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Preface

One of the most important problems in probability theory is the investigation of

the limit distribution of partial sums of appropriately normalized random variables.

The case where the random variables are independent is fairly well understood.

Many results are known also in the case where independence is replaced by an

appropriate mixing condition or some other “almost independence” property. Much

less is known about the limit behaviour of partial sums of really dependent random

variables. On the other hand, this case is becoming more and more important, not

only in probability theory, but also in some applications in statistical physics.

The problem about the asymptotic behaviour of partial sums of dependent ran-

dom variables leads to the investigation of some very complicated transformations

of probability measures. The classical methods of probability theory do not seem

to work for this problem. On the other hand, although we are still very far from a

satisfactory solution of this problem, we can already present some nontrivial results.

The so-called multiple Wiener–Itô integrals have proved to be a very useful tool

in the investigation of this problem. The proofs of almost all rigorous results in this

field are closely related to this technique. The notion of multiple Wiener–Itô inte-

grals was worked out for the investigation of non-linear functionals over Gaussian

fields. It is closely related to the so-called Wick polynomials which can be consid-

ered as the multi-dimensional generalization of Hermite polynomials. The notion of

Wick polynomials and multiple Wiener–Itô integrals were worked out at the same

time and independently of each other. Actually, we discuss a modified version of

the multiple Wiener–Itô integrals in greatest detail. The technical changes needed in

the definition of these modified integrals are not essential. On the other hand, these

modified integrals are more appropriate for certain investigations, since they enable

us to describe the action of shift transformations and to apply some sort of random

Fourier analysis. There is also some connection between multiple Wiener–Itô inte-

grals and the classical stochastic Itô integrals. The main difference between them is

that in the first case deterministic functions are integrated, and in the second case

so-called non-anticipating functionals. The consequence of this difference is that no

technical difficulty arises when we want to define multiple Wiener–Itô integrals in

the multi-dimensional time case. On the other hand, a large class of nonlinear func-
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viii Preface

tionals over Gaussian fields can be represented by means of multiple Wiener–Itô

integrals.

In this work we are interested in limit problems for sums of dependent random

variables. It is useful to consider this problem together with its continuous time

version. The natural formulation of the continuous time version of this problem

can be given by means of generalized random fields. Consequently we also have to

discuss some questions about them.

I have not tried to formulate all the results in the most general form. My main

goal was to work out the most important techniques needed in the investigation

of such problems. This is the reason why the greatest part of this work deals with

multiple Wiener–Itô integrals. I have tried to give a self-contained exposition of this

subject and also to explain the motivation behind the results.

I had the opportunity to participate in the Dobrushin–Sinai seminar in Moscow.

What I learned there was very useful also for the preparation of this Lecture Note.

Therefore I would like to thank the members of this seminar for what I could learn

from them, especially P. M. Bleher, R. L. Dobrushin and Ya. G. Sinai.

Preface to the Second Edition.

This text is a slightly modified version of my Lecture Note Multiple Wiener–Itô in-

tegrals with applications to limit theorems published in the Lecture Notes in Math-

ematics series (number 849) of the Springer Verlag in 1981. I decided to write a

revised version of this Lecture Note after a special course I held about its subject

in the first semester of the academic year 2011–2012 at the University of Szeged.

Preparing for this course I observed how difficult the reading of formulas in this

Lecture Note was. These difficulties arose because this Lecture Note was written at

the time when the TEX program still did not exist, and the highest technical level

of typing was writing on an IBM machine that enabled one to type beside the usual

text also mathematical formulas. But the texts written in such a way are very hard

to read. To make my text more readable I decided to retype it by means of the TEX

program. But it turned out that a real improvement of the text demands much more

than producing nice, readable formulas. To make a really better version of this work

I also had to explain better the results and definitions together with the ideas and

motivation behind them. Besides, I had to make not only more readable formulas,

but also more readable explanations. The reader must see at each point of the dis-

cussion what is just going on, and why. In the new version of this work I tried to

satisfy these demands. Naturally, I also corrected the errors I found. At some points

I had to insert a rather long explanation in the proof, because I met such a statement

which seemed to be trivial at the first sight, but its justification demanded a detailed

discussion. I hope that these insertions did not make the work less transparent.

There appeared many new results about the subject of this Lecture Note since its

first appearance. The question arose naturally whether I should insert them to the

new edition of this work. Finally I decided to make no essential changes in the text,

to restrict myself to the correction of the errors I found, and to give a more detailed

explanation of the proofs where I felt that it is useful. In making such a decision I

was influenced by a Russian proverb which says: ‘Luchshe vrag khoroshego’. I tried



Preface ix

to follow the advice of this proverb. (I do not know of an English counterpart of this

proverb, but it has a French version: ‘Le mieux est l’ennemi du bien’.)

I made one exception. I decided to explain those basic notions and results in

the theory of generalized functions which were applied in the older version of this

work in an implicit way. In particular, I tried to explain with their help how one

gets those results about the spectral representation of the covariance function of sta-

tionary random fields that I have presented under the names Bochner’s theorem and

Bochner–Schwartz theorem. This extension of the text is contained in the attach-

ments to Chapters 1 and 3. In the first version I only referred to a work where these

notions and results can be found. But now I found such an approach not satisfactory,

because these notions and results play an important role in some arguments of this

work. Hence I felt that to make a self-contained presentation of the subject I have to

explain them in more detail.

The first edition of this Lecture Note appeared long time ago, but the main ques-

tion discussed in it, the description of the limit behaviour of appropriately normal-

ized partial sums of strongly dependent random variables remained an open prob-

lem. Also the method applied in this work remained an important tool in the study

of such problems. Hence a self-contained explanation of the theory which provides

a good foundation for this method is useful. By my hopes this Lecture Note contains

such an explanation, and therefore it did not become out of date. This was the main

argument for myself to write a new version of this work where I tried to present a

better and more accessible discussion.

I would like to write some words about the last chapter of this work, where some

results are discussed that seemed to be important at the time of writing the first

version. I would mention two of them which later turned out to be really important.

The first one is the Nelson–Gross inequality which later played an important role in

the theory of the so-called hypercontractive and logarithmic Soboliev inequalities.

The second one is a method for construction of non-trivial self-similar fields worked

out in a paper of Kesten and Spitzer. Several important limit theorems are based on

the ideas of this paper. It is worth mentioning that it was Roland L’vovich Dobrushin

who called my attention to these results, and he emphasized their importance. So I

would like to finish this preface with a personal remark about him.

This work is the result of some joint research with Roland L’vovich Dobrushin.

Although the book was written by me alone, Dobrushin’s influence is very strong

in it. I have learned very much from him. It is rather difficult to explain what one

could learn from him, because it was much more than just some results or mathe-

matical arguments. There was something beyond it, some world view which is hard

to explain. If I could give back something from what I had learned from him in this

Lecture Note, then this would justify the work on it by itself.

Budapest, 15 August 2013

Péter Major





Chapter 1

On a Limit Problem

We begin with the formulation of a problem which is important both for probability

theory and statistical physics. The multiple Wiener–Itô integral proved to be a very

useful tool at the investigation of this problem.

Let us consider a set of random variables ξn, n ∈ Zν , where Zν denotes the ν-

dimensional integer lattice, and let us study their properties. Such a set of random

variables will be called a (ν-dimensional) discrete random field. We shall be mainly

interested in so-called stationary random fields. Let us recall their definition.

Definition of Discrete (Strictly) Stationary Random Fields. A set of random vari-

ables ξn, n ∈ Zν , is called a (strictly) stationary discrete random field if

(ξn1
, . . . ,ξnk

)
∆
= (ξn1+m, . . . ,ξnk+m)

for all k = 1,2, . . . and n1, . . . ,nk, m ∈Zν , where
∆
= denotes equality in distribution.

Let us also recall that a discrete random field ξn, n ∈ Zν , is called Gaussian if for

every finite subset {n1, . . . ,nk} ⊂ Zν the random vector (ξn1
, . . . ,ξnk

) is normally

distributed.

Given a discrete random field ξn, n ∈ Zν , we define for all N = 1,2, . . . the new

random fields

ZN
n = A−1

N ∑
j∈BN

n

ξ j, N = 1,2, . . . , n ∈ Zν , (1.1)

where

BN
n = { j : j ∈ Zν , n(i)N ≤ j(i) < (n(i)+1)N, i = 1,2, . . . ,ν},

and AN , AN > 0, is an appropriate norming constant. The superscript i denotes the

i-th coordinate of a vector in this formula. We are interested in the question when

the finite dimensional distributions of the random fields ZN
n defined in (1.1) have

a limit as N → ∞. In particular, we would like to describe those random fields Z∗
n ,

1



2 1 On a Limit Problem

n ∈ Zν , which appear as the limit of such random fields ZN
n . This problem led to the

introduction of the following notion.

Definition of Self-similar (Discrete) Random Fields. A (discrete) random field ξn,

n ∈ Zν , is called self-similar with self-similarity parameter α if the random fields

ZN
n defined in (1.1) with their help and the choice AN = Nα satisfy the relation

(ξn1
, . . . ,ξnk

)
∆
= (ZN

n1
, . . . ,ZN

nk
) (1.2)

for all N = 1,2, . . . and n1, . . . ,nk ∈ Zν .

We are interested in the choice AN = Nα with some α > 0 in the definition of

the random variables ZN
n in (1.2), because under slight restrictions, relation (1.2)

can be satisfied only with such norming constants AN . A central problem both in

statistical physics and in probability theory is the description of self-similar fields.

We are interested in self-similar fields whose random variables have a finite second

moment. This excludes the fields consisting of i.i.d. random variables with a non–

Gaussian stable law.

The Gaussian self-similar random fields and their Gaussian range of attraction

are fairly well known. Much less is known about the non-Gaussian case. The prob-

lem is hard, because the transformations of measures over RZν induced by for-

mula (1.1) have a very complicated structure. To get interesting results in some cases

we shall define the so-called subordinated fields below. (More precisely, we define

the fields subordinated to a stationary Gaussian field.) In case of subordinated fields

the Wiener–Itô integral is a very useful tool for investigating the transformation

defined in (1.1). In particular, it enables us to construct non–Gaussian self-similar

fields and to prove non-trivial limit theorems. All known results are closely related

to this technique.

Let Xn, n∈Zν , be a stationary Gaussian field. We define the shift transformations

Tm, m ∈ Zν , over this field by the formula TmXn = Xn+m for all n, m ∈ Zν . Let H

denote the real Hilbert space consisting of the square integrable random variables

measurable with respect to the σ -algebra B = B(Xn, n ∈ Zν). The scalar product

in H is defined as (ξ ,η) = Eξ η , ξ , η ∈H . The shift transformations Tm, m ∈Zν ,

can be extended to a group of unitary shift transformations over H in a natural

way. Namely, if ξ = f (Xn1
, . . . ,Xnk

) then we define Tmξ = f (Xn1+m, . . . ,Xnk+m). It

can be seen that ‖ξ‖ = ‖Tmξ‖, and the above considered random variables ξ are

dense in H . (A more detailed discussion about the definition of shift operators and

their properties will be given in Chapter 2 in a Remark after the formulation of

Theorem 2C. Here we shall define the shift Tmξ , m ∈ Zν , of all random variables ξ
which are measurable with respect to the σ -algebra B(Xn, n ∈ Zν), i.e. ξ does not

have to be square integrable.) Hence Tm can be extended to the whole space H by

L2 continuity. It can be proved that the norm preserving transformations Tm, m ∈Zν ,

constitute a unitary group in H , i.e. Tn+m = TnTm for all n, m ∈ Zν , and T0 = Id.

Now we introduce the following

Definition of Subordinated Random Fields. Given a stationary Gaussian field Xn,

n ∈ Zν , we define the Hilbert spaces H and the shift transformations Tm, m ∈ Zν ,
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over H as before. A discrete stationary field ξn is called a random field subordi-

nated to Xn if ξn ∈ H , and Tnξm = ξn+m for all n, m ∈ Zν .

We remark that ξ0 determines the subordinated fields ξn completely, since ξn =
Tnξ0. Later we give a more adequate description of subordinated fields by means of

Wiener–Itô integrals. Before working out the details we formulate the continuous

time version of the above notions and problems. In the continuous time case it is

more natural to consider generalized random fields. To explain the idea behind such

an approach we shortly explain a different but equivalent description of discrete

random fields. We present them as an appropriate set of random variables indexed

by the elements of a linear space. This shows some similarity with the generalized

random fields to be defined later.

Let ϕn(x), n ∈ Zν , n = (n1, . . . ,nν), denote the indicator function of the cube

[n1 − 1
2
,n1 +

1
2
)×·· ·× [nν − 1

2
,nν +

1
2
), with center n = (n1, . . . ,nν) and with edges

of length 1, i.e. let ϕn(x) = 1, x = (x1, . . . ,xν) ∈ Rν , if n j − 1
2
≤ x j < n j +

1
2

for all

1 ≤ j ≤ ν , and let ϕn(x) = 0 otherwise. Define the linear space Φ of functions on

Rν consisting of all finite linear combinations of the form ∑c jϕn j
(x), n j ∈ Zν , with

the above defined functions ϕn(x) and real coefficients c j. Given a discrete random

field ξn, n ∈ Zν , define the random variables ξ (ϕ) for all ϕ ∈ Φ by the formula

ξ (ϕ) = ∑c jξn j
if ϕ(x) = ∑c jϕn j

(x). In particular, ξ (ϕn) = ξn for all n ∈ Zν . The

identity ξ (c1ϕ + c2ψ) = c1ξ (ϕ) + c2ξ (ψ) also holds for all ϕ,ψ ∈ Φ and real

numbers c1 and c2.

Let us also define the function ϕ(N,AN)(x) = 1
AN

ϕ( x
N
) for all functions ϕ ∈ Φ and

positive integers N = 1,2, . . . , with some appropriately chosen constants AN > 0.

Observe that ξ (ϕ
(N,AN)
n ) = ZN

n with the random variable ZN
n defined in (1.1). All

previously introduced notions related to discrete random fields can be reformulated

with the help of the set of random variables ξ (ϕ), ϕ ∈ Φ . Thus for instance the

random field ξn, n ∈Zν is self-similar with self-similarity parameter α if and only if

ξ (ϕ(N,Nα ))
∆
= ξ (ϕ) for all ϕ ∈ Φ and N = 1,2, . . . . (To see why this statement holds

observe that the distributions of two random vectors agree if and only if every linear

combination of their coordinates have the same distribution. This follows from the

fact that the characteristic function of a random vector determines its distribution.)

It will be useful to define the continuous time version of discrete random fields

as generalized random fields. The generalized random fields will be defined as a set

of random variables indexed by the elements of a linear space of functions. They

show some similarity to the class of random variables ξ (ϕ), ϕ ∈ Φ , defined above.

The main difference is that instead of the space Φ a different linear space is chosen

for the parameter set of the random field. We shall choose the so-called Schwartz

space for this role.

Let S = Sν be the Schwartz space of (real valued) rapidly decreasing, smooth

functions on Rν . (See e.g. [16] for the definition of Sν . I shall present a more de-

tailed discussion about the definition of the space S together with the topology

introduced in it in the adjustment to Chapter 1.) Generally one takes the space of

complex valued, rapidly decreasing, smooth functions as the space S , but we shall

denote the space of real valued, rapidly decreasing, smooth functions by S if we
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do not say this otherwise. We shall omit the subscript ν if it leads to no ambiguity.

Now we introduce the notion of generalized random fields.

Definition of Generalized Random Fields. We say that the set of random variables

X(ϕ), ϕ ∈ S , is a generalized random field over the Schwartz space S of rapidly

decreasing, smooth functions if:

(a) X(a1ϕ1 +a2ϕ2) = a1X(ϕ1)+a2X(ϕ2) with probability 1 for all real numbers

a1 and a2 and ϕ1 ∈ S , ϕ2 ∈ S . (The exceptional set of probability 0 where this

identity does not hold may depend on a1, a2, ϕ1 and ϕ2.)

(b) X(ϕn)⇒ X(ϕ) stochastically if ϕn → ϕ in the topology of S .

We also introduce the following definitions.

Definition of Stationarity and Gaussian Property of a Generalized Random

Field and the Notion of Convergence of Generalized Random Fields in Dis-

tribution. The generalized random field X = {X(ϕ), ϕ ∈ S } is stationary if

X(ϕ)
∆
= X(Ttϕ) for all ϕ ∈ S and t ∈ Rν , where Ttϕ(x) = ϕ(x− t). It is Gaus-

sian if X(ϕ) is a Gaussian random variable for all ϕ ∈ S . The relation Xn
D→ X0

as n → ∞ holds for a sequence of generalized random fields Xn, n = 0,1,2, . . . , if

Xn(ϕ)
D→ X0(ϕ) for all ϕ ∈ S , where

D→ denotes convergence in distribution.

Given a stationary generalized random field X and a function A(t)> 0, t > 0, on

the set of positive real numbers we define the (stationary) random fields XA
t for all

t > 0 by the formula

XA
t (ϕ) = X(ϕA

t ), ϕ ∈ S , where ϕA
t (x) = A(t)−1ϕ

(x

t

)
. (1.3)

We are interested in the following

Question. When does a generalized random field X∗ exist such that XA
t

D→ X∗ as

t → ∞ (or as t → 0)?

In relation to this question we introduce the following

Definition of Self-similarity. The stationary generalized random field X is self-

similar with self-similarity parameter α if XA
t (ϕ)

∆
= X(ϕ) for all ϕ ∈ S and t > 0

with the function A(t) = tα .

To answer the above question one should first describe the generalized self-

similar random fields.

We try to explain the motivation behind the above definitions. Given an ordinary

random field X(t), t ∈ Rν , and a topological space E consisting of functions over Rν

one can define the random variables X(ϕ) =
∫

Rν ϕ(t)X(t)dt, ϕ ∈ E . Some difficulty

may arise when defining this integral, but it can be overcome in all interesting cases.

If the space E is rich enough, and this is the case if E = S , then the integrals

X(ϕ), ϕ ∈ E , determine the random process X(t). The set of random variables X(ϕ),
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ϕ ∈ E , is a generalized random field in all nice cases. On the other hand, there are

generalized random fields which cannot be obtained by integrating ordinary random

fields. In particular, the generalized self-similar random fields we shall construct

later cannot be interpreted through ordinary fields. The above definitions of various

properties of generalized fields are fairly natural, considering what these definitions

mean for generalized random fields obtained by integrating ordinary fields.

The investigation of generalized random fields is simpler than that of ordinary

discrete random fields, because in the continuous case more symmetry is available.

Moreover, in the study or construction of discrete random fields generalized random

fields may play a useful role. To understand this let us remark that if we have a

generalized random field X(ϕ), ϕ ∈ S , and we can extend the space S containing

the test function ϕ to such a larger linear space T for which Φ ⊂ T with the

above introduced linear space Φ , then we can define the discrete random field X(ϕ),
ϕ ∈ Φ , by a restriction of the space of test functions of the generalized random

field X(ϕ), ϕ ∈ T . This random field can be considered as the discretization of the

original generalized random field X(ϕ), ϕ ∈ S .

We finish this chapter by defining the generalized subordinated random fields.

Then we shall explain the basic results about the Schwartz space S and generalized

functions in a separate sub chapter.

Let X(ϕ), ϕ ∈ S , be a generalized stationary Gaussian random field. The for-

mula TtX(ϕ)) = X(Ttϕ), Ttϕ(x) = ϕ(x− t), defines the shift transformation for all

t ∈Rν . Let H denote the real Hilbert space consisting of the B =B(X(ϕ), ϕ ∈S )
measurable random variables with finite second moment. The shift transformation

can be extended to a group of unitary transformations over H similarly to the dis-

crete case. This will be explained in more detail in the next chapter.

Definition of Generalized Random Fields Subordinated to a Generalized Sta-

tionary Gaussian Random Field. Given a generalized stationary Gaussian ran-

dom field X(ϕ), ϕ ∈ S , we define the Hilbert space H and the shift transforma-

tions Tt , t ∈ Rν , over H as above. A generalized stationary random field ξ (ϕ), ϕ ∈
S , is subordinated to the field X(ϕ), ϕ ∈ S , if ξ (ϕ) ∈ H and Ttξ (ϕ) = ξ (Ttϕ)
for all ϕ ∈ S and t ∈ Rν , and E[ξ ϕn)− ξ (ϕ)]2 → 0 if ϕn → ϕ in the topology of

S .

1.1 A Brief Overview About Some Results on Generalized

Functions

Let us first describe the Schwartz spaces S and S c in more detail. The space S c =
(Sν)

c consists of those complex valued functions of ν variables which decrease at

infinity, together with their derivatives, faster than any polynomial degree. More

explicitly, ϕ ∈ S c for a complex valued function ϕ of ν variables if

∣∣∣∣x
k1
1 · · ·xkν

ν
∂ q1+···+qν

∂x
q1
1 . . .∂x

qν
ν

ϕ(x1, . . . ,xν)

∣∣∣∣≤C(k1, . . . ,kν ,q1, . . . ,qν)
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for all point x = (x1, . . . ,xν) ∈ Rν and vectors (k1, . . . ,kν), (q1, . . . ,qν) with non-

negative integer coordinates with some constant C(k1, . . . ,kν ,q1, . . . ,qν) which may

depend on the function ϕ . This formula can be written in a more concise form as

|xkDqϕ(x)| ≤C(k,q) with k = (k1, . . . ,kν) and q = (q1, . . . ,qν),

where x = (x1, . . . ,xν), xk = x
k1
1 · · ·xkν

ν and Dq = ∂ q1+···+qν

∂x
q1
1 ...∂x

qν
ν

. The elements of the

space S are defined similarly, with the only difference that they are real valued

functions.

To define the spaces S and S c we still have to define the convergence in them.

We say that a sequence of functions ϕn ∈ S c (or ϕn ∈ S ) converges to a function

ϕ if

lim
n→∞

sup
x∈Rν

(1+ |x|2)k|Dqϕn(x)−Dqϕ(x)|= 0.

for all k = 1,2, . . . and q = (q1, . . . ,qν). It can be seen that the limit function ϕ is

also in the space S c (or in the space S ).

A nice topology can be introduced in the space S c (or S ) which induces the

above convergence. The following topology is an appropriate choice. Let a basis of

neighbourhoods of the origin consist of the sets

U(k,q,ε) =
{

ϕ : max
x

(1+ |x|2)k|Dqϕ(x)|< ε
}

with k = 0,1,2, . . . , q = (q1, . . . ,qν) with non-negative integer coordinates and ε >
0, where |x|2 = x2

1 + · · ·+ x2
ν . A basis of neighbourhoods of an arbitrary function

ϕ ∈S c (or ϕ ∈S ) consists of sets of the form ϕ+U(k,q,ε), where the class of sets

U(k,q,ε) is a basis of neighbourhood of the origin. The fact that the convergence

in S has such a representation, (and a similar result holds in some other spaces

studied in the theory of generalized functions) has a great importance in the theory

of generalized functions. We also have exploited this fact in Chapter 6 of this Lecture

Note. Topological spaces with such a topology are called countably normed spaces.

The space of generalized functions S ′ consists of the continuous linear maps

F : S →C or F : S c →C, where C denotes the linear space of complex numbers.

(In the study of the space S ′ we omit the upper index c, i.e. we do not indicate

whether we are working in real or complex space when this causes no problem.) We

shall write the map F(ϕ), F ∈ S ′ and ϕ ∈ S (or ϕ ∈ S c) in the form (F,ϕ).
We can define generalized functions F ∈ S ′ by the formula

(F,ϕ) =
∫

f (x)ϕ(x)dx for all ϕ ∈ S or ϕ ∈ S
c

with a function f such that
∫
(1+ |x|2)−p| f (x)|dx < ∞ with some p ≥ 0. (The upper

script ¯ denotes complex conjugate in the sequel.) Such functionals are called reg-

ular. There are also non-regular functionals in the space S ′. An example for them

is the δ -function defined by the formula (δ ,ϕ) = ϕ(0). There is a good description

of the generalized functions F ∈ S ′, (see the book I. M. Gelfand and G. E. Shilov:
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Generalized functions, Volume 2, Chapter 2, Chapter 4), but we do not need this

result, hence we do not discuss it here. Another important question in this field not

discussed in the present note is about the interpretation of a usual function as a

generalized function in the case when it does not define a regular function in S ′

because of its strong singularity in some points. In such cases some regularization

can be applied. It is an important problem in the theory of generalized functions to

define the appropriate generalized functions in such cases, but it does not appear in

the study of the problems in this work.

The derivative and the Fourier transform of generalized functions are also de-

fined, and they play an important role in some investigations. In the definition of

these notions for generalized functions we want to preserve the old definition if nice

regular functionals are considered for which these notions were already defined in

classical analysis. Such considerations lead to the definition (
∂ j

∂x j
F,ϕ) = −(F, ∂ϕ

∂x j
)

of the derivative of generalized functions. We do not discuss this definition in more

detail, because here we do not work with the derivatives of generalized functions.

The Fourier transform of generalized functions in S′ appears in our discussion, al-

though only in an implicit form. The Bochner-Schwartz theorem discussed in Chap-

ter 3 actually deals with the Fourier transform of generalized functions. Hence the

definition of Fourier transform will be given in more detail.

We shall define the Fourier transform of a generalized function by means of a

natural extension of the Parseval formula, more explicitly of a simplified version of

it, where the same identity

∫

Rν
f (x)g(x)dx =

1

(2π)ν

∫

Rν
f̃ (u)g̃(u)du

is formulated with f̃ (u) =
∫

Rν ei(u,x) f (x)dx and g̃(u) =
∫

Rν ei(u,x)g(x)dx. But now

we consider a pair of functions ( f ,g) with different properties. We demand that f

should be an integrable function, and g∈S c. (In the original version of the Parseval

formula both f and g are L2 functions.)

The proof of this identity is simple. Indeed, since the function g ∈ S c can be

calculated as the inverse Fourier transform of its Fourier transform g̃ ∈ S c, i.e.

g(x) = 1
(2π)ν

∫
e−i(u,x)g̃(u)du, we can write

∫
f (x)g(x)dx =

∫
f (x)

[
1

(2π)ν

∫
e−i(u,x)g̃(u)du

]
dx

=
∫

g̃(u)

[
1

(2π)ν

∫
ei(u,x) f (x)dx

]
du

=
1

(2π)ν

∫
f̃ (u)g̃(u)du.

Let us also remark that the Fourier transform f → f̃ is a bicontinuous map from

S c to S c. (This means that this transformation is invertible, and both the Fourier

transform and its inverse are continuous maps from S c to S c.) (The restriction
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of the Fourier transform to the space S of real valued functions is a bicontinuous

map from S to the subspace of S c consisting of those functions f ∈S c for which

f (−x) = f (x) for all x ∈ Rν .)

The above results make natural the following definition of the Fourier trans-

form F̃ of a generalized function F ∈ S ′.

(F̃ , ϕ̃) = (2π)ν(F,ϕ) for all ϕ ∈ S
c.

Indeed, if F ∈ S ′ then F̃ is also a continuous linear map on S c, i.e. it is also an

element of S ′. Besides, the above proved version of the Parseval formula implies

that if we consider an integrable function f on Rν both as a usual function and as a

(regular) generalized function, its Fourier transform agrees in the two cases.

There are other classes of test functions and spaces of generalized functions stud-

ied in the literature. The most popular among them is the space D of infinitely many

times differentiable functions with compact support and its dual space D ′, the space

of continuous linear transformations on the space D . (These spaces are generally

denoted by D and D ′ in the literature, although just the book [16] that we use as our

main reference in this subject applies the notation K and K ′ for them.) We shall

discuss this space only very briefly.

The space D consists of the infinitely many times differentiable functions with

compact support. Thus it is a subspace of S . A sequence ϕn ∈ D , n = 1,2, . . . ,
converges to a function ϕ , if there is a compact set A ⊂ Rν which is the support

of all these functions ϕn, and the functions ϕn together with all their derivatives

converge uniformly to the function ϕ and to its corresponding derivatives. It is not

difficult to see that also ϕ ∈D , and if the functions ϕn converge to ϕ in the space D ,

then they also converge to ϕ in the space S . Moreover, D is an everywhere dense

subspace of S . The space D ′ consists of the continuous linear functionals in D .

The results describing the behaviour of D and D ′ are very similar to those de-

scribing the behaviour of S and S ′. There is one difference that deserves some

attention. The Fourier transforms of the functions in D may not belong to D . The

class of these Fourier transforms can be described by means of some results in com-

plex analysis. A topological space Z can be defined on the set of Fourier trans-

forms of the functions from the space D . If we want to apply Fourier analysis in the

space D , then we also have to study this space Z and its dual space Z ′. I omit the

details.



Chapter 2

Wick Polynomials

In this chapter we consider the so-called Wick polynomials, a multi-dimensional

generalization of Hermite polynomials. They are closely related to multiple Wiener–

Itô integrals.

Let Xt , t ∈ T , be a set of jointly Gaussian random variables indexed by a param-

eter set T . Let EXt = 0 for all t ∈ T . We define the real Hilbert spaces H1 and H

in the following way: A square integrable random variable is in H if and only if

it is measurable with respect to the σ -algebra B = B(Xt , t ∈ T ), and the scalar

product in H is defined as (ξ ,η) = Eξ η , ξ , η ∈ H . The Hilbert space H1 ⊂ H

is the subspace of H generated by the finite linear combinations ∑c jXt j
, t j ∈ T . We

consider only such sets of Gaussian random variables Xt for which H1 is separable.

Otherwise Xt , t ∈ T , can be arbitrary, but the most interesting case for us is when

T = Sν or Zν , and Xt , t ∈ T , is a stationary Gaussian field.

Let Y1,Y2, . . . be an orthonormal basis in H1. The uncorrelated random variables

Y1,Y2, . . . are independent, since they are (jointly) Gaussian. Moreover,

B(Y1,Y2, . . .) = B(Xt , t ∈ T ).

Let Hn(x) denote the n-th Hermite polynomial with leading coefficient 1, i.e. let

Hn(x) = (−1)nex2/2 dn

dxn (e−x2/2). We recall the following results from analysis and

measure theory.

Theorem 2A. The Hermite polynomials Hn(x), n = 0,1,2, . . . , form a complete or-

thogonal system in L2

(
R,B, 1√

2π
e−x2/2 dx

)
. (Here B denotes the Borel σ -algebra

on the real line.)

Let (X j,X j,µ j), j = 1,2, . . . , be countably many independent copies of a prob-

ability space (X ,X ,µ). (We denote the points of X j by x j.) Let (X∞,X ∞,µ∞) =
∞

∏
j=1

(X j,X j,µ j). With such a notation the following result holds.

9
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Theorem 2B. Let ϕ0,ϕ1, . . . , ϕ0(x) ≡ 1, be a complete orthonormal system in the

Hilbert space L2(X ,X ,µ). Then the functions
∞

∏
j=1

ϕk j
(x j), where only finitely many

indices k j differ from 0, form a complete orthonormal basis in L2(X
∞,X ∞,µ∞).

Theorem 2C. Let Y1,Y2, . . . be random variables on a probability space (Ω ,A ,P)
taking values in a measurable space (X ,X ). Let ξ be a real valued random variable

measurable with respect to the σ -algebra B(Y1,Y2, . . .), and let (X∞,X ∞) denote

the infinite product (X ×X × ·· · ,X ×X × ·· ·) of the space (X ,X ) with itself.

Then there exists a real valued, measurable function f on the space (X∞,X ∞) such

that ξ = f (Y1,Y2, . . .).

Remark. Let us have a stationary random field Xn(ω), n ∈ Zν . Theorem 2C en-

ables us to extend the shift transformation Tm, defined as TmXn(ω) = Xn+m(ω),
n, m ∈ Zν , for all random variables ξ (ω), measurable with respect to the σ -algebra

B(Xn(ω), n∈Zν). Indeed, by Theorem 2C we can write ξ (ω) = f (Xn(ω), n∈Zν),
and define Tmξ (ω) = f (Xn+m(ω), n ∈ Zν). We still have to understand, that al-

though the function f is not unique in the representation of the random vari-

able ξ (ω), the above definition of Tmξ (ω) is meaningful. To see this we have to

observe that if f1(Xn(ω), n ∈ Zν) = f2(Xn(ω), n ∈ Zν) for two functions f1 and

f2 with probability 1, then also f1(Xn+m(ω), n ∈ Zν) = f2(Xn+m(ω), n ∈ Zν) with

probability 1 because of the stationarity of the random field Xn(ω), n ∈ Zν . Let us

also observe that ξ (ω)
∆
= Tmξ (ω) for all m ∈ Zν . Besides, Tm is a linear operator

on the linear space of random variables, measurable with respect to the σ -algebras

B(Xn, n ∈ Zν). If we restrict it to the space of square integrable random variables,

then Tm is a unitary operator, and the operators Tm, m ∈ Zν , constitute a unitary

group.

Let a stationary generalized random field X = {X(ϕ), ϕ ∈S } be given. The shift

Ttξ of a random variable ξ , measurable with respect to the σ -algebra B(X(ϕ), ϕ ∈
S ) can be defined for all t ∈ Rν similarly to the discrete case with the help of

Theorem 2C and the following result. If ξ ∈ B(X(ϕ), ϕ ∈ S ) for a random vari-

able ξ , then there exists such a countable subset {ϕ1,ϕ2, . . .} ⊂ S (depending on

the random variable ξ ) for which ξ is B(X(ϕ1),X(ϕ2), . . .) measurable. (We write

ξ (ω) = f (X(ϕ1)(ω),X(ϕ2)(ω), . . .) with appropriate functions f , and ϕ1 ∈ S ,

ϕ2 ∈ S ,. . . , and define the shift Ttξ as Ttξ (ω) = f (X(Ttϕ1)(ω),X(Ttϕ2)(ω), . . .),
where Ttϕ(x) = ϕ(x− t) for ϕ ∈ S .) The transformations Tt , t ∈ Rν , are linear op-

erators over the space of random variables measurable with respect to the σ -algebra

B(X(ϕ), ϕ ∈ S ) with similar properties as their discrete counterpart.

Theorems 2A, 2B and 2C have the following important consequence.

Theorem 2.1. Let Y1,Y2, . . . be an orthonormal basis in the Hilbert space H1 de-

fined above with the help of a set of Gaussian random variables Xt , t ∈ T . Then

the set of all possible finite products H j1(Yl1) · · ·H jk(Ylk) is a complete orthogonal

system in the Hilbert space H defined above. (Here H j(·) denotes the j-th Hermite

polynomial.)
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Proof of Theorem 2.1. By Theorems 2A and 2B the set of all possible prod-

ucts
∞

∏
j=1

Hk j
(x j), where only finitely many indices k j differ from 0, is a com-

plete orthonormal system in L2

(
R∞,B∞,

∞

∏
j=1

e
−x2

j /2

√
2π

dx j

)
. Since B(Xt , t ∈ T ) =

B(Y1,Y2, . . .), Theorem 2C implies that the mapping f (x1,x2, . . . ,)→ f (Y1,Y2, . . .)

is a unitary transformation from L2

(
R∞,B∞,

∞

∏
j=1

e
−x2

j /2

√
2π

dx j

)
to H . (We call a

transformation from a Hilbert space to another Hilbert space unitary if it is norm

preserving and invertible.) Since the image of a complete orthogonal system un-

der a unitary transformation is again a complete orthogonal system, Theorem 2.1 is

proved. ⊓⊔
Let H≤n ⊂ H , n = 1,2, . . . , (with the previously introduced Hilbert space H )

denote the Hilbert space which is the closure of the linear space consisting of the

elements Pn(Xt1 , . . . ,Xtm), where Pn runs through all polynomials of degree less than

or equal to n, and the integer m and indices t1, . . . , tm ∈ T are arbitrary. Let H0 =
H≤0 consist of the constant functions, and let Hn = H≤n ⊖H≤n−1, n = 1,2, . . . ,
where ⊖ denotes orthogonal completion. It is clear that the Hilbert space H1 given

in this definition agrees with the previously defined Hilbert space H1. If ξ1, . . . ,ξm ∈
H1, and Pn(x1, . . . ,xm) is a polynomial of degree n, then Pn(ξ1, . . . ,ξm) ∈ H≤n.

Hence Theorem 2.1 implies that

H = H0 +H1 +H2 + · · · , (2.1)

where + denotes direct sum. Now we introduce the following

Definition of Wick Polynomials. Given a polynomial P(x1, . . . ,xm) of degree n and

a set of (jointly) Gaussian random variables ξ1, . . . ,ξm ∈ H1, the Wick polynomial

: P(ξ1, . . . ,ξm): is the orthogonal projection of the random variable P(ξ1, . . . ,ξm)
to the above defined subspace Hn of the Hilbert space H .

It is clear that Wick polynomials of different degree are orthogonal. Given some

ξ1, . . . ,ξm ∈ H1 define the subspaces H≤n(ξ1, . . . ,ξm) ⊂ H≤n, n = 1,2, . . . , as the

set of all polynomials of the random variables ξ1, . . . ,ξm with degree less than or

equal to n. Let H≤0(ξ1, . . . ,ξm) = H0(ξ1, . . . ,ξm) = H0, and Hn(ξ1, . . . ,ξm) =
H≤n(ξ1, . . . ,ξm)⊖H≤n−1(ξ1, . . . ,ξm). With the help of this notation we formulate

the following

Proposition 2.2. Let P(x1, . . . ,xm) be a polynomial of degree n. Then the random

polynomial : P(ξ1, . . . ,ξm): equals the orthogonal projection of P(ξ1, . . . ,ξm) to

Hn(ξ1, . . . ,ξm).

Proof of Proposition 2.2. Let : P̄(ξ1, . . . ,ξm): denote the projection of the random

polynomial P(ξ1, . . . ,ξm) to Hn(ξ1, . . . ,ξm). Obviously

P(ξ1, . . . ,ξm)− : P̄(ξ1, . . . ,ξm): ∈ H≤n−1(ξ1, . . . ,ξm)⊆ H≤n−1.
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Hence in order to prove Proposition 2.2 it is enough to show that for all η ∈ H≤n−1

E : P̄(ξ1, . . . ,ξm): η = 0, (2.2)

since this means that : P̄(ξ1, . . . ,ξm): is the orthogonal projection of P(ξ1, . . . ,ξm)∈
H≤n to H≤n−1.

Let ε1,ε2, . . . be an orthonormal system in H1, also orthonormal to ξ1, . . . ,ξm,

and such that ξ1, . . . ,ξm,ε1,ε2, . . . form a basis in H1. If η =
m

∏
i=1

ξ li
i

∞

∏
j=1

ε
k j

j with such

exponents li and k j that ∑ li +∑k j ≤ n−1, then (2.2) holds for this random variable

η because of the independence of the random variables ξi and ε j. Since the linear

combinations of such η are dense in H≤n−1, formula (2.2) and Proposition (2.2) are

proved. ⊓⊔
Corollary 2.3. Let ξ1, . . . ,ξm be an orthonormal system in H1, and let

P(x1, . . . ,xm) = ∑c j1,..., jmx j1 · · ·x jm
m

be a homogeneous polynomial, i.e. let j1 + · · · jm = n with some fixed number n for

all sets ( j1, . . . , jm) appearing in this summation. Then

: P(ξ1, . . . ,ξm): = ∑c j1,..., jmH j1(ξ1) · · ·H jm(ξm).

In particular,

: ξ n: = Hn(ξ ) if ξ ∈ H1, and Eξ 2 = 1.

Remark. Although we have defined the Wick polynomial (of degree n) for all poly-

nomials P(ξ1, . . . ,ξm) of degree n, we could have restricted our attention only

to homogeneous polynomials of degree n, since the contribution of each terms

c( j1, . . . jm)ξ
l1
1 · · ·ξ lm

m of the polynomial P(ξ1, . . . ,ξm) such that l1 + · · ·+ lm < n

has a zero contribution in the definition of the Wick polynomial : P(ξ1, . . . ,ξm): .

Proof of Corollary 2.3. Let the degree of the polynomial P be n. Then

P(ξ1, . . . ,ξm)−∑c j1,..., jmH j1(ξ1) · · ·H jm(ξm) ∈ H≤n−1(ξ1, . . . ,ξm), (2.3)

since P(ξ1, . . . ,xm)−∑c j1,..., jmH j1(ξ1) · · ·H jm(ξm) is a polynomial whose degree is

less than n. Let η = ξ l1
1 · · ·ξ lm

m ,
m

∑
i=1

li ≤ n−1. Then

EηH j1(ξ1) · · ·H jm(ξm) =
m

∏
i=1

Eξ li
i H ji(ξi) = 0,

since li < ji for at least one index i. Therefore

Eη ∑c j1,..., jmH j1(ξ1) · · ·H jm(ξm) = 0. (2.4)
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Since every element of H≤n−1(ξ1, . . . ,ξm) can be written as the sum of such

elements η , relation (2.4) holds for all η ∈ H≤n−1(ξ1, . . . ,ξm). Relations (2.3)

and (2.4) imply Corollary 2.3. ⊓⊔
The following statement is a simple consequence of the previous results.

Corollary 2.4. Let ξ1,ξ2, . . . be an orthonormal basis in H1. Then the random vari-

ables H j1(ξ1) · · ·H jk(ξk), k = 1,2, . . . , j1+ · · ·+ jk = n, form a complete orthogonal

basis in Hn.

Proof of Corollary 2.4. It follows from Corollary 2.3 that

H j1(ξ1) · · ·H jk(ξk) = : ξ j1
1 · · ·ξ jk

k : ∈ Hn for all k = 1,2, . . .

if j1 + · · ·+ jk = n. These random variables are orthogonal, and all Wick polyno-

mials : P(ξ1, . . . ,ξm): of degree n of the random variables ξ1,ξ2, . . . can be repre-

sented as the linear combination of such terms. Since these Wick polynomials are

dense in Hn, this implies Corollary 2.4. ⊓⊔
The arguments of this chapter exploited heavily some properties of Gaussian

random variables. Namely, they exploited that the linear combinations of Gaussian

random variables are again Gaussian, and in Gaussian case orthogonality implies

independence. This means in particular, that the rotation of a standard normal vector

leaves its distribution invariant. We finish this chapter with an observation based on

these facts. This may illuminate the content of formula (2.1) from another point of

view. We shall not use the results of the subsequent considerations in the rest of this

work.

Let U be a unitary transformation over H1. It can be extended to a unitary trans-

formation U over H in a natural way. Fix an orthonormal basis ξ1,ξ2, . . . in H1,

and define U 1 = 1, U ξ l1
j1
· · ·ξ lk

jk
= (Uξ j1)

l1 · · ·(Uξ jk)
lk . This transformation can

be extended to a linear transformation U over H in a unique way. The trans-

formation U is norm preserving, since the joint distributions of (ξ j1 ,ξ j2 , . . .) and

(Uξ j1 ,Uξ j2 , . . .) coincide. Moreover, it is unitary, since Uξ1,Uξ2, . . . is an orthonor-

mal basis in H1. It is not difficult to see that if P(x1, . . . ,xm) is an arbitrary polyno-

mial, and η1,η2 . . . ,ηm ∈ H1, then U P(η1, . . . ,ηm) = P(Uη1, . . . ,Uηm). This re-

lation means in particular that the transformation U does not depend on the choice

of the basis in H1. If the transformations U1 and U2 correspond to two unitary

transformations U1 and U2 on H1, then the transformation U1U2 corresponds to

U1U2. The subspaces H≤n and therefore the subspaces Hn remain invariant under

the transformations U .

The shift transformations of a stationary Gaussian field, and their extensions to

H are the most interesting examples for such unitary transformations U and U . In

the terminology of group representations the above facts can be formulated in the

following way: The mapping U → U is a group representation of U(H1) over H ,

where U(H1) denotes the group of unitary transformations over H1. Formula (2.1)

gives a decomposition of H into orthogonal invariant subspaces of this representa-

tion.





Chapter 3

Random Spectral Measures

Some standard theorems of probability theory state that the correlation function

of a stationary random field can be expressed as the Fourier transform of a so-

called spectral measure. In this chapter we construct a random measure with the

help of these results, and express the random field itself as the Fourier transform

of this random measure in some sense. We restrict ourselves to the Gaussian case,

although most of the results in this chapter are valid for arbitrary stationary random

field with finite second moment if independence is replaced by orthogonality. In the

next chapter we define the multiple Wiener–Itô integrals with respect to this random

measure. In the definition of multiple stochastic integrals the Gaussian property will

be heavily exploited. First we recall two results about the spectral representation of

the covariance function.

Given a stationary Gaussian field Xn, n ∈ Zν , or X(ϕ), ϕ ∈ S , we shall assume

throughout the paper that EXn = 0, EX2
n = 1 in the discrete and EX(ϕ) = 0 in the

generalized field case.

Theorem 3A. (Bochner.) Let Xn, n ∈ Zν , be a discrete (Gaussian) stationary ran-

dom field. There exists a unique probability measure G on [−π,π)ν such that the

correlation function r(n) = EX0Xn = EXkXk+n, n ∈ Zν , k ∈ Zν , can be written in

the form

r(n) =
∫

ei(n,x)G(dx), (3.1)

where (·, ·) denotes scalar product. Further G(A) = G(−A) for all A ∈ [−π,π)ν .

We can identify [−π,π)ν with the torus Rν/2πZν . Thus e.g. −(−π, . . . ,−π) =
(−π, . . . ,−π).

Theorem 3B. (Bochner–Schwartz.) Let X(ϕ), ϕ ∈ S , be a generalized Gaussian

stationary random field over S = Sν . There exists a unique σ -finite measure G on

Rν such that

EX(ϕ)X(ψ) =

∫
ϕ̃(x) ¯̃ψ(x)G(dx) for all ϕ, ψ ∈ S , (3.2)

15
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where ˜ denotes Fourier transform and ¯ complex conjugate. The measure G has the

properties G(A) = G(−A) for all A ∈ Bν , and

∫
(1+ |x|)−rG(dx)< ∞ with an appropriate r > 0. (3.3)

Remark. The above formulated results are actually not the Bochner and Bochner–

Schwartz theorem in their original form, they are their consequences. In an Adjust-

ment to Chapter 3 I formulate the classical form of these theorems, and explain how

the above results follow from them.

The measure G appearing in Theorems 3A and 3B is called the spectral measure

of the stationary field. A measure G with the same properties as the measure G

in Theorem 3A or 3B will also be called a spectral measure. This terminology is

justified, since there exists a stationary random field with spectral measure G for all

such G.

Let us now consider a stationary Gaussian random field (discrete or general-

ized one) with spectral measure G. We shall denote the space L2([−π,π)ν ,Bν ,G)
or L2(R

ν ,Bν ,G) simply by L2
G. Let H1 denote the real Hilbert space defined by

means of the stationary random field, as it was done in Chapter 2. Let H c
1 denote

its complexification, i.e. the elements of H c
1 are of the form X + iY , X , Y ∈H1, and

the scalar product is defined as (X1 + iY1,X2 + iY2) = EX1X2 +EY1Y2 + i(EY1X2 −
EX1Y2). We are going to construct a unitary transformation I from L2

G to H c
1 . We

shall define the random spectral measure via this transformation.

Let S c denote the Schwartz space of rapidly decreasing, smooth, complex val-

ued functions with the usual topology of the Schwartz space. (The elements of S c

are of the form ϕ + iψ , ϕ, ψ ∈ S .) We make the following observation. The finite

linear combinations ∑cnei(n,x) are dense in L2
G in the discrete field, and the functions

ϕ ∈ S c are dense in L2
G in the generalized field case. In the discrete field case this

follows from the Weierstrass approximation theorem, which states that all contin-

uous functions on [−π,π)ν can be approximated arbitrary well in the supremum

norm by trigonometrical polynomials. In the generalized field case let us first ob-

serve that the continuous functions with compact support are dense in L2
G. We claim

that also the functions of the space D are dense in L2
G, where D denotes the class of

(complex valued) infinitely many times differentiable functions with compact sup-

port. Indeed, if ϕ ∈ D is real valued, ϕ(x) ≥ 0 for all x ∈ Rν ,
∫

ϕ(x)dx = 1, we

define ϕt(x) = tν ϕ
(

x
t

)
, and f is a continuous function with compact support, then

f ∗ϕt → f uniformly as t → ∞. Here ∗ denotes convolution. On the other hand,

f ∗ϕt ∈ D for all t > 0. Hence D ⊂ S c is dense in L2
G.

Finally we recall the following result from the theory of distributions. The map-

ping ϕ → ϕ̃ is an invertible, bicontinuous transformation from S c into S c. In

particular, the set of functions ϕ̃ , ϕ ∈ S , is also dense in L2
G.

Now we define the mapping

I
(
∑cnei(n,x)

)
= ∑cnXn (3.4)



3 Random Spectral Measures 17

in the discrete field case, where the sum is finite, and

I(ϕ̃ + iψ) = X(ϕ)+ iX(ψ), ϕ, ψ ∈ S (3.5)

in the generalized field case.

Obviously,

∥∥∥∑cnei(n,x)
∥∥∥

2

L2
G

= ∑∑cnc̄m

∫
ei(n−m),xG(dx)

= ∑∑cnc̄mEXnXm = E
∣∣∑cnXn

∣∣2 ,

and

‖ϕ̃ + iψ‖2
L2

G

=
∫
[ϕ̃(x) ¯̃ϕ(x)− iϕ̃(x) ¯̃ψ(x)+ iψ̃(x) ¯̃ϕ(x)+ ψ̃(x) ¯̃ψ(x)]G(dx)

= EX(ϕ)2 − iEX(ϕ)X(ψ)+ iEX(ψ)X(ϕ)+EX(ψ)2

= E (|X(ϕ)+ iX(ψ)|)2 .

This means that the mapping I from a linear subspace of L2
G to H c

1 is norm preserv-

ing. Besides, the subspace where I was defined is dense in L2
G, since the space of

continuous functions is dense in L2
G if G is a finite measure on the torus Rν/2πZν ,

and the space of continuous functions with a compact support is dense in L2
G(R

ν) if

the measure G satisfies relation (3.3). Hence the mapping I can be uniquely ex-

tended to a norm preserving transformation from L2
G to H c

1 . Since the random

variables Xn or X(ϕ) are obtained as the image of some element from L2
G un-

der this transformation, I is a unitary transformation from L2
G to H c

1 . A unitary

transformation preserves not only the norm, but also the scalar product. Hence∫
f (x)ḡ(x)G(dx) = EI( f )I(g) for all f , g ∈ L2

G.

Now we define the random spectral measure ZG(A) for all A ∈ Bν such that

G(A)< ∞ by the formula

ZG(A) = I(χA),

where χA denotes the indicator function of the set A. It is clear that

(i) The random variables ZG(A) are complex valued, jointly Gaussian random

variables. (The random variables ReZG(A) and ImZG(A) with possibly different

sets A are jointly Gaussian.)

(ii) EZG(A) = 0,

(iii) EZG(A)ZG(B) = G(A∩B),

(iv)
n

∑
j=1

ZG(A j) = ZG

(
n⋃

j=1

A j

)
if A1, . . . ,An are disjoint sets.

Also the following relation holds.

(v) ZG(A) = ZG(−A).
This follows from the relation

(v′) I( f ) = I( f−) for all f ∈ L2
G, where f−(x) = f (−x).
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Relation (v′) can be simply checked if f is a finite trigonometrical polynomial

in the discrete field case, or if f = ϕ̃ , ϕ ∈ S c, in the generalized field case. (In

the case f = ϕ̃ , ϕ ∈ S c, the following argument works. Put f (x) = ϕ̃1(x)+ iϕ̃2(x)
with ϕ1,ϕ2 ∈ S . Then I( f ) = X(ϕ1)+ iX(ϕ2), and f−(x) = ¯̃ϕ1(−x)− i ¯̃ϕ2(−x) =
ϕ̃1(x)+ i(−̃ϕ2(x), hence I( f−)=X(ϕ1)+ iX(−ϕ2)=X(ϕ1)− iX(ϕ2)= I( f ).) Then

a simple limiting procedure implies (v′) in the general case. Relation (iii) follows

from the identity EZG(A)ZG(B) = EI(χA)I(χB) =
∫

χA(x)χB(x)G(dx) = G(A∩B).
The remaining properties of ZG(·) are simple consequences of the definition.

Remark. Property (iv) could have been omitted from the definition of random spec-

tral measures, since it follows from property (iii). To show this it is enough to check

that if A1, . . . ,An are disjoint sets, and property (iii) holds, then

E

(
n

∑
j=1

ZG(A j)−ZG

(
n⋃

j=1

A j

))(
n

∑
j=1

ZG(A j)−ZG

(
n⋃

j=1

A j

))
= 0.

Now we introduce the following

Definition of Random Spectral Measure. Let G be a spectral measure. A set of

random variables ZG(A), G(A)<∞, satisfying (i)–(v) is called a (Gaussian) random

spectral measure corresponding to the spectral measure G.

Given a Gaussian random spectral measure ZG corresponding to a spectral mea-

sure G we define the (one-fold) stochastic integral
∫

f (x)ZG(dx) for an appro-

priate class of functions f . Let us first consider simple functions of the form

f (x) = ∑ciχAi
(x), where the sum is finite, and G(Ai) < ∞ for all indices i. In this

case we define ∫
f (x)ZG(dx) = ∑ciZG(Ai).

Then we have

E

∣∣∣∣
∫

f (x)ZG(dx)

∣∣∣∣
2

= ∑cic̄ jG(Ai ∩A j) =
∫

| f (x)|2G(dx). (3.6)

Since the simple functions are dense in L2
G, relation (3.6) enables us to define∫

f (x)ZG(dx) for all f ∈ L2
G via L2-continuity. It can be seen that this integral satis-

fies the identity

E

∫
f (x)ZG(dx)

∫
g(x)ZG(dx) =

∫
f (x)g(x)G(dx) (3.7)

for all pairs of functions f ,g ∈ L2
G. Moreover, similar approximation with simple

functions yields that

∫
f (x)ZG(dx) =

∫
f (−x)ZG(dx) (3.8)
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for a function f ∈ L2
G. Here we exploit the identity ZG(A) = ZG(−A) formulated in

property (v) of the random spectral measure ZG.

The last two identities together with the relations (3.1) and (3.2) imply that if we

define the set of random variables Xn and X(ϕ) by means of the formula

Xn =
∫

ei(n,x)ZG(dx), n ∈ Zν , (3.9)

and

X(ϕ) =
∫

ϕ̃(x)ZG(dx), ϕ ∈ S , (3.10)

where we integrate with respect to the random spectral measure ZG, then we get

a Gaussian stationary random discrete and generalized field with spectral mea-

sure G, i.e. with correlation function given in formulas (3.1) and (3.2). To check

this statement first we have to show that the random variables Xn and X(ϕ) defined

in (3.9) and (3.10) are real valued, or equivalently saying the identities Xn = Xn

and X(ϕ) = X(ϕ) hold with probability 1. This follows from relation (3.8) and

the identities ei(n,x) = e(i(n,−x) and ϕ̃(x) = ϕ̃(−x) for a (real valued) function

ϕ ∈ S . Then we can calculate the correlation functions EXnXm = EXnXm and

EX(ϕ)X(ψ) = EX(ϕ)X(ψ) by means of formula (3.7), (3.9) and (3.10).

We also have ∫
f (x)ZG(dx) = I( f ) for all f ∈ L2

G

if we consider the previously defined mapping I( f ) with the stationary random fields

defined in (3.9) and (3.10). Now we formulate the following

Theorem 3.1. For a stationary Gaussian random field (a discrete or generalized

one) with a spectral measure G there exists a unique Gaussian random spectral

measure ZG corresponding to the spectral measure G on the same probability space

as the Gaussian random field such that relation (3.9) or (3.10) holds in the discrete

or generalized field case respectively.

Furthermore

B(ZG(A), G(A)< ∞) =

{
B(Xn, n ∈ Zν) in the discrete field case,

B(X(ϕ), ϕ ∈ S ) in the generalized field case.

(3.11)

If a stationary Gaussian random field Xn, n ∈ Zν , or X(ϕ), ϕ ∈S , and a random

spectral measure ZG satisfy relation (3.9) or (3.10), then we say that this random

spectral measure is adapted to this Gaussian random field.

Proof of Theorem 3.1. Given a stationary Gaussian random field (discrete or station-

ary one) with a spectral measure G, we have constructed a random spectral measure

ZG corresponding to the spectral measure G. Moreover, the random integrals given

in formulas (3.9) or (3.10) define the original stationary random field. Since all

random variables ZG(A) are measurable with respect to the original random field,

relation (3.9) or (3.10) implies (3.11).
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To prove the uniqueness, it is enough to observe that because of the linearity and

L2 continuity of stochastic integrals relation (3.9) or (3.10) implies that

ZG(A) =
∫

χA(x)ZG(dx) = I(χA)

for a Gaussian random spectral measure corresponding to the spectral measure G

appearing in Theorem 3.1. ⊓⊔
Finally we list some additional properties of Gaussian random spectral measures.

(vi) The random variables ReZG(A) are independent of the random variables

ImZG(A).
(vii) The random variables of the form ZG(A∪ (−A)) are real valued. If the sets

A1 ∪ (−A1),. . . , An ∪ (−An) are disjoint, then the random variables ZG(A1),. . . ,

ZG(An) are independent.

(viii) The relations ReZG(−A) = ReZG(A) and ImZG(−A) = −ImZG(A) hold,

and if A∩(−A)= /0, then the (Gaussian) random variables ReZG(A) and ImZG(A)
are independent with expectation zero and variance G(A)/2.

These properties easily follow from (i)–(v). Since ZG(·) are complex valued

Gaussian random variables, to prove the above formulated independence it is

enough to show that the real and imaginary parts are uncorrelated. We show, as

an example, the proof of (vi).

EReZG(A)ImZG(B) =
1

4i
E(ZG(A)+ZG(A))(ZG(B)−ZG(B))

=
1

4i
E(ZG(A)+ZG(−A))(ZG(−B)−ZG(B))

=
1

4i
G(A∩ (−B))− 1

4i
G(A∩B)

+
1

4i
G((−A)∩ (−B))− 1

4i
G((−A)∩B) = 0

for all pairs of sets A and B such that G(A) < ∞, G(B) < ∞, since G(D) = G(−D)
for all D ∈ Bν . The fact that ZG(A∪ (−A)) is real valued random variable, and the

relations ReZG(−A) = ReZG(A), ImZG(−A) = −ImZG(A) under the conditions

of (viii) follow directly from (v). The remaining statements of (vii) and (viii) can be

proved similarly to (vi) only the calculations are simpler in this case.

The properties of the random spectral measure ZG listed above imply in particular

that the spectral measure G determines the joint distribution of the corresponding

random variables ZG(B), B ∈ Bν .
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3.1 On the Spectral Representation of the Covariance Function

of Stationary Random Fields

The results formulated under the name of Bochner and Bochner–Schwartz theorem

(I write this, because actually I presented not these theorems but an important con-

sequence of them) have the following content. Given a finite, even measure G on

the torus Rν/2πZν one can define a (Gaussian) discrete stationary field with corre-

lation function satisfying (3.1) with this measure G. For an even measure G on Rν

satisfying (3.3) there exists a (Gaussian) generalized stationary field with correlation

function defined in formula (3.2) with this measure G. The Bochner and Bochner–

Schwartz theorems state that the correlation function of all (Gaussian) discrete sta-

tionary fields, respectively of all stationary generalized fields can be represented in

such a way. Let us explain this in more detail.

First I formulate the following

Proposition 3C. Let G be a finite measure on the torus Rν/2πZν such that G(A) =
G(−A) for all measurable sets A. Then there exists a Gaussian discrete stationary

random field Xn, n ∈ Zν , with expectation zero such that its correlation function

r(n) = EXkXk+n, n,k ∈ Zν , is given by formula (3.1) with this measure G.

Let G be a measure on Rν satisfying (3.3) and such that G(A) = G(−A) for all

measurable sets A. Then there exists a Gaussian stationary generalized random field

X(ϕ), ϕ ∈ S , with expectation EX(ϕ) = 0 for all ϕ ∈ S such that its covariance

function EX(ϕ)X(ψ), ϕ,ψ ∈ S , satisfies formula (3.2) with this measure G.

Moreover, the correlation function r(n) or EX(ϕ)X(ψ), ϕ,ψ ∈ S , determines

the measure G uniquely.

Proof of Proposition 3C. By Kolmogorov’s theorem about the existence of ran-

dom processes with consistent finite dimensional distributions it is enough to prove

the following statement to show the existence of the Gaussian discrete stationary

field with the demanded properties. For any points n1, . . . ,np ∈ Zν there exists a

Gaussian random vector (Xn1
, . . . ,Xnp) with expectation zero and covariance ma-

trix EXn j
Xnk

= r(n j − nk). (Observe that the function r(n) is real valued, r(n) =
r(−n), because of the evenness of the spectral measure G.) Hence it is enough to

check that the corresponding matrix is positive definite, i.e. ∑
j,k

c jckr(n j − nk) ≥ 0

for all real vectors (c1, . . . ,cp). This relation holds, because ∑
j,k

c jckr(n j − nk) =

∫ |∑
j

c je
i(n j ,x)|2 G(dx)≥ 0 by formula (3.1).

It can be proved similarly that in the generalized field case there exists a

Gaussian random field with expectation zero whose covariance function satis-

fies formula (3.2). (Let us observe that the relation G(A) = G(−A) implies that

EX(ϕ)X(ψ) is a real number for all ϕ, ψ ∈ S , since EX(ϕ)X(ψ) = EX(ϕ)X(ψ)

in this case. In the proof of this identity we exploit that ¯̃f (x) = f̃ (−x) for a real val-

ued function f .) We also have to show that a random field with such a distribution

is a generalized field, i.e. it satisfies properties (a) and (b) given in the definition of

generalized fields.
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It is not difficult to show that if ϕn → ϕ in the topology of the space S , then

E[X(ϕn)− X(ϕ)]2 =
∫ |ϕ̃n(x)− ϕ̃(x)|2G(dx) → 0 as n → ∞, hence property (b)

holds. (Here we exploit that the transformation ϕ → ϕ̃ is bicontinuous in the

space S .) Property (a) also holds, because, as it is not difficult to check with the

help of formula (3.2),

E[a1X(ϕ1)+a2X(ϕ2)−X(ϕ(a1ϕ1 +a2ϕ2)]
2

=
∫ ∣∣∣a1ϕ̃1(x)+a2ϕ̃2(x)− ( ˜a1ϕ1 +a2ϕ2)(x)

∣∣∣
2

G(dx) = 0.

It is clear that the Gaussian random field constructed in such a way is stationary.

Finally, as we have seen in our considerations in the main text, the correlation

function determines the integral
∫

f (x)G(dx) for all continuous functions f with a

bounded support, hence it also determines the measure G. ⊓⊔
The Bochner and Bochner–Schwartz theorems enable us to show that the cor-

relation function of all stationary (Gaussian) random fields (discrete or generalized

one) can be represented in the above way with an appropriate spectral measure G.

To see this let us formulate these results in their original form.

To formulate Bochner’s theorem first we introduce the following notion.

Definition of Positive Definite Functions. Let f (x) be a (complex valued) func-

tion on Zν (or on Rν ). We say that f (·) is a positive definite function if for all

parameters p, complex numbers c1, . . . ,cp and points x1, . . . ,xp in Zν (or in Rν ) the

inequality
p

∑
j=1

p

∑
k=1

c j c̄k f (x j − xk)≥ 0

holds.

A simple example for positive definite functions is the function f (x) = ei(t,x),

where t ∈ Zν in the discrete, and t ∈ Rν in the continuous case. Bochner’s theorem

provides a complete description of positive definite functions.

Bochner’s Theorem. (Its Original Form.) A complex valued function f (x) de-

fined on Zν is positive definite if and only if it can be written in the form f (x) =∫
ei(t,x)G(dx) for all x ∈ Zν with a finite measure G on the torus Rν/2πZν . The

measure G is uniquely determined.

A complex valued function f (x) defined on Rν is positive definite and continuous

at the origin if and only if it can be written in the form f (x) =
∫

ei(t,x)G(dx) for all

x ∈ Rν with a finite measure G on Rν . The measure G is uniquely determined.

It is not difficult to see that the covariance function r(n) = EXkXk+n, (EXn = 0),

k,n ∈ Zν , of a stationary (Gaussian) random field Xn is a positive definite func-

tion, since ∑
j,k

c j c̄kr(n j − nk) = E|∑
j

c jXn j
|2 > 0 for any vector (c1, . . . ,cp). Hence

Bochner’s theorem can be applied for it. Besides, the relation r(n) = r(−n) together

with the uniqueness of the measure G appearing in Bochner’s theorem imply that
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the identity G(A) = G(−A) holds for all measurable sets G. This implies the result

formulated in the main text under the name Bochner’s theorem.

The Bochner–Schwartz theorem yields an analogous representation of positive

definite generalized functions in S ′ as the Fourier transforms of positive general-

ized functions in S ′. It also states a similar result about generalized functions in the

space D ′. To formulate it we have to introduce some definitions. First we have to

clarify what a positive generalized function is. We introduce this notion both in the

space S ′ and D ′, and then we characterize them in a Theorem.

Definition of Positive Generalized Functions. A continuous linear functional F ∈
S ′ (or F ∈ D ′) is called a positive generalized function if for all such ϕ ∈ S (or

ϕ ∈ D) test functions for which ϕ(x)≥ 0 for all x ∈ Rν (F,ϕ)≥ 0.

Theorem About the Representation of Positive Generalized Functions. All pos-

itive generalized functions F ∈ S ′ can be given in the form (F,ϕ) =
∫

ϕ(x)µ(dx),
where µ is a polynomially increasing measure on Rν , i.e. it satisfies the relation∫
(1+ |x|2)−pµ(dx) < ∞ with some p > 0. Similarly, all positive generalized func-

tions in D ′ can be given in the form (F,ϕ) =
∫

ϕ(x)µ(dx) with such a measure µ
on Rν which is finite in all bounded regions. The positive generalized function F

uniquely determines the measure µ in both cases.

We also introduce a rather technical notion and formulate a result about it. Let us

remark that if ϕ ∈ S c and ψ ∈ S c, then also their product ϕψ ∈ S c. In particular,

ϕϕ̄ = |ϕ|2 ∈ S if ϕ ∈ S c. The analogous result also holds in the space D .

Definition of Multiplicatively Positive Generalized Functions. A generalized

function F ∈ S ′ (or F ∈ D ′) is multiplicatively positive if (F,ϕϕ̄) = (F, |ϕ|2)≥ 0

for all ϕ ∈ S c (or in ϕ ∈ D).

Theorem About the Characterization of Multiplicatively Positive Generalized

Functions. A generalized function F ∈ S ′ (or F ∈ D ′) is multiplicatively positive

if and only if it is positive.

Now I introduce the definition of positive definite generalized functions.

Definition of Positive Definite Generalized Functions. A generalized function F ∈
S ′ (or F ∈ D ′) is positive definite if (F,ϕ ∗ϕ∗) ≥ 0 for all ϕ ∈ S c (of ϕ ∈ D),

where ϕ∗(x) =ϕ(−x), and ∗ denotes convolution, i.e. ϕ ∗ϕ∗(x) =
∫

ϕ(t)ϕ(t − x)dt.

We refer to [16] for an explanation why this definition of positive definite gen-

eralized functions is natural. Let us remark that if ϕ,ψ ∈ S c, then ϕ ∗ψ ∈ S c,

and the analogous result holds in D . The original version of the Bochner–Schwartz

theorem has the following form.

Bochner–Schwartz Theorem. (Its Original Form.) Let F be a positive definite

generalized function in the space S ′ (or D ′). Then it is the Fourier transform of

a polynomially increasing measure µ on Rν , i.e. the identity (F,ϕ) =
∫

ϕ̃(x)µ(dx)
holds for all ϕ ∈ S c (or ϕ ∈ D) with a measure µ that satisfies the relation

∫
(1+

|x|2)−pµ(dx)< ∞ with an appropriate p > 0. The generalized function F uniquely
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determines the measure µ . On the other hand, if µ is a polynomially increasing

measure on Rν , then the formula (F,ϕ) =
∫

ϕ̃(x)µ(dx) with ϕ ∈ S c (or ϕ ∈ D)

defines a positive definite generalized function F in the space S ′ (or D ′).

Remark. It is a remarkable and surprising fact that the class of positive definite gen-

eralized functions are represented by the same class of measures µ in the spaces S ′

and D ′. (In the representation of positive generalized functions the class of mea-

sures µ considered in the case of D ′ is much larger, than in the case of S ′.) Let us

remark that in the representation of the positive definite generalized functions in D ′

the function ϕ̃ we integrate is not in the class D , but in the space Z consisting of

the Fourier transforms of the functions in D .

It is relatively simple to prove the representation of positive definite general-

ized functions given in the Bochner–Schwartz theorem for the class S ′. Some

calculation shows that if F is a positive definite generalized function, then its

Fourier transform is a multiplicatively positive generalized function. Indeed, since

the Fourier transform of the convolution ϕ ∗ψ(x) equals ϕ̃(t)ψ̃(t), and the Fourier

transform of ϕ∗(x) = ϕ(−x) equals ϕ̃(t), the Fourier transform of ϕ ∗ϕ∗(x) equals

ϕ̃(t) ¯̃ϕ(t). Hence the positive definitiveness property of the generalized function F

and the definition of the Fourier transform of generalized functions imply that

(F̃ , ϕ̃ ¯̃ϕ) = (2π)ν(F,ϕ ∗ ϕ∗) ≥ 0 for all ϕ ∈ S c. Since every function of S c is

the Fourier transform ϕ̃ of some function ϕ ∈ S c this implies that F̃ is a mul-

tiplicatively positive and as a consequence a positive generalized function in S ′.
Such generalized functions have a good representation with the help of a polynomi-

ally increasing positive measure µ . Since (F,ϕ) = (2π)−ν(F̃ , ϕ̃) it is not difficult

to prove the Bochner–Schwartz theorem for the space S ′ with the help of this fact.

The proof is much harder if the space D ′ is considered, but we do not need that

result.

The Bochner–Schwartz theorem in itself is not sufficient to describe the cor-

relation function of a generalized random field. We still need another important

result of Laurent Schwartz which gives useful information about the behaviour of

(Hermitian) bilinear functionals in S c and some additional information about the

behaviour of translation invariant (Hermitian) bilinear functionals in this space. To

formulate these results first we introduce the following definition.

Definition of Hermitian Bilinear and Translation Invariant Hermitian Bilinear

Functionals in the Space S c. A function B(ϕ,ψ), ϕ,ψ ∈ S c, is a Hermitian bi-

linear functional in the space S c if for all fixed ψ ∈ S c B(ϕ,ψ) is a continuous

linear functional of the variable ϕ in the topology of S c, and for all fixed ϕ ∈ S c

B(ϕ,ψ) is a continuous linear functional of the variable ψ in the topology of S c.

A Hermitian bilinear functional B(ϕ,ψ) in S c is translation invariant if it does

not change by a simultaneous shift of its variables ϕ and ψ , i.e. if B(ϕ(x),ψ(x)) =
B(ϕ(x−h),ψ(x−h)) for all h ∈ Rν .

Definition of Positive Definite Hermitian Bilinear Functionals. We say that a

Hermitian bilinear functional B(ϕ,ψ) in S c is positive definite if B(ϕ,ϕ) ≥ 0 for

all ϕ ∈ S c.
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The next result characterizes the Hermitian bilinear and translation invariant Her-

mitian bilinear functionals in S c.

Theorem 3D. All Hermitian bilinear functionals B(ϕ,ψ) in S c can be given in

the form B(ϕ,ψ) = (F1,ϕ(x)ψ(y)), ϕ,ψ ∈ S c, where F1 is a continuous linear

functional on S c ×S c, i.e. it is a generalized function in S2ν
′.

A translation invariant Hermitian bilinear functional in S c can be given in the

form B(ϕ,ψ) = (F,ϕ ∗ψ∗), ϕ,ψ ∈ S c, where F ∈ S , ψ∗(x) = ψ(−x), and ∗
denotes convolution.

The Hermitian bilinear form B(ϕ,ψ) determines the generalized functions F1

uniquely, and if it is translation invariant, then the same can be told about the gen-

eralized function F. Besides, for all functionals F1 ∈ S ′
2ν and F ∈ S ′ the above

formulas define a Hermitian bilinear functional and a translation invariant Hermi-

tian bilinear functional in S c
ν respectively.

Let us consider a Gaussian generalized random field X(ϕ), ϕ ∈ S , with expec-

tation zero together with its correlation function B(ϕ,ψ) = EXϕ)X(ψ), ϕ,ψ ∈S .

More precisely, let us consider the complexification X(ϕ1 + iϕ2) = X(ϕ1)+ iX(ϕ2)
of this random field and its correlation function B(ϕ,ψ) =EX(ϕ)X(ψ), ϕ,ψ ∈S c.

This correlation function B(ϕ,ψ) is a translation invariant Hermitian bilinear func-

tional in S c, hence it can be written in the form B(ϕ,ψ) = (F,ϕ ∗ψ∗) with an

appropriate F ∈ S ′. Moreover, B(ϕ,ϕ)≥ 0 for all ϕ ∈ S c, and this means that the

generalized function F ∈ S ′ corresponding to B(ϕ,ψ) is positive definite. Hence

the Bochner–Schwartz theorem can be applied for it, and it yields that

EX(ϕ)X(ψ) =
∫

ϕ̃ ∗ψ∗(x)G(dx) =
∫

ϕ̃(x) ¯̃ψ(x)G(dx) for all ϕ, ψ ∈ S
c

with a uniquely determined, polynomially increasing measure G on Rν . Now we

complete the proof of Theorem 3B with the help of these results.

Proof of Theorem 3B. We have already proved relations (3.2) and (3.3) with the help

of some results about generalized functions. To complete the proof of Theorem 3B

we still have to show that G is an even measure. In the proof of this statement we

exploit that for a real valued function ϕ ∈ S the random variable X(ϕ) is also real

valued. Hence if ϕ,ψ ∈ S , then EX(ϕ)X(ψ) = EX(ϕ)X(ψ). Besides, ϕ̃(−x) =
¯̃ϕ(x) and ψ̃(−x) = ¯̃ψ(x) in this case. Hence

∫
ϕ̃(x) ¯̃ψ(x)G(dx) =

∫
¯̃ϕ(x)ψ̃(x)G(dx)

=
∫

ϕ̃(−x) ¯̃ψ(−x)G(dx) =
∫

ϕ̃(x) ¯̃ψ(x)G−(dx)

for all ϕ,ψ ∈ S , where G−(A) = G(−A) for all A ∈ Bν . This relation implies that

the measures G and G− agree. The proof of Theorem 3B is completed. ⊓⊔





Chapter 4

Multiple Wiener–Itô Integrals

In this chapter we define the so-called multiple Wiener–Itô integrals, and we prove

their most important properties with the help of Itô’s formula, whose proof is post-

poned to the next chapter. More precisely, we discuss in this chapter a modified

version of the Wiener–Itô integrals with respect to a random spectral measure rather

than with respect to a random measure with independent increments. This modi-

fication makes it necessary to slightly change the definition of the integral. This

modified Wiener–Itô integral seems to be a more useful tool than the original one or

the Wick polynomials in the study of the problems in this work, because it enables

us to describe the action of shift transformations.

Let G be the spectral measure of a stationary Gaussian field (discrete or gener-

alized one). We define the following real Hilbert spaces H̄ n
G and H n

G , n = 1,2, . . . .
We have fn ∈ H̄ n

G if and only if fn = fn(x1, . . . ,xn), x j ∈ Rν , j = 1,2, . . . ,n, is a

complex valued function of n variables, and

(a) fn(−x1, . . . ,−xn) = fn(x1, . . . ,xn),
(b) ‖ fn‖2 =

∫ | fn(x1, . . . ,xn)|2G(dx1) . . .G(dxn)< ∞.

Relation (b) also defines the norm in H̄ n
G . The subspace H n

G ⊂ H̄ n
G contains

those functions fn ∈ H̄ n
G which are invariant under permutations of their arguments,

i.e.

(c) fn(xπ(1), . . . ,xπ(n))) = fn(x1, . . . ,xn) for all π ∈ Πn, where Πn denotes the

group of all permutations of the set {1,2, . . . ,n}.

The norm in H n
G is defined in the same way as in H̄ n

G . Moreover, the scalar

product is also similarly defined, namely if f , g ∈ H̄ n
G , then

( f ,g) =
∫

f (x1, . . . ,xn)g(x1, . . . ,xn)G(dx1) . . .G(dxn)

=
∫

f (x1, . . . ,xn)g(−x1, . . . ,−xn)G(dx1) . . .G(dxn).

27
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Because of the symmetry G(A) = G(−A) of the spectral measure ( f ,g) = ( f ,g),
i.e. the scalar product ( f ,g) is a real number for all f , g ∈ H̄ n

G . This means that

H̄ n
G is a real Hilbert space. We also define H 0

G = H̄ 0
G as the space of real constants

with the norm ‖c‖ = |c|. We remark that H̄ n
G is actually the n-fold direct product

of H 1
G , while H n

G is the n-fold symmetrical direct product of H 1
G . Condition (a)

means heuristically that fn is the Fourier transform of a real valued function.

Finally we define the so-called Fock space Exp HG whose elements are se-

quences of functions f = ( f0, f1, . . .), fn ∈ H n
G for all n = 0,1,2, . . . , such that

‖ f‖2 =
∞

∑
n=0

1

n!
‖ fn‖2 < ∞.

Given a function f ∈ H̄ n
G we define Sym f as

Sym f (x1, . . . ,xn) =
1

n!
∑

π∈Πn

f (xπ(1), . . . ,xπ(n)).

Clearly, Sym f ∈ H n
G , and

‖Sym f‖ ≤ ‖ f‖. (4.1)

Let ZG be a Gaussian random spectral measure corresponding to the spectral

measure G on a probability space (Ω ,A ,P). We shall define the n-fold Wiener–Itô

integrals

IG( fn) =
1

n!

∫
fn(x1, . . . ,xn)ZG(dx1) . . .ZG(dxn) for fn ∈ H̄

n
G

and

IG( f ) =
∞

∑
n=0

IG( fn) for f = ( f0, f1, . . .) ∈ ExpHG.

We shall see that IG( fn) = IG(Sym fn) for all fn ∈ H̄ n
G . Therefore, it would have

been sufficient to define the Wiener–Itô integral only for functions in H n
G . Nev-

ertheless, some arguments become simpler if we work in H̄ n
G . In the definition of

Wiener–Itô integrals first we restrict ourselves to the case when the spectral measure

is non-atomic, i.e. G({x}) = 0 for all x ∈ Rν . This condition is satisfied in all inter-

esting cases. However, we shall later show how one can get rid of this restriction.

First we introduce the notion of regular systems for some collections of subsets

of Rν , define a subclass ˆ̄
H n

G ⊂ H̄ n
G of simple functions with their help, and define

the Wiener–Itô integrals for the functions of this subclass.

Definition of Regular Systems and the Class of Simple Functions. Let

D = {∆ j, j =±1,±2, . . . ,±N}

be a finite collection of bounded, measurable sets in Rν indexed by the integers

±1, . . . ,±N. We say that D is a regular system if ∆ j = −∆− j, and ∆ j ∩∆l = /0 if
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j 6= l for all j, l = ±1,±2, . . . ,±N. A function f ∈ H̄ n
G is adapted to this system

D if f (x1, . . . ,xn) is constant on the sets ∆ j1 ×∆ j2 × ·· · ×∆ jn , jl = ±1, . . . ,±N,

l = 1,2, . . . ,n, it vanishes outside these sets and also on those sets of the form ∆ j1 ×
∆ j2 ×·· ·×∆ jn , for which jl =± jl′ for some l 6= l′.

A function f ∈ H̄ n
G is in the class ˆ̄

H n
G of simple functions, and a (symmetric)

function f ∈ H n
G is in the class Ĥ n

G of simple symmetric functions if it is adapted

to some regular system D = {∆ j, j =±1, . . . ,±N}.

Definition of Wiener–Itô Integral of Simple Functions. Let a simple function f ∈
ˆ̄

H n
G be adapted to some regular systems D = {∆ j, j± 1, . . . ,±N}. Its Wiener–Itô

integral with respect to the random spectral measure ZG is defined as

∫
f (x1, . . . ,xn)ZG(dx1) . . .ZG(dxn) (4.2)

= n!IG( f ) = ∑
jl=±1,...,±N

l=1,2,...,n

f (x j1 , . . . ,x jn)ZG(∆ j1) · · ·ZG(∆ jn),

where x jl ∈ ∆ jl , jl =±1, . . . ,±N, l = 1, . . . ,n.

We remark that although the regular system D to which f is adapted, is not

uniquely determined (the elements of D can be divided to smaller sets), the in-

tegral defined in (4.2) is meaningful, i.e. it does not depend on the choice of D .

This can be seen by observing that a refinement of a regular system D to which

the function f is adapted yields the same value for the sum defining n!IG( f ) in

formula (4.2) as the original one. This follows from the additivity of the random

spectral measure ZG formulated in its property (iv), since this implies that each

term f (x j1 , . . . ,x jn)ZG(∆ j1) · · ·ZG(∆ jn) in the sum at the right-hand side of for-

mula (4.2) corresponding to the original regular system equals the sum of all such

terms f (x j1 , . . . ,x jn)ZG(∆
′
j′1
) · · ·ZG(∆

′
j′n
) in the sum corresponding to the refined par-

tition for which ∆ ′
j′1
×·· ·×∆ ′

j′n
⊂ ∆ j1 ×·· ·×∆ jn .

By property (vii) of the random spectral measures all products

ZG(∆ j1) · · ·ZG(∆ jn)

with non-zero coefficient in (4.2) are products of independent random variables.

We had this property in mind when requiring the condition that the function f van-

ishes on a product ∆ j1 × ·· · ×∆ jn if jl = ± jl′ for some l 6= l′. This condition is

interpreted in the literature as discarding the hyperplanes xl = xl′ and xl = −xl′ ,

l, l′ = 1,2, . . . ,n, l 6= l′, from the domain of integration. (Let us observe that in this

case, — unlike to the definition of the original Wiener–Itô integrals discussed in

Chapter 7, — we omitted also the hyperplanes xl = −xl′ and not only the hyper-

planes xl = xl′ , l 6= l′, from the domain of integration.) Property (a) of the functions

in H̄ n
G and property (v) of the random spectral measures imply that IG( f ) = IG( f ),

i.e. IG( f ) is a real valued random variable for all f ∈ ˆ̄
H n

G . The relation
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EIG( f ) = 0, for f ∈ ˆ̄
H

n
G , n = 1,2, . . . (4.3)

also holds. Let Ĥ n
G = H n

G ∩ ˆ̄
H n

G . If f ∈ ˆ̄
H n

G , then Sym f ∈ Ĥ n
G , and

IG( f ) = IG(Sym f ). (4.4)

Relation (4.4) follows immediately from the observation that ZG(∆ j1) · · ·ZG(∆ jn) =
ZG(∆π( j1)) · · ·ZG(∆π( jn)) for all π ∈ Πn. We also claim that

EIG( f )2 ≤ 1

n!
‖ f‖2 for f ∈ ˆ̄

H
n

G , (4.5)

and

EIG( f )2 =
1

n!
‖ f‖2 for f ∈ Ĥ

n
G . (4.6)

More generally, we claim that

EIG( f )IG(h) =
1

n!
( f ,g) =

1

n!

∫
f (x1, . . . ,xn)g(x1, . . . ,xn)G(dx1) . . .G(dxn)

for f ,g ∈ Ĥ
n

G . (4.7)

Because of (4.1) and (4.4) it is enough to check (4.7).

Let D be a regular system of sets in Rν , j1, . . . , jn and k1, . . . ,kn be indices such

that jl 6=± jl′ , kl 6=±kl′ if l 6= l′. Then

EZG(∆ j1) · · ·ZG(∆ jn)ZG(∆k1
) · · ·ZG(∆kn

)

=

{
G(∆ j1) · · ·G(∆ jn) if { j1, . . . , jn}= {k1, . . . ,kn},
0 otherwise.

To see the last relation one has to observe that the product on the left-hand

side can be written as a product of independent random variables because of prop-

erty (vii) of the random spectral measures. If { j1, . . . , jn} 6= {k1, . . . ,kn}, then there

is an index l such that either jl 6= ±kl′ for all 1 ≤ l′ ≤ n, or there exists an index

l′, 1 ≤ l′ ≤ n, such that jl = −kl′ . In the first case ZG(∆ jl ) is independent of the

remaining coordinates of the vector (ZG(∆ j1), . . . ,ZG(∆ jn),ZG(∆k1
), . . . ,ZG(∆kn

)),
and EZG(∆ jl ) = 0. Hence the expectation of the investigated product equals zero,

as we claimed. If jl =−kl′ with some index l′, then a different argument is needed,

since ZG(∆ jl ) and ZG(−∆ jl ) are not independent. In this case we can state that since

jp 6=± jl if p 6= l, and kq 6=± jl if q 6= l′, the vector (ZG(∆ jl ),ZG(−∆ jl )) is indepen-

dent of the remaining coordinates of the above random vector. On the other hand,

the product ZG(∆ jl )ZG(−∆ jl ) has zero expectation, since EZG(∆ jl )ZG(−∆ jl ) =
G(∆ jl ∩ (−∆ jl )) = 0 by property (iii) of the random spectral measures and the rela-

tion ∆ jl ∩ (−∆ jl ) = /0. Hence the expectation of the considered product equals zero

also in this case. If { j1, . . . , jn}= {k1, . . . ,kn}, then
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EZG(∆ j1) · · ·ZG(∆ jn)ZG(∆k1
) · · ·ZG(∆kn

) =
n

∏
l=1

EZG(∆ jl )ZG(∆ jl ) =
n

∏
l=1

G(∆ jl ).

Therefore for two functions f ,g ∈ Ĥ n
G we may assume that they are adapted to

the same regular system D = {∆ j, j =±1, . . . ,±N}, and

EIG( f )IG(g) = EIG( f )IG(g) =

(
1

n

)2

∑∑ f (x j1 , . . . ,x jn)g(xk1
, . . . ,xkn

)

EZG(∆ j1) · · ·ZG(∆ jn)ZG(∆k1
) · · ·ZG(∆kn

)

=

(
1

n!

)2

∑ f (x j1 , . . . ,x jn)g(x j1 , . . . ,x jn)G(∆ j1) · · ·G(∆ jn) ·n!

=
1

n!

∫
f (x1, . . . ,xn)g(x1, . . . ,xn)G(dx1) · · ·G(dxn) =

1

n!
( f ,g).

We claim that Wiener–Itô integrals of different order are uncorrelated. More ex-

plicitly, take two functions f ∈ ˆ̄
H n

G and f ′ ∈ ˆ̄
H n′

G such that n 6= n′. Then we have

EIG( f )IG( f ′) = 0 if f ∈ ˆ̄
H

n
G , f ′ ∈ ˆ̄

H
n′

G , and n 6= n′. (4.8)

To see this relation observe that a regular system D can be chosen is such a way that

both f and f ′ are adapted to it. Then a similar, but simpler argument as the previous

one shows that

EZG(∆ j1) · · ·ZG(∆ jn)ZG(∆k1
) · · ·ZG(∆kn′ ) = 0

for all sets of indices { j1, . . . , jn} and {k1, . . . ,kn′} if n 6= n′, hence the sum express-

ing EIG( f )IG( f ′) in this case equals zero.

We extend the definition of Wiener–Itô integrals to a more general class of kernel

functions with the help of the following Lemma 4.1. This is a simple result, but

unfortunately it contains several small technical details, and this makes its reading

unpleasant.

Lemma 4.1. The class of simple functions ˆ̄
H n

G is dense in the (real) Hilbert space

H̄ n
G , and the class of symmetric simple function Ĥ n

G is dense in the (real) Hilbert

space H n
G .

Proof of Lemma 4.1. It is enough to show that ˆ̄
H n

G is dense in the Hilbert space H̄ n
G ,

since the second statement of the lemma follows from it by a standard symmetriza-

tion procedure.

First we reduce the result of Lemma 4.1 to a Statement A and then to a State-

ment B. Finally we prove Statement B. In Statement A we claim that the indicator

function χA of a bounded set A ∈ Bnν such that A =−A can be well approximated

by a function of the form g = χB ∈ ˆ̄
H n

G , where χB is the indicator function of an ap-

propriate set B. Actually we formulate this statement in a more complicated form,
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because only in such a way can we reduce the statement about the good approx-

imability of a general, possibly complex valued function f ∈ H̄ n
G by a function in

g ∈ ˆ̄
H n

G to Statement A.

Statement A. Let A ∈ Bnν be a bounded, symmetric set, i.e. let A = −A. Then for

any ε > 0 there is a function g ∈ ˆ̄
H n

G such that g = χB with some set B ∈ Bnν , i.e.

g is the indicator function of a set B such that the inequality ‖g−χA‖< ε holds with

the norm of the space H̄ n
G . (Here χA denotes the indicator function of the set A, and

we have χA ∈ H̄ n
G .)

If χA ∈ H̄ n
G , and A1 is such a set for which the set A can be written in the form

A = A1 ∪ (−A1), and the sets A1 and −A1 have a positive distance from each other,

i.e. ρ(A1,−A1) = inf
x∈A1,y∈−A1

ρ(x,y) > δ , with some δ > 0, where ρ denotes the

Euclidean distance in Rnν , then a good approximation of χA can be given with such

a function g = χB∪(−B) ∈ ˆ̄
H n

G for which the sets B and −B are separated from

each other, and the set B is close to A1. More explicitly, for all ε > 0 there is a

set B ∈ Bnν such that B ⊂ A
δ/2

1 = {x : ρ(x,A1) ≤ δ
2
}, g = χB∪(−B) ∈ ˆ̄

H n
G , and

Gn(A1 ∆ B) < ε
2
. Here A∆B denotes the symmetric difference of the sets A and B,

and Gn is the n-fold direct product of the spectral measure G on the space Rnν . (The

above properties of the set B imply that the function g = χB∪(−B) ∈ ˆ̄
H n

G satisfies the

relation ‖g− χA‖< ε .)

To justify the reduction of Lemma 4.1 to Statement A let us observe that if two

functions f1 ∈ H̄ n
G and f2 ∈ H̄ n

G can be arbitrarily well approximated by functions

from ˆ̄
H n

G in the norm of this space, then the same relation holds for any linear

combination c1 f1 + c2 f2 with real coefficients c1 and c2. (If the functions fi are ap-

proximated by some functions gi ∈ ˆ̄
H n

G , i = 1,2, then we may assume, by applying

some refinement of the partitions if it is necessary, that the approximating func-

tions g1 and g2 are adapted to the same regular partition.) Hence the proof about the

arbitrarily good approximability of a function f ∈ H̄ n
G by functions g ∈ ˆ̄

H n
G can

be reduced to the proof about the arbitrarily good approximability of its real part

Re f ∈ H̄ n
G and its imaginary part Im f ∈ H̄ n

G . Moreover, since the real part and

imaginary part of the function f can be arbitrarily well approximated by such real

or imaginary valued functions from the space H̄ n
G which take only finitely many

values, the desired approximation result can be reduced to the case when f is the

indicator function of a set A ∈ Bnν such that A = −A (if f is real valued), or it

takes three values, the value i on a set A1 ∈ Bnν , the value −i on the set −A1, and

it equals zero on Rnν \ (A1 ∪ (−A1)) (if f is purely imaginary valued). Besides, the

inequalities Gn(A) < ∞ and Gn(A1) < ∞ hold. We may even assume that A and A1

are bounded sets, because Gn(A) = lim
K→∞

Gn(A∩ [−K,K]nν), and the same argument

applies for A1.

Statement A immediately implies the desired approximation result in the first case

when f is the indicator function of a set A such that A = −A. In the second case,

when such a function f is considered that takes the values ±i and zero, observe that

the sets A1 = {x : f (x) = i} and −A1 = {x : f (x) = −i} are disjoint. Moreover,
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we may assume that they have positive distance from each other, because there are

such compact sets KN ⊂ A1, N = 1,2, . . . , for which lim
N→∞

Gn(A\ (KN ∪ (−KN)) = 0,

and the two disjoint compact sets KN and −KN have positive distance. This en-

ables us to restrict our attention to the approximation of such functions f for which

A1 = {x : f (x) = i} = KN , −A1 = {x : f (x) = −i} = −KN with one of the above

defined sets KN with a sufficiently large index N, and the function f disappears on

the complement of the set A1 ∪ (−A1). To get a good approximation in this case,

take A1 = KN and apply the second part of Statement A for the indicator func-

tion χA = χKN∪(−KN) with the choice A1 = KN . We get that there exists a function

g = χB∪(−B) ∈ ˆ̄
H n

G such that B ⊂ A
δ/2

1 with a number δ > 0 for which the rela-

tion ρ(KN ,−KN) > δ holds, and Gn(A1 ∆ B) < ε
2
. Then we define with the help of

the above set B the function ḡ ∈ ˆ̄
H n

G as ḡ(x) = i if x ∈ B, ḡ(x) = −i if x ∈ −B

and ḡ(x) = 0 otherwise. The definition of the function ḡ(·) is meaningful, since

B∩ (−B) = /0, and it yields a sufficiently good approximation of the function f (·).
In the next step we reduce the proof of Statement A to the proof of a result called

Statement B. In this step we show that to prove Statement A it is enough to prove the

good approximability of some very special (and relatively simple) indicator func-

tions χB ∈ H̄ n
G by a function g ∈ ˆ̄

H n
G .

Statement B. Let B = D1 ×·· ·×Dn be the direct product of bounded sets D j ∈ Bν

such that D j ∩ (−D j) = /0 for all 1 ≤ j ≤ n. Then for all ε > 0 there is a set F ⊂
B∪ (−B), F ∈ Bnν such that χF ∈ ˆ̄

H n
G , and ‖χB∪(−B)−χF‖ ≤ ε , with the norm of

the space H̄ n
G .

To deduce Statement A from Statement B let us first remark that we may reduce

our attention to such sets A in Statement A for which all coordinates of the points in

the set A are separated from the origin. More explicitly, we may assume the existence

of a number η > 0 with the property A∩K(η) = /0, where K(η) =
n⋃

j=1

K j(η) with

K j(η) = {(x1, . . . ,xn) : xl ∈Rν , l = 1, . . . ,n, ρ(x j,0)≤η}. To see our right to make

such a reduction observe that the relation G({0}) = 0 implies that lim
η→0

Gn(K(η)) =

0, hence lim
η→0

Gn(A\K(η)) = Gn(A). At this point we exploited a weakened form of

the non-atomic property of the spectral measure G, namely the relation G({0}) = 0.

First we formulate a result that we prove somewhat later, and reduce the proof of

Statement A to that of Statement B with its help. We claim that for all numbers ε > 0,

δ̄ > 0 and bounded sets A∈Bnν such that A=−A, and A∪K(η) = /0 there is a finite

sequence of bounded sets B j ∈Bnν , j =±1, . . . ,±N, with the following properties.

The sets B j are disjoint, B− j = −B j, j = ±1, . . . ,±N, each set B j can be written

in the form B j = D
( j)
1 ×·· ·×D

( j)
n with D

( j)
k ∈ Bν , and D

(− j)
k ∩ (−D

( j)
k ) = /0 for all

1 ≤ j ≤ N and 1 ≤ k ≤ n, the diameter d(B j) = sup{ρ(x,y) : x,y ∈ B j} of the sets

B j has the bound d(B j)≤ δ̄ for all 1 ≤ j ≤ N, and finally the set B =
N⋃

j=1

(B j ∪B− j)

satisfies the relation Gn(A∆B)≤ ε .
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Indeed, since we can choose ε > 0 arbitrarily small, the above result together with

the application of Statement B for all functions χB j∪(−B j), 1 ≤ j ≤ N, supplies an

arbitrarily good approximation of the function χA by a function of the form
N

∑
j=1

χFj
∈

ˆ̄
H n

G in the norm of the space H̄ n
G . Moreover, the random variable

N

∑
j=1

χFj
∈ ˆ̄

H n
G

agrees with the indicator function of the set
N⋃

j=1

Fj, since the sets B j, j =±1, . . . ,±N,

are disjoint, and Fj ⊂ B j ∪B− j.

If the set A can be written in the form A = A1 ∪ (−A1) such that ρ(A1,−A1)> δ ,

then we can make the same construction with the only modification that this time

we demand that the sets B j satisfy the relation d(B j) ≤ δ̄ with some δ̄ < δ
2

for all

1 ≤ j ≤ N. We may assume that A∩ (B j ∪B− j) 6= /0 for all indices j, since we can

omit those sets B j ∪B− j which do not have this property. Since d(B j)<
δ
2

, a set B j

cannot intersect both A1 and −A1. By an appropriate indexation of the sets B j we

have B j ⊂ A
δ/2

1 and B− j ⊂ (−A1)
δ/2 for all 1≤ j ≤N. Then the set B=

N⋃
j=1

(B j∩Fj)

and the function g = χB∪(−B) satisfy the second part of Statement A.

To find a sequence B j, j = ±1, . . . ,±N, for a set A such that A = −A, and A∪
K(η) = /0 with the properties needed in the above argument observe that there is

a sequence of finitely many bounded sets B j of the form B j = D
( j)
1 × ·· · ×D

( j)
n ,

D
( j)
l ∈Bν , 1 ≤ j ≤ N with some N < ∞, whose union B =

⋃
B j satisfies the relation

Gn(A∆ B) < ε
2
. Because of the symmetry property A = −A of the set A we may

assume that these sets B j have such an indexation with both positive and negative

integers for which B j =−B− j. We may also demand that B j ∩A 6= /0 for all sets B j.

Besides, we may assume, by dividing the sets D
( j)
l appearing in the definition of the

sets B j into smaller sets if this is needed that their diameter d(D
( j)
l ) < max(η

2
, δ̄

n
).

This implies because of the relation A∩K(η) = /0 that D
( j)
l ∩ (−D

( j)
l ) = /0 for all j

and 1 ≤ l ≤ n. The above constructed sets B j may be non-disjoint, but with the help

of their appropriate further splitting and a proper indexation of the sets obtained in

such a way we get such a partition of the set B which satisfies all conditions we

demanded. For the sake of completeness we present a partition of the set B with the

properties we need.

Let us first take for all 1 ≤ l ≤ n the following partition of Rν with the help of

the sets D
( j)
l , 1 ≤ j ≤ N. For a fixed number l this partition consists of all sets D̄

(l)
r

of the form D̄
(l)
r =

⋂
1≤ j≤N

F
r( j)
l, j , where the indices r are sequences (r(1), . . . ,r(N))

of length N with r( j) = 1,2 or 3, 1 ≤ j ≤ N, and F
(1)
l, j = D

( j)
l , F

(2)
l, j =−D

( j)
l , F

(3)
l, j =

Rν \ (D( j)
l ∪ (−D

( j)
l )). Then B can be represented as the union of those sets of the

form D̄
(1)
r1

×·· ·× D̄
(n)
rn which are contained in B.
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Proof of Statement B. To prove Statement B first we show that for all ε̄ > 0 there is a

regular system D = {∆l , l =±1, . . . ,±N} such that all sets D j and −D j, 1 ≤ j ≤ n,

appearing in the formulation of Statement B can be expressed as the union of some

elements ∆l of D , and G(∆l)≤ ε̄ for all ∆l ∈ D .

In a first step we prove a weakened version of this statement. We show that there

is a regular system D̄ = {∆ ′
l , l = ±1, . . . ,±N′} such that all sets D j and −D j can

be expressed as the union of some sets ∆ ′
l of D̄ . But we have no control on the mea-

sure G(∆ ′
l ) of the elements of this regular system D̄ . To get such a regular system

we define the sets ∆ ′(εs, 1 ≤ |s| ≤ n) = D
ε1
1 ∩ (−D1)

ε−1 ∩ ·· · ∩Dεn
n ∩ (−Dn)

ε−n for

all vectors (εs, 1 ≤ |s| ≤ n) such that εs = ±1 for all 1 ≤ |s| ≤ n, and the vector

(εs, 1 ≤ |s| ≤ n) contains at least one coordinate +1, and D1 = D, D−1 = Rν \D

for all sets D ∈ Bν . Then taking an appropriate reindexation of the sets ∆ ′(εs, 1 ≤
|s| ≤ n) we get a regular system D̄ with the desired properties. (In this construc-

tion the sets ∆ ′(εs, 1 ≤ |s| ≤ n) are disjoint, and during their reindexation we drop

those of them which equal the empty set.) To see that D̄ with a good indexation

is a regular system observe that for a set ∆ ′
l = ∆ ′(εs, 1 ≤ |s| ≤ n) ∈ D̄ we have

−∆ ′
l = ∆ ′(ε−s, 1 ≤ |s| ≤ n) ∈ D̄ , and ∆ ′

l ∩ (−∆ ′
l ) ⊂ D j ∩ (−D j) = /0 with some

index 1 ≤ j ≤ n. (We had to exclude the possibility ∆l =−∆l .)

Next we show that by appropriately refining the above regular system D̄ we can

get such a regular system D = {∆l , l = ±1, . . . ,±N} which satisfies the additional

property G(∆l) ≤ ε̄ for all ∆l ∈ D . To show this let us observe that there is a finite

partition {E1, . . . ,El} of
n⋃

j=1

(D j ∪ (−D j)) such that G(E j)≤ ε̄ for all 1 ≤ j ≤ l. In-

deed, the closure of D =
n⋃

j=1

(D j ∪(−D j)) can be covered by open sets Hi ⊂ Rν such

that G(Hi)≤ ε̄ for all sets Hi because of the non-atomic property of the measure G,

and by the Heyne–Borel theorem this covering can be chosen finite. With the help of

these sets Hi we can get a partition {E1, . . . ,El} of
n⋃

j=1

(D j ∪(−D j)) with the desired

properties.

Then we can make the following construction with the help of the above sets E j

and ∆ ′
l . Take a pair of elements (∆ ′

l ,∆
′
−l) = (∆ ′

l ,−∆ ′
l ), of D̄ , and split up the set ∆ ′

l

with the help of the sets E j to the union of finitely many disjoint sets of the form

∆l, j = ∆ ′
l ∩E j. Then G(∆l, j)< ε̄ for all sets ∆l, j, and we can write the set ∆ ′

−l as the

union of the disjoint sets −∆l, j. By applying this procedure for all pairs (∆ ′
l ,∆

′
−l)

and by reindexing the sets ∆l, j obtained by this procedure in an appropriate way we

get a regular system D with the desired properties.

To prove Property B let us write B∪ (−B) as the union of products of sets of the

form ∆l1 × ·· · ×∆ln with sets ∆l j
∈ D , 1 ≤ j ≤ n. Here such a regular system D

is considered which satisfies the properties demanded at the start of proof of State-

ment B. Let us discard those products for which l j =±l j′ for some pair ( j, j′), j 6= j′.
We define the set F about which we claim that it satisfies Property B as the union of

the remaining sets ∆l1 ×·· ·×∆ln . Then χF ∈ ˆ̄
H n

G . Hence to prove that Statement B

holds with this set F if ε̄ > 0 is chosen sufficiently small it is enough to show that

the sum of the terms G(∆l1) · · ·G(∆ln) for which l j = ±l j′ with some j 6= j′ is less
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than n2ε̄Mn−1, where M = maxG(D j ∪ (−D j)) = 2maxG(D j). To see this observe

that for a fixed pair ( j, j′), j 6= j′, the sum of all products G(∆l1) · · ·G(∆ln) such

that l j = l j′ can be bounded by ε̄Mn−1, and the same estimate holds if summation

is taken for products with the property l j =−l j′ . Indeed, each term of this sum can

be bounded by ε̄Gn−1

(
∏

1≤p≤n, p 6= j

∆lp

)
, and the events whose Gn−1 measure is con-

sidered in the investigated sum are disjoint. Besides, their union is in the product set

∏
1≤p≤n, p 6= j

(Dp ∪D−p), whose measure is bounded by Mn−1. Lemma 4.1 is proved.

⊓⊔
As the transformation IG( f ) is a contraction from ˆ̄

H n
G into L2(Ω ,A ,P), it can

uniquely be extended to the closure of ˆ̄
H n

G , i.e. to H̄ n
G . (Here (Ω ,A ,P) denotes

the probability space where the random spectral measure ZG(·) is defined.) At this

point we exploit that if f ∈ ˆ̄
H n

G , N = 1,2, . . . , is a convergent sequence in the

space H̄ n
G , then the sequence of random variables IG( fN) is convergent in the space

L2(Ω ,A ,P), since it is a Cauchy sequence. With the help of this fact and Lemma 4.1

we can introduce the definition of Wiener–Itô integrals in the general case when the

integral of a function f ∈ H̄ n
G is taken.

Definition of Wiener–Itô Integrals. Given a function f ∈ H̄ n
G with a spectral mea-

sure G choose a sequence of simple functions fN ∈ ˆ̄
H n

G , N = 1,2, . . . , which con-

verges to the function f in the space H̄ n
G . Such a sequence exists by Lemma 4.1.

The random variables IG( fN) converge to a random variable in the L2-norm of the

probability space where these random variables are defined, and the limit does not

depend on the choice of the sequence fN converging to f . This enables us to define

the n-fold Wiener–Itô integral with kernel function f as

∫
f (x1, . . . ,xn)ZG(dx1) . . .ZG(dxn) = n!IG( f ) = lim

N→∞
n!IG( fN),

where fN ∈ ˆ̄
H n

G , N = 1,2, . . . , is a sequence of simple functions converging to the

function f in the space H̄ n
G .

The expression IG( f ) is a real valued random variable for all f ∈ H̄ n
G , and rela-

tions (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8) remain valid for f , f ′ ∈ H̄ n
G or f ∈H n

G

instead of f , f ′ ∈ ˆ̄
H n

G or f ∈ Ĥ n
G . Relations (4.6), and (4.8) imply that the trans-

formation IG : ExpHG → L2(Ω ,A ,P) is an isometry. We shall show that also the

following result holds.

Theorem 4.2. Let a stationary Gaussian random field be given (discrete or gen-

eralized one), and let ZG denote the random spectral measure adapted to it. If we

integrate with respect to this ZG, then the transformation IG : ExpHG →H , where

H denotes the Hilbert space of the square integrable random variables measur-

able with respect to the σ -algebra generated by the random variables of the random

spectral measure ZG, is unitary. The transformation (n!)1/2IG : H n
G → Hn is also

unitary.
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In the proof of Theorem 4.2 we need an identity whose proof is postponed to the

next chapter.

Theorem 4.3. (Itô’s Formula.) Let ϕ1, . . . ,ϕm, ϕ j ∈ H 1
G , 1 ≤ j ≤ m, be an

orthonormal system in L2
G. Let some positive integers j1, . . . , jm be given, and

let j1 + · · ·+ jm = N. Define for all i = 1, . . . ,N the function gi as gi = ϕs for

j1 + · · ·+ js−1 < i ≤ j1 + · · ·+ js, 1 ≤ s ≤ m. (In particular, gi = ϕ1 for 0 < i ≤ j1.)

Then

H j1

(∫
ϕ1(x)ZG(dx)

)
· · ·H jm

(∫
ϕm(x)ZG(dx)

)

=

∫
g1(x1) · · ·gN(xN)ZG(dx1) · · ·ZG(dxN)

=
∫

Sym [g1(x1) · · ·gN(xN)]ZG(dx1) · · ·ZG(dxN).

(H j(x) denotes again the j-th Hermite polynomial with leading coefficient 1.)

Proof of Theorem 4.2. We have already seen that IG is an isometry. So it remains to

show that it is a one to one map from ExpHG to H and from H n
G to Hn.

The one-fold integral IG( f ), f ∈ H 1
G , agrees with the stochastic integral I( f )

defined in Chapter 3. Hence IG(e
i(n,x)) = X(n) in the discrete field case, and

IG(ϕ̃) = X(ϕ), ϕ ∈ S , in the generalized field case. Hence IG : H 1
G → H1 is

a unitary transformation. Let ϕ1,ϕ2, . . . be a complete orthonormal basis in H 1
G .

Then ξ j =
∫

ϕ j(x)ZG(dx), j = 1,2, . . . , is a complete orthonormal basis in H1.

Itô’s formula implies that for all sets of positive integers ( j1, . . . , jm) the random

variable H j1(ξ1) · · ·H jm(ξm) can be written as a j1 + · · ·+ jm-fold Wiener–Itô inte-

gral. Therefore Theorem 2.1 implies that the image of ExpHG is the whole space

H , and IG : ExpHG → H is unitary.

The image of H n
G contains Hn because of Corollary 2.4 and Itô’s formula. Since

these images are orthogonal for different n, formula (2.1) implies that the image of

H n
G coincides with Hn. Hence (n!)1/2IG : H n

G → Hn is a unitary transformation.

⊓⊔
The next result describes the action of shift transformations in H . We know by

Theorem 4.2 that all η ∈ H can be written in the form

η = f0 +
∞

∑
n=1

1

n!

∫
fn(x1, . . . ,xn)ZG(dx1) . . .ZG(dxn) (4.9)

with f = ( f0, f1, . . .) ∈ ExpHG in a unique way, where ZG is the random measure

adapted to the stationary Gaussian field.

Theorem 4.4. Let η ∈ H have the form (4.9). Then

Ttη = f0 +
∞

∑
n=1

1

n!

∫
ei(t,x1+···+xn) fn(x1, . . . ,xn)ZG(dx1) . . .ZG(dxn)
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for all t ∈ Rν in the generalized field and for all t ∈ Zν in the discrete field case.

Proof of Theorem 4.4. Because of formulas (3.9) and (3.10) and the definition of the

shift operator Tt we have

Tt

(∫
ei(n,x)ZG(dx)

)
= TtXn = Xn+t =

∫
ei(t,x)ei(n,x)ZG(dx), t ∈ Zν ,

and because of the identity T̃tϕ(x) =
∫

e(i(u,x)ϕ(u− t)du = ei(t,x)ϕ̃(x) for ϕ ∈ S

Tt

(∫
ϕ̃(x)ZG(dx)

)
= TtX(ϕ) = X(Ttϕ)

=

∫
ei(t,x)ϕ̃(x)ZG(dx), ϕ ∈ S , t ∈ Rν ,

in the discrete and generalized field cases respectively. Hence

Tt

(∫
f (x)ZG(dx)

)
=
∫

ei(t,x) f (x)ZG(dx) if f ∈ H
1

G

for all t ∈Zν in the discrete field and for all t ∈ Rν in the generalized field case. This

means that Theorem 4.4 holds in the special case when η is a one-fold Wiener–Itô

integral. Let f1(x), . . . , fm(x) be an orthogonal system in H 1
G . The set of functions

ei(t,x) f1(x), . . . ,e
i(t,x) fm(x) is also an orthogonal system in H 1

G . (t ∈ Zν in the dis-

crete and t ∈ Rν in the generalized field case.) Hence Itô’s formula implies that

Theorem 4.4 also holds for random variables of the form

η = H j1

(∫
f1(x)ZG(dx)

)
· · ·H jm

(∫
fm(x)ZG(dx)

)

and for their finite linear combinations. Since these linear combinations are dense

in H Theorem 4.4 holds true. ⊓⊔
The next result is a formula for the change of variables in Wiener–Itô integrals.

Theorem 4.5. Let G and G′ be two non-atomic spectral measures such that G is

absolutely continuous with respect to G′, and let g(x) be a complex valued function

such that

g(x) = g(−x),

|g2(x)| = dG(x)

dG′(x)
.

For every f = ( f0, f1, . . .) ∈ ExpHG, we define

f ′n(x1, . . . ,xn) = fn(x1, . . . ,xn)g(x1) · · ·g(xn), n = 1,2, . . . , f ′0 = f0.

Then f ′ = ( f ′0, f ′1, . . .) ∈ ExpH n
G′ , and
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f0 +
∞

∑
n=1

∫
1

n!
fn(x1, . . . ,xn)ZG(dx1) . . .ZG(dxn)

∆
= f ′0 +

∞

∑
n=1

1

n!

∫
f ′n(x1, . . . ,xn)ZG′(dx1) . . .ZG′(dxn),

where ZG and ZG′ are Gaussian random spectral measures corresponding to G

and G′.

Proof of Theorem 4.5. We have ‖ f ′n‖G′ = ‖ fn‖G, hence f ′ ∈ ExpHG′ . Let ϕ1,ϕ2, . . .
be a complete orthonormal system in H 1

G . Then ϕ ′
1,ϕ

′
2, . . . , ϕ ′

j(x) = ϕ j(x)g(x) for

all j = 1,2, . . . is a complete orthonormal system in H 1
G′ . All functions fn ∈ H n

G

can be written in the form f (x1, . . . ,xn) = ∑c j1,..., jnSym(ϕ j1(x1) · · ·ϕ jn(xn)). Then

f ′(x1, . . . ,xn) = ∑c j1,..., jnSym(ϕ ′
j1
(x1) · · ·ϕ ′

jn
(xn)). Rewriting all terms

∫
Sym(ϕ j1(x1) · · ·ϕ jn(xn))ZG(dx1) . . .ZG(,dxn)

and ∫
Sym(ϕ ′

j1
(x1) · · ·ϕ ′

jn
(xn))ZG′(dx1) . . .ZG′(,dxn)

by means of Itô’s formula we get that f and f ′ depend on a sequence of independent

standard normal random variables in the same way. Theorem 4.5 is proved. ⊓⊔
For the sake of completeness I present in the next Lemma 4.6 another type of

change of variable result. I formulate it only in that simple case in which we need it

in some later calculations.

Lemma 4.6. Define for all t > 0 the (multiplication) transformation Ttx = tx either

from Rν to Rν or from the torus [−π,π)ν to the torus [−tπ, tπ)ν . Given a spec-

tral measure G on Rν or on [−π,π)ν define the spectral measure Gt on Rν or on

[−tπ, tπ)ν by the formula Gt(A) = G(A
t
) for all measurable sets A, and similarly

define the function fk,t(x1, . . . ,xk) = fk(tx1, . . . , txk) for all measurable functions fk

of k variables, k = 1,2, . . . , with x j ∈ Rν or x j ∈ [−π,π)ν for all 1 ≤ j ≤ k, and put

f0,t = f0. If f = ( f0, f1, . . .) ∈ ExpHG, then ft = ( f0,t , f1,t , . . .) ∈ ExpHGt , and

f0 +
∞

∑
n=1

∫
1

n!
fn(x1, . . . ,xn)ZG(dx1) . . .ZG(dxn)

∆
= f0,t +

∞

∑
n=1

1

n!

∫
fn,t(x1, . . . ,xn)ZGt (dx1) . . .ZGt (dxn),

where ZG and ZGt are Gaussian random spectral measures corresponding to G

and G′.

Proof of Lemma 4.6. It is easy to see that ft = ( f0,t , f1,t , . . .) ∈ ExpHGt . Moreover,

we may define the random spectral measure ZGt in the identity we want to prove by

the formula ZGt (A) = ZG(
A
t
). But with such a choice of ZGt we can write even =

instead of
∆
= in this formula. ⊓⊔
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The next result shows a relation between Wick polynomials and Wiener–Itô in-

tegrals.

Theorem 4.7. Let a stationary Gaussian field be given, and let ZG denote the ran-

dom spectral measure adapted to it. Let P(x1, . . . ,xm) = ∑c j1,..., jnx j1 · · ·x jn be a ho-

mogeneous polynomial of degree n, and let h1, . . . ,hm ∈ H 1
G . (Here j1, . . . , jn are n

indices such that 1≤ jl ≤m for all 1≤ l ≤ n. It is possible that jl = jl′ also if l 6= l′.)
Define the random variables ξ j =

∫
h j(x)ZG(dx), j = 1,2, . . . ,m, and the function

P̃(u1, . . . ,un) = ∑c j1,..., jnh j1(u1) · · ·h jn(un). Then

: P(ξ1, . . . ,ξm): =
∫

P̃(u1, . . . ,un)ZG(du1) . . .ZG(dun).

Remark. If P is a polynomial of degree n, then it can be written as P=P1+P2, where

P1 is a homogeneous polynomial of degree n, and P2 is a polynomial of degree less

than n. Obviously,

: P(ξ1, . . . ,ξm): = : P1(ξ1, . . . ,ξm):

Proof of Theorem 4.7. It is enough to show that

: ξ j1 · · ·ξ jn : =
∫

h j1(u1) · · ·h jn(un)ZG(du1) . . .ZG(dun).

If h1, . . . ,hm ∈ H 1
G are orthonormal, (all functions hl have norm 1, and if l 6= l′,

then hl and hl′ are either orthogonal or hl = hl′ ), then this relation follows from a

comparison of Corollary 2.3 with Itô’s formula. In the general case an orthonormal

system h̄1, . . . , h̄m can be found such that

h j =
m

∑
k=1

c j,kh̄k, j = 1, . . . ,m

with some real constants c j,k. Set ηk =
∫

h̄ jZG(dx). Then

: ξ j1 · · ·ξ jn : = :

(
m

∑
k=1

c j1,kηk

)
· · ·
(

m

∑
k=1

c jn,kηk

)
:

= ∑
k1,...,kn

c j1,k1
· · ·c jn,kn

: ηk1
· · ·ηkn

:

= ∑
k1,...,kn

c j1,k1
· · ·c jn,kn

∫
h̄k1

(u1) · · · h̄kn
(un)ZG(du1) . . .ZG(dun)

=
∫

h j1(u1) · · ·h jn(un)ZG(du1) . . .ZG(dun)

as we claimed. ⊓⊔
We finish this chapter by showing how the Wiener–Itô integral can be defined if

the spectral measure G may have atoms. We do this although such a construction
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seems to have a limited importance as in most applications the restriction that we

apply the Wiener–Itô integral only in the case of a non-atomic spectral measure G

causes no serious problem. If we try to give this definition by modifying the original

one, then we have to split up the atoms. The simplest way we found for this splitting

up, was the use of randomization.

Let G be a spectral measure on Rν , and let ZG be a corresponding Gaussian spec-

tral random measure on a probability space (Ω ,A ,P). Let us define a new spectral

measure Ĝ = G×λ[− 1
2 ,

1
2 ]

on Rν+1, where λ[− 1
2 ,

1
2 ]

denotes the uniform distribution

on the interval [− 1
2
, 1

2
]. If the probability space (Ω ,A ,P) is sufficiently rich, a ran-

dom spectral measure ZĜ corresponding to Ĝ can be defined on it in such a way

that ZĜ(A× [− 1
2
, 1

2
]) = ZG(A) for all A ∈ Bν . For f ∈ H̄ n

G we define the func-

tion f̂ ∈ H̄ n

Ĝ
by the formula f̂ (y1, . . . ,yn) = f (x1, . . . ,xn) if y j is the juxtaposition

(x j,u j), x j ∈ Rν , u j ∈ R1, j = 1,2, . . . ,n. Finally we define the Wiener–Itô integral

in the general case by the formula

∫
f (x1, . . . ,xn)ZG(dx1) . . .ZG(dxn) =

∫
f̂ (y1, . . . ,yn)ZĜ(dy1) . . .ZĜ(dyn).

(What we actually have done was to introduce a virtual new coordinate u. With the

help of this new coordinate we could reduce the general case to the special case

when G is non-atomic.) If G is a non-atomic spectral measure, then the new defini-

tion of Wiener–Itô integrals coincides with the original one. It is easy to check this

fact for one-fold integrals, and then Itô’s formula proves it for multiple integrals. It

can be seen with the help of Itô’s formula again, that all results of this chapter re-

main valid for the new definition of Wiener–Itô integrals. In particular, we formulate

the following result.

Given a stationary Gaussian field let ZG be the random spectral measure adapted

to it. All f ∈ H n
G can be written in the form

f (x1, . . . ,xn) = ∑c j1,..., jnϕ j1(x1) · · ·ϕ jn(xn) (4.10)

with some functions ϕ j ∈H 1
G , j = 1,2, . . . . Define ξ j =

∫
ϕ j(x)ZG(dx). If f has the

form (4.10), then

∫
f (x1, . . . ,xn)ZG(dx1) . . .ZG(dxn) = ∑c j1,..., jn : ξ j1 · · ·ξ jn : .

The last identity would provide another possibility for defining Wiener–Itô integrals

also in the case when the spectral measure G may have atoms.





Chapter 5

The Proof of Itô’s Formula: The Diagram
Formula and Some of Its Consequences

We shall prove Itô’s formula with the help of the following

Proposition 5.1. Let f ∈ H̄ n
G and h ∈ H̄ 1

G . Let us define the functions

f ×
k

h(x1, . . . ,xk−1,xk+1, . . . ,xn) =
∫

f (x1, . . . ,xn)h(xk)G(dxk), k = 1, . . . ,n,

and

f h(x1, . . . ,xn+1) = f (x1, . . . ,xn)h(xn+1).

Then f ×
k

h, k = 1, . . . ,n, and f h are in H̄
n−1

G and H̄
n+1

G respectively, and their

norms satisfy the inequality ‖ f ×
k

h‖ ≤ ‖ f‖ ·‖h‖ and ‖ f h‖ ≤ ‖ f‖ ·‖h‖. The relation

n!IG( f )IG(h) = (n+1)!IG( f h)+
n

∑
k=1

(n−1)!IG( f ×
k

h)

holds true.

We shall get Proposition 5.1 as the special case of the diagram formula formu-

lated in Theorem 5.3.

Remark. There is a small inaccuracy in the formulation of Proposition 5.1. We con-

sidered the Wiener–Itô integral of the function f ×
k

h with arguments x1,. . . , xk−1,

xk+1,. . . , xn, while we defined this integral for functions with arguments x1, . . . ,xn−1.

We can correct this inaccuracy for instance by reindexing the variables of f ×
k

h and

working with the function

( f ×
k

h)′(x1, . . . ,xn−1) = f ×
k

h(xαk(1), . . . ,xαk(k−1),xαk(k+1), . . . ,xαk(n))

instead of f ×
k

h, where αk( j) = j for 1 ≤ j ≤ k−1, and αk( j) = j−1 for k+1 ≤
j ≤ n.

We also need the following recursion formula for Hermite polynomials.

43
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Lemma 5.2. The identity

Hn(x) = xHn−1(x)− (n−1)Hn−2(x) for n = 1,2, . . . ,

holds with the notation H−1(x)≡ 0.

Proof of Lemma 5.2.

Hn(x) = (−1)nex2/2 dn

dxn
(e−x2/2) = −ex2/2 d

dx

(
Hn−1(x)e

−x2/2
)

= x Hn−1(x)−
d

dx
Hn−1(x).

Since d
dx

Hn−1(x) is a polynomial of order n− 2 with leading coefficient n− 1 we

can write
d

dx
Hn−1(x) = (n−1)Hn−2(x)+

n−3

∑
j=0

c jH j(x).

To complete the proof of Lemma 5.2 it remains to show that in the last expansion

all coefficients c j are zero. This follows from the orthogonality of the Hermite poly-

nomials and the calculation

∫
e−x2/2H j(x)

d

dx
Hn−1(x)dx = −

∫
Hn−1(x)

d

dx
(e−x2/2H j(x))dx

=
∫

e−x2/2Hn−1(x)Pj+1(x)dx = 0

with the polynomial Pj+1(x) = xH j(x)− d
dx

H j(x) of order j+1 for j ≤ n−3. ⊓⊔
Proof of Theorem 4.3 via Proposition 5.1. We prove Theorem 4.3 by induction with

respect to N. Theorem 4.3 holds for N = 1. Assume that it holds for N − 1. Let us

define the functions

f (x1, . . . ,xN−1) = g1(x1) · · ·gN−1(xN−1)

h(x) = gN(x).

Then

J =
∫

g1(x1) · · ·gN(xN)ZG(dx1) . . .ZG(dxN)

= N! IG( f h) = (N −1)! IG( f )IG(h)−
N−1

∑
k=1

(N −2)! IG( f ×
k

h)

by Proposition 5.1. We can write because of our induction hypothesis that



5 The Proof of Itô’s Formula: The Diagram Formula and Some of Its Consequences 45

J = H j1

(∫
ϕ1(x)ZG(dx)

)
· · ·H jm−1

(∫
ϕm−1(x)ZG(dx)

)

H jm−1

(∫
ϕm(x)ZG(dx)

)∫
ϕm(x)ZG(dx)

−( jm −1)H j1

(∫
ϕ1(x)ZG(dx)

)
· · ·H jm−1

(∫
ϕm−1(x)ZG(dx)

)

H jm−2

(∫
ϕm(x)ZG(dx)

)
,

where H jm−2(x) = H−1(x)≡ 0 if jm = 1. This relation holds, since

f ×
k

h(x1, . . . ,xk−1,xk+1, . . . ,xN−1) =
∫

g1(x1) · · ·gN−1(xN−1)ϕm(xk)G(dxk)

=

{
0 if k ≤ N − jm
g1(x1) · · ·gk−1(xk−1)gk+1(xk+1) · · ·gN−1(xN−1) if N − jm < k ≤ N −1.

Hence Lemma 5.2 implies that

J =
m−1

∏
s=1

H js

(∫
ϕs(x)ZG(dx)

)[
H jm−1

(∫
ϕm(x)ZG(dx)

)∫
ϕm(x)ZG(dx)

−( jm −1)H jm−2

(∫
ϕm(x)ZG(dx)

)]
=

m

∏
s=1

H js

(∫
ϕs(x)ZG(dx)

)
,

as claimed. ⊓⊔
Let us fix some functions h1 ∈ H̄

n1
G ,. . . , hm ∈ H̄

nm
G . In the next result, in the so-

called diagram formula, we express the product n1!IG(h1) · · ·nm!IG(hm) as the sum

of Wiener–Itô integrals. This result contains Proposition 5.1 as a special case. There

is no unique terminology for this result in the literature. We shall follow the notation

of Dobrushin in [7]. We introduce a class of diagrams γ denoted by Γ (n1, . . . ,nk)
and define with the help of each diagram γ in this class a function hγ which will

be the kernel function of one of the Wiener–Itô integrals taking part in the sum

expressing the product of the Wiener–Itô integrals we investigate. First we define

the diagrams γ and the functions hγ corresponding to them, and then we formulate

the diagram formula with their help. After the formulation of this result we present

an example together with some figures which may help to understand better what

the diagram formula is like.

We shall use the term diagram of order (n1, . . . ,nm) for an undirected graph of

n1 + · · ·+nm vertices which are indexed by the pairs of integers ( j, l), l = 1, . . . ,m,

j = 1, . . . ,nl , and we shall call the set of vertices ( j, l), 1 ≤ j ≤ nl the l-th row of the

diagram. The diagrams of order (n1, . . . ,nm) are those undirected graphs with these

vertices which have the properties that no more than one edge enters into each ver-

tex, and edges can connect only pairs of vertices from different rows of a diagram,

i.e. such vertices ( j1, l1) and ( j2, l2) for which l1 6= l2. Let Γ =Γ (n1, . . . ,nm) denote

the set of all diagrams of order (n1, . . . ,nm).
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Given a diagram γ ∈ Γ let |γ | denote the number of edges in γ . Let there be

given a set of functions h1 ∈ H̄
n1

G ,. . . , hm ∈ H̄
nm

G . Let us denote the variables of

the function hl by x( j,l) instead of x j, i.e. let us write hl(x(1,l), . . . ,x(nl ,l)
) instead

of hl(x1, . . . ,xnl
). Put N = n1 + · · ·+ nm. We introduce the function of N variables

corresponding to the vertices of the diagram by the formula

h(x( j,l), l = 1, . . . ,m, j = 1, . . . ,nl) =
m

∏
l=1

hl(x( j,l), j = 1, . . . ,nl). (5.1)

For each diagram γ ∈ Γ = Γ (n1, . . . ,nm) we define the reenumeration of the

indices of the function in (5.1) in the following way. We enumerate the variables

x( j,l) in such a way that the vertices into which no edges enter will have the numbers

1,2, . . . ,N − 2|γ |, and the vertices connected by an edge will have the numbers p

and p+ |γ |, where p = N − 2|γ |+ 1, . . . ,N − |γ |. In such a way we have defined a

function h(x1, . . . ,xN) (with an enumeration of the indices of the variables depending

on the diagram γ). After the definition of this function h(x1, . . . ,xN) we take that

function of N −|γ | variables which we get by replacing the arguments xN−|γ |+p by

the arguments −xN−2|γ |+p, 1 ≤ p ≤ |γ | in the function h(x1, . . . ,xN). Then we define

the function hγ appearing in the diagram formula by integrating this function by the

product measure
|γ |
∏

p=1

G(dxN−2|γ |+p).

More explicitly, we write

hγ(x1, . . . ,xN−2|γ |) =
∫

· · ·
∫

h(x1, . . . ,xN−|γ |,−xN−2|γ |+1, . . . ,−xN−|γ |)

G(dxN−2|γ |+1) . . .G(dxN−|γ |). (5.2)

The function hγ depends only on the variables x1, . . . ,xN−2|γ |, i.e. it is independent

of how the vertices connected by edges are indexed. Indeed, it follows from the

evenness of the spectral measure that by interchanging the indices s and s+γ of two

vertices connected by an edge we do not change the value of the integral hγ . Let

us now consider the Wiener–Itô integrals (N −2|γ |)!IG(hγ). In the diagram formula

we shall show that the product of the Wiener–Itô integrals we considered can be ex-

pressed as the sum of these Wiener–Itô integrals. To see that the identity appearing

in the diagram formula is meaningful observe that although the function hγ may de-

pend on the numbering of those vertices of γ from which no edge starts, the function

Symhγ , and therefore the Wiener–Itô integral IG(hγ) does not depend on it.

Now I shall formulate the diagram formula. Then I make a remark about the

definition of the function hγ in it and discuss an example to show how to calculate

the terms appearing in this result.

Theorem 5.3. (Diagram Formula.) For all functions h1 ∈ H̄
n1

G ,. . . , hm ∈ H̄
nm

G ,

n1, . . . ,nm = 1,2, . . . , the following relations hold:

(A) hγ ∈ H̄
N−2|γ |

G , and ‖hγ‖ ≤
m

∏
j=1

‖h j‖ for all γ ∈ Γ .
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(B) n1!IG(h1) · · ·nm!IG(hm) = ∑
γ∈Γ

(N −2|γ |)!IG(hγ).

Here Γ =Γ (n1, . . . ,nm), and the functions hγ agree with the functions hγ defined

before the formulation of Theorem 5.3. In particular, hγ was defined in (5.2).

Remark 1. In the special case m = 2, n1 = n, n2 = 1 Theorem 5.3 coincides with

Proposition 5.1. To see this it is enough to observe that h(−x) = h(x) for all h∈ H̄ 1
G .

Remark 2. Observe that at the end of the definition of the function hγ we replaced the

variable xN−|γ |+p by the variable −xN−2|γ |+p and not by xN−2|γ |+p. This is related to

the fact that in the Wiener–Itô integral we integrate with respect a complex valued

random measure ZG which has the property EZG(∆)ZG(−∆) = EZG(∆)ZG(∆) =
G(∆), while EZG(∆)ZG(∆) = 0 if ∆ ∩(−∆) = /0. In the case of the original Wiener–

Itô integral considered in Chapter 7 the situation is a bit different. In that case we

integrate with respect to a real valued Gaussian orthonormal random measure Zµ

which has the property EZ2
µ(∆) = µ(∆). In that case a diagram formula also holds,

but it has a slightly different form. The main difference is that in that case we define

the function hγ (because of the above mentioned property of the random measure

Zµ ) by replacing the variable xN−|γ |+p by the variable xN−2|γ |+p.

To make the notation in the diagram formula more understandable let us consider

the following example.

Example. Let us take four functions h1 = h1(x1,x2,x3)∈ H̄ 3
G , h2 = h2(x1,x2)∈ H̄ 2

G ,

h3 = h3(x1,x2,x3,x4,x5) ∈ H̄ 5
G and h4 = h4(x1,x2,x3,x4) ∈ H̄ 4

G , and consider the

product of Wiener–Itô integrals 3!IG(h1)2!IG(h2)5!IG(h3)4!IG(h4). Let us look how

to calculate the kernel function hγ of a Wiener–Itô integral (14− 2|γ |)!IG(hγ), γ ∈
Γ (3,2,5,4), appearing in the diagram formula.

We have to consider the class of diagrams Γ (3,2,5,4), i.e. the diagrams with ver-

tices which are indexed in the first row as (1,1), (2,1), (3,1), in the second row as

(1,2), (2,2), in the third row in as (1,3), (2,3), (3,3), (4,3), (5,3) and in the fourth

row as (1,4), (2,4), (3,4), (4,4). (See Fig. 5.1.)

(1.1)    (2.1)    (3.1)

(1.2)    (2.2)

(1.3)    (2.3)    (3.3)    (4.3)    (5.3)

(1.4)    (2.4)    (3.4)    (4.4)

Fig. 5.1 The vertices of the diagrams γ ∈ Γ (3,2,5,4).



48 5 The Proof of Itô’s Formula: The Diagram Formula and Some of Its Consequences

Let us take a diagram γ ∈ Γ (3,2,5,4), and let us see how we can calculate the

kernel function hγ of the Wiener–Itô integral corresponding to it. We also draw some

pictures which may help in following this calculation. Let us consider for instance

the diagram γ ∈Γ (3,2,5,4) with edges ((2,1),(4,3)), ((3,1),(1,3)), ((1,2),(2,4)),
((2,2),(5,3)), ((3,3),(3,4)). Let us draw the diagram γ with its edges and with

such a reenumeration of the vertices which helps in writing up the function h(·)
(with N = 14 variables) corresponding to this diagram γ and introduced before the

definition of the function hγ .

The function defined in (5.1) equals in the present case

h1(x(1,1),x(2,1),x(3,1))h2(x(1,2),x(2,2))h3(x(1,3),x(2,3),x(3,3),x(4,3),x(5,3))

h4(x(1,4),x(2,4),x(3,4),x(4,4)).

The variables of this function are indexed by the labels of the vertices of γ . We made

a relabelling of the vertices of the diagram γ in such a way that by changing the

indices of the above function with the help of this relabelling we get the function

h(·) corresponding to the diagram γ . In the next step we shall make such a new

relabelling of the vertices of γ which helps to write up the functions hγ we are

interested in. (See Fig. 5.2.)

   1          5          6

  7          8

  3          12           14         4

  11        2           9         10          13 

Fig. 5.2 The diagram γ we are working with and the reenumeration of its vertices.

The function h(·) (with N = 14 variables) corresponding to the diagram γ can be

written (with the help of the labels of the vertices in the second diagram) as

h(x1,x2, . . . ,x14)

= h1(x1,x5,x6)h2(x7,x8)h3(x11,x2,x9,x10,x13)h4(x3,x12,x14,x4).

Let us change the enumeration of the vertices of the diagram in a way which cor-

responds to the change of the arguments xN−|γ |+p by the arguments −xN−2|γ |+p. This

is done in the next picture. (In this notation the sign (−) denotes that the variable

corresponding to this vertex is −xN−2|γ |+p and not xN−2|γ |+p. (See Fig. 5.3.)

With the help of the above diagram we can write up the function
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h(x1, . . . ,xN−|γ |,−xN−2|γ |+1, . . . ,−xN−|γ |)

corresponding to the diagram γ in a simple way. This yields that in the present case

the function hγ defined in (5.2) can be written in the form

hγ(x1,x2,x3,x4) =
∫

· · ·
∫

h1(x1,x5,x6)h2(x7,x8)h3(−x6,x2,x9,−x5,−x8)

h4(x3,−x7,−x9,x4)G(dx5)G(dx6)G(dx7)G(dx8)G(dx9).

   1          5          6

  7          8

  3          7,(−)       9,(−)   4 

  6,(−)      2           9          5,(−)     8,(−)

Fig. 5.3 The diagram applied for the calculation of hγ . The sign − indicates that the corresponding

argument is multiplied by −1.

Here we integrate with respect to those variables x j whose indices correspond to

such a vertex of the last diagram from which an edge starts. Then the contribution of

the diagram γ to the sum at the right-hand side of diagram formula equals 4!IG(hγ)
with this function hγ .

Let me remark that we had some freedom in choosing the enumeration of the

vertices of the diagram γ . Thus e.g. we could have enumerated the four vertices of

the diagram from which no edge starts with the numbers 1, 2, 3 and 4 in an arbitrary

order. A different indexation of these vertices would lead to a different function

hγ whose Wiener–itô integral is the same. I have chosen that enumeration of the

vertices which seemed to be the most natural for me.

Naturally the product of two Wiener–Itô integrals can be similarly calculated,

but the notation will be a bit simpler in this case. I briefly show such an example,

because in the proof of Theorem 5.3 we shall be mainly interested in the product of

two Wiener–Itô integrals.

Example 2. Take two Wiener–Itô integrals with kernel functions h1 = h1(x1,x2,x3)∈
H̄ 3

G and h2 = h2(x1,x2,x3,x4,x5)∈ H̄ 5
G , and calculate the product 3!IG(h1)5!IG(h2)

with the help of the diagram formula.

I shall consider only one diagram γ ∈Γ (3,5), and briefly explain how to calculate

the kernel function hγ of the Wiener–Itô integral corresponding to it. Let us consider

for instance the diagram γ ∈ Γ (3,5) which contains the edges ((2,1),(3,2)) and



50 5 The Proof of Itô’s Formula: The Diagram Formula and Some of Its Consequences

((3,1),(5,2)). Then the same calculation as before leads to the introduction of the

diagram (Fig. 5.4).

   2          3         5,(−)      4        6,(−)

   1           5           6

Fig. 5.4 A diagram γ with reenumerated vertices that shows how to calculate the function hγ .

This picture yields the following definition of the diagram hγ in the present case.

hγ(x1,x2,x3,x4) =
∫∫

h1(x1,x5,x6)h2(x2,x3,−x5,x4,−x6)G(dx5)G(dx6).

Proof of Theorem 5.3. It suffices to prove Theorem 5.3 in the special case m = 2.

Then the case m > 2 follows by induction.

We shall use the notation n1 = n, n2 = m, and we write x1, . . . ,xn+m instead of

x(1,1), . . . ,x(n,1),x(1,2) . . . ,x(m,2). It is clear that the function hγ satisfies Property (a)

of the classes H̄
n+m−2|γ |

G defined in Chapter 4. We show that Part (A) of Theo-

rem 5.3 is a consequence of the Schwartz inequality. The validity of this inequality

means in particular that the functions hγ satisfy also Property (b) of the class of

functions H̄
n+m−2|γ |

G .

To prove this estimate on the norm of hγ it is enough to restrict ourselves to such

diagrams γ in which the vertices (n,1) and (m,2), (n− 1,1) and (m− 1,2),. . . ,

(n− k,1) and (m− k,2) are connected by edges with some 0 ≤ k ≤ min(n,m). In

this case we can write

|hγ(x1, . . . ,xn−k−1,xn+1, . . . ,xn+m−k−1)|2

=

∣∣∣∣
∫

h1(x1, . . . ,xn)h2(xn+1, . . . ,xn+m−k−1,−xn−k, . . . ,−xn)

G(dxn−k) . . .G(dxn)

∣∣∣∣
2

≤
∫

|h1(x1, . . . ,xn)|2G(dxn−k) . . .G(dxn)
∫

|h2(xn+1, . . . ,xn+m)|2G(dxn+m−k) . . .G(dxn+m)
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by the Schwartz inequality and the symmetry G(−A) = G(A) of the spectral mea-

sure G. Integrating this inequality with respect to the free variables we get Part (A)

of Theorem 5.3.

In the proof of Part (B) first we restrict ourselves to the case when h1 ∈ ˆ̄
H n

G

and h2 ∈ ˆ̄
H m

G . Assume that they are adapted to a regular system D = {∆ j, j =
±1, . . . ,±N} of subsets of Rn with finite measure G(∆ j), j =±1, . . . ,±N. We may

even assume that all ∆ j ∈ D satisfy the inequality G(∆ j)< ε with some ε > 0 to be

chosen later, because otherwise we could split up the sets ∆ j into smaller ones. Let

us fix a point u j ∈ ∆ j in all sets ∆ j ∈ D . Put Ki = sup
x
|hi(x)|, i = 1,2, and let A be a

cube containing all ∆ j.

We can write

I = n!IG(h1)m!IG(h2) = ∑
′
h1(u j1 , . . . ,u jn)h2(uk1

, . . . ,ukm
)

ZG(∆ j1) · · ·ZG(∆ jn)ZG(∆k1
) · · ·ZG(∆km

)

with the numbers u jp ∈ ∆ jp and ukr
∈ ∆kr

we have fixed, where the summation in

∑′ goes through all pairs (( j1, . . . , jn),(k1, . . . ,km)), jp, kr ∈ {±1, . . . ,±N}, p =
1, . . . ,n, r = 1, . . . ,m, such that jp 6=± jp̄ and kr 6=±kr̄ if p 6= p̄ or r 6= r̄.

Write

I = ∑
γ∈Γ

∑
γ

h1(u j1 , . . . ,u jn)h2(uk1
, . . . ,ukm

)

ZG(∆ j1) · · ·ZG(∆ jn)ZG(∆k1
) · · ·ZG(∆km

),

where ∑γ contains those terms of ∑′ for which jp = kr or jp = −kr if the vertices

(1, p) and (2,r) are connected in γ , and jp 6= ±kr if (1, p) and (2,r) are not con-

nected. Let us define the sets

A1 = A1(γ) = {p : p ∈ {1, . . . ,n}, and no edge starts from (p,1) in γ},
A2 = A2(γ) = {r : r ∈ {1, . . . ,m}, and no edge starts from (r,2) in γ}

and

B = B(γ) = {(p,r) : p ∈ {1, . . . ,n}, r ∈ {1, . . . ,m},
(p,1) and (r,2) are connected in γ}

together with the map α : {1, . . . ,n}\A1 →{1, . . . ,m}\A2 defined as

α(p) = r if (p,r) ∈ B for all p ∈ {1, . . . ,n}\A1. (5.3)

Let Σ γ denote the value of the inner sum ∑γ for some γ ∈Γ in the last summation

formula, and write it in the form

Σ γ = Σ
γ
1 +Σ

γ
2

with
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Σ
γ
1 = ∑

γ
h1(u j1 , . . . ,u jn)h2(uk1

, . . . ,ukm
) ∏

p∈A1

ZG(∆ jp) ∏
r∈A2

ZG(∆kr
)

· ∏
(p,r)∈B

E
(
ZG(∆ jp)ZG(∆kr

)
)

and

Σ
γ
2 = ∑

γ
h1(u j1 , . . . ,u jn)h2(uk1

, . . . ,ukm
) ∏

p∈A1

ZG(∆ jp) ∏
r∈A2

ZG(∆kr
)

·
[

∏
(p,r)∈B

ZG(∆ jp)ZG(∆kr
)−E

(

∏
(p,r)∈B

ZG(∆ jp)ZG(∆kr
)

)]
.

The random variables Σ
γ
1 and Σ

γ
2 are real valued. To see this observe that if the

sum defining these expressions contains a term with arguments ∆ jp , and ∆kr
, then

it also contains the term with arguments −∆ jp and −∆kr
. This fact together with

property (v) of the random spectral measure ZG and the analogous property of the

functions h1 and h2 imply that Σ
γ
1 = Σ

γ
1 and Σ

γ
2 = Σ

γ
2 . Hence these random variables

are real valued. As a consequence, we can bound (n+m−2|γ |)!IG(hγ)−Σ
γ
1 and Σ

γ
2

by means of an estimation of their second moment.

We are going to show that Σ
γ
1 is a good approximation of (n+m−2|γ |)! IG(hγ),

and Σ
γ
2 is negligibly small. This implies that (n+m− 2|γ |)!IG(hγ) well approxi-

mates Σ γ . The proofs are based on some simple ideas, but unfortunately their de-

scription demands a complicated notation which makes their reading unpleasant.

To estimate (n+m− 2|γ |)!IG(hγ)−Σ
γ
1 we rewrite Σ

γ
1 as a Wiener–Itô integral

which can be well approximated by (n+m−2|γ |)!IG(hγ). To find the kernel func-

tion of this Wiener–Itô integral we rewrite the sum defining Σ
γ
1 by first fixing the

variables u jp , p ∈ A1, and ukr
, r ∈ A2, and summing up by the remaining variables,

and after this summing by the variables fixed at the first step. We get that

Σ
γ
1 = ∑

jp : 1≤| jp|≤N for all p∈A1

kr : 1≤|kr|≤N for all r∈A2

hγ ,1( jp, p ∈ A1, kr, r ∈ A2)

∏
p∈A1

ZG(∆ jp) ∏
r∈A2

ZG(∆kr
) (5.4)

with a function hγ ,1 depending on the arguments jp, p ∈ A1, and kr, r ∈ A2, with

values jp,kr ∈ {±1, . . . ,±N} defined with the help another function hγ ,2 described

below. The function hγ ,2 also depends on the arguments jp, p ∈ A1, and kr, r ∈ A2,

with values jp,kr ∈ {±1, . . . ,±N}. More explicitly, formula (5.4) holds with the

function hγ ,1 defined as

hγ ,1( jp, p ∈ A1, kr, r ∈ A2) = 0 (5.5)

if the numbers in the set {± jp : p ∈ A1}∪{±kr : r ∈ A2} are not all different, and

hγ ,1( jp, p ∈ A1, kr, r ∈ A2) = hγ ,2( jp, p ∈ A1, kr, r ∈ A2) (5.6)



5 The Proof of Itô’s Formula: The Diagram Formula and Some of Its Consequences 53

if all numbers ± jp, p ∈ A1, and ±kr, r ∈ A2 are different, where we define the

function hγ ,2( jp, p ∈ A1, kr, r ∈ A2) for all sequences jp, p ∈ A1 and kr, r ∈ A2,

with jp,kr ∈ {±1, . . . ,±N} (i.e. also in the case when some of the arguments jp,

p ∈ A1, or kr, r ∈ A2, agree) by the formula

hγ ,2( jp, p ∈ A1, kr, r ∈ A2) = ∑
γ ,1

h1(u j1 , . . . ,u jn)h2(uk1
, . . . ,ukm

)

· ∏
(p,r)∈B

E
(
ZG(∆ jp)ZG(∆kr

)
)
. (5.7)

The sum ∑γ ,1 in formula (5.7) which depends on the arguments jp, p ∈ A1, and kr,

r ∈ A2, is defined in the following way. We sum up for such sequences ( j1, . . . , jn)
and (k1, . . . ,km) whose coordinates with p ∈ A1 and q ∈ A2 are fixed, and agree

with the arguments jp and kr of the function hγ ,2 at the left-hand side of (5.7) and

whose coordinates with indices p ∈ {1, . . . ,n} \A1 and r ∈ {1, . . . ,m} \A2 satisfy

the following conditions.

Put C = {± jp, p ∈ A1} ∪ {±kr, r ∈ A2}. We demand that all numbers jp and

kr with indices p ∈ {1, . . . ,n} \ A1 and r ∈ {1, . . . ,m} \ A2 are such that jp,kr ∈
{±1, . . . ,±N} \C. To formulate the remaining conditions let us write all numbers

r ∈ {1, . . . ,m}\A2 in the form r = α(p), p ∈ {1, . . . ,n}\A1 with the map α defined

in (5.3). We also demand that only such sequences appear in the summation whose

coordinates kr = kα(p) satisfy the condition kα(p) =± jp for all p ∈ {1, . . . ,n}\A1.

Besides, all numbers ± jp, p ∈ {1, . . . ,n} \A1, must be different. The summation

in ∑γ ,1 is taken for all such sequences jp, p ∈ {1, . . . ,n} and kr, r ∈ {1, . . . ,m},

whose coordinates with p ∈ {1, . . . ,n}\A1 and r ∈ {1, . . . ,m}\A2 satisfy the above

conditions.

Formula (5.7) can be rewritten in a simpler form. To do this let us first observe

that the condition kα(p) = ± jp can be replaced by the condition kα(p) = − jp in it,

and we can write G(∆ jp) instead of the term EZG(∆ jp)ZG(∆kr
) (with (p,r) ∈ B) in

the product at the end of (5.7). This follows from the fact that EZG(∆ jp)ZG(∆kr
) =

EZG(∆ jp)
2 = 0 if kr = jp and EZG(∆ jp)ZG(∆kr

) = EZG(∆ jpZG(−∆ jp) = G(∆ jp) if

kr =− jp. Besides, the expression in (5.7) does not change if we take summation for

all such sequences for which the number jp with coordinate p ∈ {1, . . . ,n}\A takes

all possible values jp ∈ {±1, . . . ,±N}, because in such a way we only attach such

terms to the sum which equal zero. This follows from the fact that both functions h1

and h2 are adapted to the regular system D , hence h1(u j1 , . . . ,u jn)h2(uk1
, . . . ,ukm

) =
0 if for an index p ∈ {1, . . . ,n} \A1 jp = ± jp′ with some p 6= p′ or jp = −kr with

some (p,r) ∈ B, and the same relation holds if there exists some r′ ∈ A2 such that

jp =±kr′ .

The above relations enable us to rewrite (5.7) in the following simpler form. Let

us define that map α−1 on the set {1, . . . ,m}\A2 which is the inverse of the map α
defined in (5.3), i.e. α−1(r) = p if (p,r) ∈ B. With this notation we can write
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hγ ,2( jp, p ∈ A1, kr, r ∈ A2)

= ∑
jp, p∈{1,...,n}\A1,

1≤| jp|≤N for all indices p

h1(u j1 , . . . ,u jn)h2(ukr
, r ∈ A2,−u j

α−1(r)
, r ∈ {1, . . . ,m}\A2)

∏
p∈{1,...,n}\A1

G(∆ jp). (5.8)

Formula (5.8) can be rewritten in integral form as

hγ ,2( jp, p ∈ A1, kr, r ∈ A2) (5.9)

=
∫

h1(u jp , p ∈ A1, xp, p ∈ {1, . . . ,n}\A1)

h2(ukr
, r ∈ A2, −xα−1(r), r ∈ {1, . . . ,m}\A2) ∏

p∈{1,...,n}\A1

G(dxp).

We define with the help of hγ ,1 and hγ ,2 two new functions on R(n+m−2|γ |)ν

with arguments x1, . . . ,xn+m−2|γ . The first one will be the kernel function of the

Wiener–Itô integral expressing Σ
γ
1 , and the second one will be equal to the func-

tion hγ defined in (5.2). We define these functions in two steps. In the first step

we reindex the arguments of the functions h1,γ and h2,γ to get functions depend-

ing on sequences j1, . . . , jn+m−2|γ |. For this goal we list the elements of the sets

A1 and A2 as A1 = {p1, . . . , pn−|γ |} with 1 ≤ p1 < p2 < · · · < pn−|γ | ≤ n and

A2 = {r1, . . . ,rm−|γ |} with 1 ≤ r1 < r2 < · · · < rm−|γ | ≤ m, and define the maps

β1 : A1 → {1, . . . ,n − |γ |} and β2 : A2 → {n − |γ |+ 1, . . . ,n + m − 2|γ |} by the

formulas β1(pl) = l if 1 ≤ l ≤ n − γ , 1 ≤ l ≤ n − |γ |, and β2(rl) = l + n − |γ |,
1 ≤ l ≤ m− |γ |, if n− |γ |+ 1 ≤ l ≤ n+m− 2|γ |. We define with the help of the

maps β1 and β2 the functions

hγ ,3( j1, . . . , jn+m−2|γ |) = hγ ,1( jβ1(r1), . . . , jβ1(n−|γ |)),kβ2(1), . . . ,kβ2(m−|γ |))

and

hγ ,4( j1, . . . , jn+m−2|γ |) = hγ ,2( jβ1(r1), . . . , jβ1(n−|γ |)),kβ2(1), . . . ,kβ2(m−|γ |)),

where the arguments of the functions hγ ,3 and hγ ,4 are sequences j1, . . . , jn+m−2|γ |
with js ∈ {±1, . . . ,±N} for all 1 ≤ s ≤ n+m−2|γ |.

With the help of the above functions we define the following functions hγ ,5 and

hγ ,6 on R(n+m−2|γ |)ν .

hγ ,5(x1, . . . ,xn+m−2|γ |) =





hγ ,3( j1, . . . , jn+m−2|γ |) if xl ∈ ∆ jl ,
for all 1 ≤ l ≤ n+m−2|γ |

0 otherwise,

and
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hγ ,6(x1, . . . ,xn+m−2|γ |) =





hγ ,4( j1, . . . , jn+m−2|γ |) if xl ∈ ∆ jl ,
for all 1 ≤ l ≤ n+m−2|γ |

0 otherwise.

It follows from relation (5.5) and the definition of the function hγ ,5 (with the help

of the definition of the functions hγ ,1 and hγ ,3) that hγ ,5 ∈ ˆ̄
H n

G , and it is adapted to

the regular system D . Then relations (5.4) and the definition of hγ ,5 also imply that

Σ
γ
1 = (n+m−2|γ |)!IG(hγ ,5).

On the other hand, I claim that the function hγ defined in (5.2) satisfies the iden-

tity hγ = hγ ,6. At this point we must be a bit more careful, because we did not define

the function hγ in a unique way. The function we get by permuting the indices of

its variables could be also considered as the function hγ . This causes no problem,

because we are interested not in the function hγ itself but in the expression IG(hγ)
which does not change if we reindex the variables of the function hγ . We shall define

the function hγ with a special (natural) indexation of its variables, and we prove the

identity hγ = hγ ,6 for this function.

To prove the desired identity first we recall the definition of that function

h(x1, . . . ,xn+m) (depending on the diagram γ) which was applied in the definition

of hγ . Here we shall use a notation similar to that applied in the definition of the

function hγ ,6.

Put A1 = {p1, . . . , pn−|γ |}, 1 ≤ p1 < p2 < · · ·< pn−|γ |,

{1, . . . ,n}\A1 = {q1, . . . ,q|γ |}, 1 ≤ q1 < q2 < · · ·< q|γ |,

and A2 = {r1, . . . ,rm−|γ |}, 1 ≤ r1 < r2 < · · ·< rm−|γ |,

{1, . . . ,m}\A2 = {q′1, . . . ,q
′
|γ |}, 1 ≤ q′1 < q′2 < · · ·< q′|γ |,

and define with their help the following functions. Define the function β (·) on the

set {1, . . . ,n} as β (k) = s if k = ps ∈ A1, and β (k) = n+m− 2|γ |+ t if k = lt ∈
{1, . . . ,n} \A1. Define similarly the function δ (·) on the set {n+ 1, . . . ,n+m} as

δ (k) = s+ |γ | if k−n = qs ∈ A2. If k−n = l′t ∈ {1, . . . ,m}\A2, then there is an edge

(lt , l
′
t ) ∈ B of the diagram γ , and we define δ (k) = n−|γ |+ t with the index t of the

number lt in this case.

With the help of the above notations we can define the function h(x1, . . . ,xn+m)
which takes part in the definition of hγ in formula (5.2) as

h(x1, . . . ,xn+m) = h1(xβ (1), . . . ,xβ (n))h2(xδ (n+1), . . . ,xδ (n+m)).

To define the kernel function of the integral in (5.2) observe that the set {δ (n+
1), . . . ,δ (n+m)} agrees with the set {n−|γ |+1, . . . ,n+m−2|γ |}∪{n+m−|γ |+
1, . . . ,n + m} = C1 ∪C2. Put δ̄ (k) = δ (k) if δ (k) ∈ C1 and δ̄ (k) = δ (k)− |γ | if

δ (k) ∈ C2. Let us also introduce ε( j) = 1 if n− |γ + 1 ≤ j ≤ n+m − 2|γ |, and

ε( j) =−1 if n+m−2|γ |+1 ≤ j ≤ n+m−|γ |. With such a notation we can write
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h(x1, . . . ,xn+m−|γ |,−xn+m−2|γ |+1, . . . ,−xn+m−|γ |)

= h1(xβ (1), . . . ,xβ (n))h2(ε(δ̄ (n+1))xδ̄ (n+1), . . . ,ε(δ̄ (n+m))xδ̄ (n+m))

as the kernel function in the integral (5.2) defining the function hγ(x1, . . . ,xn+m−2|γ |)
in the present case.

By formula (5.2) we can calculate the function hγ(x1, . . . ,xn+m−2|γ |) by inte-

grating the above defined function h(x1, . . . ,xn+m−|γ |,−xn+m−2|γ |+1, . . . ,−xn+m−|γ |)
with respect to the measure G(dxN−2|γ |+1) . . .G(dxN−|γ |). By comparing this for-

mula with the definition of the function hγ ,2 defined in (5.9) together with the defini-

tion of the functions hγ ,4 and hγ ,6 with its help one can see that the identity hγ ,6 = hγ

holds.

We want to compare IG(hγ ,5) with IG(hγ ,6). For this goal we have to understand

where the functions hγ ,5 and hγ ,6 differ. These are those points (x1, . . . ,xn+m−2|γ |)
where the function hγ ,5 disappears while the function hγ ,6 does not disappear. Ob-

serve that in such points (x1, . . . ,xn+m−2|γ |) where xl ∈∆ jl , 1≤ l ≤ n+m−2|γ |, with

such indices jl for which the numbers ± jl , 1 ≤ l ≤ n+m−2|γ |, are not all different

the function hγ ,5 disappears, while the function hγ ,6 may not disappear. But even

the function hγ ,6 disappears if some of the numbers in the set {± j1, . . . ,± jn−|γ |}
or in the set {± jn−|γ |+1, . . . ,± jn+m−2|γ |} agree. This fact together with the iden-

tity hγ = hγ ,6 and the relation between the functions hγ ,5 and hγ ,6 (implied by the

definition of the function hγ ,1 in formulas (5.5) and (5.6)) yield the identity

hγ(x1, . . . ,xn+m−2|γ |) = hγ ,5(x1, . . . ,xn+m−2|γ |)+hγ ,7(x1, . . . ,xn+m−2|γ |)

with

hγ ,7(x1, . . . ,xn+m−2|γ |)

=





hγ(x1, . . . ,xn+m−2|γ |) if there exist indices jl , 1 ≤ | jl | ≤ N,
1 ≤ l ≤ n+m−2|γ | such that xl ∈ ∆ jl , 1 ≤ l ≤ n+m−2|γ |,
all numbers ± j1, . . . ,± jn−2|γ | are different,

all numbers ± jn−|γ |+1, . . . ,± jn+m−2|γ | are different,

and {± j1, . . . ,± jn−|γ |}∩{± jn−|γ |+1, . . . ,± jn+m−2|γ |} 6= /0

0 otherwise.

Since Σ
γ
1 = (n+m−2|γ |)!IG(hγ ,5), we have

(n+m−2|γ |)!IG(hγ)−Σ
γ
1 = (n+m−2|γ |)!IG(hγ ,7),

and

E(Σ
γ
1 − (n+m−2|γ |)!IG(hγ))

2 ≤ (n+m−2|γ |)!‖hγ ,7(·)‖2

with the norm ‖ · ‖ in H̄
n+m−2|γ |

G .

On the other hand,

sup |hγ ,7(x1, . . . ,xn+m−2|γ |)| ≤ sup |hγ(x1, . . . ,xn+m−2|γ |)| ≤ K1K2L|γ |,
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with K1 = sup |h1|, K2 = sup |h2|, and L = G(A), where A is a fixed cube containing

all ∆ j. Hence

E(Σ
γ
1 − (n+m−2|γ |)!IG(hγ))

2 ≤ C1‖hγ ,7‖2

≤ C2∑
′′
G(∆ j1) · · ·G(∆ jn+m−2|γ|)

≤ C sup
j

G(∆ j)≤Cε , (5.10)

where the summation ∑′′ goes for such sequences j1, . . . , jn+m−2|γ |, 1 ≤ | jl | ≤ N for

all 1 ≤ l ≤ n+m− 2|γ |, for which all numbers ± j1, . . . ,± jn−|γ | are different, the

same relation holds for the elements of the sequence ± jn−|γ |+1, . . . ,± jn+m−2|γ |, and

{± j1, . . . ,± jn−|γ |}∩{± jn−|γ |+1, . . . ,± jn+m−2|γ |} 6= /0.

The constants C1, C2 and C may depend on the functions h1, h2 and spectral mea-

sure G, but they do not depend on the regular system D , hence in particular on the

parameter ε . In the verification of the last inequality in (5.10) we can exploit that

each term in the sum ∑′′ is a product which contains a factor G(∆ j)
2 ≤ εG(∆ j).

Here an argument can be applied which is similar to the closing step in the proof of

Lemma 4.1, to the final argument in the proof of Statement B.

Now we turn to the estimation of E(Σ
γ
2 )

2. It can be expressed as a linear combi-

nation of terms of the form

Σ
γ
3 ( jp,kr, jp̄,kr̄, p, p̄ ∈ {1, . . . ,n}, r, r̄ ∈ {1, . . . ,m}) (5.11)

= E

((

∏
p∈A1

ZG(∆ jp) ∏
r∈A2

ZG(∆kr
) ∏

p̄∈A1

ZG(∆ j p̄) ∏
r̄∈A2

ZG(∆kr̄
)

)

[

∏
(p,r)∈B

ZG(∆ jp)ZG(∆kr
)−E ∏

(p,r)∈B

ZG(∆ jp)ZG(∆kr
)

]

[

∏
( p̄,r̄)∈B

ZG(∆ j p̄)ZG(∆kr̄
)−E ∏

( p̄,r̄)∈B

ZG(∆ j p̄)ZG(∆kr̄
)

])
,

where Σ
γ
3 depends on such sequences of numbers jp, kr, jp̄, kr̄ with indices 1 ≤

p, p̄ ≤ n and 1 ≤ r, r̄ ≤ m for which jp,kr, jp̄,kr̄ ∈ {±1, . . . ,±N} for all indices

p,r, p̄ and r̄, jp = kr or jp = −kr if (p,r) ∈ B, otherwise all numbers ± jp, ±kr

are different, and the same relations hold for the indices jp̄ and kr̄ if the indices

p and r are replaced by p̄ and r̄. Moreover, the absolute value of all coefficients

in this linear combination which depend on the functions h1 and h2 is bounded by

sup |h1(x)|2 sup |h2(x)|2.

We want to show that for most sets of arguments ( jp, kr, jp̄, kr̄) the expression

Σ
γ
3 equals zero, and it is also small in the remaining cases.

Let us fix a sequence of arguments jp, kr, jp̄, kr̄ of Σ
γ
3 , and let us estimate its

value with these arguments. Define the sets



58 5 The Proof of Itô’s Formula: The Diagram Formula and Some of Its Consequences

A = { jp : p ∈ A1}∪{kr : r ∈ A2} and ¯A = { jp̄ : p̄ ∈ A1}∪{kr̄ : r̄ ∈ A2}.

We claim that Σ
γ
3 equals zero if ¯A 6=−A .

In this case there exists an index l ∈ A such that −l /∈ ¯A . Let us carry out the

multiplication in (5.11). Because of the independence properties of random spectral

measures each product in this expression can be written as the product of inde-

pendent factors, and the independent factor containing the term ZG(∆l) has zero

expectation. To see this observe that the set ∆l appears exactly once among the

arguments of the terms ZG(∆ jp) and ZG(∆kr
), and none of these terms contains

the argument −∆l = ∆−l . Although −l /∈ ¯A , it may happen that l ∈ ¯A . In this

case the product under investigation contains the independent factor ZG(∆l)
2 with

EZG(∆l)
2 = 0. If l /∈ ¯A , then there are two possibilities. Either this product con-

tains an independent factor of the form ZG(∆l) with EZG(∆l) = 0, or there is a

pair ( p̄, r̄) ∈ B such that ( jp̄,kr̄) = (±l,±l), and an independent factor of the form

ZG(∆l)ZG(±∆−l)ZG(±∆l) with the property EZG(∆l)ZG(±∆−l)ZG(±∆l) = 0 ap-

pears. Hence Σ
γ
3 = 0 also in this case.

Let

F =
⋃

(p,r)∈B

{ jp,kr} and F̄ =
⋃

( p̄,r̄)∈B

{( jp̄,kr̄}.

A factorization argument shows again that the expression in (5.11) equals zero if the

sets F ∪ (−F ) and F̄ ∪ (−F̄ ) are disjoint.

In the proof of this statement we can restrict ourselves to the case when A =
− ¯A . In this case ±A is disjoint both of F ∪ (−F ) and F̄ ∪ (−F̄ ), and the prod-

uct under investigation contains the independent factor ∏
(p,r)∈B

ZG(∆ jp)ZG(∆kr
)−

E ∏
(p,r)∈B

ZG(∆ jp)ZG(∆kr
) with expectation zero.

Finally in the remaining cases when F ∪ (−F ) and F̄ ∪ (−F̄ ) are not disjoint,

and A =− ¯A the absolute value of the expression in (5.11) can be estimated from

above by

C ε ∏G(∆ jp)G(∆kr
)G(∆ j p̄)G(∆kr̄

) (5.12)

with a universal constant C < ∞ depending only on the parameters n and m, where

the indices jp, kr, jp̄, kr̄ are the same as in (5.11) with the following difference: All

indices appear in (5.12) with multiplicity 1, and if both indices l and −l are present

in (5.11), then one of them is omitted form (5.12). Moreover, for all jp one of terms

G(∆± jp) really appears in this product, and the analogous statement also holds for

all indices kr, jp̄ and kr̄. The multiplying term ε appears in (5.12), since by carrying

out the multiplications in (5.11) and factorizing each term, we get that all non-zero

terms have a factor either of the form

EZG(∆)2ZG(−∆)2 = E(ReZG(∆)2 + ImZG(∆)2)2

= E ReZG(∆)4 +E ImZG(∆)4 +2E ReZG(∆)2E ImZG(∆)2 = 8G(∆)2
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or of the form
(
E|ZG(∆)|2

)2
= G(∆)2, and G(∆) < ε for all ∆ ∈ D . (We did

not mention the possibility of an independent factor of the form EZG(∆)4 or

EZG(∆)3ZG(−∆) with ∆ ∈ D , because as some calculation shows, EZG(∆)4 = 0

and EZG(∆)3ZG(−∆) = 0.)

Let us express E(Σ
γ
2 )

2 as the linear combination of the quantities Σ
γ
3 , and let us

bound each term Σ
γ
3 in the above way. This supplies an upper bound for E(Σ

γ
2 )

2 by

means of a sum of terms of the form (5.12). Moreover, some consideration shows

that each of these terms appears only with a multiplicity less than C(n,m) with an

appropriate constant C(n,m). Hence we can write

E(Σ
γ
2 )

2 ≤ K2
1 K2

2C(n,m)Cε
n+m

∑
r=1

∑
j1,..., jr

′′′
G(∆ j1) · · ·G(∆ jr),

where the indices j1, . . . , jr ∈ {±1, . . . ,±N} in the sum ∑′′′ are all different, and

K j = sup |h j(x)|, j = 1,2. Hence

E(Σ
γ
2 )

2 ≤C1ε
n+m

∑
r=1

G(A)r ≤C2ε

with some appropriate constants C1 and C2. Because of the inequality (5.10), the

identity n!IG(h1)m!IG(h2) = ∑
γ∈Γ

(Σ
γ
1 +Σ 2

γ ) and the last relation the inequality

E

(
n!IG(h1)m!IG(h2)− ∑

γ∈Γ

(n+m−2|γ |)!IG(hγ)

)2

= E

(

∑
γ∈Γ

(
Σ

γ
1 +Σ

γ
2 − (n+m−2|γ |)! IG(hγ)

)
)2

≤C3

(

∑
γ∈Γ

E((m+n−2|γ |)! IG(hγ)−Σ
γ
1 )

2 +E(Σ
γ
2 )

2

)
≤C4ε

holds. Since ε > 0 can be chosen arbitrarily small, Part B is proved in the special

case h1 ∈ ˆ̄
H n

G , h2 ∈ ˆ̄
H m

G .

If h1 ∈ H̄ n
G and h2 ∈ H̄ m

G , then let us choose a sequence of functions h1,r ∈ ˆ̄
H n

G

and h2,r ∈ ˆ̄
H m

G such that h1,r → h1 and h2,r → h2 in the norm of the spaces H̄ n
G and

H̄ m
G respectively. Define the functions ĥγ(r) and hγ(r) in the same way as hγ , but

substitute the pair of functions (h1,h2) by (h1,r,h2) and (h1,r,h2,r) in their definition.

We shall show with the help of Part (A) that

E|IG(h1)IG(h2)− IG(h1,r)IG(h2,r)| → 0,

and

E|IG(hγ)− IG(hγ(r))| → 0 for all γ ∈ Γ
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as r → ∞. Then a simple limiting procedure shows that Theorem 5.3 holds for all

h1 ∈ H̄ n
G and h2 ∈ H̄ m

G .

We have

E|IG(h1)IG(h2)− IG(h1,r)IG(h2,r)|
≤ E|(IG(h1 −h1,r))IG(h2)|+E|IG(h1,r)IG(h2 −h2,r)|

≤ 1

n!m!

(
‖h1 −h1,r‖1/2‖h2‖1/2 +‖h2 −h2,r‖1/2‖h1,r‖

)
→ 0,

and by Part (A) of Theorem 5.3

E|IG(hγ)− IG(hγ(r))| ≤ E|IG(hγ)− IG(ĥγ(r))|+E|IG(hγ(r))− IG(ĥγ(r))|
≤ ‖hγ − ĥγ(r)‖1/2 +‖hγ(r)− ĥγ(r)‖1/2

≤ ‖h1 − ĥ1,r‖1/2‖h2‖1/2 +‖h2 − ĥ2,r‖1/2‖h1,r‖1/2 → 0.

Theorem 5.3 is proved. ⊓⊔
We formulate some consequences of Theorem 5.3. Let Γ̄ ⊂ Γ denote the set of

complete diagrams, i.e. let a diagram γ ∈ Γ̄ if an edge enters in each vertex of γ . We

have EI(hγ) = 0 for all γ ∈ Γ \ Γ̄ , since (4.3) holds for all f ∈ H̄ n
G , n ≥ 1. If γ ∈ Γ̄ ,

then I(hγ) ∈ H̄ 0
G . Let hγ denote the value of I(hγ) in this case. Now we have the

following

Corollary 5.4. For all h1 ∈ H̄
n1

G ,. . . , hn ∈ H̄
nm

G

En1!IG(h1) · · ·nm!IG(hm) = ∑
γ∈Γ̄

hγ .

(The sum on the right-hand side equals zero if Γ̄ is empty.)

As a consequence of Corollary 5.4 we can calculate the expectation of products

of Wick polynomials of Gaussian random variables.

Let Xk, j, EXk, j = 0, 1 ≤ k ≤ p, 1 ≤ j ≤ nk, be a sequence of (jointly) Gaus-

sian random variables. We want to calculate the expected value of the product

of the Wick polynomials : Xk,1 · · ·Xk,nk
: , 1 ≤ k ≤ p, if we know all covariances

EXk, jXk̄, j̄ = a((k, j),(k̄, j̄)), 1 ≤ k, k̄,≤ p, 1 ≤ j ≤ nk, 1 ≤ j̄ ≤ n̄k. For this goal let

us consider the class of closed diagrams Γ̄ (k1, . . . ,kp), and define the following

quantity γ(A) depending on the closed diagrams γ and the set A of all covariances

EXk, jXk̄, j̄ = a((k, j),(k̄, j̄))

γ(A) = ∏
((k, j),(k̄, j̄)) is an edge of γ

a((k, j),(k̄, j̄)), γ ∈ Γ .

With the above notation we can formulate the following result.

Corollary 5.5. Let Xk, j, EXk, j = 0, 1≤ k ≤ p, 1≤ j ≤ nk, be a sequence of Gaussian

random variables. Let a((k, j),(k̄, j̄)) = EXk, jXk̄, j̄, 1 ≤ k, k̄,≤ p, 1 ≤ j ≤ nk, 1 ≤ j̄ ≤
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n̄k denote the covariances of these random variables. Then the expected value of the

product of the Wick polynomials : Xk,1 · · ·Xk,nk
: , 1 ≤ k ≤ p, can be expressed as

E

(
p

∏
k=1

: Xk,1 · · ·Xk,nk
:

)
= ∑

γ∈Γ̄ (k1,...,kp)

γ(A)

with the above defined quantities γ(A). In the case when Γ̄ (k1, . . . ,kp) is empty, e.g.

if k1 + · · ·+ kp is an odd number, the above expectation equals zero.

Remark. In the special case when Xk,1 = · · · = Xk,nk
= Xk, and EX2

k = 1 for all

indices 1 ≤ k ≤ p Corollary 5.5 provides a formula for the expectation of the

product of Hermite polynomials of standard normal random variables. In this case

we have a((k, j),(k̄, j̄)) = ā(k, k̄) with a function ā(·, ·) not depending on the ar-

guments j and j̄, and the left-hand side of the identity in Corollary 5.5 equals

EHn1
(X1) · · ·Hnp(Xp) with standard normal random variables X1, . . . ,Xn with cor-

relations EXkXk̄ = ā(k, k̄).

Proof of Corollary 5.5. We can represent the random variables Xk, j in the form

Xk, j = ∑
p

ck, j,pξp with some appropriate coefficients ck, j,p, where ξ1,ξ2, . . . is a se-

quence of independent standard normal random variables. Let Z(dx) denote a ran-

dom spectral measure corresponding to the one-dimensional spectral measure with

density function g(x) = 1
2π for |x| < π , and g(x) = 0 for |x| ≥ π . The random in-

tegrals
∫

eipxZ(dx), p = 0,±1,±2, . . . , are independent standard normal random

variables. Define hk, j(x) = ∑
p

ck, j,peipx, k = 1, . . . , p, 1 ≤ j ≤ nk. The random vari-

ables Xk, j can be identified with the random integrals
∫

hk, j(x)Z(dx), k = 1, . . . , p,

1 ≤ j ≤ nk, since their joint distributions coincide. Put ĥk(x1, . . . ,xnk
) =

nk

∏
j=1

hk, j(x j).

It follows from Theorem 4.7 that

: Xk,1 · · ·Xk,nk
: =

∫
ĥk(x1, . . . ,xnk

)Z(dx1) . . .Z(dxnk
) = nk!I(ĥk(x1, . . . ,xnk

))

for all 1 ≤ k ≤ p. Hence an application of Corollary 5.4 yields Corollary 5.5. One

only has to observe that
∫ π
−π hk, j(x)hk̄, j̄(x)dx = a((k, j),(k̄, j̄)) for all k, k = 1, . . . , p

and 1 ≤ j ≤ nk. ⊓⊔
Theorem 5.3 states in particular that the product of Wiener–Itô integrals with

respect to a random spectral measure of a stationary Gaussian fields belongs to the

Hilbert space H defined by this field, since it can be written as a sum of Wiener–

Itô integrals. This means a trivial measurability condition, and also that the product

has a finite second moment, which is not so trivial. Theorem 5.3 actually gives the

following non-trivial inequality.

Let h1 ∈ H
n1

G ,. . . , hm ∈ H
nm

G . Let |Γ̄ (n1,n1, . . . ,nm,nm)| denote the number of

complete diagrams in Γ̄ (n1,n1, . . . ,nm,nm), and put
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C(n1, . . . ,nm) =
|Γ̄ (n1,n1, . . . ,nm,nm)|

n1! · · ·nm!
.

In the special case n1 = · · ·= nm = n let C̄(n,m) =C(n1, . . . ,nm). Then

Corollary 5.6.

E
[
(n1!IG(h1))

2 · · ·(nm!IG(hm))
2
]

≤C(n1, . . . ,nm)E(n1!IG(h1))
2 · · ·(nm!E(IG(hm))

2.

In particular,

E
[
(n!IG(h))

2m
]
≤ C̄(n,m)(E(n!IG(h))

2)m if h ∈ H
n

G .

Corollary 5.6 follows immediately from Corollary 5.4 by applying it first for the

sequence h1,h1, . . . ,hm,hm and then for the pair h j,h j which yields that

E(n j!IG(h j))
2 = n j!‖h j‖2, 1 ≤ j ≤ m.

One only has to observe that |hγ | ≤ ‖h1‖2 · · ·‖hm‖2 for all complete diagrams by

Part (A) of Theorem 5.3.

The inequality in Corollary 5.6 is sharp. If G is a finite measure and h1 ∈ H
n1
G ,. . . ,

hm ∈ H
nm
G are constant functions, then equality can be written in Corollary 5.6. We

remark that in this case IG(h1), . . . , IG(hm) are constant times the n1-th,. . . , nm-th

Hermite polynomials of the same standard normal random variable. Let us empha-

size that the constant C(n1, . . . ,nm) depends only on the parameters n1, . . . ,nm and

not on the form of the functions h1, . . . ,hm. The function C(n1, . . . ,nm) is monotone

in its arguments. The following argument shows that

C(n1 +1,n2, . . . ,nm)≥C(n1, . . . ,nm)

Let us call two complete diagrams in Γ̄ (n1,n1, . . . ,nm,nm) or in Γ̄ (n1 + 1,n1 +
1, . . . ,nm,nm) equivalent if they can be transformed into each other by permuting the

vertices (1,1), . . . ,(1,n1) in Γ̄ (n1,n1, . . . ,nm,nm) or the vertices (1,1), . . . ,(1,n1 +
1) in Γ̄ (n1 + 1,n1 + 1, . . . ,nm,nm). The equivalence classes have n1! elements in

the first case and (n1 + 1)! elements in the second one. Moreover, the number of

equivalence classes is less in the first case than in the second one. (They would

agree if we counted only those equivalence classes in the second case which contain

a diagram where (1,n1 +1) and (2,n1,1) are connected by an edge. Hence

1

n1!
|Γ̄ (n1,n1, . . . ,nm,nm)| ≤

1

(n1 +1)!
|Γ̄ (n1 +1,n1 +1, . . . ,nm,nm)|

as we claimed.

The next result may better illuminate the content of Corollary 5.6.
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Corollary 5.7. Let ξ1, . . . ,ξk be a normal random vector, and P(x1, . . . ,xk) a poly-

nomial of degree n. Then

E
[
P(ξ1, . . . ,ξk)

2m
]
≤ C̄(n,m)(n+1)m

(
EP(ξ1, . . . ,ξk)

2
)m

with the constant C̄(n,m) introduced before Corollary 5.6.

The multiplying constant C̄(n,m)(n+1)m is not sharp in this case.

Proof of Corollary 5.7. We can write ξ j =
∫

f j(x)Z(dx) with some f j ∈ H 1, j =
1,2, . . . ,k, where Z(dx) is the same as in the proof of Corollary 5.5. There exist

some h j ∈ H j, j = 0,1, . . . ,n, such that

P(ξ1, . . . ,ξk) =
n

∑
j=0

j!I(h j).

Then

EP(ξ1, . . . ,ξk)
2m = E



(

n

∑
j=0

j!I(h j)

)2m

≤ (n+1)mE

[
n

∑
j=0

( j!I(h j))
2

]m

≤ (n+1)m ∑
p1+···+pn=m

C(p1, . . . , pn)(EI(h0)
2)p0 · · ·(En!I(hn)

2)pn
m!

p1! · · · pn!

≤ (n+1)mC̄(n,m) ∑
p1+···+pn=m

(EI(h0)
2)p0 · · ·(EI(n!hn)

2)pn
m!

p1! · · · pn!

= (n+1)mC̄(n,m)
[
∑E( j!I(h j))

2
]m

= (n+1)mC̄(n,m)
(
EP(ξ1, . . . ,ξk)

2
)m

.

⊓⊔





Chapter 6

Subordinated Random Fields: Construction of
Self-similar Fields

Let Xn, n ∈ Zν , be a discrete stationary Gaussian random field with a non-atomic

spectral measure, and let the random field ξn, n ∈ Zν , be subordinated to it. Let ZG

denote the random spectral measure adapted to the random field Xn. By Theorem 4.2

the random variable ξ0 can be represented as

ξ0 = f0 +
∞

∑
k=1

1

k!

∫
fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk)

with an appropriate f = ( f0, f1, . . .) ∈ ExpHG in a unique way. This formula to-

gether with Theorem 4.4 yields the following

Theorem 6.1. A random field ξn, n ∈ Zν , subordinated to the stationary Gaussian

random field Xn, n ∈ Zν , with non-atomic spectral measure can be written in the

form

ξn = f0+
∞

∑
k=1

1

k!

∫
ei((n,x1+···+xk) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk), n ∈ Zν , (6.1)

with some f = ( f0, f1, . . .) ∈ ExpHG, where ZG is the random spectral measure

adapted to the random field Xn. This representation is unique. It is also clear that

formula (6.1) defines a subordinated field for all f ∈ ExpHG.

Let G denote the spectral measure of the underlying stationary Gaussian random

field. If it has the property G({x : xp = u}) = 0 for all u ∈ R1 and 1 ≤ p ≤ ν , where

x = (x1, . . . ,xν) (this is a strengthened form of the non-atomic property of G), then

the functions

f̄k(x1, . . . ,xk) = fk(x1, . . . ,xk)χ̃
−1
0 (x1 + · · ·+ xk), k = 1,2, . . . ,

are meaningful, as functions in the measure space (Rkν ,Bkν ,Gk), where χ̃n(x) =

ei(n,x)
ν

∏
p=0

eix(p)−1

ix(p) , n ∈ Zν , denotes the Fourier transform of the indicator function

65
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of the ν-dimensional unit cube
ν

∏
p=1

[n(p),n(p)+ 1]. Then the random variable ξn in

formula (6.1) can be rewritten in the form

ξn = f0 +
∞

∑
k=1

1

k!

∫
χ̃n(x1 + · · ·+ xk) f̄k(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk), n ∈ Zν .

(6.2)

Hence the following Theorem 6.1′ can be considered as the continuous time version

of Theorem 6.1.

Theorem 6.1′. Let a generalized random field ξ (ϕ), ϕ ∈ S , be subordinated to

a stationary Gaussian generalized random field X(ϕ), ϕ ∈ S . Let G denote the

spectral measure of the field X(ϕ), and let ZG be the random spectral measure

adapted to it. Let the spectral measure G be non-atomic. Then ξ (ϕ) can be written

in the form

ξ (ϕ) = f0 · ϕ̃(0)+
∞

∑
k=1

1

k!

∫
ϕ̃(x1 + · · ·+ xk) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk),

(6.3)

where the functions fk are invariant under all permutations of their variables,

fk(−x1, . . . ,−xk) = fk(x1, . . . ,xk), k = 1,2, . . . ,

and

∞

∑
k=1

1

k!

∫
(1+ |x1 + · · ·+ xk|2)−p| fk(x1 + · · ·+ xk)|2G(dx1) . . .G(dxk)< ∞ (6.4)

with an appropriate number p > 0. This representation is unique.

Contrariwise, all random fields ξ (ϕ), ϕ ∈S , defined by formulas (6.3) and (6.4)

are subordinated to the stationary, Gaussian random field X(ϕ), ϕ ∈ S .

Proof of Theorem 6.1′. The proof is based on the same ideas as the proof of The-

orem 6.1. But here we also adapt some arguments from the theory of generalized

functions (see [16]). In particular, we exploit the following continuity property of

generalized random fields and subordinated generalized random fields. If ϕn → ϕ in

the topology of the Schwartz space S , and X(ϕ), ϕ ∈ S , is a generalized random

field, then X(ϕn)⇒ X(ϕ) stochastically. If X(ϕ), ϕ ∈S , is a generalized Gaussian

random field, then also the relation E[X(ϕn)−X(ϕ)]2 → 0 holds in this case. Simi-

larly, if ξ (ϕ), ϕ ∈S , is a subordinated generalized random field, and ϕn → ϕ , then

E[ξ (ϕn)−ξ (ϕ)]2 → 0 by the definition of subordinated fields.

It can be seen with some work that a random field ξ (ϕ), ϕ ∈S , defined by (6.3)

and (6.4) is subordinated to X(ϕ). One has to check that the definition of ξ (ϕ) in

formula (6.3) is meaningful for all ϕ ∈S , because of (6.4), ξ (Ttϕ) = Ttξ (ϕ) for all

shifts Tt , t ∈ Rν , by Theorem 4.4, and also the following continuity property holds.

For all ε > 0 there is a small neighbourhood H of the origin in the space S such that

if ϕ = ϕ1 −ϕ2 ∈ H for some ϕ1,ϕ2 ∈ S then E[ξ (ϕ1)−ξ (ϕ2)]
2 = Eξ (ϕ)2 < ε2.
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Since the Fourier transform ϕ(·) → ϕ̃(·) is a bicontinuous map in S , to prove

the above continuity property it is enough to check that Eξ (ϕ)2 < ε2 if ϕ̃ ∈ H for

an appropriate small neighbourhood H of the origin in S . But this relation holds

with the choice H = {ϕ : (1+ |x|2)p|ϕ(x)| ≤ ε2

K
for all x ∈ Rν} with a sufficiently

large K > 0 because of condition (6.4).

To prove that all subordinated fields have the above representation observe that

the relation

ξ (ϕ) =Ψϕ,0 +
∞

∑
k=1

1

k!

∫
Ψϕ ,k(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk) (6.5)

holds for all ϕ ∈ S with some (Ψϕ ,0,Ψϕ,1, . . .) ∈ ExpHG depending on the func-

tion ϕ . We are going to show that these functions Ψϕ,k can be given in the form

Ψϕ ,k(x1, . . . ,xk) = fk(x1, . . . ,xk) · ϕ̃(x1 + · · ·+ xk), k = 1,2, . . . ,

with some functions fk ∈ Bkν , and

Ψϕ,0 = f0 · ϕ̃(0)

for all ϕ ∈ S with a sequence of functions f0, f1, . . . not depending on ϕ .

To show this let us choose a ϕ0 ∈ S such that ϕ̃0(x) > 0 for all x ∈ Rν . (We

can make for instance the choice ϕ0(x) = e−(x,x).) We claim that the finite linear

combinations ∑apϕ0(x − tp) = ∑apTtpϕ0(x) are dense in S . To prove this it is

enough to show that if the Fourier transform ψ̃ of a function ψ ∈ S has a compact

support, then in every open neighbourhood of ψ (in the topology of the space S )

there is a function of the form ∑apϕ0(x− tp). Indeed, this implies that the above

introduced linear combinations constitute a dense subclass of S , since the functions

ψ with the above property are dense in S . (The statement that these functions

ψ are dense in S is equivalent to the statement that their Fourier transforms ψ̃
are dense in the space S̃ ⊂ S c consisting of the Fourier transforms of the (real

valued) functions in the space S .) We have
ψ̃
ϕ̃0

∈ S c for such functions ψ , where

S c denotes the Schwartz-space of complex valued, at infinity strongly decreasing,

smooth functions again, because ϕ̃0(x) 6= 0, and ψ̃ has a compact support. There

exists a function χ ∈S such that χ̃ = ψ̃
ϕ̃0

. (Here we exploit that the space of Fourier

transforms of the functions from S agrees with the space of those functions f ∈S c

for which f (−x) = f (x).) Therefore ψ(x) = χ ∗ϕ0(x) =
∫

χ(t)ϕ0(x− t)dt, where

∗ denotes convolution. It can be seen by exploiting this relation together with the

rapid decrease of χ and ϕ0 together of its derivatives at infinity, and approximating

the integral defining the convolution by an appropriate finite sum that for all integers

r > 0, s > 0 and real numbers ε > 0 there exists a finite linear combination ψ̂(x) =
ψ̂r,s,ε(x) = ∑

p
apϕ0(x− tp) such that (1+ |x|s)|ψ(x)− ψ̂(x)| < ε for all x ∈ Rν , and

the same estimate holds for all derivatives of ψ(x)− ψ̂(x) of order less than r.

I only briefly explain why such an approximation exists. Some calculation en-

ables us to reduce this statement to the case when ψ = χ ∗ϕ0 with a function χ ∈D ,
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which has compact support. To give the desired approximation choose a small num-

ber δ > 0, introduce the cube ∆ = ∆(δ ) = [−δ ,δ )ν ⊂ Rν and define the vectors

k(δ ) = (2k1δ , . . . ,2kν δ ) ∈ Rν for all k = (k1, . . . ,kν) ∈ Zν . Given a fixed vector

x ∈ Rν let us define the vector u(x) ∈ Rν for all u ∈ Rν as u(x) = x+ k(δ ) with that

vector k ∈ Zν for which x+ k(δ )− u ∈ ∆ , and put ϕ0,x(u) = ϕ0(u(x)). It can be

seen that ψ̂(x) = χ ∗ϕ0,x(x) is a finite linear combination of numbers of the form

ϕ0(x− tk) (with tk = k(δ )) with coefficients not depending on x. Moreover, if δ > 0

is chosen sufficiently small (depending on r,s and ε), then ψ̂(x) = ψ̂r,s,ε(x) has all

properties we demanded.

The above argument implies that there is a sequence of functions ψ̂r,s,ε which

converges to the function ψ in the topology of the space S . As a consequence, the

finite linear combinations ∑apϕ0(x− tp) are dense in S .

Define

fk(x1, . . . ,xk) =
Ψϕ0,k(x1, . . . ,xk)

ϕ̃0(x1 + · · ·+ xk)
, k = 1,2, . . . , and f0 =

Ψϕ0,0

ϕ̃0(0)
.

If ϕ(x) = ∑apϕ0(x− tp) = ∑apTtpϕ0(x), and the sum defining ϕ is finite, then by

Theorem 4.4

ξ (ϕ) =
(
∑ap

)
f0 · ϕ̃0(0)+

∞

∑
k=1

1

k!

∫
∑
p

apei(tp,x1+···+xk)ϕ̃0(x1 + · · ·+ xk)

· fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk)

= f0 · ϕ̃(0)+
∞

∑
k=1

1

k!

∫
ϕ̃(x1 + · · ·+ xk) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk).

Relation (6.5) holds for all ϕ ∈S , and there exists a sequence of functions ϕ j(x) =

∑
p

a
( j)
p ϕ0(x− t

( j)
p ) ∈ S satisfying (6.3) such that ϕ j → ϕ in the topology of S . This

implies that limE[ξ (ϕ j)− ξ (ϕ)]2 → 0, and in particular EIG(Ψϕ ,k − ϕ̂ j,k fk)
2 → 0

with ϕ̂ j,k(x1, . . . ,xk) = ϕ̃ j(x1 + · · ·+ xk) as j → ∞ for all k = 1,2, . . . . In the sub-

sequent steps of the proof we restrict the domain of integration to bounded sets A,

because this enables us to carry out some limiting procedures needed in our argu-

ment. We can write that
∫

A
|Ψϕ,k(x1, . . . ,xk)− ϕ̃ j(x1 + · · ·+ xk) fk(x1, . . . ,xk)|2G(dx1) . . .G(dxk)→ 0

as j → ∞ for all k and for all bounded sets A ∈ Rkν . On the other hand,

∫

A
|ϕ̃(x1 + · · ·+ xk)− ϕ̃ j(x1 + · · ·+ xk)|2| fk(x1, · · · ,xk)|2G(dx1) . . .G(dxk)→ 0,

since ϕ̃ j(x)− ϕ̃(x)→ 0 in the supremum norm if ϕ̃ j → ϕ̃ in the topology of S , and

the property ϕ̃0(x)> 0 (of the function ϕ̃0 appearing in the definition of the function

fk) together with the continuity of ϕ̃0 and the inequality EIG(ϕ̂0,k fk)
2 < ∞ imply

that
∫

A | fk(x1, . . . ,xk)|2G(dx1) . . .G(dxk) < ∞ on all bounded sets A. The last two
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relations yield that

Ψϕ,k(x1, . . . ,xk) = ϕ̃(x1 + · · ·+ xk) fk(x1, . . . ,xk), k = 1,2, . . . ,

since both sides of this identity is the limit of the sequence

ϕ̃ j(x1 + · · ·+ xk) fk(x1, . . . ,xk), j = 1,2, . . .

in the L2
Gk

A

norm, where Gk
A denotes the restriction of the measure Gk to the set A.

Similarly,

ψϕ,0 = ϕ̃(0) f0.

These relations imply (6.3).

To complete the proof of Theorem 6.1′ we show that (6.4) follows from the

continuity of the transformation F : ϕ → ξ (ϕ) from the space S into the space

L2(Ω ,A ,P).
We recall that the transformation ϕ → ϕ̃ is bicontinuous in S c. Hence for a

subordinated field ξ (ϕ), ϕ ∈ S , the transformation ϕ̃ → ξ (ϕ) is a continuous

map from the space of the Fourier transforms of the functions in the space S to

L2(Ω ,A ,P). This continuity implies that there exist some integers p > 0, r > 0 and

real number δ > 0 such that if

(1+ |x2|)p

∣∣∣∣
∂ s1+···+sν

∂x(1)
s1 . . .∂x(ν)

sν
ϕ̃(x)

∣∣∣∣< δ for all s1 + · · ·+ sν ≤ r, (6.6)

then Eξ (ϕ)2 ≤ 1.

Let us choose a function ψ ∈ S such that ψ has a compact support, ψ(x) =
ψ(−x), ψ(x)≥ 0 for all x∈Rν , and ψ(x) = 1 if |x| ≤ 1. (There exist such functions.)

Define the functions ϕ̃m(x) = C(1+ |x|2)−pψ( x
m
). Then ϕm ∈ S , since its Fourier

transform ϕ̃m is an even function, and it is in the space S being an infinite many

times differentiable function with compact support. Moreover, ϕm satisfies (6.6) for

all m= 1,2, . . . if the number C > 0 in its definition is chosen sufficiently small. This

number C can be chosen independently of m. (To see this observe that (1+ |x2|)−p

together with all of its derivatives of order not bigger than r can be bounded by
C(p,r)

(1+|x|2)p with an appropriate constant C(p,r).) Hence

Eξ (ϕm)
2 = ∑

1

k!

∫
|ϕ̃m(x1 + · · ·+ xk)|2| fk(x1, · · · ,xk)|2G(dx1) . . .G(dxk)≤ 1

for all m = 1,2, . . . .
As ϕ̃m(x)→C(|1+ |x|2)−p as m → ∞, and ϕ̃k(x)≥ 0, an m → ∞ limiting proce-

dure in the last relation together with Fatou’s lemma imply that

C∑
1

k!

∫
(1+ |x1 + · · ·+ xk)|2)−p| fk(x1, · · · ,xk)|2G(dx1) . . .G(dxk)≤ 1.

Theorem 6.1′ is proved. ⊓⊔
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We shall call the representations given in Theorems 6.1 and 6.1′ the canonical

representation of a subordinated field. From now on we restrict ourselves to the case

Eξn = 0 or Eξ (ϕ) = 0 respectively, i.e. to the case when f0 = 0 in the canonical

representation. If

ξ (ϕ) =
∞

∑
k=1

1

k!

∫
ϕ̃(x1 + · · ·+ xk) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk),

then

ξ (ϕA
t ) =

∞

∑
k=1

1

k!

tν

A(t)

∫
ϕ̃(t(x1 + · · ·+ xk)) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk)

with the function ϕA
t defined in (1.3). Define the spectral measures Gt by the formula

Gt(A) = G(tA). Then we have by Lemma 4.6

ξ (ϕA
t )

∆
=

∞

∑
k=1

1

k!

tν

A(t)

∫
ϕ̃(x1 + · · ·+ xk) fk

(x1

t
, . . . ,

xk

t

)
ZGt (dx1) . . .ZGt (dxk).

If G(tB)= t2κ G(B) with some κ > 0 for all t > 0 and B∈Bν , fk(λx1, . . . ,λxk)=
λ ν−κk−α fk(x1, . . . ,xk), and A(t) is chosen as A(t) = tα , then Theorem 4.5 (with the

choice G′(B) = G(tB) = t2κ G(B)) implies that ξ (ϕA
t )

∆
= ξ (ϕ). Hence we obtain the

following

Theorem 6.2. Let a generalized random field ξ (ϕ) be given by the formula

ξ (ϕ) =
∞

∑
k=1

1

k!

∫
ϕ̃(x1 + · · ·+ xk) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk). (6.7)

If fk(λx1, . . . ,λxk) = λ ν−κk−α fk(x1, . . . ,xk) for all k, (x1, . . . ,xk) ∈ Rkν and λ > 0,

G(λA) = λ 2κ G(A) for all λ > 0 and A ∈ Bν , then ξ is a self-similar random field

with parameter α .

The discrete time version of this result can be proved in the same way. It states

the following

Theorem 6.2′. If a discrete random field ξn, n ∈ Zν , has the form

ξn =
∞

∑
k=1

1

k!

∫
χ̃n(x1 + · · ·+ xk) fk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk), n ∈ Zν , (6.8)

and fk(λx1, . . . ,λxk) = λ ν−κk−α fk(x1, . . . ,xk) for all k, G(λA) = λ 2κ G(A), then ξn

is a self-similar random field with parameter α .

Theorems 6.2 and 6.2′ enable us to construct self-similar random fields. Never-

theless, we have to check whether formulas (6.7) and (6.8) are meaningful. The hard

part of this problem is to check whether
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∑
1

k!

∫
|χ̃n(x1 + · · ·+ xk)|2| fk(x1, . . . ,xk)|2G(dx1) . . .G(dxk)< ∞

in the discrete time case or whether

∑
1

k!

∫
|ϕ̃(x1 + · · ·+ xk)|2| fk(x1, . . . ,xk)|2G(dx1) . . .G(dxk)< ∞ for all ϕ ∈ S

in the generalized field case.

It is rather hard to decide in the general case when these expressions are finite.

The next result enables us to prove the finiteness of these expressions in some inter-

esting cases.

Let us define the measure G

G(A) =
∫

A
|x|2κ−ν a

(
x

|x|

)
dx, A ∈ B

ν , (6.9)

where a(·) is a non-negative, measurable and even function on the ν-dimensional

unit sphere Sν−1, and κ > 0. (The condition κ > 0 is imposed to guarantee the

relation G(A)< ∞ for all bounded sets A ∈ Bν .) We prove the following

Proposition 6.3. Let the measure G be defined in formula (6.9).

(a) If the function a(·) is bounded on the unit sphere Sν−1, and ν
k
> 2κ > 0, then

D(n) =
∫

|χ̃n(x1 + · · ·+ xk)|2G(dx1) . . .G(dxk)< ∞ for all n ∈ Zν ,

and

D(ϕ) =
∫

|ϕ̃(x1 + · · ·+ xk)|2G(dx1) . . .G(dxk)

≤C

∫
(1+ |x1 + · · ·+ xk)|2)−pG(dx1) . . .G(dxk)< ∞

for all ϕ ∈ S and p > ν
2

with some C =C(ϕ, p)< ∞.

(b) If there is a constant C > 0 such that a(x)>C in a neighbourhood of a point

x0 ∈ Sν−1, and either 2κ ≤ 0 or 2κ ≥ ν
k

, then the integrals D(n) are divergent,

and the same relation holds for D(ϕ) with some ϕ ∈ S .

Proof of Proposition 6.3. Proof of Part (a).

We may assume that a(x) = 1 for all x ∈ Sν−1. Define

Jκ ,k(x) =
∫

x1+···+xk=x
|x1|2κ−ν · · · |xk|2κ−ν dx1 . . . dxk, x ∈ Rν ,

for k ≥ 2, where dx1 . . . dxk denotes the Lebesgue measure on the hyperplane x1 +
· · ·+ xk = x, and let Jκ ,1(x) = |x|2κ−ν . We have

Jκ ,k(λx) = |λ |k(2κ−ν)+(k−1)νJκ ,k(x),= |λ |2kκ−ν Jκ ,k(x), x ∈ Rν λ > 0,
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because of the homogeneity of the integral. We can write, because of (6.9) with

a(x)≡ 1

D(n) =

∫

Rν
|χ̃n(x)|2Jκ ,k(x)dx, (6.10)

and

D(ϕ) =
∫

Rν
|ϕ̃(x)|2Jκ ,k(x)dx.

We prove by induction on k that

Jκ ,k(x)≤C(κ ,k)|x|2κk−ν (6.11)

with an appropriate constant C(κ ,k)< ∞ if ν
k
> 2κ > 0.

Inequality (6.11) holds for k = 1, and we have

Jκ ,k(x) =

∫
Jκ ,k−1(y)|x− y|2κ−ν dy

for k ≥ 2. Hence

Jκ ,k(x) ≤ C(κ ,k−1)
∫

|y|(2κ(k−1)−ν |x− y|2κ−ν dy

= C(κ ,k−1)|x|2κk−ν
∫

|y|(2κ(k−1)−ν

∣∣∣∣
x

|x| − y

∣∣∣∣
2κ−ν

dy =C(κ ,k)|x|2κk−ν ,

since
∫ |y|(2κ(k−1)−ν

∣∣∣ x
|x| − y

∣∣∣
2κ−ν

dy < ∞.

The last integral is finite, since its integrand behaves at zero asymptotically

as C|y|2κ(k−1)−ν , at the point e = x
|x| ∈ Sν−1 as C2|y − e|2κ−ν and at infinity as

C3|y|2κk−2ν . Relations (6.10) and (6.11) imply that

D(n) ≤ C′
∫

|χ̃0(x)|2|x|2κk−ν dx ≤C′′
∫

|x|2κk−ν
ν

∏
l=1

1

1+ |x(l)|2 dx

≤ C′′′
∫

|x(1)|= max
1≤l≤ν

|x(l |
|x(1)|2κk−ν

ν

∏
l=1

1

1+ |x(l)|2 dx

=
∞

∑
p=0

C′′′
∫

|x(1)|= max
1≤l≤ν

|x(l |, 2p≤|x(1)|<2p+1
+C′′′

∫

|x(1)|= max
1≤l≤ν

|x(l |,|x(1)|<1
.

The second term in the last sum can be simply bounded by a constant, since B ={
x : |x(1)|= max

1≤l≤ν
|x(l |, |x(1)|< 1

}
⊂ {x : |x| ≤√

ν}, and |x(1)|2κk−ν
ν

∏
l=1

1

1+|x(l)|2 ≤

const. |x|2κk−ν on the set B. Hence

D(n)≤C1

∞

∑
p=0

2p(2κk−ν)

[∫ ∞

−∞

1

1+ x2
dx

]ν

+C2 < ∞.
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We have |ϕ(x)| ≤ C(1+ |x2|)−p with some C > 0 and D > 0 if ϕ ∈ S . The proof

of the estimate D(ϕ)< ∞ for ϕ ∈ S is similar but simpler.

Proof of Part (b). Define, similarly to the function Jκ ,k the function

Jκ ,k,a(x) =
∫

x1+···+xk=x
|x1|2κ−ν a

(
x1

|x1|

)
· · · |xk|2κ−ν a

(
xk

|xk|

)
dx1 . . . dxk, x ∈ Rν ,

for k ≥ 2, where dx1 . . . dxk denotes the Lebesgue measure on the hyperplane x1 +
· · ·+ xk = x, and put J1,a(x) = x2κ−ν a( x

|x| ). We can prove by induction with respect

to k that

Jκ ,k,a(x) ≥
∫

y : ( 1
2−α)|x|<|y|<( 1

2+α)|x|
Jκ ,k−1,a(y)a

(
x− y

|x− y|

)
|x− y|2κ−ν dy

≥ C(κ ,k,a(·))
∫

y : ( 1
2−α)|x|<|y|<( 1

2+α)|x|
|x|2κ(k−1)−ν |x− y|2κ−ν dy

with the choice of some number 0 < α < 1
2

and

Jκ ,k,a(x) ≥
∫

y : |y|>2x
Jκ ,k−1,a(y)a

(
x− y

|x− y|

)
|x− y|2κ−ν dy

≥ C(κ ,k,a(·))
∫

y : |y|>2x
|x− y|2κk−2ν dy

with some coefficient C(κ ,k,a(·)) if x
|x| is close to such a point x0 ∈ Sν−1 in whose

small neighbourhood the function a(·) is separated from zero. Hence by an argument

similar to the one in Part (a) we get the inequality

Jκ ,k,a(x)

{
≥ C̄(κ ,k)|x|2κk−ν if ν

k
> 2κ > 0,

= ∞ if κ ≤ 0 or 2κ ≥ ν
k

for such vectors x ∈ Rν .

Since |χ̃n(x)|2 > 0 for almost all x ∈ Rν ,

D(n) =
∫

|χ̃n(x)|2Jκ ,k,a(x)dx = ∞

under the conditions of Part (b). Similarly D(ϕ) = ∞ if |ϕ̃(x)|2 > 0 for almost all

x ∈ Rν . We remark that the conditions in Part (b) can be weakened. It would have

been enough to assume that a(x)> 0 on a set of positive Lebesgue measure in Sν−1.

⊓⊔
Theorem 6.2 and 6.2′ together with Proposition 6.3 have the following

Corollary 6.4. The formulae
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ξn =
M

∑
k=1

∫
χ̃n(x1 + · · ·+ xk)

k

∏
l=1

(
|xl |−κ+(ν−α)/k ·bk

(
xl

|xl |

))

ZG(dx1) . . .ZG(dxk), n ∈ Zν ,

and

ξ (ϕ) =
M

∑
k=1

∫
ϕ̃(x1 + · · ·+ xk)

k

∏
l=1

(
|xl |−κ+(ν−α)/k ·bk

(
xl

|xl |

))

ZG(dx1) . . .ZG(dxk), ϕ ∈ S ,

define self-similar random fields with self-similarity parameter α if G is defined by

formula (6.9), the parameter α satisfies the inequality ν
2
< α < ν , and the functions

a(·) (in the definition of the measure G(·) in (6.9)) and b1(·),. . . , bk(·) are bounded

even functions on Sν−1.

The following observation may be useful in the proof of Corollary 6.4. We can

replace ξn by another random field with the same distribution. Thus we can write,

by exploiting Theorem 4.5,

ξn =
M

∑
k=1

χ̃n(x1 + · · ·+ xk)ZG′(dx1) . . .ZG′(dxk), n ∈ Zν ,

with a random spectral measure ZG′ corresponding to the spectral measure G′(dx) =
b( x

|x| )
2|x|−2κ+2(ν−α)/kG(dx) = a( x

|x| )b(
x
|x| )

2|x|−ν+2(ν−α)/k dx. In the case of gener-

alized random fields a similar argument can be applied.

Remark 6.5. The estimate on Jκ ,k and the end of the of Part (a) in Proposition 6.3

show that the self-similar random field

ξ (ϕ) =
M

∑
k=1

∫
ϕ̃(x1 + · · ·+ xk)|x1 + · · ·+ xk|p u

(
x1 + · · ·+ xk

|x1 + · · ·+ xk|

)

k

∏
l=1

(
|xl |−κ+(ν−α)/k ·bk

(
xl

|xl |

))
ZG(dx1) . . .ZG(dxk), ϕ ∈ S ,

and

ξn =
M

∑
k=1

∫
χ̃n(x1 + · · ·+ xk)|x1 + · · ·+ xk|p u

(
x1 + · · ·+ xk

|x1 + · · ·+ xk|

)

k

∏
l=1

(
|xl |−κ+(ν−α)/k ·bk

(
xl

|xl |

))
ZG(dx1) . . .ZG(dxk), n ∈ Zν ,

are well defined if G is defined by formula (6.9), a(·), b(·) and u(·) are bounded

even functions on Sν−1, ν
2
< α < ν , and α − p < ν in the generalized and ν−1

2
<

α − p < ν is the discrete random field case. The self-similarity parameter of these
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random fields is α − p. We remark that in the case p > 0 this class of self-similar

fields also contains self-similar fields with self-similarity parameter less than ν
2

.

In proving the statement of Remark 6.5 we have to check the integrability

conditions needed for the existence of the Wiener–Itô integrals ξ (ϕ) and ξn. To

check them it is worth remarking that in the proof of Part (a) of Proposition 6.3

we proved the estimate Jκ̄ ,k(x) ≤ C(κ̄ ,k)|x|2κ̄k−ν . We want to apply this inequal-

ity in the present case with the choice κ̄ = ν−α
k

. Then arguing similarly to the

proof of Part (a) of Proposition 6.3 we get to the problem whether the relations∫ |χ̃n(x)|2|x|2p+2(ν−α)−ν dx < ∞ and
∫ |ϕ̃(x)|2|x|2p+2(ν−α)−ν dx < ∞ if ϕ ∈ S hold

under the conditions of Remark 6.5. They can be proved by means of the argument

applied at the end of the proof of Part (a) of Proposition 6.3.

The following question arises in a natural way. When do different formulas

satisfying the conditions of Theorem 6.2 or Theorem 6.2′ define self-similar ran-

dom fields with different distributions? In particular: Are the self-similar random

fields constructed via multiple Wiener–Itô integrals of order k ≥ 2 necessarily non-

Gaussian? We cannot give a completely satisfactory answer for the above question,

but our former results yield some useful information.

Let us substitute the spectral measure G by G′ such that
G(dx)
G′(dx) = |g2(x)|2,

g(−x) = g(x) and the functions |xl |−κ+(ν−α)/kb( xl

|xl | ) by b( xl

|xl | )g(xl)|xl |−κ+(ν−α)/k

in Corollary 6.4. By Theorem 4.4 the new field has the same distribution as the

original one. On the other hand, Corollary 5.4 may helps us to decide whether two

random variables have different moments, and therefore different distributions. Let

us consider e.g. a moment of odd order of the random variables ξn or ξ (ϕ) defined

in Corollary 6.4. It is clear that all hγ ≥ 0. Moreover, if bk(x) does not vanish for

some even number k, then there exists a hγ > 0 in the sum expressing an odd mo-

ment of ξn or ξ (ϕ). Hence the odd moments of ξn or ξ (ϕ) are positive in this case.

This means in particular that the self-similar random fields defined in Corollary 6.4

are non-Gaussian if bk is non-vanishing for some even k. The next result shows that

the tail behaviour of multiple Wiener–Itô integrals of different order is different.

Theorem 6.6. Let G be a non-atomic spectral measure and ZG a random spectral

measure corresponding to G. For all h ∈H m
G there exist some constants K1 > K2 >

0 and x0 > 0 depending on the function h such that

e−K1x2/m ≤ P(|IG(h)|> x)≤ e−K2x2/m

for all x > x0.

Remark. As the proof of Theorem 6.6 shows the constant K2 in the upper bound

of the above estimate can be chosen as Km =Cm(EIG(h)
2)−1/m with a constant Cm

depending only on the order m of the Wiener–Itô integral of IG(h). This means

that for a fixed number m the constant K2 in the above estimate can be chosen as

a constant depending only on the variance of the random variable IG(h). On the

other hand, no simple characterization of the constant K1 > 0 appearing in the lower

bound of this estimate is known.
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Proof of Theorem 6.6. (a) Proof of the upper estimate.

We have

P(|IG(h)|> x)≤ x2NE(IG(h)|2N).

By Corollary 5.6

E(IG(h)|2N)≤ C̄(m,N)[E(IG(h)
2)]N ≤ C̄(m,N)CN

1

with the coefficient C̄(m,N) appearing in this result, and by a simple combinatorial

argument we obtain that

C̄(m,N)≤ (2Nm−1)(2Nm−3) · · ·1
(m!)N

,

since the numerator on the right-hand side of this inequality equals the number of

complete diagrams |Γ̄ (m, . . . ,m︸ ︷︷ ︸
2N times

)| if vertices from the same row can also be con-

nected. Multiplying the inequalities

(2nM−2 j−1)(2Nm−2 j−1−2N) · · ·(2Nm−2 j−1−2N(m−1))≤ (2N)mm!,

j = 1, . . . ,N, we obtain that

C̄(m,N)≤ (2N)mN .

(This inequality could be sharpened, but it is sufficient for our purpose.) Choose a

sufficiently small number α > 0, and define N = [αx2/m], where [·] denotes integer

part. With this choice we have

P(|IG(h)|> x)≤ (x−2(2α)mx2)NCN
1 = [C1(2α)m]N ≤ e−K2x2/m

,

if α is chosen in such a way that C1(2α)m ≤ 1
e
, K2 =

α
2

, and x > x0 with an appro-

priate x0 > 0.

(b) Proof of the lower estimate.

First we reduce this inequality to the following statement. Let Q(x1, . . . ,xk)
be a homogeneous polynomial of order m (the number k is arbitrary), and ξ =
(ξ1, . . . ,ξk) a k-dimensional standard normal variable. Then

P(Q(ξ1, . . . ,ξk)> x)≥ e−Kx2/m

(6.12)

if x > x0, where the constants K > 0 and x0 > 0 may depend on the polynomial Q.

By the results of Chapter 4, IG(h) can be written in the form

IG(h) = ∑
j1+···+ jl=m

C
k1,...,kl
j1,..., jl

H j1(ξk1
) · · ·H jk(ξkl

), (6.13)
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where ξ1,ξ2, . . . are independent standard normal random variables, C
k1,...,kl
j1,..., jl

are ap-

propriate coefficients, and the right-hand side of (6.13) is convergent in L2 sense. Let

us fix a sufficiently large integer k, and let us consider the conditional distribution

of the right-hand side of (6.13) under the condition ξk+1 = xk+1,ξk+2 = xk+2, . . . ,
where the numbers xk+1,xk+2, . . . are arbitrary. This conditional distribution coin-

cides with the distribution of the random variable Q(ξ1, . . . ,ξk,xk+1,xk+2, . . .) with

probability 1, where the polynomial Q is obtained by substituting ξk+1 = xk+1,

ξk+2 = xk=2, . . . into the right-hand side of (6.13). In particular,

Q(ξ1, . . . ,ξk,xk+1,xk+2, . . .)

is a random polynomial with finite second moment, and as a consequence with finite

coefficients for almost all vectors (xk+1,xk+2, . . .) with respect to the distribution of

the vector (ξk+1,ξk+2, . . .). It is clear that all these polynomials

Q(ξ1, . . . ,ξk,xk+1,xk+2, . . .)

are of order m if k is sufficiently large. It is sufficient to prove that

P(|Q(ξ1, . . . ,ξk,xk+1,xk+2, . . .)|> x)≥ e−Kx2/m

for x > x0, where the constants K > 0 and x0 > 0 may depend on the polynomial Q.

Write

Q(ξ1, . . . ,ξk,xk+1,xk+2, . . .) = Q1(ξ1, . . . ,ξk)+Q2(ξ1, . . . ,ξk)

where Q1 is a homogeneous polynomial of order m, and Q2 is a polynomial of

order less than m. The polynomial Q2 can be rewritten as the sum of finitely many

Wiener–Itô integrals with multiplicity less than m. Hence the already proved part of

Theorem 6.6 implies that

P(Q2(ξ1, . . . ,ξk)> x)≤ e−q̄Kx2/(m−1)
.

(We may assume that m ≥ 2). Then an application of relation (6.12) to Q1 implies

the remaining part of Theorem 6.6, thus it suffices to prove (6.12).

If Q(·) is a polynomial of k variables, then there exist some α > 0 and β > 0

such that

λ

(∣∣∣∣Q
(

x1

|x| , . . . ,
xk

|x|

)∣∣∣∣> α

)
> β ,

where |x|2 =
k

∑
j=1

x2
j , and λ denotes the Lebesgue measure on the k-dimensional unit

sphere Sk−1. Exploiting that |ξ | and
ξ
|ξ | are independent,

ξ
|ξ | is uniformly distributed

on the unit sphere Sk−1, and P(|ξ |> x)≥ ce−x2
for a k-dimensional standard normal

random variable, we obtain that

P(|Q(ξ1, . . . ,ξk)|> x)≥ βP
(
|ξ |m >

x

α

)
> e−Kx2/m

,
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if the constants K and x are sufficiently large. Theorem 6.6 is proved. ⊓⊔
Theorem 6.6 implies in particular that Wiener–Itô integrals of different multiplic-

ity have different distributions. A bounded random variable measurable with respect

to the σ -algebra generated by a stationary Gaussian field can be expressed as a sum

of multiple Wiener–Itô integrals. Another consequence of Theorem 6.6 is the fact

that the number of terms in this sum must be infinite.

In Theorems 6.2 and 6.2′ we have defined a large class of self-similar fields. The

question arises whether this class contains self-similar fields such that the distribu-

tions of their random variables tend to one (or zero) at infinity (at minus infinity)

much faster than the normal distribution functions do. This question has been un-

solved by now. By Theorem 6.6 such fields, if any, must be expressed as a sum of

infinitely many Wiener–Itô integrals. The above question is of much greater impor-

tance than it may seem at first instant. Some considerations suggest that in some

important models of statistical physics self-similar fields with very fast decreasing

tail distributions appear as limit, when the so-called renormalization group transfor-

mations are applied for the probability measure describing the state of the model

at critical temperature. (The renormalization group transformations are the transfor-

mations over the distribution of stationary fields induced by formula (1.1) or (1.3),

when AN = Nα , A(t) = tα with some α .) No rigorous proof about the existence

of such self-similar fields is known yet. Thus the real problem behind the above

question is whether the self-similar fields interesting for statistical physics can be

constructed via multiple Wiener–Itô integrals.



Chapter 7

On the Original Wiener–Itô Integral

In this chapter the definition of the original Wiener–Itô integral introduced by Itô

in [19] is explained. As the arguments are very similar to those of Chapters 4 and 5

(only the notations become simpler) most proofs will be omitted.

Let a measure space (M,M ,µ) with a σ -finite measure µ be given. Let µ satisfy

the following continuity property: For all ε > 0 and A ∈ M , µ(A) < ∞, there exist

some disjoint sets B j ∈ M , j = 1, . . . ,N, with some integer N such that µ(B j) < ε

for all 1 ≤ j ≤ N, and A =
N⋃

j=1

B j. We introduce the following definition.

Definition of (Gaussian) Random Orthogonal Measures. A system of random

variables Zµ(A), A ∈ M , µ(A)< ∞, is called a Gaussian random orthogonal mea-

sure corresponding to the measure µ if

(i) Zµ(A1), . . . ,Zµ(Ak) are independent Gaussian random variables if the sets

A j ∈ M , µ(A j)< ∞, j = 1, . . . ,k, are disjoint.

(ii) EZµ(A) = 0, EZµ(A)
2 = µ(A).

(iii) Zµ

(
k⋃

j=1

A j

)
=

k

∑
j=1

Zµ(Ak) with probability 1 if A1, . . . ,Ak are disjoint sets.

Remark. There is the following equivalent version for the definition of random or-

thogonal measures: The system of random variables system of random variables

Zµ(A), A ∈ M , µ(A) < ∞, is a Gaussian random orthogonal measure correspond-

ing to the measure µ if

(i′) Zµ(A1), . . . ,Zµ(Ak) are (jointly) Gaussian random variables for all sets A j ∈
M , µ(A j)< ∞, j = 1, . . . ,k.

(ii′) EZµ(A) = 0, and EZµ(A)Zµ(B) = µ(A∩B) if A, B ∈M , µ(A)< ∞, µ(B)<
∞.

It is not difficult to see that properties (i), (ii) and (iii) imply relations (i′) and (ii′).
On the other hand, it is clear that (i′) and (ii′) imply (i) and (ii). To see that they also

imply relation (iii) observe that under these conditions

79
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E

[
Zµ

(
k⋃

j=1

A j

)
−

k

∑
j=1

Zµ(Ak)

]2

= 0

if A1, . . . ,Ak are disjoint sets.

The second characterization of random orthogonal measures may help to show

that for any measure space (M,M ,µ) with a σ -finite measure µ there exists a

Gaussian random orthogonal measure corresponding to the measure µ . The main

point in checking this statement is the proof that for any sets A1, . . . ,Ak ∈ M ,

µ(A j)< ∞, 1 ≤ j ≤ k, there exists a Gaussian random vector (Zµ(A1), . . . ,Zµ(Ak)),
EZµ(A j) = 0, with correlation EZµ(Ai)Zµ(A j) = µ(Ai ∩A j) for all 1 ≤ i, j ≤ k. To

prove this we have to show that the corresponding covariance matrix is really posi-

tive definite, i.e. ∑
i, j

cic̄ jµ(Ai∩A j)≥ 0 for an arbitrary vector (c1, . . . ,ck). But this fol-

lows from the observation ∑
i, j

cic̄ jχAi∩A j
(x) = ∑

i, j
cic̄ jχAi

(x)χA j
(x) =

∣∣∣∣∑
i

ciχAi
(x)

∣∣∣∣
2

≥ 0

for all x ∈ M, if we integrate this inequality with respect to the measure µ in the

space M.

We define the real Hilbert spaces ¯K n
µ , n = 1,2, . . . . The space ¯K n

µ consists of

the real-valued measurable functions over (M×·· ·×M︸ ︷︷ ︸
n times

, M ×·· ·×M︸ ︷︷ ︸
n times

) such that

‖ f‖2 =
∫

| f (x1, . . . ,xn)|2µ(dx1) . . .µ(dxn)< ∞,

and the last formula defines the norm in ¯K n
µ . Let K n

µ denote the subspace of ¯K n
µ

consisting of the functions f ∈ ¯K n
µ such that

f (x1, . . . ,xn) = f (xπ(1), . . . ,xπ(n)) for all π ∈ Πn.

Let the spaces ¯K 0
µ and K 0

µ consist of the real constants with the norm ‖c‖ = |c|.
Finally we define the Fock space ExpKµ which consists of the sequences f =
( f0, f1, . . .), fn ∈ K n

µ , n = 0,1,2, . . . , such that

‖ f‖2 =
∞

∑
n=0

1

n!
‖ fn‖2 < ∞.

Given a random orthogonal measure Zµ corresponding to µ , let us introduce the

σ -algebra F = σ(Zµ(A) : A∈M , µ(A)<∞). Let K denote the real Hilbert space

of square integrable random variables measurable with respect to the σ -algebra F .

Let K≤n denote the subspace of K that is the closure of the linear space containing

the polynomials of the random variables Zµ(A) of order less than or equal to n.

Let Kn be the orthogonal completion of K≤n−1 to K≤n. (The norm is defined as

‖ξ‖2 = Eξ 2 in these Hilbert spaces.)

The multiple Wiener–Itô integrals with respect to the random orthogonal measure

Zµ , to be defined below, give a unitary transformation from ExpKµ to K . We
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shall denote these integrals by
∫ ′

to distinguish them from the Wiener–Itô integrals

defined in Chapter 4.

First we define the class of simple functions ˆ̄
K n

µ ⊂ ¯K n
µ . A function f ∈ ¯K n

µ is in

ˆ̄
K n

µ if there exists a finite system of disjoint sets ∆1, . . . ,∆N , with ∆ j ∈M , µ(∆ j)<
∞, j = 1, . . . ,N, such that f (x1, . . . ,xn) is constant on the sets ∆ j1 ×·· ·×∆ jn if the

indices j1, . . . , jn are disjoint, and f (x1, . . . ,xn) equals zero outside these sets. We

define

∫ ′
f (x1, . . . ,xn)Zµ(dx1) . . .Zµ(dxn) = ∑ f (x j1 , . . . ,x jn)Zµ(∆ j1) · · ·Zµ(∆ jn)

for f ∈ ˆ̄
K n

µ , where xk ∈ ∆k, k = 1, . . . ,N. Here again, it can be seen with the help

of the additivity property (iii) of the random orthogonal measure Zµ that the above

definition of the Wiener–Itô integral of simple functions is meaningful, although

the simple function f does not determine uniquely the sets ∆ j appearing in this

definition.

Let ˆK n
µ = ˆ̄

K n
µ ∩K n

µ . The random variables

I′µ( f ) =
1

n!

∫ ′
f (x1, . . . ,xn)Zµ(dx1) . . .Zµ(dxn), f ∈ ˆ̄

K
n

µ ,

have zero expectation, integrals of different order are orthogonal,

I′µ( f ) = I′µ(Sym f ), and Sym f ∈ ˆK
n

µ if f ∈ ˆ̄
K

n
µ ,

EI′µ( f )2 ≤ 1

n!
‖ f‖2 if f ∈ ˆ̄

K
n

µ , (7.1)

and (7.1) holds with equality if f ∈ ˆK n
µ .

It can be seen that ˆ̄
K n

µ is dense in ¯K n
µ in the L2(µ

n) norm. (This is a statement

analogous to Lemma 4.1, but its proof is simpler.) Hence relation (7.1) enables us

to extend the definition of the n-fold Wiener–Itô integrals over ¯K n
µ . All the above

mentioned relations remain valid if f ∈ ˆ̄
K n

µ is substituted by f ∈ ¯K n
µ , and f ∈ ˆK n

µ

is substituted by f ∈ K n
µ . We formulate Itô’s formula for these integrals. It can be

proved similarly to Theorem 4.3 with the help of the diagram formula valid for the

classical Wiener–Itô integrals studied in this chapter.

Theorem 7.1. (Itô’s Formula.) Let ϕ1, . . . ,ϕm, ϕ j ∈ K 1
µ for all 1 ≤ j ≤ m, be

an orthonormal system in L2
µ . Let some positive integers j1, . . . , jm be given, put

j1 + · · ·+ jm = N, and define for all i = 1, . . . ,N

gi = ϕ1 for 1 ≤ i ≤ j1, and gi = ϕs for j1 + · · ·+ js−1 < i ≤ j1 + · · ·+ js.

Then



82 7 On the Original Wiener–Itô Integral

H j1

(∫ ′
ϕ1(x)Zµ(dx)

)
· · ·H jm

(∫ ′
ϕm(x)Zµ(dx)

)

=
∫ ′

g1(x1) · · ·gN(xN)Zµ(dx1) . . .Zµ(dxN)

=

∫ ′
Sym [g1(x1) · · ·gN(xN)]Zµ(dx1) . . .Zµ(dxN).

(Let me remark that the diagram formula (Theorem 5.3) also remains valid for

this integral if we replace −x j is by x j and G(dx j) by µ(dx j), N − 2|γ |+ 1 ≤ j ≤
N −|γ |, in the definition of hγ in formula (5.2).)

It can be seen with the help of Theorem 7.1 that the transformation

I′µ : ExpKµ → K ,

where I′µ( f ) =
∞

∑
n=0

I′µ( fn), f = ( f0, f1, . . .) ∈ ExpKµ is a unitary transformation,

and so are the transformations (n!)1/2I′µ from K n
µ to Kn.

Let us consider the special case (M,M ,µ) = (Rν ,Bν ,λ ), where λ denotes the

Lebesgue measure in Rν . A random orthogonal measure corresponding to λ is called

the white noise. A random spectral measure corresponding to λ , when the Lebesgue

measure is considered as the spectral measure of a generalized field, is also called a

white noise. The next result, that can be considered as a random Plancherel formula,

establishes a connection between the two types of Wiener–Itô integrals with respect

to white noise.

Proposition 7.2. Let f = ( f0, f1, . . . ,) ∈ ExpKλ be an element of the Fock space

corresponding to the Lebesgue measure in the Euclidean space (Rν ,Bν). Then

f ′ = ( f ′0, f ′1, . . . ,) ∈ ExpHλ with the functions f ′0 = f0 and f ′n = (2π)−nν/2 f̃n,

n = 1,2, . . . , (where f̃n(u1, . . . ,un) =
∫

Rnν ei(x,u) fn(x1, . . . ,xn)dx1 . . . dxn with x =
(x1, . . . ,xn) and u = (u1, . . . ,un)), and

∞

∑
n=0

1

n!

∫ ′
fn(x1, . . . ,xn)Zλ (dx1) . . .Zλ (dxn)

∆
=

∞

∑
n=0

1

n!

∫
f ′n(u1, . . . ,un)Zλ (du1) . . .Zλ (dun),

where Zλ (dx) is a white noise as a random orthogonal measure, and Zλ (du) is a

white noise as a random spectral measure.

Proof of Proposition 7.2. We have

(2π)−nν/2‖ f̃n‖L2
λ
= ‖ fn‖L2

λ
,

hence f ′ ∈ ExpHλ .
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Let ϕ1,ϕ2, . . . be a complete orthonormal system in L2
λ . Then ϕ ′

1,ϕ
′
2, . . . is also a

complete orthonormal system in L2
λ , and if

fn(x1, . . . ,xn) = ∑c j1,..., jnϕ j1(x1) · · ·ϕ jn(xn),

then

f ′n(u1, . . . ,un) = ∑c j1,..., jnϕ ′
j1
(u1) · · ·ϕ ′

jn
(un).

Hence an application of Itô’s formula for both types of integrals, (i.e. Theorems 4.3

and 7.1) imply Proposition 7.2. ⊓⊔
Finally we restrict ourselves to the case ν = 1. We formulate a result which reflects

a connection between multiple Wiener–Itô integrals and classical Itô integrals. Let

W (t), a ≤ t ≤ b, be a Wiener process, and let us define the random orthogonal

measure Z(dx) as

Z(A) =
∫

χA(x)W (dx), A ⊂ [a,b), A ∈ B
1.

Then we have the following

Proposition 7.3. Let f ∈ K n
λ [a,b), where λ [a,b) denotes the Lebesgue measure on

the interval [a,b). Then

∫ ′
f (x1, . . . ,xn)Z(dx1) . . .Z(dxn) (7.2)

= n!

∫ b

a

(∫ tn

a

(
· · ·
(∫ t3

a

(∫ t2

a
f (t1, . . . , tn)W (dt1)

)
W (dt2)

)
. . .

)
W (dtn)

)
.

Proof of Proposition 7.3. Given a function f ∈ ˆK n
λ [a,b), let the function f̂ be defined

as

f̂ (x1, . . . ,xn) =

{
f (x1, . . . ,xn) if x1 < x2 < · · ·< xn

0 otherwise.

It is not difficult to check Proposition 7.3 for such a special function f ∈ ˆK n
λ [a,b) for

which the above defined function f̂ is the indicator function of a rectangle of the

form
n

∏
j=1

[a j,b j) with constants a ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ b. Here

we exploit the relation I′( f ) = n!I′( f̂ ). Beside this, we have to calculate the value

of the right-hand side of formula (7.2) for these simple functions f ∈ ˆK n
λ [a,b). A

simple inductive argument shows that it equals
n

∏
j=1

[W (b j)−W (a j)] if a≤ a1 < b1 <

a2 < b2 < · · · < an < bn ≤ b, and it equals zero otherwise. Then a simple limiting

procedure with the help of the approximation of general functions in K n
λ [a,b) by the

linear combinations of such functions proves Proposition 7.3 in the general case. ⊓⊔
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As a consequence of Proposition 7.3 in the case ν = 1 multiple Wiener–Itô in-

tegrals can be substituted by Itô integrals in the investigation of most problems. In

the case ν = 2 there is no simple definition of Itô integrals. On the other hand, no

problem arises in generalizing the definition of multiple Wiener–Itô integrals to the

case ν ≥ 2.



Chapter 8

Non-central Limit Theorems

In this chapter we investigate the problem formulated in Chapter 1, and we show

how the technique of Wiener–Itô integrals can be applied for the investigation of

such a problem. We restrict ourselves to the case of discrete random fields, although

the case of generalized random fields can be discussed in almost the same way. We

also present some generalizations of these results which can be proved in a similar

way. But the proof of these more general results will be omitted. They can be found

in [9]. First we recall the following

Definition 8A. (Definition of Slowly Varying Functions.) A function L(t), t ∈
[t0,∞), t0 > 0, is said to be a slowly varying function (at infinity) if

lim
t→∞

L(st)

L(t)
= 1 for all s > 0.

We shall apply the following description of slowly varying functions.

Theorem 8A. (Karamata’s Theorem.) If a slowly varying function L(t), t ≥ t0,

with some t0 > 0, is bounded on every finite interval, then it can be represented in

the form

L(t) = a(t)exp

{∫ t

t0

ε(s)

s
ds

}
,

where a(t)→ a0 6= 0, ε(t) is integrable on any finite intervals [t0, t], and ε(t)→ 0

as t → ∞.

Let Xn, n ∈ Zν , be a stationary Gaussian field with expectation zero and a corre-

lation function

r(n) = EX0Xn = |n|−α a

(
n

|n|

)
L(|n|), n ∈ Zν , if n 6= (0, . . . ,)), (8.1)

where 0 < α < ν , L(t), t ≥ 1, is a slowly varying function, bounded in all finite

intervals, and a(t) is a continuous function on the unit sphere Sν−1, satisfying the

85
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symmetry property a(x) = a(−x) for all x ∈ Sν−1. Let G denote the spectral mea-

sure of the field Xn, and let us define the measures GN , N = 1,2, . . . , by the formula

GN(A) =
Nα

L(N)
G

(
A

N

)
, A ∈ B

ν , N = 1,2, . . . . (8.2)

Now we recall the definition of vague convergence of not necessarily finite mea-

sures on a Euclidean space.

Definition of Vague Convergence of Measures. Let Gn, n= 1,2, . . . , be a sequence

of locally finite measures over Rν , i.e. let Gn(A) < ∞ for all measurable bounded

sets A. We say that the sequence Gn vaguely converges to a locally finite measure G0

on Rν (in notation Gn
v→ G0) if

lim
n→∞

∫
f (x)Gn(dx) =

∫
f (x)G0(dx)

for all continuous functions f with a bounded support.

We formulate the following

Lemma 8.1. Let G be the spectral measure of a stationary random field with a

correlation function r(n) of the form (8.1). Then the sequence of measures GN de-

fined in (8.2) tends vaguely to a locally finite measure G0. The measure G0 has the

homogeneity property

G0(A) = t−α G0(tA) for all A ∈ B
ν and t > 0, (8.3)

and it satisfies the identity

2ν
∫

ei(t,x)
ν

∏
j=1

1− cosx( j)

(x( j))2
G0(dx) (8.4)

=
∫

[−1,1]ν
(1−|x(1)|) · · ·(1−|x(ν)|)

a
(

x+t
|x+t|

)

|x+ t|α dx, for all t ∈ Rν .

Remark. One may ask whether there are stationary random fields with correla-

tion function satisfying relation (8.1), or more generally, how large the class of

such random fields is. It can be proved that we get a correlation function of the

form (8.1) with the help of a spectral measure with a spectral density of the form

g(u) = |u|α−ν b( u
|u| )h(|u|), u ∈ Rν , where b(·) is a non-negative smooth function on

the unit sphere {u : u ∈ Rν , |u| = 1}, and h(u) is a non-negative smooth function

on R1 which does not disappear at the origin, and tends to zero at infinity suffi-

ciently fast. The regularizing function h(|u|) is needed in this formula to make the

function g(·) integrable. Results of this type are studied in the theory of generalized

functions.
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At a heuristic level the class of spectral measures G(·) which determine a corre-

lation function r(·) satisfying relation (8.1) can be described in the following way.

They are such measures G for which the asymptotic identity G(Bx) ∼ Cxα holds

with some constant C > 0 for the (small) balls Bx = {v : |v| ≤ x} as x → 0, and

the effect of the singularities of the measure G outside the origin is in some sense

small. At this heuristic level we disregarded the possibility of a factor L(|x|) with

a function L(·), slowly varying at the origin. Thus heuristically we can say that the

asymptotically homogeneous behaviour r(n) ∼Cn−α of the correlation function at

infinity corresponds to the asymptotically homogeneous behaviour G(Bx)∼ C̄xα of

the spectral measure G corresponding to it in the neighbourhood of zero together

with some additional restrictions about the singularities of the spectral measure G

outside zero which guarantee that their influence is not too strong. These considera-

tions may help us to understand the content of one of the most important conditions

in the subsequent Theorem 8.2.

We postpone the proof of Lemma 8.1 for a while.

Formulae (8.3) and (8.4) imply that the function a(t) and the number α in the

definition (8.1) of a correlation function r(n) uniquely determine the measure G0.

Indeed, by formula (8.4) they determine the (finite) measure
ν

∏
j=1

1−cosx( j)

(x( j))2
G0(dx),

since they determine its Fourier transform. Hence they also determine the mea-

sure G0. (Formula (8.3) shows that G0 is a locally finite measure). Let us also re-

mark that since GN(A) = GN(−A) for all N = 1,2, . . . and A ∈ Bν , the relation

G0(A) = G0(−A), A ∈ Bν also holds. These properties of the measure G0 imply

that it can be considered as the spectral measure of a generalized random field. Now

we formulate

Theorem 8.2. Let Xn, n ∈ Zν , be a stationary Gaussian field with a correlation

function r(n) satisfying relation (8.1). Let us define the stationary random field ξ j =
Hk(X j), j ∈ Zν , with some positive integer k, where Hk(x) denotes the k-th Hermite

polynomial with leading coefficient 1, and assume that the parameter α appearing

in (8.1) satisfies the relation 0 < α < ν
k

with this number k. If the random fields ZN
n ,

N = 1,2, . . . , n ∈ Zν , are defined by formula (1.1) with AN = Nν−kα/2L(N)k/2 and

the above defined ξ j = Hk(X j), then their multi-dimensional distributions tend to

those of the random field Z∗
n ,

Z∗
n =

∫
χ̃n(x1 + · · ·+ xk)ZG0

(dx1) . . .ZG0
(dxk), n ∈ Zν .

Here ZG0
is a random spectral measure corresponding to the spectral measure G0

which appeared in Lemma 8.1. The function χ̃n(·), n = (n(1), . . . ,n(ν)), is (similarly

to formula (6.2) Chapter 6) the Fourier transform of the indicator function of the

ν-dimensional unit cube
ν

∏
p=1

[n(p),n(p)+1].

Remark. The condition that the correlation function r(n) of the random field Xn, n ∈
Zν , satisfies formula (8.1) can be weakened. Theorem 8.2 and Lemma 8.1 remain
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valid if (8.1) is replaced by the slightly weaker condition

lim
T→∞

sup
n : n∈Zν , |n|≥T

r(n)

|n|−α a
(

n
|n|

)
L(|n|)

= 1,

where 0 < α < ν , L(t), t ≥ 1, is a slowly varying function, bounded in all finite

intervals, and a(t) is a continuous function on the unit sphere Sν−1, satisfying the

symmetry property a(x) = a(−x) for all x ∈ Sν−1.

First we explain why the choice of the normalizing constant AN in Theorem 8.2

was natural, then we explain the ideas of the proof, finally we work out the details.

It can be shown, for instance with the help of Corollary 5.5, that EHk(ξ )Hk(η) =
E : ξ k: : ηk: = k!(Eξ η)k for a Gaussian random vector (ξ ,η) with Eξ = Eη = 0

and Eξ 2 = Eη2 = 1. Hence

E(ZN
n )

2 =
k!

A2
N

∑
j, l∈BN

0

r( j− l)k ∼ k!

A2
N

∑
j, l∈BN

0

| j− l|−kα ak

(
j− l

| j− l|

)
L(| j− l|)k,

with the set BN
0 introduced after formula (1.1). Some calculation with the help of

the above formula shows that with our choice of AN the expectation E(ZN
n )

2 is sep-

arated both from zero and infinity, therefore this is the natural norming factor. In

this calculation we have to exploit the condition kα < ν , which implies that in the

sum expressing E(ZN
n )

2 those terms are dominant for which j− l is relatively large,

more explicitly which are of order N. There are const.N2ν such terms.

The field ξn, n ∈Zν , is subordinated to the Gaussian field Xn. It is natural to write

up its canonical representation defined in Chap. 6, and to express ZN
n via multiple

Wiener–Itô integrals. Itô’s formula yields the relation

ξ j = Hk

(∫
ei( j,x)ZG(dx)

)
=
∫

ei( j,x1+···+xk)ZG(dx1) . . .ZG(dxk),

where ZG is the random spectral measure adapted to the random field Xn. Then

ZN
n =

1

AN
∑

j∈BN
n

∫
ei( j,x1+···+xk)ZG(dx1) . . .ZG(dxk)

=
1

AN

∫
ei(Nn,x1+···+xk)

ν

∏
j=1

eiN(x
( j)
1 +···+x

( j)
k

)−1

ei(x
( j)
1 +···+x

( j)
k

)−1

ZG(dx1) . . .ZG(dxk).

Let us make the substitution y j = Nx j, j = 1, . . . ,k, in the last formula, and let

us rewrite it in a form resembling formula (6.8). To this end, let us introduce the

measures GN defined in (8.2). By Lemma 4.6 we can write

ZN
n

∆
=
∫

fN(y1, . . . ,yk)χ̃n(y1 + · · ·+ yk)ZGN
(dy1) . . .ZGN

(dyk)
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with

fN(y1, . . . ,yk) =
ν

∏
j=1

i(y
( j)
1 + · · ·+ y

( j)
k )(

exp
{

i 1
N
(y

( j)
1 + · · ·+ y

( j)
k )
}
−1
)

N
, (8.5)

where χ̃n(·) is the Fourier transform of the indicator function of the unit cube
ν

∏
j=1

[n( j),n( j) + 1). (It follows from Lemma 8B formulated below and the Fubini

theorem that the set, where the denominator of the function fN disappears, i.e. the

set where y
( j)
1 + · · ·+ y

( j)
k = 2lNπ with some integer l 6= 0 and 1 ≤ j ≤ ν has zero

GN × ·· · ×GN measure. This means that the functions fN are well defined.) The

functions fN tend to 1 uniformly in all bounded regions, and the measures GN tend

vaguely to G0 as N → ∞ by Lemma 8.1. These relations suggest the following lim-

iting procedure. The limit of ZN
n can be obtained by substituting fN with 1 and GN

with G0 in the Wiener–Itô integral expressing ZN
n . We want to justify this formal

limiting procedure. For this we have to show that the Wiener–Itô integral express-

ing ZN
n is essentially concentrated in a large bounded region independent of N. The

L2-isomorphism of Wiener–Itô integrals can help us in showing that. We shall for-

mulate a result in Lemma 8.3 which is a useful tool for the justification of the above

limiting procedure.

Before formulating this lemma we make a small digression. It was explained that

Wiener–Itô integrals can be defined also with respect to random stationary fields

ZG adapted to a stationary Gaussian random field whose spectral measure G may

have atoms, and we can work with them similarly as in the case of non-atomic

spectral measures. Here a lemma will be proved which shows that in the proof of

Theorem 8.2 we do not need this observation, because if the correlation function

of the random field satisfies (8.1), then its spectral measure is non-atomic. More-

over, the measure G has an additional property which guarantees that the function

fN(y1, . . . ,yn) introduced in (8.5) can be defined in the space Rkν with the product

measure GN ×·· ·×GN .

Lemma 8B. Let the correlation function of a stationary random field Xn, n ∈ Zν ,

satisfy the relation r(n)≤ A|n|−α with some A > 0 and α > 0 for all n ∈ Zν , n 6= 0.

Then its spectral measure G is non-atomic. Moreover, the hyperplanes x( j) = t have

zero G measure for all 1 ≤ j ≤ ν and t ∈ R1.

Proof of Lemma 8B. Lemma 8B clearly holds if α > ν , because in this case the

spectral measure G has even a density function g(x) = ∑
n∈Zν

e−i(n,x)r(n). On the

other hand, the p-fold convolution of the spectral measure G with itself (on the torus

Rν/2πZν ) has Fourier transform, r(n)p, n ∈ Zν , and as a consequence in the case

p> ν
α this measure is non-atomic. Hence it is enough to show that if the convolution

G ∗G is a non-atomic measure, then the measure G is also non-atomic. But this is

obvious, because if there were a point x ∈ Rν/2πZν such that G({x})> 0, then the

relation G ∗G({x+ x}) > 0 would hold, and this is a contradiction. (Here addition

is taken on the torus.) The second statement of the lemma can be proved with some
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small modifications of the previous proof, by reducing it to the one-dimensional

case. ⊓⊔
Now we formulate a result that helps us in carrying out some limiting procedures.

Lemma 8.3. Let GN , N = 1,2, . . . , be a sequence of non-atomic spectral measures

on Rν tending vaguely to a non-atomic spectral measure G0. Let a sequence of mea-

surable functions KN =KN(x1, . . . ,xk), N = 0,1,2, . . . , be given such that KN ∈ H̄ k
GN

for N = 1,2, . . . . Assume further that these functions satisfy the following proper-

ties: For all ε > 0 there exist some constants A = A(ε)> 0 and N0 = N0(ε)> 0 and

finitely many rectangles P1, . . . ,PM with some cardinality M =M(ε) on Rkν such that

the following conditions (a) and (b) formulated below with the help of these numbers

and rectangles are satisfied. (We call a set P ∈ Bkν a rectangle if it can be written

in the form P = L1 ×·· ·×Lk with some bounded open sets Ls ∈Bν , 1 ≤ s ≤ k, with

boundaries ∂Ls of zero G0 measure, i.e. G0(∂Ls) = 0 for all 1 ≤ s ≤ k.)

(a) The function K0 is continuous on the set B = [−A,A]kν \
M⋃

j=1

Pj, and KN → K0

uniformly on the set B as N → ∞. Besides, the hyperplanes xp = ±A have zero

G0 measure for all 1 ≤ p ≤ ν .

(b)
∫

Rkν\B |KN(x1, . . . ,xk)|2GN(dx1) . . .GN(dxk) <
ε3

k!
if N = 0 or N ≥ N0, and

K0(−x1, . . . ,−xk) = K0(x1, . . . ,xk) for all (x1, . . . ,xk) ∈ Rkν .

Then K0 ∈ H̄ k
G0

, and

∫
KN(x1, . . . ,xk)ZGN

(dx1) . . .ZGN
(dxk)

D→
∫

K0(x1, . . . ,xk)ZG0
(dx1) . . .ZG0

(dxk)

as N → ∞, where
D→ denotes convergence in distribution.

Remark. In the proof of Theorem 8.2 or of its generalization Theorem 8.2′ for-

mulated later a simpler version of Lemma 8.3 with a simpler proof would suffice.

We could work with such a version where the rectangles Pj do not appear. We for-

mulated this somewhat more complicated result, because it can be applied in the

proof of more general theorems, where the limit is given by such a Wiener–Itô in-

tegral whose kernel function may have discontinuities. Thus it seemed to be better

to present such a result even if its proof is more complicated. The proof applies

some arguments of Lemma 4.1. To work out the details it turned out to be useful to

introduce some metric in the space of probability measures which metricizes weak

convergence. Although this may look a bit too technical, it made possible to carry

out some arguments in a natural way. We can tell with the help of this notion when

two probability measures are close to each other.

Proof of Lemma 8.3. Conditions (a) and (b) obviously imply that

∫
|K0(x1, . . . ,xk)|2 G0(dx1) . . .G0(dxk)< ∞,
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hence K0 ∈ H̄ k
G0

. Let us fix an ε > 0, and let us choose some A > 0, N0 > 0 and

rectangles P1, . . . ,PM which satisfy conditions (a) and (b) with this ε . Then

E

[∫
[1− χB(x1, . . . ,xk)]KN(x1, . . . ,xk)ZGN

(dx1) . . .ZGN
(dxk)

]2

≤ k!

∫

Rkν\B
|KN(x1, . . . ,xk)|2GN(dx1) . . .GN(dxk)< ε3 (8.6)

for N = 0 or N > N0, where χB denotes the indicator function of the set B introduced

in the formulation of condition (a).

Since B ⊂ [−A,A]kν , and GN
v→ G0, hence GN × ·· · ×GN(B) < C(A) with an

appropriate constant C(A)< ∞ for all N = 0,1, . . . . Because of this estimate and the

uniform convergence KN → K0 on the set B we have

E

[∫
(KN(x1, . . . ,xk)−K0(x1, . . . ,xk))χB(x1, . . . ,xk)ZGN

(dx1) . . .ZGN
(dxk)

]2

≤ k!

∫

B
|KN(x1, . . . ,xk)−K0(x1, . . . ,xk)|2 GN(dx1) . . .GN(dxk)< ε3 (8.7)

for N > N1 with some N1 = N1(A,ε).
First we reduce the proof of Lemma 8.3 to the proof of the relation

∫
K0(x1, . . . ,xk)χB(x1, . . . ,xk)ZGN

(dx1) . . .ZGN
(dxk)

D→
∫

K0(x1, . . . ,xk)χB(x1, . . . ,xk)ZG0
(dx1) . . .ZG0

(dxk) (8.8)

with the help of formulas (8.6) and (8.7), and then we shall prove (8.8). It is simpler

to carry out this reduction with the help of some metric on the space of probability

measure which induces weak convergence in this space. Hence I recall some classi-

cal notions and results about convergence of probability measures on a metric space

which will be useful in our considerations.

Definition of Prokhorov Metric, and Its Properties. Given a separable metric

space (X ,ρ) with some metric ρ let S denote the space of probability measures

on it. The Prokhorov metric ρP is the metric in the space S defined by the formula

ρP(µ ,ν) = inf{ε : µ(A) ≤ ν(Aε)+ ε for all A ∈ A } for two probability measures

µ ,ν ∈ S , where Aε = {x : ρ(x,A) < ε}. The above defined ρP is really a metric

on S (in particular, ρP(µ ,ν) = ρP(ν ,µ)) which metricizes the weak convergence

of probability measures in the metric space (X ,ρ), i.e. µN
w→ µ0 for a sequence of

probability measures N = 0,1,2, . . . if and only if lim
N→∞

ρP(µN ,µ0) = 0.

The results formulated in this definition can be found e.g. in [13]. Let us also

recall the definition of weak converges of probability measures on a metric space.

Definition of Weak Convergence of Probability Measures on a Metric Space.

A sequence of probability measures µn, n = 1,2, . . . , on a metric space (X ,ρ) con-
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verges weakly to a probability measure µ on this space, (in notation µn
w→ µ) if

lim
n→∞

∫
f (x)µn(dx)→ ∫

f (x)µ(dx) for all continuous and bounded functions on the

space (X ,ρ).

I formulated the above result for probability measures in a general metric space,

but I shall work on the real line. Given a random variable ξ let µ(ξ ) denote its

distribution. Let us remark that the convergence ξN
D→ ξ0 as N → ∞ of a sequence

of random variables, ξ0,ξ1,ξ2, . . . is equivalent to the statement µ(ξN)
w→ µ(ξ0)

or ρP(µ(ξN),µ(ξ0))→ 0 as N → ∞. Hence by putting ξN = k!IGN
(KN(x1, . . . ,xk)),

N = 0,1,2, . . . we can reformulate the statement of Lemma 8.3 in the following way.

For all ε > 0 there exists some index N′
0 = N′

0(ε) such that ρP(µ(ξN),µ(ξ0))≤ 4ε
for all N ≥ N′

0.

To reduce the proof of Lemma 8.3 to that of formula (8.8) first we show that for

three random variables ξ , ξ̄ and η such that P(|η | ≥ ε)≤ ε the inequality

ρP(µ(ξ +η),µ(ξ̄ ))≤ ρP(µ(ξ ),µ(ξ̄ ))+ ε (8.9)

holds.

As ρP is a metric we can write ρP(µ(ξ + η),µ(ξ̄ )) ≤ ρP(µ(ξ + η),µ(ξ )) +
ρP(µ(ξ ),µ(ξ̄ )), and to prove (8.9) it is enough to show that ρP(µ(ξ +η),µ(ξ ))≤ ε
if P(|η | ≥ ε)≤ ε .

This inequality holds, since {ω : ξ (ω) ∈ A} ⊂ {ω : ξ (ω) + η(ω) ∈ Aε} ∪
{ω : |η(ω)| ≥ ε}, and as a consequence P(ξ ∈ A) ≤ P(ξ + η ∈ Aε) + P(|η | ≥
ε) ≤ P(ξ +η ∈ Aε)+ ε for any set A ∈ B1 if P(|η | ≥ ε) ≤ ε . By the definition of

the Prokhorov metric this means that the desired inequality holds.

Put

ξ
(1)
N = k!IGN

(K0(x1, . . . ,xk)χB(x1, . . . ,xk)),

ξ
(2)
N = k!IGN

(KN(x1, . . . ,xk)−K0(x1, . . . ,xk))χB(x1, . . . ,xk)),

ξ
(3)
N = k!IGN

(1− χB(x1, . . . ,xk))KN(x1, . . . ,xk)),

ξN = k!IGN
(KN)

for all N = 0,1,2, . . . . With this notation it follows from relation (8.8) and the fact

that the Prokhorov metric metricizes the weak convergence that

ρP(µ(ξ
(1)
N ),µ(ξ

(1)
0 ))≤ ε if N ≥ N′

1(ε)

with some threshold index N′
1(ε). Formulas (8.6) and (8.7) together with the Chebi-

shev inequality imply that P(|ξ (2)
N | ≥ ε) ≤ ε and P(|ξ (3)

N | ≥ ε) ≤ ε if N ≥ N′
2(ε)

or N = 0 with some threshold index N′
2(ε). Besides, we have ξ0 = ξ

(1)
0 + ξ

(3)
0 and

ξN = ξ
(1)
N + ξ

(2)
N + ξ

(3)
N for N = 1,2, . . . . The above mentioned properties of the

random variables we considered together with relation (8.9) imply that
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ρP(µ(ξN),µ(ξ0)) = ρP(µ(ξ
(1)
N +ξ

(2)
N +ξ

(3)
N ),µ(ξ

(1)
0 +ξ

(3)
0 ))

≤ ρP(µ(ξ
(1)
N +ξ

(2)
N +ξ

(3)
N ),µ(ξ

(1)
0 ))+ ε

≤ ρP(µ(ξ
(1)
N +ξ

(2)
N ),µ(ξ

(1)
0 ))+2ε

≤ ρP(µ(ξ
(1)
N ),µ(ξ

(1)
0 ))+3ε ≤ 4ε

if N ≥ N′
0(ε) = max(N′

1(ε),N
′
2(ε)). Hence Lemma 8.3 follows from (8.8).

To prove (8.8) we will show that K0(x1, . . . ,xk)χB(x1, . . . ,xk) can be well approx-

imated by simple functions from ˆ̄
H k

G0
in the following way. For all ε ′ > 0 there

exists a simple function fε ′ ∈ ˆ̄
H k

G0
such that

E

∫
(K0(x1, . . . ,xk)χB(x1, . . . ,xk)− fε ′(x1, . . . ,xk))

2G0(dx1) . . .G0(dxk)≤
ε ′3

k!
(8.10)

and also

E

∫
(K0(x1, . . . ,xk)χB(x1, . . . ,xk)− fε ′(x1, . . . ,xk))

2GN(dx1) . . .GN(dxk)≤
ε ′3

k!
(8.11)

if N ≥ N0 with some threshold index N0 = N0(ε
′,K0(·)χB(·)). Moreover, this simple

function fε ′ can be chosen in such a way that it is adapted to such a regular system

D = {∆ j, j =±1, . . . ,±M} whose elements have boundaries with zero G0 measure,

i.e. G0(∂∆ j) = 0 for all 1 ≤ | j| ≤ M.

To prove (8.8) with the help of these estimates first we show that this function

fε ′ ∈ ˆ̄
H k

G0
satisfies the relation

∫
fε ′(x1, . . . ,xk)ZGN

(dx1) . . .ZGN
(dxk)

D→
∫

fε ′(x1, . . . ,xk)ZG0
(dx1) . . .ZG0

(dxk)

(8.12)

as N → ∞. In the proof of (8.12) we exploit that we can take such a regular sys-

tem D = {∆ j, j = ±1, . . . ,±M} to which the function fε ′ ∈ ˆ̄
H k

G0
is adapted and

which has the property G0(∂∆ j) = 0 for all j = ±1, . . . ,±M. Besides, the spec-

tral measures GN are such that GN
v→ G0. Hence the (Gaussian) random vectors

(ZGN
(∆ j), j =±1, . . . ,±M) converge in distribution to the (Gaussian) random vec-

tor (ZG0
(∆ j), j =±1, . . . ,±M) as N → ∞. The same can be told about such random

variables that we get by putting the arguments of these random vectors to a continu-

ous function (of 2M variables). Since the integrals in (8.12) are polynomials of these

random vectors, we can apply these results for them, and they imply relation (8.12).

Put

K0(x1, . . . ,xk)χB(x1, . . . ,xk)− fε ′(x1, . . . ,xk) = h0(x1, . . . ,xk). (8.13)

By relations (8.10), (8.11) and the Chebishev inequality P(|k!IG0
(h0)| ≥ ε ′) ≤ ε ′

and P(|k!IGN
(h0) ≥ ε ′) ≤ ε ′ if N ≥ N0. Since IGN

(KN(x1, . . . ,xk)χB(x1, . . . ,xk)) =
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IGN
( fε ′(x1, . . . ,xk) + (h0(x1, . . . ,xk)), N = 0,1,2, . . . , the above relations together

with formulas (8.12) and (8.9) (with the number ε ′ instead of ε) imply that

limsup
N→∞

ρP(µ(k!IGN
(K0(·)χB(·))),µ(k!IG0

(K0(·)χB(·))))

= limsup
N→∞

ρP(µ(k!IGN
( fε ′(·)+h0(·))),µ(k!IG0

( fε ′(·)+h0(·))))

= limsup
N→∞

ρP(µ(k!IGN
( fε ′(·))+ k!IGN

(h0(·))),µ(k!IG0
( fε ′(·))+ k!IG0

(h0(·))))

≤ limsup
N→∞

ρP(µ(k!IGN
( fε ′(·))),µ(k!IG0

( fε ′(·))))+2ε ′ = 2ε ′.

Since this inequality holds for all ε ′ > 0 this implies relation (8.8). To complete the

proof of Lemma 8.3 we have to justify relations (8.10) and (8.11).

Relation (8.10) is actually a version of Lemma 4.1, but it states a slightly stronger

approximation result under the conditions of Lemma 8.3. The statement that for all

ε ′ the function K0(·)χB(·) can be approximated with a simple function fε ′(x1, . . . ,xk)
which satisfies (8.10) agrees with Lemma 4.1. But now we want to choose such a

simple function fε ′ which is adapted to a regular system D = {∆ j, j =±1, . . . ,±M}
with such elements that have the additional property G0(∂∆ j) = 0 for all indices j.

A function fε ′ with these properties can be constructed by means of a slight modi-

fication of the proof of Lemma 4.1. We exploit that in the present case the function

K0(·)χB(·) is almost everywhere continuous with respect to the product measure

Gk
0 = G0 ×·· ·×G0︸ ︷︷ ︸

k times

. This property is needed in the first step of the construction,

where we reduce the approximation result we want to prove to a slightly modified

version of Statement A.

In this modified version of Statement A we want to find a good approximation

of the indicator function of such sets A which satisfies not only the properties de-

manded in Statement A, but also the identities G0(∂A) = 0 and G0(∂A1) = 0 hold

for them. On the other hand, we demand the identity G0(∂B) = 0 also for the set

B whose indicator function is the approximating function in Statement A. To carry

out the reduction, needed in this case we approximate the function K0(·)χB(·) with

such an elementary function (a function taking finitely many values) whose level

sets have boundaries with zero Gk
0 = G0 ×·· ·×G0 measure. This is possible, since

the boundaries of these level sets consist of such points where either the function

K0(·)χB(·) takes the value from an appropriately chosen finite set, or this function

is discontinuous. At this point we exploit that the function K0(·)χB(·) is almost ev-

erywhere continuous with respect to the measure G0.

To complete the reduction of the proof of (8.10) to the new version of Statement A

we still have to show that if the set A can be written in the form A = A1 ∪ (−A1)
such that A1 ∩ (−A1) = /0, and Gk

0(∂A1) = 0, then for all η > 0 there is some Ā1 =
Ā1(η)⊂ A1 such that Gk

0(A\ (Ā1 ∪ (−Ā1))≤ η , ρ(Ā1,−Ā1)> 0, and Gk
0(∂ Ā1) = 0.

Indeed, there is a compact set K ⊂ A1 such that Gk(A1 ⊂ K) ≤ η
2

. Then also the

relation ρ(K,−K) = δ > 0 holds. By the Heine–Borel theorem we can find an open
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set G such that K ⊂ G ⊂ Kδ/3 with Kδ/3 = {x : ρ(x,K) < δ
3
}, and Gk

0(∂G) = 0.

Then the set Ā1 = A1 ∩G satisfies the desired properties.

After making the reduction of the result we want to prove to this modified version

of Statement A we can follow the construction of Lemma 4.1, but we choose in each

step sets with zero G0 ×·· ·×G0 boundary.

A more careful analysis shows that the function constructed in such a way sat-

isfies also (8.11) for N ≥ N0 with a sufficiently large threshold index N0. Here we

exploit that GN
v→G0. This enables us to show that the estimates we need in the con-

struction hold not only with respect to the spectral measure G0 but also with respect

to the spectral measures GN with a sufficiently large index N. We can get another ex-

planation of the estimate (8.11) by exploiting that the function h0(x1, . . . ,xk) defined

in (8.13) is almost everywhere continuous with respect to the measure G0×·· ·×G0.

It can be shown that the vague convergence has similar properties as the weak con-

vergence. In particular, the above mentioned almost everywhere continuity implies

that

lim
N→∞

∫
h0(x1, . . . ,xk)GN(dx1) . . .GN(dxk) =

∫
h0(x1, . . . ,xk)G0(dx1) . . .G0(dxk).

⊓⊔
Remark. In Lemma 8.3 we proved the convergence of Wiener–Itô integrals with re-

spect to random spectral measures ZGN
corresponding to spectral measures GN on

the Euclidean space Rν under appropriate conditions. There is a natural version of

this result which we get by considering Wiener–Itô integrals k!IGN
(KN) on the torus

of size 2CNπ with some numbers CN → ∞ as N → ∞. To find a good formulation of

the result in this case observe that the torus Rν/2πZν can be identified with the set

[−CNπ,CNπ)ν ⊂ Rν in a natural way. This identification enables us to consider the

spectral measure GN as a measure on [−CNπ,CNπ)ν and the function KN as a func-

tion on this set, which can be extended to a function on Rν , periodic in all of its co-

ordinates with periodicity 2πCN . With such a notation we demand in this version of

Lemma 8.3 that GN
v→ G0, and conditions (a) and (b) hold with these (non-atomic)

measures GN and functions KN . This version of Lemma 8.3 can be proved in almost

the same way. We can reduce its proof to the verification of formula (8.8), and after

this it has no importance whether we work in Rν or in [−CNπ,CNπ)ν .

Now we turn to the proof of Theorem 8.2.

Proof of Theorem 8.2. We want to prove that for all positive integers p, real numbers

c1, . . . ,cp and nl ∈ Zν , l = 1, . . . , p,

p

∑
l=1

clZ
N
nl

D→
p

∑
l=1

clZ
∗
nl
,

since this relation also implies the convergence of the multi-dimensional distribu-

tions. Applying the same calculation as before we get with the help of Lemma 4.6

that
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p

∑
l=1

clZ
N
nl
=

1

AN

p

∑
l=1

cl

∫
∑

j∈BN
nl

ei( j,x1+···+xk) ZG(dx1) . . .ZG(dxk),

and
p

∑
l=1

clZ
N
nl

∆
=

∫
KN(x1, . . . ,xk)ZGN

(dx1) . . .ZGN
(dxk)

with

KN(x1, . . . ,xk) =
1

Nν

p

∑
l=1

cl ∑
j∈BN

nl

exp

{
i

(
j

N
,x1 + · · ·+ xk

)}

= fN(x1, . . . ,xk)
p

∑
l=1

cl χ̃nl
(x1 + · · ·+ xk). (8.14)

with the function fN defined in (8.5) and the measure GN defined in (8.2), The

function χ̃n(·) denotes again the Fourier transform of the indicator function of the

unit cube
ν

∏
j=1

[n( j),n( j)+1), n = (n(1), . . .n(ν)).

Let us define the function

K0(x1, . . . ,xk) =
p

∑
l=1

cl χ̃nl
(x1 + · · ·+ xk)

and the measures µN on Rkν by the formula

µN(A) =
∫

A
|KN(x1, . . . ,xk)|2GN(dx1) . . .GN(dxk),

A ∈ B
kν and N = 0,1, . . . . (8.15)

In the case N = 0 G0 is the vague limit of the measures GN .

We prove Theorem 8.2 by showing that Lemma 8.3 can be applied with these

spectral measures GN and functions KN . (We choose no exceptional rectangles Pj

in this application of Lemma 8.3.) Since GN
v→ G0, and KN → K0 uniformly in all

bounded regions in Rkν , it is enough to show, beside the proof of Lemma 8.1, that the

measures µN , N = 1,2, . . . , tend weakly to the (necessarily finite) measure µ0 which

is also defined in (8.15), (in notation µN
w→ µ0), i.e.

∫
f (x)µN(dx)→ ∫

f (x)µ0(dx)
for all continuous and bounded functions f on Rkν . Then this convergence implies

condition (b) in Lemma 8.3. Moreover, it is enough to show the slightly weaker

statement by which there exists some finite measure µ̄0 such that µN
w→ µ̄0, since

then µ̄0 must coincide with µ0 because of the relations GN
v→ G0 and KN → K0 uni-

formly in all bounded regions of Rkν , and K0 is a continuous function. This implies

that µN
v→ µ0, and µ0 = µ̄0.

There is a well-known theorem in probability theory about the equivalence be-

tween weak convergence of finite measures and the convergence of their Fourier

transforms. It would be natural to apply this theorem for proving µN
w→ µ̄0. On the
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other hand, we have the additional information that the measures µN , N = 1,2, . . . ,
are concentrated in the cubes [−Nπ,Nπ)kν , since the spectral measure G is con-

centrated in [−π,π)ν . It is more fruitful to apply a version of the above mentioned

theorem, where we can exploit our additional information. We formulate the follow-

ing

Lemma 8.4. Let µ1,µ2, . . . be a sequence of finite measures on Rl such that µN(R
l \

[−CNπ,CNπ)l) = 0 for all N = 1,2, . . . , with some sequence CN → ∞ as N → ∞.

Define the modified Fourier transform

ϕN(t) =
∫

Rl
exp

{
i

(
[tCN ]

CN

,x

)}
µN(dx), t ∈ Rl ,

where [tCN ] is the integer part of the vector tCN ∈ Rl . (For an x ∈ Rl its integer part

[x] is the vector n ∈ Zl for which x(p)−1 < n(p) ≤ x(p) if x(p) ≥ 0, and x(p) ≤ n(p) <
x(p)+ 1 if x(p) < 0 for all p = 1,2, . . . , l.) If for all t ∈ Rl the sequence ϕN(t) tends

to a function ϕ(t) continuous at the origin, then the measures µN weakly tend to a

finite measure µ0, and ϕ(t) is the Fourier transform of µ0.

I make some comments on the conditions of Lemma 8.4. Let us observe that if

the measures µN or a part of them are shifted with a vector 2πCNu with some u∈Zl ,

then their modified Fourier transforms ϕN(t) do not change because of the periodic-

ity of the trigonometrical functions ei( j/CN ,x), j ∈ Zl . On the other hand, these new

measures which are not concentrated in [−CNπ,CNπ)l , have no limit. Lemma 8.4

states that if the measures µN are concentrated in the cubes [−CNπ,CNπ)l , then the

convergence of their modified Fourier transforms defined in Lemma 8.4, which is

a weaker condition, than the convergence of their Fourier transforms, also implies

their convergence to a limit measure.

Proof of Lemma 8.4. The proof is a natural modification of the proof about the

equivalence of weak convergence of measures and the convergence of their Fourier

transforms. First we show that for all ε > 0 there exits some K = K(ε) such that

µN(x : x ∈ Rl , |x(1)|> K)< ε for all N ≥ 1. (8.16)

As ϕ(t) is continuous at the origin there is some δ > 0 such that

|ϕ(0, . . . ,0)−ϕ(t,0, . . . ,0)|< ε

2
if |t|< δ . (8.17)

We have

0 ≤ Re [ϕN(0, . . . ,0)−ϕN(t,0, . . . ,0)]≤ 2ϕN(0, . . . ,0) (8.18)

for all N = 1,2, . . . . The sequence in the middle term of (8.18) tends to

Re [ϕ(0, . . . ,0)−ϕ(t,0, . . . ,0)]

as N → ∞. The right-hand side of (8.18) is a bounded sequence, since it is conver-

gent. Hence the dominated convergence theorem can be applied for the functions
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Re [ϕN(0, . . . ,0)−ϕN(t,0, . . . ,0)]. Then we get because of the condition CN → ∞
and relation (8.17) that

lim
N→∞

∫ [δCN ]/CN

0

1

δ
Re [ϕN(0, . . . ,0)−ϕN(t,0, . . . ,0)]dt

=
∫ δ

0

1

δ
Re [ϕ(0, . . . ,0)−ϕ(t,0, . . . ,0)]dt <

ε

2

with the number δ > 0 appearing in (8.17). Hence

ε

2
> lim

N→∞

∫ [δCN ]/CN

0

1

δ
Re [ϕN(0, . . . ,0)−ϕN(t,0, . . . ,0)]dt

= lim
N→∞

∫ (
1

δ

∫ [δCN ]/CN

0
Re [1− ei[tCN ]x

(1)/CN ]dt

)
µN(dx)

= lim
N→∞

∫
1

δCN

[δCN ]−1

∑
j=0

Re
[
1− ei jx(1)/CN

]
µN(dx)

≥ limsup
N→∞

∫

{|x(1)|>K}

1

δCN

[δCN ]−1

∑
j=0

Re
[
1− ei jx(1)/CN

]
µN(dx)

= limsup
N→∞

∫

{|x(1)|>K}

(
1− 1

δCN

Re
1− ei[δCN ]x

(1)/CN

1− eix(1)/CN

)
µN(dx)

with an arbitrary K > 0. (In the last but one step of this calculation we have exploited

that 1
δCN

[δCN ]−1

∑
j=0

Re [1− ei jx(1)/CN ]≥ 0 for all x(1) ∈ R1.)

Since the measure µN is concentrated in {x : x ∈ Rl , |x(1)| ≤CNπ}, and

Re
1− ei[δCN ]x

(1)/CN

1− eix(1)/CN

=
Re
(

ie−ix(1)/2CN

(
1− ei[δCN ]x

(1)/CN

))

i(e−ix(1)/2CN − eix(1)/2CN )

≤ 1∣∣∣∣∣sin

(
x(1)

2CN

)∣∣∣∣∣

≤ CNπ

|x(1)|

if |x(1)| ≤CNπ , (here we exploit that |sinu| ≥ 2
π |u| if |u| ≤ π

2
), hence we have with

the choice K = 2π
δ

ε

2
> limsup

N→∞

∫

{|x(1)|>K}

(
1−
∣∣∣∣

π

δx(1)

∣∣∣∣
)

µN(dx)≥ limsup
N→∞

1

2
µN(|x(1)|> K).

As the measures µN are finite the inequality µN(|x(1)| > K) < ε holds for each in-

dex N with a constant K = K(N) that may depend on N. Hence the above inequality
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implies that formula (8.16) holds for all N ≥ 1 with a possibly larger index K that

does not depend on N.

Applying the same argument to the other coordinates we find that for all ε > 0

there exists some C(ε)< ∞ such that

µN

(
Rl \ [−C(ε),C(ε)]l

)
< ε for all N = 1,2, . . . .

Consider the usual Fourier transforms

ϕ̃N(t) =
∫

Rl
ei(t,x)µN(dx), t ∈ Rl .

Then

|ϕN(t)− ϕ̃N(t)| ≤ 2ε +
∫

[−C(ε),C(ε)]

∣∣∣ei(t,x)− ei([tCN ]/CN ,x)
∣∣∣µN(dx)

≤ 2ε +
lC(ε)

CN

µN(R
l)

for all ε > 0. Hence ϕ̃N(t)−ϕN(t)→ 0 as N → ∞, and ϕ̃N(t)→ ϕ(t). (Observe that

µN(R
l) = ϕN(0)→ ϕ(0)< ∞ as N → ∞, hence the measures µN(R

l) are uniformly

bounded, and CN → ∞ by the conditions of Lemma 8.4.) Then Lemma 8.4 follows

from standard theorems on Fourier transforms. ⊓⊔
We return to the proof of Theorem 8.2. We apply Lemma 8.4 with CN = N and

l = kν for the measures µN defined in (8.15). Because of the middle term in (8.14)

we can write the modified Fourier transform ϕN of the measure µN as

ϕN(t1, . . . , tk) =
p

∑
r=1

p

∑
s=1

crcsψN(t1 +nr −ns, . . . , tk +nr −ns) (8.19)

with

ψN(t1, . . . , tr) =
1

N2ν

∫
exp

{
i

1

N
(( j1,x1)+ · · ·+( jk,xk))

}

∑
u∈BN

0

∑
v∈BN

0

exp

{
i

(
u− v

N
,x1 + · · ·+ xk

)}
GN(dx1) . . .GN(dxk)

=
1

N2ν−kα L(N)k ∑
u∈BN

0

∑
v∈BN

0

r(u− v+ j1) · · ·r(u− v+ jk), (8.20)

where jp = [tpN], tp ∈ Rν , p = 1, . . . ,k.

The asymptotical behaviour of ψN(t1, . . . , tk) for N → ∞ can be investigated by

the help of the last relation and formula (8.1). Rewriting the last double sum in the

form of a single sum by fixing first the variable l = u−v ∈ [−N,N]ν ∩Zν , and then

summing up for l one gets



100 8 Non-central Limit Theorems

ψN(t1, . . . , tk) =
∫

[−1,1]ν
fN(t1, . . . , tk,x)dx

with

fN(t1, . . . , tk,x)

=

(
1− [|x(1)N|]

N

)
· · ·
(

1− [|x(ν)N|]
N

)
r([xN]+ j1)

N−α L(N)
· · · r([xN]+ jk)

N−α L(N)
.

(In the above calculation we exploited that in the last sum of formula (8.20) the

number of pairs (u,v) for which u− v = l = (l1, . . . , lν) equals (N − |l1|) · · ·(N −
|lν |).)

Let us fix some vector (t1, . . . , tk) ∈ Rkν . It can be seen with the help of for-

mula (8.1) that for all ε > 0 the convergence

fN(t1, . . . , tk,x)→ f0(t1, . . . , tk,x) (8.21)

holds uniformly with the limit function

f0(t1, . . . , tk,x) = (1−|x(1)|) . . .(1−|x(ν)|)
a
(

x+t1
|x+t1|

)

|x+ t1|α
. . .

a
(

x+tk
|x+tk|

)

|x+ tk|α
(8.22)

on the set x ∈ [−1,1]ν \
k⋃

p=1

{x : |x+ tp|> ε}.

We claim that

ψN(t1, . . . , tk)→ ψ0(t1, . . . , tk) =
∫

[−1,1]ν
f0(t1, . . . , tk,x)dx,

and ψ0 is a continuous function.

This relation implies that µN
w→ µ0. To prove it, it is enough to show beside

formula (8.21) that

∣∣∣∣
∫

|x+tp|<ε
f0(t1, . . . , tk,x)dx

∣∣∣∣<C(ε), p = 1, . . . ,k, (8.23)

and
∫

|x+tp|<ε
| fN(t1, . . . , tk,x)|dx <C(ε), p = 1, . . . ,k, and N = 1,2, . . . (8.24)

with a constant C(ε) such that C(ε)→ 0 as ε → 0.

By formula (8.22) and Hölder’s inequality
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∣∣∣∣
∫

|x+tp|<ε
f0(t1, . . . , tk,x)dx

∣∣∣∣ ≤C ∏
1≤l≤k, l 6=p

[∫

x∈[−1,1]ν
|x+ tl |−kα dx

]1/k

[∫

|x+tp|≤ε
|x+ tp|−kα dx

]1/k

≤C′εν/k−α

with some appropriate C > 0 and C′ > 0, since ν − kα > 0, and a(·) is a bounded

function. Similarly,

∫

|x+tp|<ε
| fN(t1, . . . , tk,x)|dx ≤ ∏

1≤l≤k, l 6=p

[∫

x∈[−1,1]ν

|r([xN]+ jl)|k
N−kα L(N)k

dx

]1/k

,

[∫

|x+tp|≤ε

|r([xN]+ jp)|k
N−kα L(N)k

dx

]1/k

. (8.25)

It is not difficult to see with the help of Karamata’s theorem that if L(t), t ≥ 1, is a

slowly varying function which is bounded in all finite intervals, then for all numbers

η > 0 and K > 0 there are some constants K1 = K1(η ,K)> 0, and C =C(η ,K)> 0

together with a threshold index N0 = N0(η ,K) such that

L(uN)

L(N)
≤Cu−η if uN > K1, u ≤ K, and N ≥ N0.

Hence formula (8.1) implies that

|r([xN]+ [tlN]) = |r([xN]+ jl)| ≤CN−α L(N)|x+ tl |−α−η

if |x+ tl | ≤ K and N ≥ N0. (8.26)

Relation (8.26) follows from the previous relation and (ref(8.1)) if |[xN]+ [tlN]| ≥
K1. It also holds if |[xN] + [tlN]| ≤ K1, since in this case the left-hand side can be

bounded by the inequality |r([xN]+ [tlN]| ≤ 1, while the right-hand side of (8.26) is

greater than 1 with the choice of a sufficiently large constant C (depending on η and

K1). This follows from the relation |x+ t|−α−η = Nα+η |N(x+ t)|−α−η ≥C1Nα+η

if |[xN]+ [tlN]| ≤ K1, and L(N)≥ N−η .

We get with the help of (8.26) that

∫

|x+tp|<ε

|r([xN]+ jp)|k
N−kα L(N)k

dx ≤ B

∫

|x+tp|<ε
|x+ tp|−k(α+η) dx ≤ B′εν−k(α+η)

∫

x∈[−1,1]ν

|r([xN]+ jl)|k
N−kα L(N)k

dx ≤ B′′.

for a sufficiently small constant η > 0 with some constants B,B′,B′′ < ∞ depending

on η and tp, 1 ≤ p ≤ k.

Therefore we get from (8.25), by choosing an η > 0 such that k(α +η)< ν , that

the inequality
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∫

|x+tp|<ε
| fN(t1, . . . , tk,x)|dx ≤Cεν/k−(α+η)

holds with some C < ∞. The right-hand side of this inequality tends to zero as

ε → 0. Hence we proved beside (8.21) formulae (8.23) and (8.24), and they have the

consequence that ψN(t1, . . . , tk)→ ψ0(t1, . . . , tk). Since ψ(t1, . . . , tk) is a continuous

function relation (8.19) with Lemma 8.4 imply that the measures µN introduced

in (8.18) converge weakly to a probability measure as N → ∞, and as we saw at the

beginning of the proof of Theorem 8.2 this limit measure must be µ0.

Hence we can apply Lemma 8.3 for the spectral measures GN and functions

KN(·), N = 0,1,2, . . . , defined in Theorem 8.2. In this application of Lemma 8.3

we choose no rectangles PN . The convergence GN
v→ G0 follows from Lemma 8.1.

Conditions (a) and (b) also hold with the choice of a sufficiently large number A =
A(ε). The hard point of the proof was the checking of condition (b). This follows

from the relation µN
w→ µ0. Thus we have proved Theorem 8.2 with the help of

Lemma 8.1. ⊓⊔
It remained to prove Lemma 8.1.

Proof of Lemma 8.1. Introduce the notation

KN(x) =
ν

∏
j=1

eix( j) −1

N(eix( j)/N −1)
, N = 1,2, . . . ,

and

K0(x) =
ν

∏
j=1

eix( j) −1

ix( j)
.

Let us consider the measures µN defined in formula (8.15) in the special case k = 1

with p = 1, c1 = 1 in the definition of the function KN(·), i.e. put

µN(A) =
∫

A
|KN(x)|2 GN(dx), A ∈ B

ν , N = 1,2, . . . .

We have already seen in the proof of Theorem 8.2 that µN
w→ µ0 with some finite

measure µ0, and the Fourier transform of µ0 is

ϕ0(t) =
∫

[−1,1]ν
(1−|x(1)|) · · ·(1−|x(ν)|)

a
(

x+t
|x+t|

)

|x+ t|α dx.

Moreover, since |KN(x)|2 →|K0(x)|2 uniformly in any bounded domain, it is natural

to expect that GN
v→G0 with G0(dx)= 1

|K0(x)|2
µ0(dx). But K0(x)= 0 in some points,

and the function K0(·)−2 is not continuous in these points. As a consequence, we

cannot give a direct proof of the above statement. Hence we apply instead a modified

version of this method. First we prove the following result about the behaviour of

the restrictions of the measures GN to appropriate cubes:

For all T ≥ 1 there is a finite measure GT
0 concentrated on (−T π,T π)ν such that
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lim
N→∞

∫
f (x)GN(dx) =

∫
f (x)GT

0 (dx) (8.27)

for all continuous functions f which vanish outside the cube (−T π,T π)ν .

Indeed, let a continuous function f vanish outside the cube (−T π,T π)ν with

some T ≥ 1. Put M = [ N
2T
]. Then

∫
f (x)GN(dx) =

Nα

L(N)
· L(M)

Mα

∫
f

(
N

M
x

)
GM(dx)

=
Nα L(M)

Mα L(N)

∫
f

(
N

M
x

)
|KM(x)|−2µM(dx)

→ (2T )α
∫

f (2T x)|K0(x)|−2µ0(dx)

=
∫

f (x)
(2T )α

|K0(
x

2T
)|2 µ0

(
dx

2T

)
as N → ∞,

because f ( N
M

x)|KM(x)|−2 vanishes outside the cube [−π,π]ν , the limit relation

f (
N

M
x)|KM(x)|−2 → f (2T x)|K0(x)|−2

holds uniformly, (the function K0(·)−2 is continuous in the cube [−π,π]ν ), and

µM
w→ µ0 as N → ∞. Hence relation (8.27) holds if we define GT

0 as the restric-

tion of the measure
(2T )α

|K0(
x

2T )|2 µ0

(
dx
2T

)
to the cube (−T π,T π)ν . The measures GT

0

appearing in (8.27) are consistent for different parameters T , i.e. GT
0 is the restric-

tion of the measure GT ′
0 to the cube (−T π,T π)ν if T ′ > T . This follows from the

fact that
∫

f (x)GT
0 (dx) =

∫
f (x)GT ′

0 (dx) for all continuous functions with support in

(−T,T )ν . We claim that by defining the measure G0 by the relation G0(A) = GT
0 (A)

for a bounded set A and such number T > 1 for which A ⊂ (−T π,T π)ν we get

such a locally finite measure G0 for which GN
v→ G0. The above mentioned vague

convergence is a direct consequence of (8.27) and the definition of G0, but to give a

complete proof we have to show that G0 is really a (σ -additive) measure.

Actually it is enough to prove that the restriction of G0 to the bounded, mea-

surable sets is σ -additive, because it follows then from standard results in measure

theory that it has a unique σ -additive extension to Bν . But this is an almost direct

consequence of the definition of G0. The desired σ -aditivity clearly holds, since if

A =
∞⋃

n=1

An, the set A is bounded, and the sets An, n = 1,2, . . . , are disjoint, then there

is a number T > 1 such that A ⊂ (−T π,T π)ν , the same relation holds for the sets

An, and the σ -additivity of GT
0 implies that G0(A) =

∞

∑
n=1

G0(An).

As GN
v→ G0, and |KN(x)|2 → |K0(x)|2 uniformly in all bounded regions, the

relation µN
v→ µ̄0 holds with the measure µ̄0 defined as µ̄0(A) =

∫
A |K0(x)|2G0(dx),

A ∈ Bν . Since µN
w→ µ0 the measures µ0 and µ̄0 must coincide, i.e.
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µ0(A) =
∫

A
|K0(x)|2 G0(dx), A ∈ B

ν .

Relation (8.4) expresses the fact that ϕ0 is the Fourier transform of µ0.

It remained to prove the homogeneity property (8.3) of the measure G0. For this

goal let us extend the definition of the measures GN given in (8.2) to all non-negative

real numbers u. It is easy to see that the relation Gu
v→ G0 as u → ∞ remains valid.

Hence we get for all fixed s > 0 and continuous functions f with compact support

that

∫
f (x)G0(dx) = lim

u→∞

∫
f (x)Gu(dx) = lim

u→∞

sα L( u
s
)

L(u)

∫
f (sx)G u

s
(dx)

= sα
∫

f (sx)G0(dx) =

∫
f (x)sα G0

(
dx

s

)
.

This identity implies the homogeneity property (8.3) of G0. Lemma 8.1 is proved.

⊓⊔
The next result is a generalization of Theorem 8.2.

Theorem 8.2′. Let Xn, n∈Zν , be a stationary Gaussian field with a correlation func-

tion r(n) defined in (8.1). Let H(x) be a real function with the properties EH(Xn)= 0

and EH(Xn)
2 < ∞. Let us consider the orthogonal expansion

H(x) =
∞

∑
j=1

c jH j(x), ∑c2
j j! < ∞, (8.28)

of the function H(·) by the Hermite polynomials H j (with leading coefficients 1).

Let k be the smallest index in this expansion such that ck 6= 0. If 0 < kα < ν for the

parameter α in (8.1), and the field ZN
n is defined by the field ξn = H(Xn), n ∈ Zν ,

and formula (1.1), then the multi-dimensional distributions of the fields ZN
n with

AN = Nν−kα/2L(N)k/2 tend to those of the fields ckZ∗
n , n ∈ Zν , where the field Z∗

n is

the same as in Theorem 8.2.

Proof of Theorem 8.2′. Define H ′(x) =
∞

∑
j=k+1

c jH j(x) and Y N
n = 1

AN
∑

l∈BN
n

H ′(Xl). Be-

cause of Theorem 8.2 in order to prove Theorem 8.2′ it is enough to show that

E(Y N
n )2 → 0 as N → ∞.

It follows from Corollary 5.5 that EH j(Xn)Hl(Xm) = δ j,l j!(EXnXm)
j = δ j,l j!r(n−

m) j, where δ j,l = 0 if j 6= l, and δ j,l = 1 if j = l. Hence

E(Y N
n )2 =

1

A2
N

∞

∑
j=k+1

c2
j j! ∑

s,t∈BN
n

[r(s− t)] j.

Some calculation yields with the help of this identity and formula (8.1) that
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E(Y N
n )2 =

1

A2
N

[
O(N2ν−(k+1)αL(N)k+1)+O(Nν)

]
→ 0.

(Observe that we imposed the condition ∑c2
j j! < ∞ which is equivalent to the con-

dition EH(Xn)
2 < ∞.) Theorem 8.2′ is proved. ⊓⊔

Let us consider a slightly more general version of the problem investigated in

Theorem 8.2′. Take a stationary Gaussian random field Xn, EXn = 0, EX2
n = 1,

n∈Zν with a correlation function satisfying relation (8.1), and the field ξn =H(Xn),
n ∈ Zν , subordinated to it with a general function H(x) such that EH(Xn) = 0 and

EH(Xn)
2 < ∞. We are interested in the large-scale limit of such random fields. Take

the Hermite expansion (8.28) of the function H(x), and let k be the smallest such

index for which ck 6= 0 in the expansion (8.28). In Theorem 8.2′ we solved this prob-

lem if 0 < kα < ν . We are interested in the question what happens in the opposite

case when kα > ν . Let me remark that in the case kα ≥ ν the field Z∗
n , n ∈ Zν ,

which appeared in the limit in Theorem 8.2′ does not exist. The Wiener-Itô integral

defining Z∗
n is meaningless, because the integral which should be finite to guarantee

the existence of the Wiener–Itô integral is divergent in this case. Next I formulate a

general result which contains the answer to the above question as a special case.

Theorem 8.5. Let us consider a stationary Gaussian random field Xn, EXn = 0,

EX2
n = 1, n ∈ Zn, with correlation function r(n) = EXmXm+n, m,n ∈ Zν . Take a

function H(x) on the real line such that EH(Xn) = 0 and EH(Xn)
2 < ∞. Take the

Hermite expansion (8.28) of the function H(x), and let k be smallest index in this

expansion such that ck 6= 0. If

∑
n∈Zν

|r(n)|k < ∞, (8.29)

then the limit

lim
N→∞

EZN
n (Hl)

2 = lim
N→∞

N−ν ∑
i∈BN

n

∑
j∈BN

n

rl(i− j) = σ2
l l!

exists for all indices l ≥ k, where ZN
n (Hl) is defined in (1.1) with AN =Nν/2, and ξn =

Hl(Xn) with the l-th Hermite polynomial Hl(x) with leading coefficient 1. Moreover,

also the inequality

σ2 =
∞

∑
l=k

c2
l l!σ2

l < ∞

holds.

The finite dimensional distributions of the random field ZN
n (H) defined in (1.1)

with AN = Nν/2 and ξn = H(Xn) tend to the finite dimensional distributions of a

random field σZ∗
n with the number σ defined in the previous relation, where Z∗

n ,

n ∈ Zν , are independent, standard normal random variables.

Theorem 8.5 can be applied if the conditions of Theorem 8.2′ hold with the

only modification that the condition kα < ν is replaced by the relation kα > ν .
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In this case the relation (8.29) holds, and the large-scale limit of the random field

ZN
n , n ∈ Zν with normalization AN = Nν/2 is a random field consisting of indepen-

dent standard normal random variables multiplied with the number σ . There is a

slight generalization of Theorem 8.5 which also covers the case kα = ν . In this re-

sult we assume instead of the condition (8.29) that ∑
n∈B̄N

r(n)k = L(N) with a slowly

varying function L(·), where B̄N = {(n1, . . . ,nν) ∈ Zν : −N ≤ n j ≤ N, 1 ≤ j ≤ ν},

and some additional condition is imposed which states that an appropriately defined

finite number σ2 = lim
N→∞

σ2
N , which plays the role of the variance of the random

variables in the limiting field, exists. There is a similar large scale limit in this case

as in Theorem 8.5, the only difference is that the norming constant in this case is

AN = Nν/2L(N)1/2. This result has the consequence that if the conditions of The-

orem 8.2′ hold with the only difference that kα = ν instead of kα < ν , then the

large scale limit exists with norming constants AN = Nν/2L(N) with an appropri-

ate slowly varying function L(·), and it consists of independent Gaussian random

variables with expectation zero.

The proof of Theorem 8.5 and its generalization that we did not formulate here

explicitly appeared in paper [3]. I omit its proof, I only make some short explanation

about it.

In the proof we show that all moments of the random variables ZN
n converge to

the corresponding moments of the random variables Z∗
n as N → ∞. The moments of

the random variables ZN
n can be calculated by means of the diagram formula if we

either rewrite them in the form of a Wiener–Itô integral or apply a version of the

diagram formula which gives the moments of Wick polynomials instead of Wiener–

Itô integrals. In both cases the moments can be expressed explicitly by means of the

correlation function of the underlying Gaussian random field. The most important

step of the proof is to show that we can select a special subclass of (closed) diagrams,

called regular diagrams in [3] which yield the main contribution to the moment

E(ZN
n )

M , and their contribution can be simply calculated. The contribution of all

remaining diagrams is o(1), hence it is negligible. For the sake of simplicity let us

restrict our attention to the case H(x) = Hk(x), and let us explain the definition of

the regular diagrams in this special case.

If M is an even number, then take the partitions {k1,k2}, {k3,k4},. . . , {kM−1,kM}
of the set {1, . . . ,M} to subsets consisting of exactly two elements, to define the

regular diagrams. They are those (closed) diagrams for which we can choose one of

the above partitions in such a way that the diagram contains only edges connecting

vertices from the k2 j−1-th and k2 j-th row with some 1 ≤ j ≤ M
2

, where {k2 j−1,k2 j}
is an element of the partition we have chosen. If M is an odd number, then there is

no regular diagram.

In Theorems 8.2 and 8.2′ we investigated some very special subordinated fields.

The next result shows that the same limiting field as the one in Theorem 8.2 appears

in a much more general situation.

Let us define the field
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ξn =
∞

∑
j=k

1

j!

∫
ei(n,x1+···+x j)α j(x1, . . . ,x j)ZG(dx1) . . .ZG(dx j), n ∈ Zν , (8.30)

where ZG is the random spectral measure adapted to a Gaussian field Xn, n ∈ Zν ,

with correlation function satisfying (8.1) with 0 < α < ν
k

.

Theorem 8.6. Let the fields ZN
n be defined by formulae (8.30) and (8.1) with AN =

Nν−kα/2L(N)k/2. The multi-dimensional distributions of the fields ZN
n tend to those

of the field αk(0, . . . ,0)Z
∗
n where the field Z∗

n is the same as in Theorem 8.2 if the

following conditions are fulfilled:

(i) αk(x1, . . . ,xk) is a bounded function, continuous at the origin, and such that

αk(0, . . . ,0) 6= 0.

(ii)

∞

∑
j=k=1

1

j!

N−( j−k)α

L(N) j−k

∫

R jν

∣∣∣α j

(x1

N
, . . . ,

x j

N

)∣∣∣
2 1

N2ν

∣∣∣∣∣∣ ∑
j∈BN

0

ei(l/N,x1+···+x j)

∣∣∣∣∣∣

2

GN(dx1) . . .GN(dx j)→ 0,

where GN is defined in (8.2).

Proof of Theorem 8.6. The proof is very similar to those of Theorem 8.2 and 8.2′.
The same argument as in the proof of Theorem 8.2′ shows that because of condi-

tion (ii) ξn can be substituted in the present proof by the following expression:

ξ ′
n =

1

k!

∫
ei(n,x1+···+xk)αk(x1, . . . ,xk)ZG(dx1) . . .ZG(dxk), n ∈ Zν .

Then a natural modification in the proof of Theorem 8.2 implies Theorem 8.6. The

main point in this modification is that we have to substitute the measures µN defined

in formula (8.15) by the following measure µ̄N :

µ̄N(A) =
∫

A
|KN(x1, . . . ,xk)|2

∣∣∣αk

(x1

N
, . . . ,

xk

N

)∣∣∣
2

GN(dx1) . . .GN(dxk),

A ∈ B
kν ,

and to observe that because of condition (i) the limit relation µN
w→ µ0 implies that

µ̄N
w→ |αk(0, . . . ,0)|2µ0. ⊓⊔

The main problem in applying Theorem 8.6 is to check conditions (i) and (ii).

We remark without proof that any field ξn = H(Xs1+n, . . . ,Xsp+n), s1, . . . ,sp ∈ Zν

and n ∈Zν , for which Eξ 2
n < ∞ satisfies condition (ii). This is proved in Remark 6.2

of [9]. If the conditions (i) or (ii) are violated, then a limit of different type may

appear.

Finally we quote such a result without proof. Actually the proof is similar to

that of Theorem 8.2. At this point the general formulation of Lemma 8.3 is useful.
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(See [25] for a proof.) Here we restrict ourselves to the case ν = 1. The limiting

field appearing in this result belongs to the class of self-similar fields constructed in

Remark 6.5.

Let an, n = . . . ,−1,0,1, . . . , be a sequence of real numbers such that

an =C(1)n−β−1 +o(n−β−1) if n ≥ 0

an =C(2)|n|−β−1 +o(|n|−β−1) if n < 0
−1 < β < 1. (8.31)

Let Xn, n = . . . ,−1,0,1, . . . , be a stationary Gaussian sequence with correlation

function r(n) = EX0Xn = |n|−α L(|n|), 0 < α < 1, where L(·) is a slowly varying

function. Define the field ξn, n = . . . ,−1,0,1, . . . , as

ξn =
∞

∑
m=−∞

amHk(Xm+n). (8.32)

Theorem 8.7. Let a sequence ξn, n = . . . ,−1,0,1, . . . , be defined by (8.31) and

(8.32). Let 0 < kα < 1, 0 < 1−β − k
2
α < 1, and let one of the following conditions

be satisfied.

(a) 0 < β < 1, and
∞

∑
n=−∞

an = 0.

(b) 0 > β >−1.

(c) β = 0, C(1) =−C(2), and
∞

∑
n=0

|an +a−n|< ∞.

Let us define the sequences ZN
n by formula (1.1) with AN = N1−β−kα/2L(N)k/2 and

the above defined field ξn. The multi-dimensional distributions of the sequences ZN
n

tend to those of the sequences D−kZ∗
n(α,β ,a,b,c), where

Z∗
n(α,β ,k,b,c) =

∫
χ̃n(x1 + · · ·+ xk)
[
b|x1 + · · ·+ xk|β + ic|x1 + · · ·+ xk|β sign(x1 + · · ·+ xk)

]

|x1|(α−1)/2 · · · |xk|(α−1)/2W (dx1) . . .W (dxk),

W (·) denotes the white noise field, i.e. a random spectral measure correspond-

ing to the Lebesgue measure, and the constants D, b and c are defined as D =
2Γ (α)cos(α

2
π), and

b= 2[C(1)+C(2)]Γ (−β )sin(β+1
2

π), and c= 2[C(1)−C(2)]Γ (−β )cos(β+1
2

π)
in cases (a) and (b), and

b =
∞

∑
n=−∞

an, and c =C(1) in case (c).



Chapter 9

History of the Problems: Comments

Chapter 1.

In statistical physics the problem formulated in this chapter appeared at the investi-

gation of some physical models at critical temperature. A discussion of this problem

and further references can be found in the fourth chapter of the forthcoming book

of Ya. G. Sinai [34]. (Here and in the later part of Chapter 9 we did not change the

text of the first edition. Thus expressions like forthcoming book, recent paper, etc.

refer to the time when the first version of this Lecture Note appeared.) The first ex-

ample of a limit theorem for partial sums of random variables which is considerably

different from the independent case was given by M. Rosenblatt in [29]. Further

results in this direction were proved by R. L. Dobrushin, H. Kesten and F. Spitzer,

P. Major, M. Rosenblatt and M. S. Taqqu [7], [8], [9], [25], [30], [31], [35], [38].

In most of these papers only the one-dimensional case is considered, i.e. the case

when Rν = R1, and it is formulated in a different but equivalent way. In most of

these works the joint distribution of the random variables A−1
N

Nt]

∑
j=1

ξ j, 0 < t < ∞, was

considered.

Similar problems also appeared in the theory of infinite particle systems. The

large-scale limit of the so-called voter model and of infinite particle branching

Brownian motions were investigated in papers [2], [6], [18], [24]. It was proved

that in these models the limit is a Gaussian self-similar field with a non-typical nor-

malization. The investigation of the large-scale limit would be very natural for many

other infinite particle systems, but in most cases this problem is hopelessly difficult.

The notion of subordinated fields in the present context first appeared at Do-

brushin [7]. It is natural to expect that there exists a large class of self-similar

fields which cannot be obtained as subordinated fields. Nevertheless the present

techniques are not powerful enough for finding them.

The approach to the problem is different in statistical physics. In statistical

physics one looks for self-similar fields which satisfy some conditions formulated

in accordance to physical considerations. One tries to describe these fields with the

help of a power series which is the Radon–Nykodim derivative of the field with

109
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respect to a Gaussian field. The deepest result in this direction is a recent paper

of P. M. Bleher and M. D. Missarov [1] where the required formal power series is

described. This result enables one to calculate several critical indices interesting for

physicists, but the task of proving that this formal expression defines an existing field

seems to be very hard. It is also an open problem whether the class of self-similar

fields constructed via multiple Wiener–Itô integrals contains the non-Gaussian self-

similar fields interesting for statistical physics. Some experts are very skeptical in

this respect. The Gaussian self-similar fields are investigated in [7] and [33]. A more

thorough investigation is presented in [11].

The notion of generalized random fields was introduced by I. M. Gelfand. A

detailed discussion can be found in the book [16], where the properties of Schwartz

spaces we need can also be found.

In the definition of generalized fields the class of test functions S can be substi-

tuted by other linear topological spaces consisting of real valued functions. The most

frequently considered space, beside the space S , is the space D of infinitely many

times differentiable functions with compact support. In paper [7] Dobrushin also

considered the space S r ⊂ S , which consists of the functions ϕ ∈ S satisfying

the additional relation
∫

x(1)
j1 · · ·x(ν) jν

ϕ(x)dx = 0, provided that j1 + · · ·+ jν < r.

He considered this class of test functions, because there are much more continuous

linear functionals over S r than over S , and this property of S r can be exploited

in certain investigations. Generally no problem arises in the proofs if the space of

test functions S is substituted by S r or D in the definition of generalized fields.

Two generalized fields X(ϕ) and X̄(ϕ) can be identified if X(ϕ)
∆
= X̄(ϕ) for all

ϕ ∈ S . Let me remark that this relation also implies that the multi-dimensional

distributions of the random vectors (X(ϕ1), . . . ,X(ϕn)) and (X̄(ϕ1), . . . , X̄(ϕn)) co-

incide for all ϕ1, . . . ,ϕn ∈ S . As S is a linear space, this relation can be deduced

from property (a) of generalized fields by exploiting that two distribution functions

on Rn agree if and only if their characteristic functions agree.

Let S ′ denote the space of continuous linear functionals over S , and let AS ′ be

the σ -algebra over S ′ generated by the sets A(ϕ,a) = {F : F ∈ S ′; , F(ϕ)< a},

where ϕ ∈ S and a ∈ R1 are arbitrary. Given a probability space (S ′,AS ′ ,P), a

generalized field X̄ = X̄(ϕ) can be defined on it by the formula X̄(ϕ)(F) = F(ϕ),
ϕ ∈ S , and F ∈ S ′. The following deep result is due to Minlos (see e.g. [16]).

Theorem. (Minlos.) Let (X(ϕ), ϕ ∈S ) be a generalized random field. There exists

a probability measure P on the measurable space (S ,AS ′) such the generalized

field X̄ =(X̄(ϕ), ϕ ∈S ) defined on the probability space (S̄,AS ′ ,P) by the formula

X̄(ϕ)(F) = F(ϕ), ϕ ∈ S , F ∈ S ′, satisfies the relation X(ϕ)
∆
= X̄(ϕ) for all ϕ ∈

S .

The generalized field X̄ has some nice properties. Namely property (a) in the def-

inition of generalized fields holds for all F ∈S ′. Moreover X̄ satisfies the following

strengthened version of property (b):

(b′) lim X̄(ϕn) = X̄(ϕ) in every point F ∈ S ′ if ϕn → ϕ in the topology of S .
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Because of this nice behaviour of the field X̄(ϕ) most authors define generalized

fields as the versions X̄ defined in Minlos’ theorem. Since we have never needed

the extra properties of the field X̄ we have deliberately avoided the application of

Minlos’ theorem in the definition of generalized random fields. Minlos’ theorem

heavily depends on some topological properties of S , namely that S is a so-called

nuclear space. Minlos’ theorem also holds if the space of test functions is substituted

by D or S r in the definition of generalized fields.

Let us finally remark that Lamperti [22] gave an interesting characterization of

self-similar random fields. Let X(t), t ∈ R1, be a continuous time stationary random

process, and define the random process Y (t) = X(log t)
tα , t > 0, with some α > 0.

Then, as it is not difficult to see, the random processes Y (t), t > 0, and
Y (ut)

uα , t > 0,

have the same finite dimensional distributions for all u > 0. This can be interpreted

so that Y (t) is a self-similar process with parameter α > 0 on the half-line t > 0.

Contrariwise, if the finite dimensional distributions of the processes Y (t) and
Y (ut)

uα ,

t > 0, agree for all u > 0, then the process X(t) = X(et )
eαt , t ∈ R1, is stationary. These

relations show some connection between stationary and self-similar processes. But

they have a rather limited importance in the investigations of this work, because here

we are really interested in such random fields which are simultaneously stationary

and self-similar.

Chapter 2.

Wick polynomials are widely used in the literature of statistical physics. A detailed

discussion about Wick polynomials can be found in [12]. Theorems 2A and 2B are

well-known, and they can be found in the standard literature. Theorem 2C can be

found e.g. in Dynkin’s book [14] (Lemma 1.5). Theorem 2.1 is due to Segal [32]. It

is closely related to a result of Cameron and Martin [4]. The remarks at the end of

the chapter about the content of formula 2.1 are related to [26].

Chapter 3.

Random spectral measures were independently introduced by Cramer and Kol-

mogorov [5], [21]. They could have been introduced by means of Stone’s theo-

rem about the spectral representation of one-parameter groups of unitary operators.

Bochner’s theorem can be found in any standard book on functional analysis, the

proof of the Bochner–Schwartz theorem can be found in [16]. Let me remark that

the same result holds true if the space of test functions S is substituted by D .

There is an object, called the fractional Brownian motion, which is a popular

topic of many investigations, and which can be studied by means of the method of

this chapter. In particular, the results of Chapter 3 imply their existence. A fractional

Brownian motion with Hurst parameter H, 0 < H < 1, is a Gaussian process X(t),
t ≥ 0, with continuous trajectories and zero expectation, i.e. EX(t) = 0 for all t ≥ 0,

and with covariance function RH(s, t) = EX(s)X(t) = 1
2
(s2H + t2H − |t − s|2H) for

all 0 ≤ s, t < ∞. Let us explain that the correlation of a fractional Brownian motion

has a natural representation as the correlation function of the discretized version of

an appropriately defined Gaussian stationary generalized self-similar field. In the
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subsequent argument the representation of (generalized) stationary Gaussian fields

turned out to be very useful.

To find this representation observe that a fractional Brownian motion with Hurst

parameter H has the self-similarity property EX(as)X(at) = a2HEX(s)X(t) for

all a > 0, and simple calculation shows that it also has the following station-

ary increments property: E[X(s+ u)−X(u)][X(t + u)−X(u)] = EX(s)X(t) for all

0 ≤ s, t,u < ∞. Hence we can construct a fractional Brownian motion X(t) by defin-

ing first an appropriate stationary, Gaussian generalized self-similar field X̄(ϕ),
ϕ ∈ S1 in the space of the real valued functions of the Schwartz space, and then

by extending it to a larger parameter set (of functions), containing the indicator

functions χ[0,t] of the intervals [0, t] for all t ≥ 0. Finally we define the process X(t)
as X(t) = X̄(χ[0,t]).

More explicitly, let us define for a parameter α the stationary generalized Gaus-

sian field X̄(ϕ), ϕ ∈ S 1, with zero expectation and spectral density |u|−2α , i.e. put

EX̄(ϕ)X̄(ψ) =
∫

ϕ̃(u) ¯̃ϕ(u)|u|−2α du, and introduce its (discretized) extension to a

function space containing the functions χ[0,t] for all t > 0. Then we have

EX̄(χ[0,s])X̄(χ[0,t]) =
∫

χ̃[0,s](u) ¯̃χ[0,t](u)|u|−2α du =
∫

eisu −1

iu

e−itu −1

−iu
|u|−2α du,

provided that these integrals are convergent.

The above defined generalized fields exist if 2α > −1, and their discretized ex-

tension exists if −1 < 2α < 1. The first condition is needed to guarantee that the

singularity of the integrand in the formula expressing the covariance function is not

too strong in the origin, and the second condition is needed to guarantee that the

singularity of this integrand is not too strong at the infinity even in the discretized

case.

Simple calculation shows that the covariance function of the above defined ran-

dom field satisfies the identity EX̄(ϕa)X̄(ψa) = a−(1+2α)EX̄(ϕ)X̄(ψ), with the

functions ϕa(x) = ϕ(ax), ψa(x) = ψ(ax), and similarly, we have EX(as)X(at) =
a(1+2α)EX(s)X(t) for all a> 0. Besides, the Gaussian stochastic process X(t), t > 0,

has stationary increments, i.e. E[X(s+u)−X(u)][X(t+u)−X(u)] = EX(s)X(t) for

all 0 ≤ s, t,u < ∞. This follows from its construction with the help of a stationary

Gaussian random field.

The above calculations imply that with the choice α = H − 1/2 we get the co-

variance function of a fractional Brownian motion with Hurst parameter H for all

0 < H < 1, more precisely the correlation function of this process multiplied by

an appropriate constant. Indeed, it follows from the stationary increments property

of the process that E(X(t)−X(s))2 = EX(t − s)2, if t ≥ s, and the self-similarity

property of this process implies that EX(s)X(t) = 1
2
[EX(s)2 +EX(t)2 −E(X(t)−

X(s))2] = 1
2
EX(1)2[s2H + t2H −|t − s|2H ].

Actually the results of Chapter 3 also provide a representation of this process by

means of an integral with respect to a random spectral measure. This representation

has the form

X(t) =
∫

eitu −1

iu
|u|−H+1/2Z(du), t > 0,



9 History of the Problems: Comments 113

with the random spectral measure Z(·) corresponding to the Lebesgue measure on

the real line. Here we omit the proof that such a stochastic process also has a version

with continuous trajectories.

Chapter 4.

The stochastic integral defined in this chapter is a version of that introduced by Itô

in [19]. This modified integral first appeared in Totoki’s lecture note [39] in a special

form. Its definition is a little bit more difficult than the definition of the original

stochastic integral introduced by Itô, but it has the advantage that the effect of the

shift transformation can be better studied with its help. Most results of this chapter

can be found in Dobrushin’s paper [7]. The definition of Wiener–Itô integrals in the

case when the spectral measure may have atoms is new. In the new version of this

lecture note I worked out many arguments in a more detailed form than in the old

text. In particular, in Lemma 4.1 I gave a much more detailed explanation of the

statement that all kernel functions of Wiener–Itô integrals can be well approximated

by simple functions.

Chapter 5.

Proposition 5.1 was proved for the original Wiener–Itô integrals by Itô in [19].

Lemma 5.2 contains a well-known formula about Hermite polynomials. The main

result of this chapter, Theorem 5.3, appeared in Dobrushin’s work [7]. The proof

given there is not complete. Several non-trivial details are omitted. I felt even neces-

sary to present a more detailed proof in this note when I wrote down its new version.

Theorem 5.3 is closely related to Feynman’s diagram formula. The result of Corol-

lary 5.5 was already known at the beginning of the XX. century. It was proved with

the help of some formal manipulations. This formal calculation was justified by

Taqqu in [36] with the help of some deep inequalities. In the new version of this

note I formulated a more general result than in the older one. Here I gave a formula

about the expectation of products of Wick polynomials and not only of Hermite

polynomials.

I could not find results similar to Corollaries 5.6 and 5.7 in the literature of prob-

ability theory. On the other hand, such results are well-known in statistical physics,

and they play an important role in constructive field theory. A sharpened form of

these results is Nelson’s deep hypercontractive inequality [28], which I formulate

below.

Let Xt , t ∈ T , and Yt ′ , t ′ ∈ T ′ be two sets of jointly Gaussian random variables on

some probability spaces (Ω ,A ,P) and (Ω ,A ′,P′). Let H1 and H ′
1 be the Hilbert

spaces generated by the finite linear combinations ∑c jXt j
and ∑c jYt ′j

. Let us de-

fine the σ -algebras B = σ(Xt , t ∈ T ) and B′ = σ(Yt ′ , t ′ ∈ T ′) and the Banach

spaces Lp(X) = Lp(Ω ,B,P), Lp(Y ) = Lp(Ω
′,B′,P′), 1 ≤ p ≤ ∞. Let A be a linear

transformation from H1 to H ′
1 with norm not exceeding 1. We define an operator

Γ (A) : Lp(X)→ Lp′(Y ) for all 1 ≤ p, p′ ≤ ∞ in the following way. If η is a homo-

geneous polynomial of the variables Xt ,

η = ∑C
t1,...,ts
j1,..., js

X
j1

t1
· · ·X js

ts , t1, . . . , ts ∈ T,
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then

Γ (A) : η : = ∑C
t1,...,ts
j1,..., js

: (AXt1)
j1 · · ·(AXts)

js : .

It can be proved that this definition is meaningful, i.e. Γ (A) : η : does not depend

on the representation of η , and Γ (A) can be extended to a bounded operator from

L1(X) to L1(Y ) in a unique way. This means in particular that Γ (A)ξ is defined for

all ξ ∈ Lp(X), p ≥ 1. Nelson’s hypercontractive inequality says the following. Let A

be a contraction from H1 to H ′
1 . Then Γ (A) is a contraction from Lq(X) to Lp(Y )

for 1 ≤ q ≤ p provided that

‖A‖ ≤
(

q−1

p−1

)1/2

. (9.1)

If (9.1) does not hold, then Γ (A) is not a bounded operator from Lq(X) to Lp(Y ).
A further generalization of this result can be found in [17].

The following discussion may help to understand the relation between Nelson’s

hypercontractive inequality and Corollary 5.6. Let us apply Nelson’s inequality in

the special case when (Xt , t ∈ T ) = (Yt ′ , t ′ ∈ T ′) is a stationary Gaussian field with

spectral measure G, q = 2, p = 2m with some positive integer m, A = c · Id, where

Id denotes the identity operator, and c = (2m− 1)−1/2. Let H c and H c
n be the

complexification of the real Hilbert spaces H and Hn defined in Chapter 2. Then

L2(X) = H c = H c
0 +H c

1 + · · · by Theorem 2.1 and formula 2.1. The operator

Γ (c · Id) equals cn · Id on the subspace H 2
n . If hn ∈ H n

G , then IG(hn) ∈ Hn, hence

the application of Nelson’s inequality for the operator A = c · Id shows that

(
EIG(hn)

2m
)1/2m

= c−n
(
E(Γ (c · Id)IG(hn))

2m
)1/2m ≤ c−n

(
EIG(hn)

2
)1/2

i.e.

EIG(hn)
2m ≤ c−2nm

(
EIG(hn)

2
)m

= (2m−1)mn
(
EIG(hn)

2
)m

.

This inequality is very similar to the second inequality in Corollary 5.6, only the

multiplying constants are different. Moreover, for large m these multiplying con-

stants are near to each other. I remark that the following weakened form of Nelson’s

inequality could be deduced relatively easily from Corollary 5.6. Let A : H1 →H ′
1

be a contraction ‖A‖= c < 1. Then there exists a p̄ = p̄(c)> 2 such that Γ (A) is a

bounded operator from L2(X) to Lp(Y ) for p < p̄. This weakened form of Nelson’s

inequality is sufficient in many applications.

Chapter 6.

Theorems 6.1, 6.2 and Corollary 6.4 were proved by Dobrushin in [7]. Taqqu proved

similar results in [37], but he gave a different representation. Theorem 6.6 was

proved by H. P. Mc.Kean in [27]. The proof of the lower bound uses some ideas

from [15]. Remark 6.5 is from [25]. As Proposition 6.3 also indicates, some non-

trivial problems about the convergence of certain integrals must be solved when

constructing self-similar fields. Such convergence problems are common in statis-

tical physics. To tackle such problems the so-called power counting method (see
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e.g. [23]) was worked out. This method could also be applied in this chapter. Part (b)

of Proposition 6.3 implies that the self-similarity parameter α cannot be chosen in a

larger domain in Corollary 6.4. One can ask about the behaviour of the random vari-

ables ξ j and ξ (ϕ) defined in Corollary 6.4 if the self-similarity parameter α tends

to the critical value ν
2

. The variance of the random variables ξ j and ξ (ϕ) tends to

infinity in this case, and the fields ξ j, j ∈ Zν , and ξ (ϕ), ϕ ∈ S , tend, after an ap-

propriate renormalization, to a field of independent normal random variables in the

discrete, and to a white noise in the continuous case. The proof of these results with

a more detailed discussion appeared in [10].

In a recent paper [20] Kesten and Spitzer have proved a limit theorem, where

the limit field is a self-similar field which seems not to belong to the class of self-

similar fields constructed in Chapter 6. (We cannot however, exclude the possibility

that there exists some self-similar field in the class defined in Theorem 6.2 with the

same distribution as this field, although it is given by a completely different form.)

This self-similar field constructed by Kesten and Spitzer is the only rigorously con-

structed self-similar field known for us that does not belong to the fields constructed

in Theorem 6.2. I describe this field, and then I make some comments.

Let B1(t) and B2(t), −∞ < t < ∞, be two independent Wiener processes. (We say

that B(t) is a Wiener process on the real line if B(t), t ≥ 0, and B(−t), t ≥ 0, are two

independent Wiener processes.) Let K(x, t1, t2), x ∈ R1, t1 < t2, denote the local time

of the process B1 at the point x in the interval [t1, t2]. The one-dimensional field

Zn =
∫

K(x,n,n+1)B2(dx), n = . . . ,−1,0,1, . . . ,

where the integral in the last formula is an Itô integral, is a stationary self-similar

field with self-similarity parameter 3
4
.

To see the self-similarity property one has to observe that

K(λ 1/2x,λ t1,λ t2)
∆
= λ 1/2K(x, t1, t2) for all x ∈ R1, t1 < t2, and λ > 0

because of the relation B1(λu)
∆
= λ 1/2B1(u). Hence

n−1

∑
j=0

Z j
∆
= n1/2

∫
K(n−1/2x,0,1)B2(dx)

∆
= n3/4

∫
K(x,0,1)B2(dx) = n3/4Z0.

The invariance of the multi-dimensional distributions of the field Zn under the trans-

formation (1.1) can be seen similarly.

To see the stationarity of the field Zn we need the following two observations.

(a) K(x,s, t)
∆
= K(x+η(s),0, t − s) with η(s) = −B1(−s). (The form of η is not

important for us. What we need is that the pair (η ,K) is independent of B2.)

(b) If α(x), −∞ < x < ∞, is a process independent of B2, then

∫
α(x+u)B2(dx)

∆
=

∫
α(x)B2(dx) for all u ∈ R1.
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It is enough to show, because of Property (a) that

∫
K(x+η(s),0, t − s)B2(dx)

∆
=
∫

K(x,0, t − s)B2(dx).

This relation follows from property (b), because the conditional distributions of the

left and right-hand sides agree under the condition η(s) = u, u ∈ R1.

The generalized field version of the above field Zn is the field

Z(ϕ) =−
∫ [

K(x,0, t)
dϕ

dt
dt

]
B2(dx), ϕ ∈ S .

To explain the analogy between the field Zn and Z(ϕ) we remark that the kernel of

the integral defining Zn can be written, at least formally, as

K(x,n,n+1) =
∫

χ[n,n+1)(u)
d

du
K(x,n,u)du,

although K is a non-differentiable function. Substituting the function χ[n,n+1) by

ϕ ∈ S , and integrating by parts (or precisely, considering d
du

K as the derivative of

a distribution) we get the above definition of Z(ϕ).
Using the same idea as before, a more general class of self-similar fields can

be constructed. The integrand K(x,n,n+ 1) can be substituted by the local time of

any self-similar field with stationary increments which is independent of B2. Nat-

urally, it must be clarified first that this local time really exists. One could enlarge

this class also by integrating with respect to a self-similar field with stationary in-

crements, independent of B1. The integral with respect to a field independent of the

field K(x,s, t) can be defined without any difficulty.

There seems to be no natural way to represent the above random fields as ran-

dom fields subordinated to a Gaussian random field. On the other hand, the local

times K(x,s, t) are measurable with respect to B1, they have finite second moments,

therefore they can be expressed by means of multiple Wiener–Itô integrals with re-

spect to a white noise field. Then the process Zn itself can also be represented via

multiple Wiener–Itô integrals. It would be interesting to know whether the above

defined self-similar fields, and probably a larger class of self-similar fields, can be

constructed in a simple natural way via multiple Wiener–Itô integrals with the help

of a randomization.

Chapter 7.

The definition of Wiener–Itô integrals together with the proof of Theorem 7.1 and

Proposition 7.3 were given by Itô in [19]. Theorem 7.2 is proved in Taqqu’s pa-

per [38]. He needed this result to show that the self-similar fields defined in [9] by

means of Wiener–Itô integrals coincide with the self-similar fields defined in [38]

by means of modified Wiener–Itô integrals.
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Chapter 8.

The results of this chapter, with the exception of Theorems 8.5 and 8.7 are proved

in [9]. Theorem 8.5 is proved in [3] and Theorem 8.7 in [25]. The latter paper was

strongly motivated by [30]. Lemma 8.3 is formulated in a more general form than

Lemma 3 in [9]. The present formulation is more complicated, but it is more useful

in some applications. Let me explain this in more detail. The difference between

the original and the present formulation of this lemma is that here we allow that the

integrand K0 in the limiting stochastic integral is discontinuous on a small subset

of Rkν , and the functions KN may not converge on this set. This freedom can be

exploited in some applications. Indeed, let us consider e.g. the self-similar fields

constructed in Remark 6.5. In case p < 0 the integrand in the formula expressing

these fields is not continuous on the hyperplane x1 + · · ·+xn = 0. Hence, if we want

to prove limit theorems where these fields appear as the limit, and this happens e.g.

in Theorem 8.7 then we can apply Lemma 8.3, but not its original version, Lemma 3

in [9].

The example for non-central limit theorems given by Rosenblatt in [29] and its

generalization by Taqqu in [35] are special cases of Theorem 8.2. In these papers

only the special case H2(x) = x2 −1 is considered. Later Taqqu [38] proved a result

similar to Theorem 8.2′, but he needed more restrictive conditions. The observation

that Theorem 8.2′ can be deduced from Theorem 8.2 is from Taqqu [35].

The method of [29] and [35] does not apply for the proof of Theorem 8.2 in the

case of Hk(x), k ≥ 3. In these papers it is proved that the moments of the random

variables ZN
n converge to the corresponding moments of Z∗

n . (Actually a different

but equivalent statement is established in these papers.) This convergence of the

moments implies the convergence ZN
n

D→ Z∗
n if and only if the distribution of Z∗

n is

uniquely determined by its moments.

Theorem 6.6 implies that the 2n-th moment of a k-fold Wiener–Itô integral be-

haves similarly to the 2kn-the moment of a Gaussian random variable with zero ex-

pectation, it equals e(kn logn)/2+O(n). Hence some results about the so-called moment

problem show that the distribution of a k-fold Wiener–Itô integral is determined by

its moments only for k = 1 and k = 2. Therefore the method of moments does not

work in the proof of Theorem 8.2 for Hk(x), k ≥ 3.

Throughout Chapter 8 I have assumed that the correlation function of the under-

lying Gaussian field to which our fields are subordinated satisfies formula (8.1). This

assumption seems natural, since it implies that the spectral measure of the Gaussian

field satisfies Lemma 8.1, and such a condition is needed when ZGN
is substituted

by ZG0
in the limit. It can be asked whether in Theorem 8.2 formula 8.1 can be sub-

stituted by the weaker assumption that the spectral measure of the Gaussian field

satisfies Lemma 8.1. This question was investigated in Section 4 of [9]. The investi-

gation of the moments shows that the answer is negative. The reason for it is that the

validity of Lemma 8.1, unlike that of Theorem 8.2, does not depend on whether the

spectral measure G has large singularities outside the origin or not. The discussion

in [9] also shows that the Gaussian case, that is the case when Hk(x) = H1(x) = x in
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Theorem 8.2, is considerably different from the non-Gaussian case. A forthcoming

paper of M. Rosenblatt [31] gives a better insight into the above question.

The limiting fields appearing in Theorem 8.2 and 8.6 belong to a special subclass

of the self-similar fields defined in Theorem 6.2. These results indicate that the self-

similar fields defined in formula (6.7) have a much greater range of attraction if

the homogeneous function fn in (6.7) is the constant function. The reason for the

particular behaviour of these fields is that the constant function is analytic, while

a general homogeneous function typically has a singularity at the origin. A more

detailed discussion about this problem can be found in [25].
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[n(p),n(p)+1), where n = (n(1), . . . ,n(p))

⊖ The orthogonal completion of a subspace of a Hilbert space

˜ Fourier transform

∗ Convolutions
∆
= Identity in distribution

⇒ Stochastic convergence∫ ′
Wiener–Itô integral with respect to a random orthogonal measure

[x] Integer part of a real number x
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Abstract:

Chapter 1

We formulate the main problems discussed in this paper together with the most im-

portant notions needed in their discussion. In particular, we introduce the notion of

generalized random fields and also explain at a heuristic level why their introduc-

tion is useful for us. We finish this chapter with a sub-chapter that contains a short

summary about some useful results in the theory of generalized functions.

Chapter 2

We introduce the notion of Wick polynomials which are natural multi-variate ver-

sions of Hermite polynomials. We present their most important properties, and with

their help we give a decomposition of the Hilbert space of square integrable random

variables measurable with respect to a stationary Gaussian random field to the direct

sum of orthogonal, shift invariant subspaces.

Chapter 3

We present the correlation function of a Gaussian stationary field as the Fourier

transform of a spectral measure and construct with its help a (Gaussian) random

spectral measure. Then we express a stationary Gaussian field itself as the Fourier

transform of this random spectral measure. We also describe the most important

properties of spectral and random spectral measures. The proofs heavily depend on

a classical result of analysis about the representation of so-called positive definite

functions as the Fourier transform of positive measures and on its version about gen-

eralized functions. Hence we finish this chapter with a sub-chapter where we discuss

these results, called Bochner and Bochner–Schwartz theorems in the literature.

Chapter 4

Here we introduce the multiple Wiener–itô integrals with respect to a Gaussian ran-

dom spectral measure and prove some important results about them.

Chapter 5

Here we prove the most important result about multiple Wiener–Itô integrals, the

so-called diagram formula together with some of its consequences. In the diagram

formula we rewrite the product of Wiener–Itô integrals in the form of a sum of

Wiener–Itô integrals and also give a formula (with the help of some diagrams) about

the calculation the kernel-functions of the integrals appearing in this sum.

Chapter 6

We give a complete characterization of the so-called subordinated random fields of a

stationary Gaussian random field. This result enables us to construct new, non-trivial

(subordinated) self-similar random fields, i.e. such random fields which may appear

as the limit random field in limit theorems. To tell whether the formulas defining

these subordinated random fields are meaningful or not we have to decide whether

certain classical integrals are convergent or divergent. Hence this chapter contains

some results in this direction.
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Chapter 7.

Here we discuss the original Wiener–Itô integrals with respect to a random orthogo-

nal measure. We give their most important properties and also present some results

about their relation to the Wiener–Itô integrals with respect to a random spectral

measure and to the classical Itô integrals of stochastic processes.

Chapter 8.

Here we present some non-trivial limit theorems where the limit is a non-Gaussian

self-similar field. The results of the previous chapters may explain at a heuristic

level why such results should hold. But a rigorous proof demands much extra work

whose consequences may be interesting in themselves.

Chapter 9.

Here we summarize the content of the previous chapters. We explain the history of

the results, give the necessary references to them, and also discuss the underlying

motivations. We also present some results which are related to the subject of this

work only in an indirect way, but they give a better insight into it.


