:) in (B15) whose arguments satisfy both Properties A and B. Moreover, each such

term can be bounded by means of inequality (B14). Let us list the sets A7 , AZ B, By,
J

appearing in the upper bound at the right-hand side of (B14) for all functions U(-)
taking part in the sum at the right-hand side of (B15). Since all fixed sequences of

the sets AS and Bj appear less than C(k, ) times with an appropriate constant C(k, 1)
M(e)

depending only on the order k and [ of the integrals we are considering, and > pu(AS)+
s=1
M'(e)
> w(Bf) = pu(A) + u(B) < 0o, the above relations imply that
t=1
k+1
E(Z(Q) ) <Clsz B)) < Ce.

Hence relation (B8) holds.

To prove Theorem 10.2A in the general case take for all pairs of functions f € H,, 1
and g € H,; two sequences of elementary functions f,, € ﬁu,k and g, € 7-_[,”, n =
1,2,..., such that ||f, — f|l2 = 0 and ||g,, — g|l2 — 0 as n — oco. Let us introduce the
notation F,(f,g) = F, if the function F is defined in formulas (10.9a) and (10.10) with
the help of the functions f and g. It is enough to show that

E\RZ, (/) Z,:(9) — K\ Z, (o) Z,0(gn)] = 0 as n — oo, (B16)
and

VNE | Zp 1 (B (£,9)) = Zpjy (B (Frs 90))| = 0 asm— 00 for all v € T'(k, 1),
(B17)
since then a simple limiting procedure n — oo, and the already proved part of the
theorem for Wiener—It6 integrals of elementary functions imply Theorem 10.2A.

To prove relation (B16) write

EIR\Z, p, k()1 Z11(9) = K Z s (fr) U Zy0,0(gn)|
< KB Zup (1) Z0i(9 = 90)| + ElZu i (f = fn) Zpi(gn)) |

< B ((BZ20(0) " (BZ2 109 = 9))* + (BZ2,(f = 1) (BZE4(90)))
< RIY2 (I fl12llg = gallz + 11 = Fall2llgnlz)
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Relation (B16) follows from this inequality with a limiting procedure n — oc.
To prove relation (B17) write

|7|'E |Zu |’y\ (f? )) M |’Y\< (fnagn))‘
< |7|'E |Zu |’Y| (f?g gn ‘ + h/"El |’Y‘ (f - fn7gn))|

< (B2 (B (g —90) + I (B2 (B F — fu0)
< (W2 (I (Fr9 = g)lllo + B (f = fasgn)ll2)

and observe that by relation (10.11) ||F,(f,9 — gn)ll2 < || fll2llg — gnll2, and ||F,(f
frrgn)llz < IIf = fall2llgnll2- Hence

’7"E ‘Zu |’y| (fv )) N |’Y|( W(fnygn))|
< (WD (£ 1l2lg = gnll2 + 1f = Fall2llgnll2) -

1/2

The last inequality implies relation (B17) with a limiting procedure n — oo. Theorem
10.2A is proved.

Appendix C. The proof of some results about Wiener—Ito integrals.

First I prove Itd’s formula about multiple Wiener—It6 integrals (Theorem 10.3). The
proof is based on the diagram formula for Wiener—Ito6 integrals and a recursive formula
about Hermite polynomials proved in Proposition C. In Proposition C2 I present the
proof of another important property of Hermite polynomials. This result states that
the class of all Hermite polynomials is a complete orthogonal system in an appropriate
Hilbert space. It is needed in the proof of Theorem 10.5 about the isomorphism of
Fock spaces to the Hilbert space generated by Wiener—Ito integrals. At the end of
Appendix C the proof of Theorem 10.4, a limit theorem about degenerated U-statistics
is given together with a version of this result about the limiting behaviour of multiple
integrals with respect to a normalized empirical distribution.

Proposition C about some properties of Hermite polynomials. The functions

2 dk 2
Hi(z) = (=1)ke” /2@6*90 2 k=0,1,2,... (C1)

are the Hermite polynomials with leading coefficient 1, i.e. Hy(z) is a polynomial of
order k with leading coefficient 1 such that

o 1 2
H(x)H;(x e 2dr =0 ifk £l C2
| m@me) = £ 7 (€2
Besides,
/ H(x *mQ/de—k' forallk=0,1,2.... (C2')
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The recursive relation
Hy(z) =xHp_1(x) — (k — 1)Hp_2(x) (C3)

holds for all k =1,2,....

Remark. 1t is more convenient to consider relation (C3) valid also in the case k = 1. In
this case Hq(x) = z, Hp(x) = 1, and relation holds with an arbitrary function H_;(z).

Proof of Proposition C. 1t is clear from formula (C1) that H(x) is a polynomial of order
k with leading coefficient 1. Take [ > k, and write by means of integration by parts

/ Z (o) Hife) =

e /2 dx—/ —Hk )(— 1)ld—l6_12/2 dx
dat

1 d oy d! —2?/2

Successive partial integration together with the identity (]Z‘E—kkH k(z) = k! yield that

k
—a:2/2 — I l— —z2/2
/ Hy(z)H(z )\/2_ dx = k;/ \/ﬂ —DR e dz.

The last relation supplies formulas (C2) and (C2").

To prove relation (C3) observe that Hy(z) — xHyk_1(z) is a polynomial of order
k — 2. (The term x*~! is missing from this expression. Indeed, if k is an even number,
then the polynomial Hy(x) — xHi_1(x) is an even function, and it does not contain
the term z¥~! with an odd exponent k¥ — 1. Similar argument holds if the number k is
odd.) Besides, it is orthogonal (with respect to the standard normal distribution) to all
Hermite polynomials H;(z) with 0 <! < k — 3. Hence Hy(z) — xHi_1(x) = CHy_2(x)
with some constant C' to be determined.

Multiply both sides of the last identity with Hy_o(z) and integrate them with
respect to the standard normal distribution. Apply the orthogonality of the polynomials
Hy(z) and Hy_o(x), and observe that the identity

1 2 1 2
/Hk_l(ac)ka_g(m) \/ﬂe*m 12 dx = /H,%l(m) \/ﬁe*m 12de = (k—1)!

holds. (In this calculation we have exploited that Hy_1(x) is orthogonal to Hy_1(z) —
xHy_o(x), because the order of the latter polynomial is less than £ —1.) In such a way
we get the identity —(k — 1)! = C(k — 2)! for the constant C' in the last identity, i.e.
C = —(k — 1), and this implies relation (C3).

m

Proof of Ité’s formula for multiple Wiener—Ito integrals. Let K = ) k,, the sum of the
p=1

order of the Hermite polynomials, denote the order of the expression in relation (10.20).
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Formula (10.20) clearly holds for expressions of order K = 1. It will be proved in the
general case by means of induction with respect to the order K.

In the proof the functions f(x1) = ¢1(z1) and

Ki—1 m Kp—1
9@y, ok, )= [] ex@)-I] TI ewl@)
7j=1 p=2j=Kp_1

will be introduced and the product Z,, 1 (f)(K, — 1)!Z, k,,—1(g) will be calculated by
means of the diagram formula. (The same notation is applied as in Theorem 10.3.
Ki—1
In particular, K = K,,, and in the case K; = 1 the convention ]1_[ p1(zj) = 11s
j=1
applied.) In the application of the diagram formula diagrams with two rows appear.
The first row of these diagrams contains the vertex (1,1) and the second row contains
the vertices (2,1),...,(2,K,, —1). It is useful to divide the diagrams to three disjoint
classes. The first class, I'g contains only the diagram -~y without any edges. The
second class I'; consists of those diagrams which have an edge of the form ((1, 1), (2, j))
with some 1 < j7 < k; — 1, and the third class I's is the set of those diagrams which
have an edge of the form ((1,1),(2,7)) with some k; < j < K,,, — 1. Because of the
orthogonality of the functions ¢ for different indices s F, = 0 and Z, g, —2(Fy) =0
for v € I'y. The class I'; contains k; — 1 diagrams. Let us consider a diagram ~ from
this class with an edge ((1,1),(2,70)), 1 < j < k3 — 1. We have for such a diagram

m Kp—1
F, = I o1(z2,;) I II  wp(z(2;)), and by our inductive hypothesis
]6{157K171}\{]0} p:2j:KF*1
(Km —2)!Z,, k,,—2(Fy) = Hy, —2(m) H2 Hy, (np). Finally
p:

m Kp

Kot Zy 1, (Fyo) = Kt Zysco | [T 11 (@)
p:1 j:Kp_1+1

for the diagram ~y € I'y without any edge.

Our inductive hypothesis also implies the following identity for the expression we
wanted to calculate with the help of the diagram formula.

Zyur(F)(Eop = D2 i, —1(9) = mHyy 1 (m) [ [ Hr, (m)-

p=2
The above calculations together with the observation |I';| = k1 —1 yield the identity
m Kp
Knl!Z, k., H H ©p(T;) = Kn!Zyk,,(Fy)
p=1 \j=K,_ 1+1
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= Zu 1 (f)(Km — D2 k,,-1(9) — Z (Km = 2)1Z, K, —2(F)

= Hy,—1(m) [ [ He, (np) — (k1 — 1) Hy, —2(m) [ | He, (np)
= [mHe,—1(m) = (k1 = ) Hg, —2(m)] [ | Hx, (1p)- (C4)
p=2

On the other hand, m Hy, —1(m ) — (k1 —1)Hgk,—2(n1) = Hg, (n1) by formula (C3). These
relations imply formula (10.20), i.e. It6’s formula.

I present the proof of another important property of the Hermite polynomials in
the following Proposition C2.

Proposition C2 on the completeness of the orthogonal system of Hermite

polynomials. The Hermite polynomials Hy(xz), k = 0,1,2,..., defined in formula
(C4) constitute a complete orthonormal system in the Lo-space of the functions square
L_c==*/2 4y on the real line.

integrable with respect to the Gaussian measure Words

Proof of Proposition C2. Let us consider the orthogonal complement of the subspace
generated by the Hermite polynomials in the space of the square integrable functions
with respect to the measure %e_"’ﬂ/ 2dx. Tt is enough to prove that this orthogonal
completion contains only the identically zero function. Since the orthogonality of a func-
tion to all polynomials of the form z*, k = 0,1,2,... is equivalent to the orthogonality
of this function to all Hermite polynomials Hy(x), k = 0,1,2, ..., Proposition C2 can
be reformulated in the following form:

If a function g(z) on the real line is such that

> 1
/ zFg(z) \/%6_9’32/2 der =0 foral k=0,1,2,... (C5)

and

/ g*(z) \/12_776_I2/2 dx < 00, (C6)

then g(x) = 0 for almost all .

Given a function g(x) on the real line whose absolute value is integrable with respect

to the Gaussian measure \/%76_‘”2/ 2 dz define the (finite) measure v,

I/g(A>:/Ag(1’)\/12_ﬂ_6_m2/2de'

on the measurable sets of the real line together with its Fourier transform ,(t) =

[Z e vy(dz). (This measure v, and its Fourier transform can be defined for all

functions ¢ satisfying relation (C6), because their absolute value is integrable with
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respect to the Gaussian measure.) First I show that Proposition C2 can be reduced to
the following statement: If a function g satisfies both (C5) and (C6) then 7,(t) = 0 for
all —oo <t < o0.

Indeed, if there were a function g satisfying (C5) and (C6) which is not identically
zero, then the non-negative functions ¢ (z) = max(0, g(z)) and g~ (z) = — min(0, g(z))
would be different. Then also their Fourier transform 74+ (¢) and 7, (t) would be dif-
ferent, since a finite measure is uniquely determined by its Fourier transform. (This
statement is equivalent to an important result in probability theory, by which a prob-

ability measure on the real line is determined by its characteristic function.) But this

would mean that 7y (t) = U+ (t) — 7,- (t) # 0 for some ¢. Hence Proposition C2 can be
reduced to the above statement.
: itr (i) ... ()" [t FHD) :
Since |e 1 — (itx) ) CESH for all real numbers ¢,  and integer

k=1,2,... we may write because of relation (C5)

17, ()] = ‘/_Z (em S (ita) — e (iz)k> (@) e 12 g

V2T
< [ Gt et

—z?/2 dr

1
—c¢
| V2T
forall k = 1,2,... and real number ¢ if the function g satisfies relation (C5). If it satisfies
both relation (C5) and (C6), then from the last relation and the Schwarz inequality

~ 2 |t|2(k+1) > 2(k+1) 1 —x2/2
’Vg(t)| SCOHSt.m ’.’L’| \/—2_71-6 dx

‘t‘Z(kJrl)
for all real number ¢ and integer k£ = 1,2,.... Simple calculation shows that the right-

hand side of the last estimate tends to zero as k — oo. This implies that 7,(¢) = 0 for
all £, and Proposition C2 holds.

I finish Appendix C with the proof of Theorem 10.4, a limit theorem about a
sequence of normalized degenerate U-statistics. It is based on an appropriate represen-
tation of the U-statistics by means of multiple random integrals which makes possible
to carry out an appropriate limiting procedure.

Proof of Theorem 10.4. For all n = 1,2,..., the normalized degenerate U-statistics
n~k/2[, 1 (f) can be written in the form

n~* 2R,k (f) :nk/Q/ flxy, . zi)pn(dey) ..o (doy)

— nk”/ P, wn) (pn(day) = p(da)) - (pn(dy) = p( da)),
(C)
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where p,, is the empirical distribution function of the sequence &1, .. ., &, defined in (4.5),
and the prime in f/ denotes that the diagonals, i.e. the points x = (x1,...,xx) such
that z; = x;; for some pairs of indices 1 < j,5" < k, j # j’, are omitted from the
domain of integration. The second identity in relation (C7) can be justified by means
of the identity

/ @) (i (dy) — p(di)) . (i) — p(diy)) — Lo s(f)

- 3 <—1>'V'/f<x1,-.-,xk>Hu<dxj> [T #aldzy) =o.

V:Ve{l,. ..k}, |V|>1 jev Jje{1,. . kN\V
(C8)

This identity holds for a function f canonical with respect to a non-atomic measure
i, because each term in the sum at the right-hand side of (C8) equals zero. Indeed,
the integral of a canonical function f with respect to pu(dx;) with some index j € V
equals zero for all fixed values x1,...,2;-1,%j41,...,2%. The non-atomic property of
the measure p was needed to guarantee that this integral equals zero also in the case
when the diagonals are omitted from the domain of integration.

We would like to derive Theorem 10.4 from relation (C7) by means of an appropriate
limiting procedure which exploits the convergence of the random fields n'/2 (s, (A) —
w(A)), A € X, to a Gaussian field v(A4), A € X, as n — oo. But some problems arise
if we want to carry out such a program, because the fields n'/ 2(py, — p) converge to a
non white noise type Gaussian field. The limit we get is similar to a Wiener bridge on
the real line. Hence a relation between Wiener processes and Wiener bridges suggests
to write the following version of formula (C7).

Let us take a standard Gaussian random variable 7, independent of the random
sequence &1, &a, . ... For a canonical function f the following version of (C7) holds.

nF PR,k (f) = T} (f) (C9)
with

i) = [ @) [V dey) = o) +mutde)]

- [Vnlpn(dax) — p(doy)) +nu(doy)] -

This relation can be seen similarly to (C7).

The random measures n'/%(p, — 1) + np converge to a white noise with reference
measure p. Hence Theorem 10.4 can be proved by means of formulas (C9) and (C10)
with the help of an appropriate limiting procedure. More explicitly, I claim that the
following slightly more general result holds. The expressions J], ; (f) introduced in (C10)
converge in distribution to the Wiener—Ito integral k!Z, 1 (f) as n — oo for all functions
f square integrable with respect to the product measure p*. This result also holds
for non-canonical functions f. This limit theorem together with relation (C9) imply
Theorem 10.4.
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The convergence of the random variables J;, ; (f) defined in (C10) to the Wiener-Ito
integral k!Z, 1.(f) can be easily checked for elementary functions f € ﬂmk. Indeed, if
Aq, ..., Ay are disjoint sets with u(As) < oo, then the multi-dimensional central limit
theorem implies that the random vectors {v/n((pn(As) — p(As)) +nu(4s), 1 < s < M}
converge in distribution to the random vector {(uw(4s),1 < s < M}, ie. to a set
of independent normal random variables (s, E(; = 0, 1 < s < M, with variance
EC? = u(Ag) as n — oo. The definition of the elementary functions given in (10.2)
shows that this central limit theorem implies the demanded convergence of the sequence

n(f) to k1Z, 1 (f) for elementary functions.

To show the convergence of the sequence J;, ; (f) to k!Z, r(f) in the general case

take for any function f € H, 1 a sequence of elementary functions fn € ﬁu,k such that
If = fwllz = 0 as N = 00. Then E(Zu4(f) — Zun(fn))? = E(Zur(f — f))? — 0 as
N — oo by Property ¢) in Theorem 10.1. Hence the already proved part of the theorem
implies that there exists some sequence of positive integers, N(n), n = 1,2,..., in
such a way that N(n) — oo, and the sequence J), ; (fn(n)) converges to k!Z, (f) in
distribution as n — oo. Thus to complete the proof of Theorem 10.4 it is enough to
show that E(J), . (fnm)) — T x(£)? = E(J}, 1 (fN@m) — f))* = 0 as n — oo,

It is enough to show that
E(J,x(1)* < CIIfI5 for all f €My (C11)

with a constant C' = C}, depending only on the order k£ of the function f and to apply
inequality (C11) for the functions fy(,) — f. Relation (C11) is a relatively simple
consequence of Corollary 1 of Theorem 9.4.

Indeed,
k(=D VL v (fy)
V{l,...k}
with
fv(z;, jeV)= /f(xl,...,mk) H p(dz )

JE{L,. . kN\V

and the random integral .J,, 1 () defined in (4.8), hence

E( () <28 Y (VIPER* VDL EI2 v (fv). (C12)

Inequality ||fv|l2 < ||fll2 holds for all sets V' C {1,...,k}, hence an application of
Corollary 1 of Theorem (9.4) to all random integrals .J,, |v|(f) supplies (C11).

The above proof also yields the following slight generalization of Theorem 10.4. Let
us consider a finite sequence of functions f; € H, ;, 1 < j <k, canonical with respect to
a non-atomic probability measure . The vectors {n =7/ 2I.;(fj),1 < j <k}, consisting
of normalized degenerate U-statistics defined with the help of a sequence of independent
p-distributed random variables converge to the random vector {Z, ;(f;),1 <j <k} in
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distribution as n — oo. This result together with Theorem 9.4 imply the following limit
theorem about multiple random integrals .J,, 1 (f).

Theorem 10.4’. (Limit theorem about multiple random integrals with re-
spect to a normalized empirical measure). Let a sequence of independent and
tdentically distributed random variables £1,&s,... be given with some non-atomic dis-
tribution p on a measurable space (X, X) together with a function f(xi,...,xx) on the
k-fold product (X%, X*) of the space (X,X) such that

/f2($1,---,$k)u(d:lc1)...,u(dxk) < 00.

Let us consider for allm = 1,2,... the random integrals J, 1 (f) of order k defined in
formulas (4.5) and (4.8) with the help of the empirical distribution j, of the sequence
&1,...,& and the function f. These random integrals Jy 1 (f) converge in distribution,
as n — 0o, to the following sum U(f) of multiple Wiener—Ité integrals:

U(f) = Z C(k,V)Z, v (fv)

VCol,.. }

N |V|| /fvx]’jGVH“VVd%

VC{l Jk} JEV

where the functions fy(x;, 5 € V), V. .C {1,...,k}, are those functions defined in
formula (9.2) which appear in the Hoeffding decomposition of the function f(x1,...,xk),
the constants C(k,V') are the limits appearing in the limit relation lim C(n,k,V) =

n—oo
C(k,V) satisfied by the coefficients C(n, k, V') in formula (9.9), and pw is a white noise
with reference measure L.

An essential step of the proof of Theorem 10.4 was the reduction of the case of
general kernel functions to the case of elementary kernel functions. Let me make some
comments about it.

It would be simple to make such a reduction if we had a good approximation of
a canonical function with such elementary functions which are also canonical. But it
is very hard to find such an approximation. To overcome this difficulty we reduced
the proof of Theorem 10.4 to a modified version of this result where instead of a limit
theorem for degenerate U-statistics a limit theorem for the random variables J; , (f)
introduced in formula (C10) has to be proved. In the proof of such a version we could
apply the approximation of a general kernel function with not necessarily canonical
elementary functions. Theorem 9.4 helped us to work with such an approximation.
Another natural way to overcome the above difficulty is to apply a Poissonian approxi-
mation of the normalized empirical measure. Such an approach was applied in [14] and
in [31], where some generalizations of Theorem 10.4 were proved.
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Appendix D. The proof of Theorem 14.3.

A result about the comparison of U-statistics and decoupled U -statistics.

The proof of Theorem 14.3. It will be simpler to formulate and prove a generalized
version of Theorem 14.3 where such generalized U-statistics are considered in which
different kernel functions may appear in each term of the sum. More explicitly, let
¢ = {(n, k) denote the set of all such sequences | = (ly,...,l;) of integers of length k
for which 1 < [l; < n, 1 < j < k. To define generalized U-statistics let us fix a set
of functions {f, 1. (@1,...,7x), (I1,...,lx) € £} which map the space (X%, X¥) to a
separable Banach space B, and have the property fi,. . i (z1,...,25) =0if [; =1 for
some indices j # j’. (The last condition corresponds to that property of U-statistics
that the diagonals are omitted from the summation in their definition.) Let us denote
this set of functions by f(¢) and define, similarly to the U-statistics and decoupled
U-statistics the generalized U-statistics and generalized decoupled U-statistics by the
formulas

Lip(f(0) = - > Fravtn (€1 61 (D1)

T (lnyenly): 1<1 <0, j=1,...,k

and

I_n,k(f(g)) = % Z fll ..... I (51(11)7 s agl(f)> (D2)

T (lnyenl): 1K1 <n, G=1,...,k

(with the same independent and identically distributed random variables & and §l(j ),
1 <1< n, 1< j <k, asin the definition of the original U-statistics and decoupled
U-statistics.)

The following generalization of relation (14.13) will be proved.

P (| Lo e (FO) > w) < A(R)P (|| 1, (F (O)]| > y(K)w) (14.13d)

with some constants A(k) > 0 and (k) > 0 depending only on the order k of these
generalized U-statistics.

We concentrate mainly on the proof of the generalization (14.13d) of relation
(14.13). Formula (14.14) is a relatively simple consequence of it. Formula (14.13d)
will be proved by means of an inductive procedure which works only in this more gen-
eral setting. It will be derived from the following statement.

Let us take two independent copies 5%1), ceey 7(11) and §§2), ey 7(12) of our original
sequence of random variables &1, ...,&,, and introduce for all sets V' C {1,...,k} the

function ay (), 1 < j <k, defined as ay(j) =1if j € V and ay(j) =2if j ¢ V. Let
us define with their help the following version of decoupled U-statistics

Luv (f(0) = - > firotn (€000, glov ™)

(l1 ..... lk): 1§lj§n, j:1 ..... k
forall V .C {1,...,k}. (D3)
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The following inequality will be proved: There are some constants C; > 0 and
Dy, > 0 depending only on the order k of the generalized U-statistic I,, x(f(¢)) such
that for all numbers u > 0

P (I x ()N > u) < > Co P (Di|[ L e,y (F(O)] > w). (D4)

Vc{l,.. .k}, 1<|V|<k—1

Here |V denotes the cardinality of the set V', and the condition 1 < |V| < k —1 in
the summation of formula (D4) means that the sets V' = () and V = {1,...,k} are
omitted from the summation, i.e. the terms where either ay (j) =1 or ay(j ) = 2 for all
1 < j < k are not considered. Formula (14.13d) can be derived from formula (D4) by
means of an inductive argument. The hard part of the problem is to prove formula (D4).
To do this first the following simple lemma will be proved.

Lemma D1. Let & and n be two independent and identically distributed random vari-
ables taking values in a separable Banach space B. Then

P <\§+7]! > gu) > P(|¢| >u)  for all u> 0.

Proof of Lemma D1. Let &, n and { be three independent, identically distributed random
variables taking values in B. Then

P+ >30) = p (len> u) + P (ler > 20) 2 (1= 0+ 0l > 3u)
> P(|§+n+E&+C—n— (> 2u) = P(¢] > u).

To prove formula (D4) we introduce the random variable

Tn,k(f(g)) = % Z fl17 Ll (5(81)7 <. (Sk)) Z In,kz,V

(1sesli), (51500588 vcdl,..,
1<l;<n, s;=1 or s;=2, j=1,...,k,

(D5)
Observe that the random variables I, x(f(£)), Inko(f(¢)) and I, (1,. k3 (f(£)) are
identically distributed, and the last two random variables are independent of each other.
Hence Lemma D1 yields that

PULAGON > 1) =3P (Lo 7O + Tty ()] > F)

=sp ||y - Y Lok (FO)| > Su

V:V{l,....k}, 1<|V|<k—1
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< 3P(3- 2Tk (F(O)]] > u) (D6)

+ > 3PB- 2P Ly v (F(O)] > ).
V: V{1, ..k}, 1<|V[<k—1

To derive relation (D4) from relation (D6) a good estimate is needed on the probability
P(3-2°7Y T, 1 (f(0))|| > u). To get such an estimate the tail distribution of || T}, x (f(£))]]
will be compared with that of ||, v (f(¢))|| for an arbitrary set V' C {1,...,k}. This
will be done with the help of Lemmas D2 and D4 formulated below.

In Lemma D2 such a random variable ||I,, x.v(f(¢))| will be constructed whose
distribution agrees with that of ||I,, kv (f(£))|. The expression I, v (f(£)), whose
norm will be investigated will be defined in formulas (D7) and (D8). It is a random
polynomial of some Rademacher functions €1, . .., &,. The coefficients of this polynomial
are random variables, independent of the Rademacher functions 4, ..., &,. Besides, the
constant term of this polynomial equals T}, (f(¢)). These properties of the polynomial
L.k v (f(£)) together with Lemma D4 formulated below enable us prove such an estimate
on the distribution of ||T}, x(f(¢))| that together with formula (D6) imply relation (D4).
Let us formulate these lemmas.

Lemma D2. Let us consider a sequence of independent random wvariables €1, ..., &y,
P(eg = 1) = P(gg = —1) = %, 1 <1 < n, which is also independent of the ran-

27
dom variables f(l) ceey T(Ll) and 5(2) ey 7(12) appearing in the definition of the modi-

fied decoupled U -statistics L, v (f(£)) given in formula (D3). Let us define with their
(1) (1) (2) (2)

help the sequences of random wvariables ny”’,...,nn’ and n;7",...,nyn  whose elements

(n (1),7752)) (n z(l)( 1) l( )( 1), 1 <1< mn, are defined by the formula

1 2 1+e 1y 1—e @ 11—, ) 1+e @
(" (e0), P (=) = ( R s £§’+T§)),

ice. let (7 (), (@) = €,67) ifer = 1, and (" (@), 0P (@) = (€P,6M)

if eg = =1, 1 <1 < n. Then the joint dzstmbutzon of the pair of sequences of ran-
dom variables §(1) 5(1) and ff), cee T(LQ) agrees with that of the pair of sequences
7751), . ,77,(1 ) and 77( ) e ,777(1 ), which is also independent of the sequence €1, ...,¢&,.

Let us fix some V- C {1,...,k}, and introduce the random variable

T 1 ay (1 ay(k

Luky (F0) = - > Fovveote (0o @) (o)
T (lnyeenlp): 1K1 <0, j=1,..,k

where similarly to formula (D3) ay(j)=11ifj €V, and ay(j) =2 if j ¢ V. Then the
identity

P, (£(0) (D8)
- % Z (]- + Kgl)vgll) (1 + Iisk Vglk)fll, ) (5(51)7 f(Sk)>

(l]_ ..... lk), (81 ..... Sk)t
1<l;<n, s;j=1 or s;=2, j=1,..., k,

207



holds, where mgj%/ =1 and méj%, =—1ijeV, and mgjg, = —1 and /ig%/ =1ifj¢V,

i.e. /-@EJ%/ =3 —2ay(j) and /-@g]%/ = —Iigjz/
Before the formulation of Lemma D4 another Lemma D3 will be presented which
will be applied in its proof.

Lemma D3. Let Z be a random variable taking values in a separable Banach space
B with expectation zero, i.e. let Ex(Z) = 0 for all kK € B’, where B’ denotes the
(Banach) space of all (bounded) linear transformations of B to the real line. Then

P(|lv+ Z|| > |jv]]) > mgl % for allv € B.
Lemma D4. Let us consider a positive integer n and a sequence of independent random
variables €1,...,e,, P(e;=1) = P(g; = —1) = %, 1 <1 <n. Besides, fit some positive
integer k, take a separable Banach space B and choose some elements as(ly,...,ls) of
this Banach space B, 1 < s <k, 1 <l; <n, l; #lj ifj#j,1<j,j <s. With the
above notations the inequality

Plllo+> 3 0ol l)en e || > ol | = e (DY)

s=1 (l4,..., ls): 1<l;<n, j=1,...,s,
ALy i £

holds for all v € B with some constant ¢, > 0 which depends only on the parameter k.
In particular, it does not depend on the norm in the separable Banach space B.

Proof of Lemma D2. Let us consider the conditional joint distribution of the sequences

of random variables 77( ), e ,777(1) and 77( ), e ,777(1) under the condition that the ran-

dom vector £1,...,¢, takes the value of some prescribed +1 series of length n. Observe
that this conditional distribution agrees with the joint distribution of the sequences

gl), ceey 7(11) and 552), e ,5,(12) for all possible conditions. This fact implies the state-

ment about the joint distribution of the sequences (7, (1 )7771(2)) 1 <1 < n and their
independence of the sequence ¢1, ..., &,.

To prove identity (D8) let us fix a set M C {1,...,n}, and consider the case when
eg=1ifle Mandeg = —-1ifl ¢ M. Put Bym(j,l) =1ifje Vandl € M or
j¢ Vand!l ¢ M, and let By a(j,1) = 2 otherwise. Then we have for all (I1,...,1),
1<1; <n,1<j <k, and our fixed set V

Z (1+f€$),v€l1)"‘(1—|—lisk veE)fin..., (é(sl),...,glsk))

(81,.--,8K): s;=1 or s;=2, j=1,...,k,

_ Qkfl <£(BV M (1,01)) 5(5\/ M (k, lk)))
1yeens 9y 9

(D10)

since the product (1+/£§ )V&?ll) (1—1—/{?q )Vglk) equals either zero or 2%, and it equals 2%

for that sequence (sq,...,sx) for which /-ig])vel =1 for all 1 < j < k, and the relation
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k) e, = 1is equivalent to By(j,1;) = s; for all 1 < j < k. (In relation (D10) it
is sufficient to consider only such products for which [; # ;s if j # j’ because of the
properties of the functions f;, . ;,.)

Besides, glﬁva(lJ) — nla"(j) forall1 <l <nand1l<j<k, and as a consequence

1,1 k.l o oo (k
oo (M) ePon DY _ g (e plav @),

Summing up the identities (D10) for all 1 <;,...,l; < n and applying the last identity
we get relation (D8), since the identity obtained in such a way holds for all M C

{1,...,n}.

Proof of Lemma D3. Let us first observe that if ¢ is a real valued random variable with

zero expectation, then P(¢ > 0) > (fggf since (E|¢])? = 4(E(E1({¢ > 0}))* < 4P(¢ >
0)E£? by the Schwarz inequality, where I(A) denotes the indicator function of the set A.
(In the above calculation and in the subsequent proofs I apply the convention % = 1.
We need this convention if ££2 = 0. In this case we have, because of the condition
E¢ = 0 the identity P(§ = 0) = 1, hence the above proved identity holds in this case,

t00.)

Given some v € B, let us choose a linear operator x such that ||| = 1, and
k(v) = |jv||. Such an operator exists by the Banach-Hahn theorem. Observe that
w: v+ Z(w)|| > [v|I} D {w: k(v + Z(w)) > k(v)} = {w: kK(Z(w)) > 0}. Besides,
Ex(Z) = 0. Hence we can apply the above proved inequality for £ = k(Z), and it yields

that P(|lv+ Z|| > ||v]) > P(x(Z) > 0) > % Lemma D3 is proved.

Proof of Lemma D/. Take the class of random polynomials

k
y=%" > bs(ly, ... ls)er, - e,

s=1 (ll ..... ls): 1§lj§’n,, 7j=1,..., S,

LAl i 55
where ¢;, 1 <[ < n, are independent random variables with P(e; =1) = P(g; = —1) =
%, and the coefficients bs(l1,...,ls), 1 < s < k, are arbitrary real numbers. The proof

of Lemma D4 can be reduced to the statement that there exists a constant ¢, > 0
depending only on the order k of these polynomials such that the inequality

(E|Y|)? > 4c, EY?. (D11)
holds for all such polynomials Y. Indeed, consider the polynomial

Z:Z Z as(ll,...,ls)i-?ll'--z-?ls,

s=1 (ll ..... ls): 1§lj§n, 7=1,..., S,
LAl i 5
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and observe that Ex(Z) = 0 for all linear functionals x on the space B. Hence
Lemma D3 implies that the left-hand side expression in (D9) is bounded from below by
E|x(Z)])?

inf EIDD” O the other hand, relation (D11) implies that inf <
. ’ ey AER(Z)?

> Ck.
o2 AER(Z)? = Ck

To prove relation (D11) first we compare the moments EY? and EY*. Let us
introduce the random variables

Y, = > be(ly,...\l)er, -1, 1<s<E.
(Lh,..00s): 1<l <n, j=1,...,s,
Ll if

We shall show that the estimates of Section 13 imply that
EY} < 2% (BEY?)® (D12)

for these random variables Y.

Relation (D12) together with the uncorrelatedness of the random variables Y,
1 < s <k, imply that

k 4 k k
EY*=FE (Z Y) <KDY EY! <2 (EY?)
s=1

s=1 s=1
2

k
< k324k (Z EYS2) — k324k(EY2)2.

s=1

This estimate together with the Hélder inequality with p = 3 and ¢ = % yield that
EY? = E|Y|*3] - |Y |23 < (EY")V3(E|Y|)?/3 < k24*/3(EY?)?/3(E|Y|)?/3, i.e. EY? <
k324 (E|Y|)?, and relation (D11) holds with 4c, = k=327%*. Hence to complete the
proof of Lemma D4 it is enough to check relation (D12).

In the proof of relation (D12) it can be assumed that the coefficients bs(ly, ..., ls)
of the random variable Y, are symmetric functions of the arguments [y, ..., since a
symmetrization of these coefficients does not change the value of Y. Put

B?: Z bg(llw";ls)v 1<s<k.
(l1,..50s): 1< <n, j=1,...,s,
£l if 75
Then
EY? = s!B?,

and (45)!

EYA<1.3.5-.-(4s—1)B'= ) _pi

s — ( S ) S 228(28)! S

by Lemmas 13.4 and 13.5 with the choice M = 2 and k = s. Inequality (D12) follows
from the last two relations. Indeed, to prove formula (D12) by means of these relations
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it is enough to check that (4s)! N < 245, But it is easy to check this inequality with

induction with respect to s. (Actually, there is a well-known inequality in the literature,
known under the name Borell’s inequality, which implies inequality (D12) with a better
coefficient at the right hand side of this estimate.) We have proved Lemma D4.

Let us turn back to the estimation of the probability P(3 - 2*=Y| T, x(f)| > w).
Let us introduce the o-algebra F = B( 1(1)751(2)7 1 <1 < n) generated by the random

variables fl(l), 1(2)’ 1 <1 < n, and fix some set V' C {1,...,k}. I show with the
help of Lemma D4 and formula (D8) that there exists some constant ¢, > 0 such
that the random variables T}, j f(¢)) defined in formula (D5) and I, x v (f(£)) defined in
formula (D7) satisfy the inequality

P (12 Te (FEO) > [Tur(FO)IIF) = e with probability 1. (D13)

In the proof of (D13) I shall exploit that in formula (D8) 21, 1. v (f(£)) is repre-
sented by a polynomial of the Rademacher functions €1, ...,&, whose constant term is
Tk (f(£)). The coeflicients of this polynomial are functions of the random variables £ l(l)

and 51(2)7 1 <1 < n. The independence of these random variables from ¢;, 1 <[ < n,
and the definition of the o-algebra F yield that

P (125 L e,v (FO)| > | T s (F ()1 F)
- ‘ 1' Z (1—'_%21),‘/811)"'(1_‘_/{57@ Vglk)fh, (5(81),-”;5(%))"

EV( k!
(I, 5lk),y (815ee-,8k):
1<l;<n,s;=1 or s;=2, j=1,...,k,

>nn$U@x¢%1sszj:12m) (D14)

-, means that the values of the random variables ¢ 1), fl@), 1 <1l <n, are
fixed, (their value depend on the atom of the o-algebra F we are considering) and the
probability is taken with respect to the remaining random variables ¢;, 1 < [ < n.
At the right-hand side of (D14) the probability of such an event is considered that
the norm of a polynomial of order k of the random variables ¢1,...,¢, is larger than
HTn,k(f(E))(élm, 1 <1<n,j=1,2)|. Besides, the constant term of this polynomial

equals Tn’k(f(ﬁ))(é“l(j), 1 <1<mn,j=1,2). Hence this probability can be bounded by
means of Lemma D4, and this result yields relation (D13).

As the distributions of I, x v (f(¢)) and I,, r.v (f(¢)) agree by the first statement of
Lemma D2 and a comparison of formulas (D3) and (D7), relation (D13) implies that

P (I Loy (FO)] 2 5 -2 74) = P @2nkwﬂmuz

where P,

W"—‘ ool»—t
l\.')
2
|
ey
N
~_

> P (H2’““I_n,k,v(f(f))H 2 N Tk (SO N Tk (O] =

/ P (12" Ly (FO) > [T (FE)IF) P
{w: 1Tk (FO) (@) [[Z 521 Fu}
> aP(3- 27T £ 2 w).
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The last inequality with the choice of any set V' C {1,...,k}, 1 < |V| <k —1, together
with relation (D6) imply formula (D4).

Relation (14.13d) will be proved together with another inductive hypothesis with
the help of relation (D4) by means of an induction procedure with respect to the order
k of the U-statistic. To formulate the other inductive hypothesis some new quantities
will be introduced. Let W = W(k) denote the set of all partitions of the set {1,...,k}.
Let us fix k independent copies 59 ), cee flj ), 1 < j < k, of the sequence of random
variables &1,...,&,. Given a partition W = (Uy,...,Us) € W(k) let us introduce the
function sy (j), 1 < 7 < k, which tells for all arguments j the index of that element
of the partition W which contains the point j, i.e. the value of the function sy (j),
1 < 5 <k, in a point j is defined by the relation 5 € Vi Let us introduce the
expression

w ()

1 , .
b (£0)) = 3 > Froty (€500, 0)

T (lnyely): 1K1 <0, j=1,..,k

for all W € W(k).

An expression of the form I, . w(f(¢)), W € Wy, will be called a decoupled U-statistic
with generalized decoupling. Given a partition W = (Uy,...,Us) € W let us call the
number s, i.e. the number of the elements of this partition the rank both of the partition
W and of the decoupled U-statistic I,  w (f(¢)) with generalized decoupling.

Now I formulate the following hypothesis. For all £ > 2 and 2 < j < k there exist
some constants C(k,j) > 0 and §(k,j) > 0 such that for all W € W, a decoupled
U-statistic I, . w (f(¢)) with generalized decoupling satisfies the inequality

P(|[Lnk.w (F@)I > u) < Clk, 5)P (I s (F(O) > (K, 5)u) (D15)
for all 2 < j < k if the rank of W equals j.

It will be proved by induction with respect to k£ that both relations (14.13d)
and (D15) hold for U-statistics of order k. Let us observe that for k = 2 relation (14.13d)
follows from (D4). Relation (D15) also holds for k = 2, since in this case we have to
consider only the case j = k = 2, and relation (D15) clearly holds in this case with
C(2,2) =1 and §(2,2) = 1. Hence we can start our inductive proof with k& = 3. First I
prove relation (D15).

In relation (D15) the tail-distribution of decoupled U-statistics with generalized
decoupling is compared with that of the decoupled U-statistic I, x(f(¢)) introduced
n (D2). Given the order k of these U-statistics it will be proved by means of a backward
induction with respect to the rank j of the decoupled U-statistics I,  w (f(¢)) with
generalized decoupling.

Relation (D15) clearly holds for j = k£ with C(k, k) = 1 and §(k, k) = 1. To prove
it for decoupled U-statistics with generalized decoupling of rank 2 < 7 < k first the
following observation will be made. If the rank j of the partition W = (Uy,...,U;)
satisfies the relation 2 < 7 < k — 1, then it contains an element with cardinality strictly
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less than k and strictly greater than 1. For the sake of simpler notation let us assume
that the element U; of this partition is such an element, and U; = {t,..., k} with some
2 <t < k—1. The investigation of general U-statistics of rank j, 2 < 5 < k — 1,
can be reduced to this case by a reindexation of the arguments in the U-statistics if
it is necessary. Let us consider the partition W = (Uy,...,U;_1,{t},...,{k}) and the
decoupled U-statistic I,, ;. yy(f(¢)) with generalized decoupling corresponding to this
partition W. It will be shown that our inductive hypothesis implies the inequality

P e, (FO)I > w) < A(R)P (Il (F )] > 7(K)u) (D16)
with A(k) = sup A(p), ¥(k) = inf ~(p) if the rank j of W is such that 2 < j <
2<p<k—1 2<p<k—1

k — 1, where the constants A(p) and v(p) agree with the corresponding coefficients in
formula (14.13d).

To prove relation (D16) (in the case U; = {t,...,k}) let us define the o-algebra
F generated by the random variables appearing in the first ¢ — 1 coordinates of these
U-statistics, i.e. by the random variables SZW(j), 1<j<t—1,and 1 <[; <n for all
1<j<t—1. We have 2 <t <k — 1. By our inductive hypothesis relation (14.13d)
holds for U-statistics of order p = k—t+1, since 2 < p < k—1. I claim that this implies
that

P kw (fFO) > ulF) < A(k =t + 1)P ([ g (£ > y(k =t + 1)ulF) (D17)

with probability 1. Indeed, by the independence properties of the random variables
O (and €9 1< i<k 1< <n,

P (FEN] > 0lF) = Py ey (Wi (FO] > )
and

P (L oy (PN > 2 = £+ 00l F) = Penwiory oy (i O] > (k= 1)),

where ngw(j)’lgjgt_l denotes that the values of the random variables flSW(j)(w), 1<

1 <t—1,1<1[ < n, are fixed, and we consider the probability that the appropriate
functions of these fixed values and of the remaining random variables £°W () and &5w (),
t < j < k, satisfy the desired relation. These identities and the relation between the
sets W and W imply that relation (D17) is equivalent to the identity (14.13d) for the
generalized U-statistics of order 2 < k —t+ 1 < k — 1 with kernel functions

Jro e (@, k)
= Z fll,‘..,lk(flslwu)(w),...,fftvfl(t_l)(w),mt,...,xk).

(ll,...,ltfl)Z 1§lj S’I’L, 1§j§t—1

Relation (D16) follows from inequality (D17) if expectation is taken at both sides. As
the rank of W is strictly greater than the rank of W, relation (D16) together with our
backward inductive assumption imply relation (D15) for all 2 < j < k.
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Relation (D15) implies in particular (with the applications of partitions of order k
and rank 2) that the terms in the sum at the right-hand side of (D4) satisfy the inequal-
ity P (DpllLn v (F(0)] > 1) < C(k, /)P (| Tni(F(0)]| > Dyu) with some appropriate
Cr >0and Dy >0 forall V C {1,...,k}, 1 <|V| <k —1. This inequality together
with relation (D4) imply that inequality (14.13d) also holds for the parameter k.

In such a way we get the proof of relation (14.13d) and of its special case, rela-
tion (14.13). Let us prove formula (14.14) with its help first in the simpler case when
the supremum of finitely many functions is taken. If M < oo functions fi,..., fas are
considered, then relation (14.14) for the supremum of the U-statistics and decoupled
U-statistics with these kernel functions can be derived from formula (14.13) if it is
applied for the function f = (f1,..., fpr) with values in the separable Banach space

By which consists of the vectors (vq,...,vam), v; € B, 1 < j < M, and the norm
|(v1,...,vm)|| = sup |lv;]| is introduced in it. The application of formula (14.13)
1<j<m

with this choice yields formula (14.14) for this supremum. Let us emphasize that the
constants appearing in this estimate do not depend on the number M. (We took only
M < oo kernel functions, because with such a choice the Banach space Bj; defined

above is also separable.) Since the distribution of the random variables sup ||, x(fs)]|
<s<M

converge to that of sup ||, x(fs)||, and the distribution of the random variables
1<s<o0

sup an,k(fs)H converge to that of sup ||, x(fs)|| as M — oo, relation (14.14)
1<s<M 1<s<o0

in the general case follows from its already proved special case and a limiting procedure
M — oo.

Remark. The above proved formula (14.13d) can be slightly generalized. It also holds
if the expressions I, x(f(¢)) and I, x(f(¢)) appearing in this inequality are defined in
a more general way. Namely, they are the random functions introduced in formulas
(D1) and (D2), but the sequences &1, ...,&, and their independent copies éj), e O
in these formulas are independent random variables which may also be non-identically
distributed. Such a generalization can be proved without any essential change in the

original proof.
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