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Summary: This paper discusses an interesting result of Latala [3] about the
tail behaviour of Gaussian polynomials. I found it useful to present a new,
more detailed version of Latata’s rather concise proof by putting emphasis on
its main ideas. I applied several ideas of the original work, but introduced
some different arguments as well. I tried to explain the method of the proof
by discussing the picture behind its most important steps.

1. Introduction. Formulation of the main results.

In this paper the following problem studied in Latata’s paper [3] will be revisited.

Let us have a multilinear form
A(U’la SR ,Ud) = A(d)(ub s ,Ud)
= > ali,. .. ig)ui(ir) - - - ug(ia) (L.1)

(i1,0ia): 1<i5<ny, 1<j<d

of order d in the space of vectors (u1,...,uq) where u; = (u;(1),...,u;(n;)) € R",
and R" is the Euclidean space with some prescribed dimension n;, 1 < j < d, defined
with the help of a set of real numbers A(d) = A(d|n1,...,nq) = {a(i1,...,iq), 1 <i; <
?’Lj, 1 S] S d}

Beside this, let us also have d independent standard Gaussian random vectors
G; = (9;(1),...,g9j(n;)) of dimension n;, 1 < j < d, and define with the help of
the multilinear form (1.1) and these Gaussian random vectors the Gaussian random
polynomial

Y(A) = Y(A(d)) = 3 a(in, ..., ia)gi(i1) - .. ga(iq) (1.2)

(115000s8a): 1<4;<n;, 1<j<d

of order d. We want to give a good estimate on the tail distribution P(|Y (A)| > x) for
all x > 0 under appropriate conditions on the multilinear form A(-) defined in (1.1).
Naturally, it belongs to the problem to find the right conditions under which useful
results can be proved.

Some estimates can be proved about the tail distribution of Gaussian polynomials
and so-called degenerate U-statistics under the condition that their variance is bounded
by a known constant, (see [5]), and these results are in a sense sharp. On the other hand,
they can be improved if we have some useful additional information about the behaviour
of the multi-linear form (1.1). Latala proved an interesting result in this direction in
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paper [3]. He found the right conditions under which a good estimate can be given
about the tail-distribution P(|Y (A)| > x). Similar questions can be also asked about
degenerate U-statistics, and Adamczak proved in [1] some results in this direction. But
the essential step in the study of such problems is to find the proof (and formulation)
of the right estimates for the tail distribution of Gaussian polynomials. The adaptation
of such results to U-statistics is rather a technical problem.

Hence I restrict my attention to Latala’s work. I discuss its proof and present a
version of it. I do this, because in my opinion some steps of the proof in [3] would
deserve a more detailed explanation. The main result of this work is formulated in
Theorem 3, and it is proved by means of backward induction. The explanation of this
induction procedure seems to be too short. In particular, its last step when we turn
from [ = 1 to [ = 0 should be explained in more detail, because here we have to apply
an argument different from that in the other steps. It demanded of me much effort to
settle this point, and the original paper yielded little help in it.

To formulate Latala’s result I introduce some notations. Let us introduce the linear
functional
Aw) = A(d,v) = > a(iy, ... iq)v(iy, - iq) (1.3)
(il,...,’id): 1§ij§n]‘, 1§j§d
in the space of all real valued functions v(iy,...,i4) defined on the n-tuples (i1, ...,iq),
1 <i; <nj, 1 <j<d, where the coefficients a(i1,...,74) agree with those in (1.1)

Let us also introduce the class P = P, of all partitions of the set {1,...,d}. We
shall define a class of finite sequences of functions with the help of these partitions,
and the conditions of Latala’s result will be formulated with their help. To avoid some
repetitions in further discussions I define these quantities in a slightly more general
form.

Let us have a finite subset K C {1,2,...,} of the positive integers together with
a function bg (i;, j € K), 1 <i; <mnj, j € K, and the numbers n;, j € K, which tell
which values the arguments of the function B (ij, j € K, 1 < j <nj, j € K) can take.
We define with their help, similarly to the quantity A(v), the linear functional

Bk (v) = > bi(ij, 1 <ij; <nj, j e Kw(ij, 1<i; <nj,jeK)
(ij,J€K): 1<i;<nj, jEK
(1.4)
in the space of functions v(i;, 1 <i; <nj, j € K).

Let P(K) denote the set of all partitions of the set K, and given a partition P =
{A1,..., A} € P(K) of s elements together with the positive integers n;, j € K,
appearing in the definition of the sets P(K) let us define with their help the following
set Gp of sequences of functions (vy,vs,...,vs):

Gp = {(Ul(ija 1<i;<nj,j€A1),...,vs(ij, 1< i <y, j € Ag)):

(1.5)
Z vf(ij,jeAr)gl foralllgrgs}

(’il,...,ij)t ].Sij S?’ijjeAq«



if P={A;,...,As} € P(K). Let us have a linear functional B (v) of the form (1.4)
together with the coefficients bx (-) taking part in its definition. Then we define with
the help of the class of functions Gp introduced in (1.5) the following quantity V (P, Bk)
for all partitions P € P(K).

V(P,Bk) =V(P,bk(")

(V15eeey vs)EGP 1<r<s
(1.6)
for a partition P = {A;,...,As} € P(K). In this formula the same coefficients
br(i;, 1 <i; <nj, je€ K) appear as in (1.4).

Given a partition P = {Ay,...,As} € P(K) let |P| = s denote its cardinality. In
the remaining part of this section I restrict my attention to partitions P € Py of the set
{1,...,d} and to the case when the linear functional A(v) defined in formula (1.3) is
considered. In this case the quantity introduced in (1.6) will be denoted as V (P, A) =
V (P, (a(-)). Let us define with its help the numbers

as =as(A) = sup V(P,A) foralll<s <d. (1.7)
P: PEPy, |P|=s

The main result of Latala we discuss in this paper can be formulated with the help of
the quantities o, 1 < s < d, introduced in (1.7). It states the following inequalities.

Theorem 1. The moments of the Gaussian random polynomial Y (A(d)) defined in
formula (1.2) satisfy the inequality

2M
B(Y(A(d)? < (c<d> 1Iga§d(Ms/2as)) (18)
for all d > 2 and M = 1,2,... with the quantities o defined in (1.7) and a con-

stant C'(d) depending only on the order d of the Gaussian polynomial Y (A(d)). As a
consequence,

T 2/s
P(Y (A(d))] > ) < C(d) exp {—ﬁ i, (—) } (1.9)

Qg
for all d > 2 and x > 0 with some constant C(d) depending only on d.

Remark 1. Latala’s paper also contains a similar lower bound for the moments and
probabilities in (1.8) and (1.9). These bounds state that the estimates in this formulas
are essentially sharp, only the value of the parameter C'(d) can be improved in them.
The proof of these lower bounds is considerably simpler. They have a complete proof
in [3], hence I omit their discussion.

Remark 2. In the subsequent estimations some constants C, C1, C(d) etc. will appear in
different formulas. The same letter may denote different constants in different formulas.

3



It will be important that these constants are universal, depending at least of the order
d of the Gaussian polynomial we are considering. There will be some places in our
discussion where the constants in different formulas have to be compared. The necessary
considerations will be taken at these points.

Remark 3. The dimension n; of the Euclidean spaces R"/ where the appropriate vectors
take their values plays no role in our considerations. It is exploited in some arguments
that they are finite, but their value will be not important for us. At several points where
it makes no problem I shall omit the parameters n; from the formulas. By means of
some limiting procedure one can get results in the case when n; = oo, i.e. when we
consider infinite series of independent standard Gaussian random variables instead of
Gaussian polynomials in (1.2).

Remark 4. Another interesting modification of Theorem 1 is the result one gets when
such random polynomials are estimated where the independent Gaussian random vectors
Gj; = (g;(1),...,95(n;)), 1 < j < d, in formula (1.2) are replaced by such Gaussian
random vectors G; which consist of the first n; elements of the same sequence G =
(9(1),9(2),...), of independent standard normal random variables for all 1 < j < d.
An estimate similar to Theorem 1 for such modified Gaussian random polynomials
can be obtained by means of paper [2]. The main difference between the original and
the new result is that in the new case so-called Wick polynomials take the role of
traditional polynomials. Wick polynomials are the natural multivariate versions of
Hermite polynomials. The appearance of Wick polynomials in this result is related to
the fact that paper [2] deals only with U-statistics. Hence the result of this paper can
be applied only for such Gaussian polynomials Y (A) defined in (1.2) where summation
is taken for coordinates (i1,...,iq) with the restriction i; # i;, if j # j'. One can get
rid of this restriction in the summation by means of an appropriate limiting procedure
during which the Wick polynomials appear. I do not discuss here the details of such a
procedure.

In the following Theorem 1A I formulate a formally weaker version of Theorem 1.
But actually, as I shall show these two results are equivalent. Since Theorem 1A is
technically simpler, this result will be proved.

Theorem 1A. Let the Gaussian polynomial Y (A(d)), d > 2, defined in (1.2) be such
that the expressions ag, 1 < s < d, defined in (1.7) satisfy the inequality

oy =g (A) < M~6=Y2 foralll1 <s<d (1.10)
with some positive integer M. Then
EY (A(d)*™ < C(a)M MM (1.11)

with a constant C(d) > 0 depending only on the order d of the Gaussian polyno-
mial Y (A(d)).



Theorem 1A states that if a Gaussian polynomial Y (A(d)) satisfies condition (1.10)
then its 2M-th moment satisfies such an estimate as the 20/ -th moment of a standard
normal random variables multiplied by a constant.

The deduction of Theorem 1 from Theorem 1A. Let us consider the random variable
Y (A(d)) and the number 2M which is the moment we consider in formula (1.8). Let

us define with their help the constant D(M) = 1rila§d<M (s=1)/2q,) and introduce

the Gaussian polynomial D(M)~'Y (A(d)) defined in formula (1.2) with coefficients
D(M)~ta(iq,...,iq). This polynomial satisfies relation (1.10), hence by Theorem 1A
relation (1.11) also holds for it. This means that EY (A(d))?M < (C(d)D(M)?>M )M

which is equivalent to relation (1.8) in Theorem 1.

Relation (1.9) follows from relation (1.8) in the standard way. By the Markov

inequality P(|Y (A(d))| > z) < 2 2MEY (A(d))?*M for arbitrary M = 1,2,.... Choose
2/s

M Lglslgd <elC) as] if v > KC(d) min as, where [-] denotes integer part, C'(d) is
the same constant which appears in (1.8), and K = K (d) is a sufficiently large constant
depending only on d. In this case we get from relation (1.8) that P(|Y (A(d))] > z) <
e~M which implies relation (1.9) with the constant K2C(d)? if x > KC(d) 11<1qi£1d Q.
On the other hand, if x < KC(d) 1r<n12d o, and the constant K was chosen Sufﬁci_ently
large, then the right-hand side of relation (1.9) (with the previously chosen constant
K?2C?(d) as the number ‘C(d)’ in (1.9)) is larger than 1. Hence relation (1.9) holds also
in this case.

This paper consists of eight sections and an Appendix. In Section 2 the proof of
Theorem 1A is reduced to a result called the Basic estimate by means of a conditioning
argument. In Section 3 this Basic estimate is proved in the special case d = 2. In
Section 4 a result of paper [3] is recalled about the estimation of the cardinality of an
appropriate e-net in a metric space with some nice properties. In Section 5 a result called
the Main inequality is presented, and it is shown that the Basic estimate follows from
it. In Section 6 two results, Lemma 6.1 and Lemma 6.2 are formulated. They provide
a good partition of certain sets of functions which play crucial role in the proof of the
Main inequality. The proof of these lemmas is based on some estimates formulated in
Lemma 6.3. Lemma 6.3 together with its proof is also given in Section 6. Lemmas 6.1
and 6.2 are proved in Section 7. Finally the Main inequality is proved in Section 8 by
means of the results in Section 6. Since in Section 4 I apply a terminology essentially
different from that of [3] I found better not to refer to the original proofs of the results
presented here, but to describe them instead. This is done in the Appendix. In such a
way I wanted to make this paper self-contained.

The proofs of this paper apply several ideas of Paper [3]. But since the notation
and the formulation of the results in these two works are very different I do not give a
complete comparison, I only briefly explain which results of these two paper correspond
to each other.



2. The application of a conditioning argument.

In this section a conditioning argument is applied to reduce the proof of Theorem 1A
to the verification of a result called the Basic estimate.

To carry out this conditioning argument let us define the Gaussian random vector

Yy(u) = Yy(u, A) = > ait, ... ig)ui(i1) ... ug—1(iq—1)ga(ia)
(i1y0eia): 1<i;<nj, 1<j<d
(2.1)
for all vectors v = (u1,...,u4-1), u; = (u;(1),...,u;(n;)), 1 < j < d-1, and a
standard Gaussian vector Gg = (g4(i1),...,94(nq)). The coefficients a(iy,...,iq) in

formulas (1.1) and (2.1) are the same. Actually in formula (2.1) we took the multilinear
form (1.1) and replaced the vector u4 by the standard normal random vector G4 in it.

We want to estimate the moments of the random variables Y (A(d)) introduced
in (1.2). This can be done by means of the following conditioning argument.

E(Y (A(d))*™|ga(1) = ug(1), ..., ga(na) = ua(nq))

oM
= Z a(il, Ce ,id)gl (Zl) .. .gd_l(id_l)ud(id)
(il ..... id): lgijgnj, lgjgd
Hence
EY (A(d)*™ = EY (A(d), M, Gy), (2.2)
where

Y(A(d), M,uq)

2M
ng
=E|) > a(i, ..., ia)g1(01) - - ga—1(ia—1) | ualia) ;
1g=1 (’il ..... idfl): 1§ij§ﬂj,1§j§d—l
or in an equivalent form
Y (A(d), M, ug)
2M 2.3
2.3
=F Z bug(i1s -+ 3a-1)91(i1) - - - ga—1(id—1)
(i1, 8a—1): 1<i;<n;, 1< <d~1
with
ng
buy(iv, - vig—1) = Y ali1, ... ia)ualia), (2.4)
ia=1
where ug = (ugq(1),...,uq(ng)) is an arbitrary vector in R™.
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Next I formulate a result called the Basic estimate. Its proof will be the main
subject of the subsequent sections. Here I prove that Theorem 1A follows from it. To
formulate it first I introduce the quantity

Zd = Zd(A) = sup Yd(u), (25)

u:(u1 ..... ud_l):UjGan,lngd—l

where the (Gaussian) random variables Y;(u) were defined in (2.1). Here and in the

subsequent part of the paper B™ denotes the unit ball in the Euclidean space R™ with

the usual Euclidean norm, i.e. B™ = {(u(1),...,u(n)): > u(j)? < 1}. It will be shown
j=1

that Theorem 1A follows from the following result.

Basic estimate. If the linear form A(v), d > 2, introduced in (1.3) is such that the
quantities s defined in (1.7) satisfy the condition (1.10) with some positive integer M,
i.e. as = as(A) < M=6=D/2 for qll 1 < s < d, then the estimate

EZ2M = EZ,(A)M < cMp—(d-2DM (2.6)
holds with a constant C' = C(d) depending only on d.

Remark. The above formulated Basic estimate is closely related to Theorem 2 in [3].
The main difference between them is that Theorem 2 in [3] gives an estimate only
for the expected value EZ4(A) and not for the higher moments of Z;(A). Thus our
result is, — at least formally, — sharper. But actually estimate (2.6) follows from the
result of [3] and an important concentration inequality of Ledoux about the supremum
of Gaussian random variables which will be recalled in Section 3. The reason for the
present formulation of the Basic estimate was that I wanted to show that the so-called
chaining argument applied in its proof also supplies the estimate (2.6) for d > 3, i.e.
we do not need Ledoux’s inequality in this case. Surprisingly, we need it just in the
simplest case d = 2, when the proof is given by means of a simple and natural direct
calculation instead of the chaining argument.

We shall estimate EY (A(d))?*™ with the help of relations (2.2) and (2.3) by induc-
tion with respect to d for all d > 2. Let us first consider the case d = 2.

If the linear form A(2)(ui,us2) in (1.1) (with d = 2) is defined with the help of a
set of numbers {a(i,j) 1 <i<mnq, 1 <j <ns}, then we can write

2M
Y (A(2),M,u2) = E Z Za(i,j)uz(j) 91(i)
1= J= 2 o
=1-3----. 2M—-1) | E Z Za(z‘,j)u2(j) 91 (1)



—1-3.--.. (2M — 1) a(i, j)uz(j) (2.7)
i=1 \j=1
2M
mnq no
—1-3..... (2M — 1) sup Z Za(i,j)u1(i)u2(j) 5
ur=(u1(1),..,ur(na)): i €B™ Gy 5y
where ug = (uz(1),...,u2(n2) € R, uy = (u1(1),...,u1(n1)) € B™, and B™ denotes

ny

the unit ball of the Euclidean space R™, i.e. we demand that > wu;(i)*> < 1. By
i=1

relations (2.2), (2.7), the definition of the quantity Z;(A) and the Basic estimate

EY,(A(2))*M < 2MYMEZy(A(2)*M < cMM

if a1(A) <1 and ap(A) < M~Y2 ie. if the conditions of the Basic estimate hold for
d = 2. Thus we have proved Theorem 1A with the help of the Basic estimate in the
case d = 2.

In the case d > 3 Theorem 1A will be proved by means of induction. During this
induction procedure we assume that Theorem 1A holds for 2 < d’ < d — 1, and the
Basic estimate holds for 2 < d’ < d.

First the expression Y (A(d), M, ug) will be estimated. This expression, defined in
(2.3) is the 2M-th moment of a Gaussian polynomial of order d — 1 which is defined
similarly to Y (A) introduced in formula (1.2) only with the coefficients by, (i1, .. .,%4-1)
introduced in (2.4) instead of a(i,...,74). Hence, as we shall show, they satisfy the
following inequality.

M
Y (A(d), M,ug) < max (V(P,Bud)2M<|P‘—1>> (CM)M

PePg_1 (2 8)
<CM 3" V(P,B,,)"MMPM '

PePg_1

with some constant C = C(d), where V (P, B,,) was defined in (1.6) for partitions
PePyqie K={1,...,d—1}, and the numbers b, (i1,...,i4—1) introduced in (2.4)
play the role of the coefficients b (-) in formulas (1.4) and (1.6).

Y (A(d),M,uq)

max (V(P,By,)MUPI-1)/2)2M
PePg_1

such a Gaussian polynomial which satisfies the conditions of Theorem 1A with param-
eter d — 1. Hence Theorem 1A with parameter d — 1 (which holds by our induction
hypothesis) implies the first inequality in (2.8). The second inequality of (2.8) is obvi-
ous.

Indeed, the expression equals the 2M-th moment of

By relations (2.2) and (2.8)

EY (A(d)*™ <c™ Y~ EV(P,Bg,)* MI"IM,
PePg_1
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where V (P, Bg,) is the random variable we get by replacing the vector ug4 by the random
vector Gg = (ga(1),...,94(nq)) in the expression V (P, B,,). Hence to complete the
proof of the Theorem 1A it is enough to show that under the conditions of Theorem 1A

EV(P,Bg,)™M < cMp~UPI=DM  for all P e P({1,...,d —1}) (2.9)

with a constant C' = C(d). This result can be proved with the help of the Basic estimate.

To prove formula (2.9) take a partition P = {A;,..., A} € Py_q1 with |P| = s
elements. With such a choice

V(P,Bg,) =  sup > aliv,... ia) [] or(i, § € Ar)galia). (2.10)

(v1,ees, vs)EGP (41,0 ria) r=1

In formula (2.10) the class of functions Gp, where the supremum is taken is defined
in (1.5) with the partition P we have fixed, and (g4(1), ... , ga(nq)) is an ng dimensional
standard normal vector. The 2M-th moment of the right-hand side expression in (2.10)
can be bounded by means of the Basic estimate with s+1 = |P|+1 < d parameters (i.e.
the number |P|+ 1 takes the role of the parameter d in this case) if the vectors (i;, j €
A,), A, € P, are considered as one variable for all 1 <7 < s. The condition of the Basic
estimate formulated in (1.10) holds with such a choice, and we get inequality (2.9) in
such a way.

We have reduced the problem we want to solve to the proof of an inequality formu-

lated in the Basic estimate, where certain moments of a supremum sup Ya(u)
uEBM1 X---x B"d—1

of Gaussian random variables are bounded. The random variables Y;(u) in this formula
were defined in (2.1), and B™ denotes the unit ball in R™. In the study of such problems
it is worth introducing the metric p(u,v) = [E(Yy(u) — Y4(v))?]/? on the parameter set
of the random variables we are considering. This leads to the definition of the following
pseudometric p, in the space R™ X --- x R"™4-1,

Pa(t,v) = pa((u1, ..., ug-1), (V1,...,v4-1))

::W@ﬁ@—&ﬁ@fﬁQ:(E{ > ait,...,i4)

1<e;<n;,1<5<d

2\ 1/2
(w1 (1) - - ug—1(ig—1) — vi(iq) - - 'Ud—l("d—l))g(id)} > (2.11)

=(Z[ S i i)

1<ig<ng -1<i;<n;,1<j<d-1
2\ 1/2
(ur(i) - tar(ia—1) —vl(m---vdl(idl))] )

for all pairs of vectors u = (u1,...,uq—1) and v = (v1,...,v4-1), u; € R", v; € R",
1<j<d—1.



It is useful to give a different characterization of the above introduced metric p,.
For this goal let us define the pseudonorm «

a(v) = ag(v) = ag(v(it, ..., i4-1))

:[ > ( > a(z‘l,...,id)v(ih..,Jd_l))T/? (2.12)

1<ig<ng M<ij<ng, 1<j<d—1

in the linear space of the functions v = v(i1,...,94-1), 1 <i; < n;, 1 <j < d-1
Clearly,

pal(ur, .. ug—1), (v1,. ., v4-1)) = ag(u1 @+ @ug—1 — V1 @+ @vg—1)  (2.13)

where the function u; ® -+ ® ug—; with arguments (i1,...,iq-1), 1 < i; < n; for all
1 <j<d-1isdefined as u3 ® -+ @ ug_1(i1,.--,0q—1) = u1(i1) - - ug—1(ig—1), and
v1 ® - ®vg_1 is defined similarly.

The above representation of the metric p, turned out to be useful. In the study of
the Basic estimate we have to find a good e-net for certain subsets of B! x --- x B™d~1
with respect to the metric p, for small € > 0. The representation of the metric p,
by formulas (2.12) and (2.13) may help in finding good e-nets. This question will be
discussed in detail in the subsequent sections. But before doing it I prove the Basic
estimate together with some related results we need in our discussion in the special case
d = 2. This case is considered separately, because the formulation of the results and
their proof for d = 2 are different from those in the general case.

3. The proof for Gaussian polynomials of order 2.

In this section the Basic estimate will be proved for Gaussian polynomials of order
d = 2. It will be proved as the consequence of a more general result called the Main
inequality in the case d = 2. A result called the Main inequality will be formulated
in Section 5 for all dimensions d > 3. The crucial point in the proof of Theorem 1A
is the verification of this result. The Main inequality in the case d = 2 formulated in
this section can be considered as a version of this result. But there are some differences
between their formulation, and they must be considered separately. The Basic estimate
for d = 2 could have been proved directly. I prove it with the help of the Main inequality
in the case d = 2, because the latter result is also needed in the discussion of the case
d > 3. To formulate it I introduce some notations.

We shall work with some expressions A(v) and Y, which are the quantities defined
in (1.3) and (2.1) in the special case d = 2. Let us write them down in more detail.

These terms depend on a set of numbers A = A(2) = {a(i,j), 1 <i<n;, 1 <j<
na}. The first of them is the linear functional

A(v) = A(2,0) = Y ali, j)v(i, j)

ihj

10



in the space of all functions v(7, j) with arguments 1 < i <mnj, 1 < j < ny. This is the
expression (1.3) in the case d = 2. The expression (2.1) can be written as

Y (u) = Ya(u) = ) ali, j)u(i)gz(7),
4,7
with u = (u(1),...,u(n1)), where (g2(1),...,g2(n2)) is a standard normal random vec-
tor.

Let us observe that in the case d = 2 the quantity a;(A) defined in (1.7) can be
written as

1/2

ai(A) = sup > ali j(i,g) = | Y ali,j)? | . (3.1)
v(ing): Y v(ing)?<1 4 ij

i)
Let us also introduce the function

0 1/2

az(u) = Z(Za(z}j)u(i)) = sup > ali, jui)v())

g i v=(v(1),...,v(n2)): > v(§)2<1 4

for all vectors u = (u(1),...,u(ny)) € R™.

Let us fix some positive integer M, and define for all N > 0 the following subset
Uy = UN(M) of R™,

Uy = Un(M) = {u= (u(l),...,u(n))): uw€ B, and as(u) <27 VM~12}. (3.2)
I formulate with the help of the above notations the following result.

The Main inequality in the case d = 2. Let a1(A) < 1. Then the inequality

92(N+A4) pr

E { sup Y(u)] < (C-2%

u: ueUpn

92(N+A4) pr

(3.3)

holds for all integers N > 0, M > 1 and A > 1 with C' = 2, where the sets Uy were
defined in (3.2).

Proof of the Main inequality in the case d = 2. This result will be proved with the help
of the concentration inequality of Ledoux about the supremum of Gaussian random
variables. (See [4] Theorem 7.1.) First I show that under the condition a;(A) <1

E sup Y(u) | <1. (3.4)

i=1

11



Indeed, for all w € Q2

97 1/2

3 2 At o) = |3 | D alta@e) | |

7

since the above expression takes its supremum at the value

>_a(i, §)g(5)(w)

u(i) = ! i 1<i<ny.

2 (Z a(%i)a(i)(@)

i -

J

Hence by the Schwarz inequality and relation (3.1)

E sup Y(u) [ =E| sup Y ali,ju(i)g(j)
u=(u(1),....u(n1)): 3 u(i)?<1 > u(i)2<1

[

97 1/2 97 1/2

— B |3 [ Y alii)90) < |BEY D ali,igl)

=) a(i,j)’ = (4) < L.
i

On the other hand EY (u) = 0 and EY (u)? = ag(u)? < 272N M1 for all u € Uy.
Hence Ledoux’s concentration inequality (see formula 7.4 in [4]) implies that

P(sup
ueUn

The above inequality with partial integration yield for all R > 2 that

Y(u)— E seu[}a Y (u)
u N

> :1:> < 9e~2 N TIME® gL all & > 0.

2R

Y(u)— E squp Y (u)
u N

FE sup
ueUn

= 4R - 2—2NRM—R/ w?P e /2 4y = AR . 272NB)~R(2R — 2)(2R — 4) - - 2
0

o)
2N -1 2
< / 26_2 Mx dillgR
0

S (2RM_1)R2_2NR — (ZRM_12_2N)R.

Relation (3.3) follows from the above inequality with the choice 2R = 22(N+A) A1 N >

0, M > 1, A > 1, and the inequality E sup Y (u) < 1 which is a consequence of
ueUn

relation (3.4).

12



Proof of the Basic estimate for d = 2. Let us apply the Main inequality in the case
d =2 with N =0 and A = 1. Since the conditions of the Basic estimate for d = 2

contain the inequality ap(A) = sup ao(u) < M~1/2 the set Uy agrees with the unit
ueB™
ball B™. Hence the Schwarz inequality and relation (3.3) with the choice N = 0 and

A =1 yield the estimate

oM am\ /2

E sup > ali, juli)g(i)| < |E sup. >~ ali, j)u(i)g(5)
u: ueB™1 T w: uelUp .
(2% 1,7

< 4AM/2 _ 94M
The Basic estimate for d = 2 (with C' = 16 in formula (2.6)) is proved.

4. Estimates on the cardinality of e-nets with respect to nice metrics.

In the Basic estimate the moments of the supremum of a class of Gaussian random
variables are estimated. In such problems it is worth introducing a natural metric
on the set of parameters of the random variables we are considering, by defining the
distance of two points in the parameter space as the square root of the variance of the
difference of the corresponding random variables. It is also useful to find such a subset
of the parameter space with relatively small cardinality which is dense with respect to
this metric. Such an approach leads to the formulation of the following problem.

Given a pseudometric space (X, p) together with a subset Xy C X we want to find
for all € > 0 an e-net of relatively small cardinality in the space Xy with respect to the
metric p, i.e. we want to find a set {z1,...,zxy} C Xy with a relatively small index
N for which 1g}i<nN p(zj,x) < e for all x € Xy. A good e-net can be found by solving

the following p_roT)lem. Let us define an appropriate probability measure p in the space
(X, p) and give a good lower bound on the probability u({y: v € X, p(y,z) < e}) for
all x € Xp and € > 0.

Latata presented two estimates of this kind in Lemmas 1 and 2 of his paper [3].
In Lemma 1 that case is considered when X is the n-dimensional Euclidean space
R"™ X, is the unit ball in this space with respect to the Euclidean metric, and the
pseudometric p = p, is defined by means of a pseudonorm « in R™ in the usual way,
i.e. po(z,y) = a(z —y). Lemma 2 is a multi-linear version of this result. Here the space
X is the product of some Euclidean spaces. We embed it in the tensor product of these
Euclidean spaces in a natural way, and the metric p, in X is defined with the help of
a pseudonorm in this tensor product.

Since these results play an important role in our considerations I recall them in this
paper under the names Proposition 4.1 and Proposition 4.2. I shall apply a notation
different from [3], and it may be hard to compare the results formulated here with their
original version. Hence to make this paper self-contained I present the proof of Latala’s
results in an Appendix.

13



To formulate these results some notations have to be introduced. We denote the
unit ball in the n-dimensional Euclidean space by B™. We introduce a probability
measure [, depending on a parameter ¢ in the Euclidean space R™ in the following
way. Given some number ¢t > 0 let u, ; denote the distribution of the random vector
tG = (tq1,...,tgn) in R™, where g1,..., g, are independent standard normal random
variables.

Proposition 4.1. Let oy and as be two pseudonorms in R™, t > 0 an arbitrary positive
number, x € B™ a vector in the unit ball of R™ and G = (¢1,...,9,) an n-dimensional
standard normal vector. Then

pnt({y: y € R", a1(y —z) < 4Ea;i(tG), az(y —x) < 4Eas(tG)}) > e 1/2t"

N | —

with the above introduced probability measure fiy, ;.

Remark. In our applications it would be enough to consider a simpler version of Propo-
sition 4.1 where only one pseudonorm «; appears. We formulated a result with two
pseudonorm, because such a result is applied in the proof of Proposition 4.2.

To formulate Proposition 4.2 some additional notations have to be introduced. Let
us consider d Euclidean spaces R™, ..., R"¢ of dimension n;, 1 < j < d, their product
R™ x ... x R™ and their tensor product R™ ® --- ® R™ with some pseudonorm «(-)
in the tensor product. We give an embedding of the product R™* x --- x R™ of these
Euclidean spaces into their tensor product and define with its help a pseudometric p, in
the product space R™ x --- x R™ induced by the pseudonorm « in the tensor product
R ... R",

For the sake of simpler notations we shall represent the Euclidean space R™ as the
space of the real valued functions z = (z(1),...,z(n)) on the set {1,...,n}, the tensor
product R™ ® --- ® R™ of the Euclidean spaces R™, 1 < j < d, as the space of the
real valued functions v (i1, . ..,4q), defined on the set of vectors (i1,...,iq), 1 < i; < nj,
1 < j <d, and the product R™ X --- x R™ as the space of all vectors x = (z1,...,zq),
whose elements are real valued functions z; = (z;(1),...,2;(n;)) onthesets {1,...,n,},
1<j<d

We embed the Euclidean space R™* X - --x R™ in the tensor product R ®- - -® R™d
with the help of the map A(z) = A(z1,...,24) = 21 ®- - - ®x4 from the Euclidean space
R™ x --.x R™ into the tensor product R™ ® ---® R™ where 1 ® - -- ® x4 is defined
for a vector = (z1,...,xq) € R™ X ---x R™ by the formula 1 ® - - - @ x4(i1,...,1q) =
x1(41) - - xq(iq) for all coordinates (i1,...,iq) with 1 <i; <n;, 1 <j <d.

Given a pseudonorm « on the tensor product R™ ® --- ® R"¢ define with its help
the pseudometric p, in the space R™ X --- x R™ by the formula

Pa((xl,---l’d),(yl,---,yd» :O‘(xl K- RQ®xg— U1 ®"'®yd) (41)

for all z = (z1,...,24) € R™ x -+ x R™ and y = (y1,...,y4) € R™ x --- x R". 1
shall call this p, the pseudometric induced by the pseudonorm «.

14



Let us fix some © = (x1,...,24) € B™ X --- x B" in the product of the unit balls
B™i in R™,1 < j <d. In Proposition 4.2 a good lower bound is given on the probability
of a small neighbourhood of such a point z with respect to an appropriately defined
probability measure. More explicitly, the probability fiy,+...4ngt(y: y € R™ X -+ X
R p(z,y) < u) will be bounded from below for all numbers u > 0 with respect to
an appropriately defined Gaussian measure fiy,, 1...4n, ¢+, Where p, is the pseudometric
in R™ x ---x R™ induced by a pseudonorm « in R™ ® ---® R"< by formula (4.1). To
formulate this result some additional notations will be introduced.

Let us consider d independent standard normal vectors G; = (g;(1),...,g;(n;)) of
dimension nj, 1 < j < d, and for all £ > 0 let jiy,,4...4n,,¢ denote the distribution of the
random vector (tG1,...,tGy) in the space R™ X --- x R™. Given a pseudonorm « on

the tensor product R™ ® ---® R™ of the spaces R, 1 < j < d, a number ¢t > 0, some
set I C {1,...,d}, I #0, and a vector x = (x1,...,x4) € R™ X --- x R" we define the
quantity

Wi(a,t) =Fa(z1 @+ ®zq), wherez; =z;ifj¢land z; =tG;ifjel (4.2)

with the previously defined function 2; ® --- ® zg € R™ ® --- ® R™ for (z1,...,24) €
R"™ x ... x R™. In words, we take the function a(x; ®---®x4), replace the coordinates
x; € R" by tG; € R™ for the indices j € I, and take the expected value of the random
variable obtained in such a way. With the help of the above quantities we can formulate
Proposition 4.2.

Proposition 4.2. Let us have a pseudometric p, in the product R™ X --- x R" of
some Fuclidean spaces R™, 1 < j < d, induced by a pseudonorm « in their tensor
product R ® --- ® R"™. Fizx some vector x = (x1,...,2q) € B™ X --- x B in the

product of the unit balls B™ in R", 1 < j < d. The following inequality holds for such
a vector x and an arbitrary number t > 0.

Py 4t t y: y € R™ X - x R™, py(z,y) < Z Wi (a, 4t)
I: IC{1,....d}, I#0

> 2—d€—d/2t2

(4.3)
with the Gaussian probability measure fin, +...4n,+ defined above.
The following corollary of Proposition 4.2 is important for us.
Corollary of Proposition 4.2. Let us have a pseudometric p, in R™ x --- x R™

induced by a pseudonorm « in the tensor product R™ ®---®@ R™ of the Fuclidean spaces

R, 1<j3<d. Let D C B™ x---xB"™ be a subset of the product of the unit balls B™7,

1 < j < d satisfying the property > Wi (a,4t) < u with some fived numbers
Ic{1,...,d}, I#0

0<t<1andu >0 for all x € D. Then there is a constant C > 0 depending only on

the parameter d such that the set D has a 2u-net of cardinality O/t with respect to the

15



pseudometric po. In more detail, this means that there is a set {x(l), e ,a:(N)} cD
with cardinality less than N < e/t such that 1£Qi<11N paz,29)) < 2u for all x € D.
<<

Asa consequence, a set D with the above properties has a partition Uy, ..., Uy with
N < 2€/% elements such that the diameter of all sets Uj, 1 < j <N, is less than or
equal to 4u with respect to the pseudometric pq .

Proof of the Corollary. Let us construct a sequence z(V, 23 . 2V 20) e D, 1 <
j < N, in the following way. Let us choose first a point (") € D in an arbitrary way. If
the points (1), ..., 20) are already chosen, and there are some points z € D such that
pa(z,2P)) > 2y for all 1 < p < j, then we choose an arbitrary point x € D with this
property as U1 If there is no such point, then we finish our procedure at the j-th step.
Let N be the number of points (/) that we could choose in such a way. Observe that
thesets U; = {y: y € R™ x---x R p,(y,29)) <w}, 1 <j < N, are disjoint, because
palzj,z50) >2u for all 1 < 4,5 < N, j # j'. Beside this, fin,4...qny,t(Uj) > 9—dg—d/2t?
by Proposition 4.2 for all 1 < j < N. Hence N < 9ded/2t? < eC/t | Beside this, the
set {:1:(1), e ,:C(N)} is a 2u-net in D, because if there were a point x € D such that

. £n1<nN pa(z,20)) > 2u then we would not finish our procedure at the N-th step.
<j<

The balls R; = {y: y € D, p(y,z;) <2u}, 1 <j < N, provide a covering of D with
sets of diameter less than or equal to 4u with respect to the pseudometric p,. The sets

Jj—1
Ur=Ri,U;=R;\ U Ry, 2<j <N, provide a partition with the desired properties.
=1

Remark. In the proof of the above corollary we applied a rather standard method, well-
known in the literature. In general applications of a result similar to Proposition 4.2
the cardinality of a good e-net of the set B™ x --- x B™ is bounded. Here a slightly
more general result was proved. This corollary gave an estimate about the cardinality
of a good e-net of an arbitrary set D C B™ x --- x B™. For some sets D with nice
properties it provides a much better bound for the cardinality of a good e-net in D than
for the cardinality of a good e-net in B™ x --- x B™4. This observation will be exploited
in our further considerations.

In formula (2.11) we defined a pseudometric p,, in the product R™ x --- x R™-1
of the Euclidean spaces R™, 1 < j < n and in formula (2.12) a pseudonorm « in their
tensor product R™ ®---® R™-!. A comparison of formulas (2.13) and (4.1) shows that
Proposition 4.2 and its corollary can be applied (with parameter d — 1) for the metric
po and norm « defined in (2.11) and (2.12). This fact plays an important role in the
proof of the Basic estimate.
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5. The Main inequality.

In this section I formulate a result that I call the Main inequality and show that the
Basic estimate and in such a way Theorem 1 follows from it. This result is a weaker
version of an inductive statement formulated in the proof of Theorem 3 in [3].

To formulate this result let us fix the parameter d > 3. We shall define appropriate
classes U(r, N) of finite subsets of R"* x --- x R"™¥-1 which depend on two parameters
N and r and have some nice properties. The Main inequality yields an estimate on the

moments of the random variables  sup [Yg(u) — Yy(u')] for the sets U € U(r,N),
uelU,u' e’

where Yy(u) with parameter v € R™ x --- x R™-! is the Gaussian random variable
defined in (2.1). To define these classes of sets U(r, N) some additional quantities have
to be introduced.

We shall work with the linear functional A(v) = A(v,d) defined for functions v €
R™"®---@R™ in formula (1.3) with the help of a set of numbers A = {a(i1,...,iq), 1 <
ip <mp, 1 <p<d}. Let us also recall the definition of the Gaussian random variables
Yy(u) defined in (2.1) for vectors u = (uq,...,uq—1) € R™ x --- x R™~-1 together with
a standard Gaussian random vector G4 = (ga(1),...,g4(nq)). We shall also work with
the quantity pa(u,v), u € R™ X ---x R™~1 and v € R" X ---x R™~1 defined in (2.11).

Beside this, to define the sets U(r, N') we still have to introduce some pseudonorms
& 1, in the spaces R" for all pairs j, k such that 1 < j,k < d —1, j # k, with the help
of the coefficients a(iy,...,1q) appearing in formula (1.3).

For this goal first we introduce the set of constants

DD (i1, yij1sijgns o vda) = Y alin,. . ia)ug(i),
ij: 1§ij§nj (51)

1 <ip <mnp, pe{l,....d} \ {j},

for all vectors u; € R™ and the functional

Bl(LJ])(U)Z Z b,gtjj)(il,...7ij71,ij+17...,id)v(il,...7'1:‘7'71,7:]'4»17...,id)
(i1 5oy — 1T 15eeeria)
1<ip<ngp, pe{l,....d}\{j}

(5.2)
depending on this u; € R" forallve R ®@---® R @ R+ @ --- ® R". The
functional Bq(fj) (v) defined in (5.2) is a special case of the operator Bg(v) introduced
in (1.4) if we choose K = {1,...,d} \ {j} and the coefficient bx(-) are chosen as the
numbers bq(fj)() introduced in (5.1). With such a choice we can introduce the quantity
V (P, B&Jj)) =V(P, bﬁfj()) for all partitions P of the set {1,...,d} \ {j} as the quantity
V(P,Bk) = V(P,bk(-)) defined in (1.6) with this choice K = {1,...,d} \ {j} and
Bg(v) = B&Jj)(v). Let P; ; denote the partition P, = {{k,d}, {{},1 <1 <d-1,l # j,k}
of the set {1,...,d} \ {j}, and define

ajn(u;) =V(Pjx, BY), 1<jk<d—1, k#j u;€R". (5.3)
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It is easy to check that &; x(u;) is a pseudonorm in R™J.

The expression @; (u;) can also be written as

& r(u;) = sup Z a(it, ... iq)u;i(i;)
Up(‘):p€{17~~7d71}\{jak}a'Uk,d('v'): D105t
Z’Uﬁ(ip)él’ pe{l """ d_l}\{jvk}7 Z Ui,d(ik7id)gla
(5.4)

Uk, d(ik; i) 11 p(1p)
pe{l,....d—1}\{j,k}
for any u; = (u;(1),...,u;j(n;)) € R™.

Given an operator A(v) of order d, d > 3, defined in (1.3) and a positive integer M
the following classes of sets U(r, N) = Ua rr,a(r, N) consisting of at most r elements
u € R™ x --- x R™~-1 will be introduced.

U(r,N) =Ua rr,a(r,N)
_ {U = {(w® =@, .. ul ye RM x - x RM 1<t <1}

1<’ <7, dp(ul’) <27V forall 1 <t <o
and1<jk<d—1,j+k, (5.5)

po(u® u®)y < 272N p=@=1/2 foran 1 <t t' <o/,

u® e B" x ... x B™1, foralll<t<r/,

u® — ) e B x ... x BM1 forall1 <t ¢ < r’}

with the above defined @&;j and the quantity p,(-,-) introduced in (2.11).

In the Main inequality we shall prove a moment estimate for the supremum of some
random variables determined with the help of the sets U € U(r, N). It holds under the
condition

o = ag(A) < M~6=D20 foralll1<s<d-—1, (5.6)

where the quantities a, were defined in (1.7).

Remark. In Theorem 1A we needed the slightly stronger condition (1.10) which also
contained the condition ay < M~(@=1/2 for s = d. This condition is missing here.
It is replaced by the inequalities imposed on p, in the definition of the classes of sets
U(r, N). This additional condition of Theorem 1A is needed when we want to prove the
Basic estimate with the help of the Main inequality.

The Main inequality. Let a multilinear form A(-) of the form (1.1) and of order d > 3
satisfy condition (5.6). Take a standard normal random vector G4 = (ga(1), ..., ga(nq))
of dimension ng, and introduce with its help the random variables Yq(u) defined in (2.1)
for all vectors uw = (u1, ..., u4—1), up = (up(1),...,up(ny)) € R™, 1 <p < d—1. There

18



18 a threshold index Ay > 0 and a constant C' > 0 such that for integers r > 1 and
N > 0 the inequality

92(N+A4) pr

92(N+A4) \r

E sup (Ya(u®) = Ya(u®)) < (CM~(@=2)/29(A=N))
u(t):(ugt),...,u((;ll)EU,
=@ W)yeu
(5.7)
holds for all U € U(r,N) and integers A > Ag. The numbers Ay = Ag(d) and C =
C(d) are sufficiently large constants which depend only on d and do not depend on the
parameters v and N .

Let us understand the content of the Main inequality. It provides good estimates for
the moments of the random variables sup (Yy(u®) = Yy(u®))) if U € U(r, N).
u®eU,ut)eU

To get such estimates it was natural to impose a bound on

/2

’ / 1 /
pa(u® u®)) = [E(Yd(u(t)) — Yy(u)))? if u € U and o) e U

in the definition of the sets U € U(r, N). (See formula (2.11).)

To understand the usefulness of such a bound I would recall some estimates in the
literature about the moments of the supremum of Gaussian random variables. It is
known that if g(1), ..., g(r) are jointly Gaussian random variables such that Eg(j) =0

and Fg(j)? <o?foralll1 <j <r then E sup g(j) < Cylogro. (It is also known that
1<j<r

this inequality holds with C' = v/2, but we do not need this fact.) Moreover, Ledoux’s
concentration inequality provides a good estimate for the high moments of sup ¢g(j),
1<5<r
too. In the Main inequality a similar moment estimate is presented for the sﬁ;;emum
of the Gaussian random variables Yy(u®) — Yy(u()). To get a good estimate for this
supremum it is natural to impose a bound on the variances E (Y, (u(0)) =Y (u(1)))2, u(®) €
U, u!) € U. But we want such a bound which does not depend on the parameter r,
i.e. on the number of the Gaussian random variables whose supremum is taken. To get
such a bound in the Main inequality we have imposed some additional conditions in the
definition of the sets U € U(r, N).

It is simple to prove the Main inequality for very large parameters N whose value
may depend on r. But we need this result for the parameter N = 0. The Main
inequality will be proved for a general parameter N by means of an appropriate back-
ward induction. This will be carried out with the help of Lemmas 6.1 and 6.2 formu-
lated in the next section. They enable us to find a good partition Z,..., 2 of a set
U € U(r,N) with a relatively small cardinality L which together with the inequality

2R
E ( sup Zl) <> EZl2R and a good choice of the parameter R provide an estimate
1<I<L =1

19



that enables us to carry out an induction procedure leading to the proof of the Main
inequality.

Theorem 3 of paper [3] is proved by means of a similar backward induction argu-
ment. An essential difference between our proof and that in [3] is that in [3] the expected
value and not the high moments of the supremum of a class of Gaussian random vari-
ables is bounded. But actually these two results are equivalent, because an estimate
on the expected value of such suprema together with Ledoux’s concentration inequality
also supplies an estimate on their high moments. Both here and in [3] the proof is based
on a backward induction. In our case this was done by means of appropriate moment
estimates while in [3] this was proved with the help of an estimate about the expected
value of the supremum of Gaussian random variables formulated in Lemma 3 of that
work.

There are some additional differences between the two works. Thus the formulation
of the inductive hypothesis needed in the proof differs in them. In paper [3] it appears in
the proof of Theorem 3, and it is formulated with the help of two parameters which are
changing during the induction. One of them denoted by [ is similar to our parameter N,
and it is decreasing, the other one denoted by r has the same meaning as in this paper,
and it is increasing during the induction steps. Beside this in [3] the quantity a(u) =

&; i (uj), w= (u1,...,uq—1), was introduced instead of the quantities é&; j.
1<j,k<d—1, j#k
But the main difference between the proof of this paper and that of [3] is that in the
latter work the Basic estimate was proved simultaneously with Theorem 3. This implied
that in that proof the validity of the induction step from [ = 1 to | = 0 (together
with the change of some r to r + 1) also had to be justified. The proof of this step
requires special argument that I did not find in [3]. This caused serious problems for
me. The appearance of a similar problem could be avoided in this paper by means of
the formulation of the Main inequlity.

Now I prove the Basic estimate with the help of the Main inequality.

The proof of the Basic estimate. First we show that under the conditions of the Basic
estimate U € U(r,0) for any set U = {(u¥), 1 < t < r} consisting of 7 vectors
u®) = (ugt), e ,ugll), 1 <t <, such that 2u§t) €eB" foralll<j<d-1,1<t<r.
To show this observe that

po(u®, u")) < po(u, 0) + po(u®), 0)
for all 1 < ¢,t’ < r, where 0 denotes the vector with all coordinates 0, and

pa(u,0) <271 sup pa(u,0)
u:(ul,...,ud,l):
w;€B™i, 1<j<d—1

d—1
— 9—(@d-1) sup Z Z a(iy, ..., id) H u;(ij)
j=1

u:(ul,.,.,ud_l): i . .
3 d T15eyld—1
u;€B™, 1<j<d—1 B

97 1/2
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d
=2 (d-1) sup Z a(iy,...,iq) H ui(ij) =274 Yoy

u=(u1,...,ua): ;. 1
wi€B"s, 1<j<d " ’

< 9—(d=1) jr—(d=1)/2

for all 1 < ¢t < r, and a similar estimate holds for p,(u®?,0). (We have exploited
at this point that the estimate a; < M~06=1/2 3150 holds for s = d.) Beside this
aj,k(ugt)) < tag1 < %M_(d_z)/z, and clearly u® € B" x ... x B™ and u(!) —u()
B™ x ... x B" for all 1 <t¢,t’ <r. The above relations imply that U € U(r,0).

It can be proved with the help of the above fact and the Main inequality with the
choice N = 0 that

22A0 M

240 M
E sup Ya(u) < (C’QQAOM(d_Q)/2> (5.8)

uELB™ X+ X $ BMd—1

with the same number Ay which appears in the Main inequality as the threshold index.

To prove this statement let us list the set of vectors u € %B”l X e X %B”d—l such
that all their coordinates are rational numbers in a sequence u®, ¢t = 1,2,.... Let
u™ = (0,...,0) in this sequence. Let U, = {u(®, 1 <t < r} be the set consisting of
the first r terms of this sequence. Observe that

sup Yy(u) = lim  sup Yy(u®)

u€B™ X...x B"d—1 = e,

Let us apply a weakened form of the Main inequality with N = 0 and A = Ay (we may
assume that Ay > 1) for all above defined sets U,., r = 1,2, ..., where instead of taking
the supremum of all differences Yd(u(t)) — Yd(u(t/)), 1 < t,t' <r we take this supremum
only for pairs (¢,t") with ¢ = 1. In this case Yd(u(t/)) = 0 with probability 1. The series
of inequalities obtained in such a way, (where the upper bound does not depend on 7)
together with the previous identity and the Beppo-Levy theorem imply relation (5.8).
This inequality together with the Holder inequality for p = 22401 yield that

2M

oM _
E sup Ya(u) < <C2A0M(d_2)/2) < CMpg—(d=2)M (5.9)

uELB" X x $ BTd—1

with a universal constant C. Relation (2.6) follows from this inequality. To see this it
is enough to observe that if the condition u € %B”l X oo X %B"d—l is replaced by the
condition v € B™ X ---x B™¥-1_then the inequality remains valid if the right-hand side
is multiplied by 2(@=DM i e, the constant C' is multiplied by 2(¢=1 in (5.9).

Paper [3] contained a result in Theorem 3 which can be considered as a generaliza-
tion of our Basic estimate. Although we do not need it, for the sake of completeness I
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briefly explain how it can be proved with the help of our arguments. First the following
statement will be proved.

A generalized form of the Basic estimate. Let the linear form A(v), d > 3,
introduced in (1.8) and a positive integer M be such that the quantities o introduced
in (1.7) satisfy the condition (5.6), and let the inequality A, (D) < 2M~d=1D/2 pold

for a set D C B™ x---x B"-1 where A, (D)= sup pa(u,u). Then the estimate
ueD,ueD
2M
E (Sup Yd(u)> < oMpr-(d=2)M (5.10)
ueD

holds for the supremum of the random variables Yy(-) defined in (2.1) with a constant
C = C(d) depending only on d.

The proof of the generalized form of the Basic estimate. Let us choose a vector u € D
and define the set D = D(a) = {u: pa(u,a) < M~(@=D/2Y A B™ x ... x B"-1, Since
D C D it is enough to prove that relation (5.10) holds if the set D is replaced by D.
This estimate can be deduced from the Main inequality with parameter N = 0 similarly
to the proof of the Basic estimate only the role of the origin is replaced by the vector
u € D in our consideration. In the proof it is useful to exploit that the random variables
Ya(u) are homogeneous functions of the parameter u. This enables us to restrict our
attention to the case when the vector @ = (@1, ..., Ug—1) satisfies the inequality |u;| < 1
forall1 <j <d-—1,and |u; —u,| < % for all u = (uy,...,uq_1) € Dand 1 <j <d—1.
I omit the details.

The next corollary is equivalent to Theorem 3 of [3].

Corollary of the generalized form of the Basic estimate. Tuke the random
vaiables Yy(u) defined in (2.1) with the help of a multilinear form A(v) of order d > 3.
For all positive integers M the inequality

ueD

d—1
E sup Yy(u) < C(d) (Apa (D)MY/? + ZQS(A)M_(d_s_U/z)
s=1

holds with a constant C(d) depending only on the parameter d for any set D C B™ x

<o x Bt where A, (D) = sup  pa(u,u).
weD, TED

Proof of the Corollary. Put
B = B(M) = sup ( sup CYS(A)M(S_U/Q, 2Apa (D)M(d—l)/2) )
1<s<d—1

The conditions of the generalized form of the Basic estimate hold for the multilinear
form B~1A(v) with the parameter M and the set D. Hence relation (5.10) implies that

2M d—1 2M
E (sup Yd(u)> < ()M (Apa (D)M1/2 4 Z&S(A)M—(d—s—l)/2>
web s=1

This relation together with the Holder inequality imply the corollary.
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6. Some results about the existence of good partitions.

The Main inequality will be proved with the help of Lemmas 6.1 and 6.2 formulated in
this section. They give a good partition of a set U € U(r, N). We would like to find such
a partition Uy,..., Uy of a set U € U(r, N) with a not too large parameter L for which

the diameters A, (U;) = sup pa(u,a) of the sets U; with the metric p, defined
uelUp,uel,

in (2.11) are small, and the sets U; also satisfy some additional useful properties. But we
can prove only a weaker result. We can partition a set U € U(r, N) only to the ‘shifts’
of sets with small diameters, i.e. to sets u) +U;, 1 <1 < L, such that u¥) € U and the
diameters A, (U;) are small. (Observe that the metric p, is not translation invariant.)
Such a result will be formulated in Lemma 6.1. This lemma is not sufficient for our
purposes because of the ‘shift’ terms u(") in the partition constructed in it. Hence we
shall prove a strengthened form of it in Lemma 6.2. This result states the existence of
a partition of a set U € U(r, N) with the properties formulated in Lemma 6.1 together
with some additional properties useful for us. Beside this, the cardinality of a partition
appearing in Lemma 6.2 has a bound similar to that in Lemma 6.1. In the proof of

Lemma 6.2 we shall exploit that u) € U € U(r, N), hence &j’k(ugl)) < 27N p—(d=2)/2,

This means that the vectors u(!) are in some sense small.

Lemmas 6.1 and 6.2 will be proved with the help of the corollary of Proposition 4.2.
To apply this result we need some bound on the quantities W7 («, 4t) appearing in it.
Such bounds will be given in Lemma 6.3 in this section. Lemmas 6.1 and 6.2 can be
considered as a version of Lemma 8 and Lemma 6.3 as a version of Lemmas 5 and 6
in [3].

In the formulation and proof of Lemma 6.2 some new notations are needed. We
define with the help of a vector u € R™ x --- x R™-* and a set I C {1,...,d — 1}
an operator depending on this vector u and set I which is a special case of the class of
operators defined in formula (1.4). We also introduce some quantities corresponding to
this operator which are the analogs of the quantities oy, &k, po defined earlier with
the help of the operator A(v) given in (1.3).

Fixaset I = {j1,...,7s} C {1,...,d—1} with 1 < s < d—2 elements and a vector

u=(uy,...,ug—1) € R™ x .- x R™-1. Let us define with their help the numbers
bi(ij, € {L,..,d}\ )= M2 3" a(iy, . ia) [T uy() (6.1)
(ij, jEI) jel

depending on the vectors (i;, j € {1...,d} \ I) and the linear functional
Bl(v) = > bl(ij, je{1,....d}\ Dv(ij, j€{1,...,d}\I) (6.2)
(i, FE{1 e, d)\T)

acting on the space of functions v = v(i;,,...,i; ) € R™1 ® --- ® R™r, with the set of
indices {j1,...,Jp} ={1,...,d}\ 1.

This operator BZ(v) is a special case of the operators By (v) defined in formula (1.4)
when K = {1,...,d} \ I, and coefficients bx (-) are the numbers b’ (-) defined in (6.1).
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(In the definition of the coefficients bl (i;, j € {1,...,d} \ I) in (6.1) a multiplying
factor M/1/2 was inserted. I applied such a norming factor, because it simplifies the
subsequent calculations.)

We can define the quantities V (P, BL) for all partitions P of the set K = {1,...,d}\
I by formula (1.6) with the choice By (v) = BL(v). Let us also introduce, similarly to
as defined in (1.7), the quantity

aus(I)= sup V(P,Bl), 1<s<d-—|I|, (6.3)
P: |P|=s

where all partitions P of the set {1,...,d} \ I with cardinality s are taking part in
the supremum.In the proof of the later formulated Lemma 6.2 we shall work with the

quantities
aj(u) =V (Prg,BL) forallke{l,...,d—1}\1 (6.4)

defined with the help of formula (1.6), where the operator Bl(v) introduced in (6.2)
plays the role of Bi(v), and the partition Prj of the set {1,...,d} \ I is defined as
Pr={{k,d},{i}, Le{1,...,d =1} \ T U{k})}.

To formulate Lemma 6.2 we introduce a quantity pq: (v,v) defined for all pairs
(v,0), v € R" X -+- x R™-1 and v € R™ X --- x R"-1 with the help of a vector
u € R™ x -+ x R"-1 and set I C {1,...,d—1}, 1 < |I| < d — 2. This is done
similarly to the introduction of p, in (2.11). First we define a version of it defined on

R"1 X - x R"» with {j1,...,jp} = {1,...,d— 1} \ I. Put

ﬁai(m@):(Z{ > bl(i;, j€{1,...,d}\ )

ia “(ij, jE{1,....,d—1}\I)

o\ 1/2 (6.5)
< I wa- 11 @(ij)ﬂ )
JE{1,0d—13\T JE{1,sd—11\T
for pairs of vectors v = (vj,,...,v;,) € R™ X --- x R"r and v = (v;,,...,7;,) €

R x -+ x R"r, where {j1,...,jp} = {1,...,d =1} \ I. Observe that p,: is the
pseudometric induced by the pseudonorm

ai(v) = ai(v(ij,j e{l,...,d—1}\1))

:(Z{ 3 bl(i;, je{1,...,d}\ 1)

ia (i, je{l,d—1)\I) (6.6)
2\ 1/2
v(i;, je{l,...,d—l}\])} )

on the tensor product R™1 ® --- ® R"™»r, where {j1,...,5p} =4{1,...,d—1}\ 1.

We can define the metric p,: in the space R™ x --- X R™~1 with the help of the
metric p,r defined in (6.5). To do this we introduce the following notation. Given a
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vector v = (v1,...,VU4-1) € R™ x---x R™-1* and aset I C {1,...,d—1} let v;e denote
the vector we obtain by omitting the coordinates of the vector v belonging to the set I,
i.e. let vje € R™1 x --- x R™r such that vie = (v, j € {1,...,d —1}\ I). Given two
vectors v = (v1,...,04-1) € R™ x-+-xR™~-* and v = (¥1,...,04—1) € R" x---xX R"4-1
put

Pal (’U, 77) = ﬁa{t (UIC’ ,DIC)' (67)

Now I formulate Lemma 6.1 and its strengthened version Lemma 6.2.

Lemma 6.1. If an operator A of order d > 3 satisfies relation (5.6), then each set
UelU(r,N)=Uana(r,N) has a partition v+ Uy, u® + U, o, wD) + Uy with
L< 9C( MY o1om ents such that U eU(r,N+2) and uh e U foralll <1< L. The
number C(d) depends only on the order d of the operator A.

Lemma 6.2. If an operator A of order d > 3 satisfies relation (5.6), then each set
U € U(r,N) has a partitionu+U;, 1 =1..., L, with L < 2C(DM2*N oloments such that
u) e U, U eU(r,N+2),1<1<L, and it also has the following additional property.
The inequality Pal (u, ) < 272N M~=I=D/2 holds for all sets I C {1,...,d — 1},

1 < |1l <£d -2, and pairs of elements u € Uy and uw € Uy, 1 <1 < L. The vector u® in
this inequality is the same vector which appears in the definition of the element u® + U,
of the partition of U. The quantity py: (-, -) was defined in (6.5) and (6.7).

The partitions satisfying Lemmas 6.1 and 6.2 will be constructed with the help of
the corollary of Proposition 4.2. But to do this we need good estimates on the quantities
Wi (e, t) defined in (4.2) with the pseudonorm « introduced in (2.11). Such estimates
will be given in the following Lemma 6.3. They are essentially different in the cases
|I| > 2 and || = 1.

Lemma 6.3. Let a functional A(v) of order d > 3 defined in (1.3) satisfy condi-
tion (5.6). Then for any vector u = (uy,...,uq—1) € B™ X --- x B"-1 and number
t > 0 the quantities Wi (a,t), I € {1,...,d — 1}, I # 0, defined in (4.2) with the

pseudonorm « introduced in (2.12) satisfy the inequalities

" 1 .
Wl(ayt)ﬁm if 2<|I|<d-1. (6.8)
For a set I = {k} containing one element
Wiin(a,t) <t min &, r(uy), (6.9)

1<5<d—1, j#k

where & (u;) was defined in (5.3). Beside this,

E@j’k(Gj) < C(d)

S @ foralll1 <j k<d-—1, j+#k, (6.10)

where C(d) depends only on d, and G; is a standard normal vector of dimension n;.
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The proof of Lemma 6.3. For any set I C {1,...,d—1}, I # 0 and u € B™ X --x B"-1

o7\ 1/2
Wi, )=E| D | Y. ali,... iaq) 11 u;(i;) [ [ 95 i)
tg  \%1sertd—1 je{1,...,d—1}\I jeI
- 57\ 1/2
S Z Z a(il,...,id) H U](ZJ)HQJ(ZJ)
it \%1sertd—1 je{1,...,d—1}\I jeI
- 07 1/2
= > > aliy, ... iq) 11 (i)
(ip, peTU{d}) \(ij, jE{1,...,d—1}\I) Je{l,...,d—1}\I

sup Z a(il,...,@'d) H

v(lp’peIU{d}) ilr'wi 1 e d—
S w2 (ip, pelU{d})<1 I GE{Leesd—11\I

S V(P17A>7

u; (i)v(ip, p € TU{d})

(6.11)

where Py is the partition Py = {IU{d},{j},1<j<d—1,j ¢ I} of theset {1,...,d},
and V (P, A) is defined in (1.6).

Since the partition P; has d — |I| elements this inequality together with relation
(5.6) imply that for |I] > 2

1
u — 4 Iyu || B
Wi(a,t) =t Wi (a,1) <tajp,(A) < @Dz’
i.e. (6.8) holds. In the case I = {k} we get from the last but one bound in (6.11),
the representation of &;(u;) in formula (5.4) and the choice of an arbitrary point
jeA{l,...,d=1}\{k} that W}*(a, 1) < @; x(u;), and this relation implies formula (6.9).

Inequality (6.10) can be deduced from inequality (2.6) in the Basic estimate with
parameter d — 1 if we write up the expression &; ;(G;) in the form (5.4), (by replacing
the vector u; by G; in it), and consider it as an expression of the form (2.1) with d — 1
variables by taking the pair (k,d) as one variable. Let us observe that relation (5.6)
implies relation (1.10) with parameter d — 1 in this case, hence we may apply the Basic
estimate. Let us apply a reindexation of the arguments by which the j-th variable turns
to the d — 1-th coordinate. The Basic estimate remains valid after such a reindexation.
Since in the proof of Lemma 6.3 for parameter d we may assume that the Basic estimate
holds for d — 1 we get inequality (6.10) from the Basic estimate and the estimate EZ; <
(EZ2M)1/2M which is a consequence of Hélder’s inequality.
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7. The proof of Lemmas 6.1 and 6.2 about the existence of good partitions.

In this section Lemmas 6.1 and 6.2 will be proved with the help of the corollary of
Proposition 4.2 and Lemma 6.3.

The proof of Lemma 6.1. If relation (5.6) holds, then relation (6.10) in Lemma 6.3
implies the inequality Ed;,x(G;) < CM~@=3)/2 for all 1 < j,k < d—1, j # k. Hence
Proposition 4.1 yields the estimate pi,, :(y: y € R™,&;(z —y) < 4CtM—(d=3)/2 >
e~/ for all numbers ¢ > 0, pairs (j,k), 1 < j,k<d—1,j#k, and x € B", where
pn, ¢ denotes the distribution of tG; if G is a standard normal vector of dimension n;.
Hence the corollary of Proposition 4.2 applied for the metric po(z,y) = &; x(z —y) in
the space R™ with the choice D = B™, t = C2-NM~'/2 with an appropriate number
C >0 and u = 2= N+ Ar=(d=2)/2 yields the following result.

For all pairs (j,k), 1 < j,k <d—1, j # k, the unit ball B™ C R™ has a partition
ﬁl(j’k), . ,Ujgj(]kzc) with L(j, k) < eC/t < 202" M glements such that Gy —z) <
2-(N+2) pp—(d=2)/2 if o ¢ Ul(j’k) andy € Ul(j’k) with the same index [. Hence any set U C
B™ x ... x B™-1_in particular any set U € U(r, N) has a partition Ul(j’k), e U&Jki})
with L(j, k) < 202" M glements such that ajn(ry —y;) < 27+ N—d=2)/2 §f o =
(T1,...,T4-1) € Ul(j’k) and y = (y1,...,Yq—1) € Ul(j’k) with the same index 1 < [
L(j,k). Indeed, the sets Ul(j’k) ={y= (1, -, ya—1): y € U, y; € Ul(j’k)}, 1 <1
L(j, k), provide such a partition of U.

The existence of such partitions for all pairs (j, k), 1 < j,k < d—1, j # k, implies
that each set U € U(r, N) has a partition of the form u™ + Uy, u® +0Us, ..., ul + Uy
with L < 20(@M2*" elements such that () € U, and &; 5 (u;) < 27NV F2) pf—(d=2)/2 jf
u=(uy,...,ug—1) € Uy withsome 1 <l < Lforall1 <jk<d-1,j#k.

To show this let us consider for all pairs (j,k), 1 < j,k < d—1, j # k, a partition
Ul(j’k), L UYRof the set U with L(j, k) < 262°"M clements such that & (T —

L(3:k)
yj) <2tifx = (x1,...,24-1) € Ul(J’k) and y = (y1,...,Ya-1) € UZ(J’k) With the same
index | = I(j, k). Take all intersections of the form N Ul((J j’lz)), i.e. take

(.F): 1<5,k<d—1,j#k

all possible intersections which contain exactly one element from each of the above
partitions indexed by the pairs (j, k). By reindexing the sets obtained in such a way
we get a partition Ul, e ﬁL of the set U with L < 9C2*" M olements such that for all
pairs u = (uy,...,uq_1) € U and @ = (@y,...,l%q—1) € U; with the same index | and
1<jk<d—1,j#k, ajr(u;—u;) <2 WN+2N=(@=2)/2 Then choosing an arbitrary
element u(V) € Ul and writing Ul = u) + U, with U; = {u — u®: y e Ul} we get a
partition with the desired property.

It can be shown with the help of the corollary of Proposition 4.2 that each set Uj,
taking part in the above constructed partition u) +U;, 1 <1 < L, of the set U has a par-
tition Uy 1 ..., Uy 1, with L; < 202" M olements such thatpe (u, @) < 272(N+2) pr—(d=1)/2
if w € Uy and u € Uy, with the same parameters [ and p. Indeed, let us choose
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t =2 NM~1/? with a sufficiently small constant 1 > ¢ > 0. Observe that with the
choice of such a number t and a vector u € U; with some index 1 <1 < L we can write
by (6.8)

tH1

Wi (a,t
for all sets I C {1,...,d — 1} such that [I| > 2. For aset I = {k}, 1 <k <d-1,
containing one element we have

: ~ ) —2N a r—(d—1)/2
Wi (a,t) <t 1Sj§1r0rl1i1r11’jﬂ€ ajp(uj) <27 M

by relations (6.9) and &1, (u;) < 2~ N+ N —@=2)/2§f ¢ = (uy,...,ug_1) € U;. Hence

> Wi, 4t) < 272(N+3) pp=(d=1)/2
I ICq{1,...,d—1}, I#0

for a vector u € U; if the parameter ¢ > 0 is chosen sufficiently small. Then an
application of the corollary of Proposition 4.2 for each set U, 1 < I < L with the metric
po and the choice t = 2=V M~1/2 and u = 27 2(V+3) \f—(d=1)/2 ghows that there exists
a partition U; p, 1 < p < Ly, of U, of cardinality L; < 901/t < 2CM2*™ with the desired
property.

Put u?) = u® forall1 <l < Land 1< p < L;, and consider all sets udp) 4 Ulp,
1 <I<L,1<p<L;. A reindexation of these sets provides a partition of the set
U € U(r, N) that satisfies Lemma 6.1. Indeed, these sets provide a partition of the set
U with L < 20M2°™ glements. Beside this, u(?) € U for all indices ! and p. We still
have to check that U; , € U(r, N +2) for all pairs of indices [ and p. The elements of the
sets U, satisfy the desired inequalities for &, and p., and the sets U; ), have at most
r elements. To check that the sets U, , satisfy the remaining properties of the elements
of the class U(r, N +2) observe that for a point u € U, u =% —u® with @ € U, cU
and v € U, hence ©v € B™ x --- x B™-1. The analogous statement also holds for a
difference u — v’ with v € U;, and u’ € Uj ), since such a difference can be written as
the difference of two vectors from the set Ul cU.

The proof of Lemma 6.2. The main step of the proof is the verification of the following
statement formulated in relation (7.1).

Take a partition u) + U, 1 <1 < L, of aset U € U(r, N) that satisfies Lemma 6.1,
and fix one of the vectors (¥ in this partition together with a set I C {1,...,d —
1}, 1 < |I| £ d— 2. There is a partition Vi = Vi(l,I),...,Ve = Vrq,(l,I) with
L(l,I) < 202" M ¢lements of the product of unit balls B"i1 x --. x B™i» with indices
{j1,---,Jr} ={1,...,d — 1} \ I such that

Pat , (0,7) < 972N M~ =I=D/2 if 4 € V, (1, 1) and © € V, (1, 1) 1)

with the same index p,
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i.e. this inequality holds if v and v are contained in the same element of the partition
Vp(l, 1), 1 < p < L(I, 1), of the set B"1 x --- x B"r. The metric p,r(v,v) (with a
general vector u € R™ x --- x R"-1) was defined in formula (6.5).

First the following inequalities will be verified. For all sets I, I C {1,...,d — 1},
1< <d-2

aym (1) < M~E7D/2 foralll <s<d—|I| -1 (7.2)

and
al(uWy <2 Np=@=HI=2/2 for all k e {1,...,d — 1} \ I, (7.3)

where , ¢(I) was defined in (6.3) and &l (u) in (6.4) (for a general vector u).

To check (7.2) let us compare a partition P of {1,...,d} \ I of cardinality |P| = s,
1 < s < d~—|Il —1, with the partition P of the set {1,...,d} we get by attach-
ing all one point sets of I to the elements of the partition P. Then |P| = s +
1], hence V(P,A) < asyr(A) < M~EHI=D/2 by relation (5.6) and V(P Bl,) <
M2y (P, A) < M~(5=1D/2_ Since this relation holds for all partitions P such that
|P| = s this implies (7.2).

Beside this the relation «) € U with an U € U(r, N) implies that dj’k(ug-l)) <

2-NM~(@=2/2 hence af (u®) < MI1/2a;,,(ul") < 27N M~@=1I=2/2 for all j € I and
ke{l,...,d—1}\ I. Thus relation (7.3) also holds.

First we prove the existence of a partition with less than 202°"M glements that
satisfies (7.1) only in the case |I| < d—3. This will be done with the help of the corollary
of Proposition 4.2 when it is applied to the metric ﬁaz(l and the norm af; @ inducing

it. These quantities were introduced in (6.5) and (6.6). In the proof we need good
estimates on the terms Wi (al ), t) defined in (4.2) for all sets K C {1,...,d —1}\ I,
K # 0 and u € B"1 x --- x B™s with a number ¢ chosen as t = ¢2~NM~'/2 with a
sufficiently small constant 1 > ¢ > 0. This quantity will be bounded by means of the
estimates (7.2), (7.3) and Lemma 6.3. More precisely, an equivalent version of Lemma
6.3 will be applied, where B!, (defined in (6.2)) is chosen as the operator A, and as
a consequence o, o) 4(I) defined in (6.3) plays the role of the term a, = a4(A4). This
term must satisfy relation (5.6) to have the right to apply Lemma 6.3. (Actually the
variables of the operator Bi « have to be reindexed if we want to apply Lemma 6.3
in its original form.) The operator Bi(l) acts on the functions on {1,...,d} \ I, on
a set of d — |I| elements, and by relation (7.2) a,u (I) < M=(=D/24f 1 < 5 <
d—|I|—1. This means that formula (5.6) holds for the operator we get by an appropriate
reindexation the indices {1,...,d} \ I of the arguments of Bi(l) to theset 1,...,d—|I|.
An appropriate reindexation is obtained if the elements of the set {1,...,d} \ I are
listed in a monotone increasing order, and the j-th element of this sequence gets the
index j. Such a reindexation of the indices yields a version of Lemma 6.3 that enables
us to estimate the terms Wi (a’,,t). (Originally we get an estimate for a version of
Wit (al ), t) with reindexed parameters by means of a version of B!, with reindexed
parameters.)
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In the application of Lemma 6.3 we still have to understand what &; ;(u;) means
in formula (6.9) if B{N) plays the role of the operator A.

By formula (6.8) in Lemma 6.3 we get that

K]
S Y@ TKD/

Wit (al,t) S < AN NN g < K| <d —|I] - 1.

I claim that relations (6.9) and (7.3) imply that
W{%}(%(mﬁ) < tak(u®) < 272N pp—(d=li=1)/2

for a one point set {k} € {1,...,d — 1} \ I. We get this bound from (7.3) if we show
that a; 1 (u;) < af(u®) for any j € {1,...,d—1}\ I, j # k, with the function &; x(u;)
corresponding to the operator Bi w if u; € B,

This inequality can be seen by giving a good representation of &;x(u;) when it
corresponds to Bi o, instead of A together with a similar representation of &l (uV). An
adaptation of formula (5.4) will be applied to this case. The main difference between
formula (5.4) and the representation of &; x(u;) given below is that in the new formula

we have the fixed functions ug)(-) in the coordinates s € I. In this case we have

ajp(u;) = sup > alin, .- ia)u;(i;)on,a(ix, ia)
0p (), PE{ L0, d=1NTULG kY, via () 5, g,

H ugl)(z's) H O (ip)

sel pef{l,...,d—1}\(1U{j,k})

for a vector u; € R™, where the supremum is taken for such vectors v,(-) depending on
the coordinate iy, p € {1,...,d—1}\ (IU{j,k}), for which >~ v2(i,) < 1 and a function
i

vk.a(, ), depending on the coordinates ix and iq such that > v?(ig,iq) < 1. The
ik,id

expression & (u()) has a similar representation, only in its definition we have to take

supremum also for all vectors v;(-) € B™ in its j-th coordinate instead of fixing a vector

u; € B™ as it was done in the definition of &;x(u;), u; € B™. These observations

imply the desired inequality &;x(u;) < ol (u®).

The above inequalities imply that

Z W}L(az(m#) < 9—2(N—1) pr—(d—|I|-1)/2
J: JC{1,...,d—1I\I, J#0

for all w € B™1 x --- x B"s if the constant ¢ > 0 in the choice t = 2~ N M~/ is suffi-
ciently small. Hence relation (7.1) follows from the corollary of Proposition 4.2 applied
for the metric p,r l induced by the norm ail) with the choice D = B™1 x - .- x B™ir and

t = 2= N M~1/2? with a sufficiently small number ¢ > 0 and u = 2~ 2(V-1 py—(d=[1[=-1)/2,
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In the case |I| = d — 2 we can write I = {1,...,d — 1} \ {k} with an appropriate
k€ {l,...,d —1}. The inequality a;;(u)) < 27V M(@=2)/2 with an arbitrary index
7 € I implies in this case that

> 0L (ks ia)v(ig, ig) < MIVZ2NA=E=2/2 < 97N if N 02 (i dg) < 1,

ik, td ik, td
or in an equivalent form

Z bl (ik,ia)? < 272N, (7.4)
ik,td
where I = {1,...,d —1}\ {k}, and the numbers b/ ,, (i, iq) are defined in (6.1). Let us
also define the pseudonorm

516(1) Z (Z buu) iy 1d)V Zk))

id

97 1/2

of the vectors v = (v(1),...,v(ng)) € R™.
The pseudometric ﬁal(l) defined in (6.5) agrees in this case with the metric induced

by the pseudonorm 61 o - Hence in this case the existence of a partition Vi,..., Vg of
B with L < 202°"M glements and the property Pal (v,9) < 272N M~1/2 ifv,0 € W

with some 1 <[ < L, i.e. relation (7.1) can be proved with the help of the corollary of
Proposition 4.2 and the following estimate on the pseudonorm ﬁu(l).

By the Schwarz inequality and formula (7.4)

- 07 1/2
Eﬁim (Gk) < Z E (Z bi(z) (ik, id)gk (%))
i ik
12 (7.5)
| ki
for a standard normal random vector Gy, = (gr(1),. .., gx(nk)) of dimension ny. Because

of relation (7.5) an application of the corollary of Proposition 4.2 for the operator 3!,
with 4t = 2=NV+2)Ar=1/2 and u = 27 2(V+D A1—1/2 shows the existence of a partition
Vi,..., Vg of B with L < 201/t" < 262°"M glements such that ﬁai(l) (v,0) = 8L, (v—

v) < 27 2WNHDA=1/2 if € V), © € V] with some 1 < < L as we claimed.

Let us fix some u(!) appearing in the partition u® +U;, 1 <1 < L of the set U we are
considering. It follows from relation (7.1) that there exists a partition Vi(l),..., Vg, (1)

of B™ x ... x B"a-1 with L; < 9C2*" M olements such that
por (0,0) < 272N M—@=HI=N/2if 4 € V(1) and © € V,(I) with the same

u(® (7.6)
index p for all I C {1,...,d—1} such that 1 < |I| <d — 2.
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Indeed, it follows from (7.1) and the definition of Pal in (6.5) and (6.7) that
for all sets I C {1,...,d -1}, 1 < |I| < d — 2, there is a partition Vi(I,1), ...,
Via,n(l,I) of B™ x ... x B"-1 depending on [ and I with L([,I) < 202°"M olements
such that por (v,0) < 272N M—(@=I=1/2 i ¢ € V,(I,L) and v € V,(I, L with the

same index p. Then taking all possible intersections N VoI, 1)
I: Te{1,...,d—1}, 1<|T|<d—2

that contain exactly one element from each above introduced partitions depending on

the sets I C {1,...,d—1}, 1 <|I| < d—2, we get a partition of B™ X --- x B™¥-1 that

satisfies (7.6). Let us observe that the number of elements of this partition also can be

bounded from above by 202°"M ith some constant C' > 0.

Let us choose a partition Vi(l),..., Vg, (I) of B™ x --- x B™-1 gsatisfying rela-
tion (7.6) for all vectors u!) taking part in a partition uY) 4+ U, 1 < 1 < L satisfying
Lemma 6.1. Then the ensemble of sets u("P) +(V,(1)NU;), 1 < p < L(1), 1 <1 < L, with
uP) = () constitutes a partition of the set U which, after an appropriate reindexation,
satisfies Lemma 6.2.

8. The proof of the Main inequality.
In this section I prove the Main inequality with the help of Lemma 6.2.

The proof of the Main inequality. First it will be shown that relation (5.7) holds with
an appropriate constant C' = C(d) in it if N > Ny with a sufficiently large threshold
index Ny = Ny(r). To this end let us observe that

E(Yd(u) - Yd(u/))2 = pa(u’ u/)27
hence
E(Ya(u) = Ya(u')*! =1-3- - (2L = 1)pa(u,u')** < (2L) pa(u,u')?*

with the metric p, defined in (2.11) for arbitrary vectors u € R™ X --- x R™-1 4/ €
R™ X .- x R™-1 and L > 1. In particular, with 2L = 22(N+4) p1

BE(Ya(u®) — Yy(u)NZTTIM < (920+A) )22 TTVM/2 (92N r—(d=1)/2)
(2(A—N)M—(d—2)/2)22(N+A)M

92(N+A4) pr

for all u® € U and «(*) € U if U € U(r, N). As a consequence, o
92(N+4) pf
E sup (Ya(u®) = Ya(u™))
(u®,u®)): O eU, ut) eU
< 2 B(Ya(u®) = Ya(u(®))Z "M

(u(t),u(t/)); u(t)GU, u(t/)eU
< 7“2(M_(d—2)/22(A—N))22(N+A>M < (QM_(d_2)/2 . 2(A—N)>22(N+A>M
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if N > Ny(r) with some threshold No(r) and constant C' > 2, i.e. relation (5.7) holds
for N > Ny with C =C(d) > 2 and A > Ay > 0.

Hence it is enough to show that relation (5.7) holds for a set U € U(r, N) if it holds
for all sets U € U(r, N 4+ 2). To show this let us consider such a partition u) + Uy,
1<I< Loftheset U € U(r,N) with L < 9C2*" M olements which satisfies Lemma 6.2.
First the following weaker estimate will be verified.

Let us take an element u® 4 U; of the partition of the set U we consider, and let
us denote it by U;. We will show that

92(N+A) 5 p
sup (Ya(u®) — Yd(u(t/)))
(u(t),u(t/)): u(t>€Ul,u(t/)€Uz (82)

92(N+A) 5 p
< (QM—w—z)/zQ(A—N))
=3

E

for all A > Ay with some threshold index Ay and the same constant C' = C(d) which
appears in (5.7) (with parameter N + 2) if these constant (depending only on the
parameter d) are chosen sufficiently large.

To prove relation (8.2) let us consider two arbitrary vectors u € U; and u’ € Uy,
write them in the form v = u® 4+2© and v’ = u® + ' with v(© ¢ U; and u'® ¢ U;.
We can write the difference Yy(u) — Y (u’) because of the special form of the expression
Yy(u) defined in relation (2.1) as

Ya(u) — Ya(u') = Ya(u® + u©@) — Yy(u® + /) = Vy(u®) — Yy(u' )

4 Z MoH1/2 [Yufm (W@ = v, (u/(m) 7
I IC{1,....d—1},1<|I|<d—2
(8.3)

where

Yo (v) = > by (i, 5 € {1,...,d} \ 1) I[I  wi)gatia)

(ij,J€{1,....,d=1}\I je{l,....,d—1}\I

for all v = (v1(41),...,v4-1(tg—1)) € R™ X --- x R™=1t and I C {1,...,d —1}, 1 <
[I| < d — 2 with the constants b’ (i;, j € {1,...,d} \ I) defined in (6.1). (Here we
apply this formula with the choice u = u,) and (gq(1), ..., ga(ng)) is the same vector
of independent, standard Gaussian random variables which appeared in the definition

of Y(u).)

In the subsequent considerations the following notation will be applied. Given some
vector ut) € Uy, its decomposition to the vector u¥) plus a vector in U; will be denoted
as u® = 4O 4+ 40 with «®9 e U;.

By taking the supremum of the expressions both at the left-hand and right-hand
side of identity (8.3) for all pairs (u(Y), u(*)) such that u®® € U; and u*) € U; we get
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an identity that implies the inequality

sup (YVa(u®) = Ya(u))) < Z + > M2 7,
(w® ut): u® el ut el I IC{1,...,d—1}, 1<|1|<d—2
(8.4)
with
Z=2(,N) = sup (Ya(u®0) = Ya(u0))
(0 u(t.0)): w®) €Uy, w0 €U,
and

Zr=2:(LN) = sup Yo (u") = Yoy ()],

((t:0) (¥ 0)): u(® Uy, ult' -0 el “
forall I C {1,...,d—1} such that 1 < |I| <d— 2.

I claim that
o 92(N+4) pr

EZ2ECOM <Z M—(d—2>/22<A—N>> (8.5)

with the same constant C' = C(d) as in formula (5.7) if A > A with some fixed number
AO = A()(d) Z 0, and

EZ?Q(I\”‘A)M < (C/M—(d—|I|—2)/22(A—N)>22<N+A)M (8.6)

for all I < {1,...,d — 1} such that 1 < |I| < d—2if A > Ay with some universal
constants Ag and C’. Let me emphasize in particular that the constants Ag and C’
in (8.6) do not depend on the choice of the constant C' = C'(d) and threshold index Ag
in (5.7).

Relation (8.5) follows from our inductive hypothesis by which the Main inequality
holds for N + 2 and the fact that U; € U(r, N + 2). Indeed, this inductive hypothesis
together with Holder’s inequality yield that

92(N+A4) pr

pzZ"M _

sup (Ya((u) - Yd<u“”°)>]
((u(t0) 4(t50))): 4, (0 Uy, u*':0) e,

92(N+A+2) 5 1/4

sup (Ya(u®0) = Yy(u® )

((u®0) 4(t,0))): 4, (£:0) Uy, u(t':0) U,

<|E

22(N+4+42) pp 7y 22(N+4) pr

< (Car-ta2/zgamovia) _ (lc M—(d—2>/22<A—N))
= 1

(The reason for applying the induction from N +2 and not from N +1 to N in our proof
is that in such a way we got a coefficient % at the right-hand side of estimate (8.5). An
induction from N + 1 to N would yield only a weaker estimate with multiplying factor
% which would not be sufficient for our purposes.)
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Relation (8.6) will be proved first only in the case 1 < |I| < d — 3. This will be
done with the help of the Main inequality with parameter d — |I| < d — 1. This is
legitime because of our inductive hypothesis. The main inequality will be applied for
the operator B! ;) defined in (6.2) as the operator A and the set of vectors U € U(r, N)

will be chosen as U = U(I) = {u(t 0, (0) ¢ U;}. That is we get the set U by taking the
vectors u = (uq,...,uq—1) € U; and omitting their coordinates indexed by the elements
of the set I. More precisely, we apply the Main inequality for a version of Bi w and
U;(I) we get by renumerating the indices of their coordinates to the sets {1,...,d—|I|}
and {1,...,d —|I| — 1} respectively in an appropriate way. A good way of reindexation
of the coordinates is to list them with monotone increasing indices and to give then the
7-th element the index j.

To apply the Main inequality we have to show that its conditions are satisfied
with such a choice. We have to check that the operator B{L ) satisfies relation (5.6).
(Here d — |I| takes the role of the parameter d.) This statement follows from the
analogous statement for the operator A. Beside this, we have to show that U;(I) €

Ugt Ly M i71(r, N). This can be done with the help of Lemma 6.2.

The estimate we have to give on ﬁaz(l)(-,-) to show that U;(I) € U(r,N) =

Upr !y Md—] 7)(r; N) agrees with the estimate we proved in Lemma 6.2 on this quan-

tity. The bound we have to give about &; to show that U;(I) € Z/{BI(Z)yM’d_|I|(T‘, N)
follows from relation (7.3) and the inequality &;x(u;) < ai(u®) if u; € B™ with
the same quantities &;x(u;) and &i(u") which appeared in the proof of Lemma 6.2.
The remaining properties needed to check that U;(I) € U B, M.d- |l (r, N) clearly hold.

Thus the Main inequality may be applied with such a ChOlce and it yields relation (8.6)
for 1 < |I] <d-—3.

In the case |I| = d — 2 the set {1,...,d — 1} \ I consists of a point k, and formula
(8.6) can be proved with the help of the Main inequality in the case d = 2 (proved in
Section 3) in a similar way. This inequality can be applied for the operator 2V Bi W
defined as 2VB! (v) = > 2NbL, (i, iq)v(ix,ia) for a vector v € R™ ® R™ as the

ik ,id
operator A. It follows from Lemma 6.2 that

97 1/2

03t~ ulf ) Z<Z2 b (i [uﬁc”uk)—uﬁi’")(m)l) s

1d

if ut9 e U; and w0 ¢ U;. Hence the set consisting of all vectors of the form
(ugtco) - ugtco)) with some u(® € U; and u®9 € U; is contained in the set Uy
1ntr0duced in (3.2). The inequality a;(2VB! ) <1 also holds by formula (7.4). Hence
the Main inequality in the case d = 2 can be applied in this case, and it yields that
E(ZNZI)QQUHA)M <(C- 2A)22(N+A)M which is equivalent to (8.6) for |I| =d — 2.

Inequality (8.2) follows from relations (8.4), (8.5), (8.6) and Minkowski’s inequality
for L, norms with p = 22(N+A) 1, (Observe that we are working with non-negative
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random variables, since the suprema we consider contain the terms Yy (u(t)) -Yy (u(t)) =
0.) Indeed, they yield that

92(N+A4) ps

E

sup (Ya(u®) — Yd(u(t/)))]
(u(ﬂ ,u(t/)): w(t) GU[ s u®") Eﬁl

S ((%—FQdC/) M—(d—2)/22(A—N))

If the constant C' = C(d) in the Main inequality is chosen sufficiently large, then % +
2¢C" < % in the last inequality, and this means that it implies relation (8.2).

92(N+A4) pr

The Main inequality will be proved with the help of inequality (8.2). It will be also
exploited that the cardinality of the partition of a set U in Lemma 6.2 is not too large.

Let us consider a partition U; = v +U;, 1 <1< L, of aset U € U(r, N) with
L < 9C2*" M olements that satisfies Lemma 6.2. Let us fix an element @) € U, in all
sets U, 1 <1 < L. Given a vector u¥ € U let {(t) denote that index I, 1 <[ < L, for
which u® € U,. Then we can write for two arbitrary vectors u(Y) € U and u®") € U the
inequality

Va(u®) = Ya(® )] < [Ya(u®) = Ya(@ D)) + [Ya(ul)) = Ya(@))]
+ [Ya (@) — Ya(a'®)]

<2 sup  sup  [Va(u®) - Va@P]+ sup [va(@®)) - va@®)).
1<ISL 4(3): w(®) el 1<,I'<L

Since the right-hand side of the above inequality does not depend on the vectors u(t) € U
and u(*) € U it implies that

sup Ya(ut) = Ya(ul™)]
(u® u®): u® U, ut)HeU

<2 sup  sup  [Va(u®) - Va@P]+ sup (V@) - Ya(@@®)).
1<ISL w(9): u(=) el 1<L,I'<L

(8.7)

The Main inequality can be proved by means of good moment estimates on the
two terms at the right-hand side of inequality (8.7). It follows from inequalities (8.2)

and L < 20"2""M {1 the number of partitions of U in Lemma 6.2, where the number
C’ does not depend on the constants Ay = Ag(d) and C = C(d) in the Main inequality
that

92(N+A) o p

E (2 sup sup  [Ya(u'®) — Yd(ﬂ(l)]>
1<IKL y(s): u() el

92(N+A4) pr

L
<> B2 sup [Ya(u®) - Ya(a"]
=1 (u(®) ) wl) ey, us") e,
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92(N+A4) pr

< <£M—<d—2>/22<A—N)
=53
92(N+A4) pr
Q0PN (% M—(d—2>/22<A—N>) (8.8)

92(N+A) ps

22(N+A) p r
_ (20’2—“ %M(d2)/22(AN))

< (E M(d2>/22(AN>)
1

if the threshold index Ay in the Main inequality is chosen so large that 9C27*" < % for
A > Ag. Such a choice is possible since the constant C’ appearing in the exponent of
the bound for the cardinality of the partition of the set U does not depend on the choice
of the number Ay in the Main inequality. (The threshold index Ay was introduced to
have a control on the multiplicative factor L in the previous estimate.)

We get in a similar way with the help of inequality (8.1)

92(N+A4) 3 s

, ) 92(N+A4) pp
B swp [Ya(@")) - Ya(@®) < Y B(Ma@) - a@))
1<UI'<L 1<1r<r
2(N+A) 2(N+A)
<12 <M—(d—2)/22(A—N)>2 M < 920"2°N M (M—(d—Z)/22(A—N))2 M
2(N+A)
< <CM_(d_2)/22(A_N)>2 Y (8.9)

with a constant C' which does not depend on the constant C' = C(d) in the Main
inequality.

It follows from relations (8.7), (8.8), (8.9) and Minkowski’s inequality for L, norms
with p = 22(V+4) M (we are working again with non-negative random variables) that

92(N+A4) 37
E sup (Yd(u(t)) _ Yd(u(tl)))
(u®,ut)): uMeU, ut) eU
92(N+4) pp
< ((E + C> M—(d—Q)/ZQ(A—N)) < (CM_(d_z)/22(A_N))22(N+A>M
< 1 <

if the constant C' = C(d) (together with Ay = Ap(d)) is chosen sufficiently large. The
Main inequality is proved.
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Appendix. The proof of Propositions 4.1 and 4.2.

The proof of Proposition 4.1. Put K = {y: y € R", a1(y) < 4a1(tG), as(y) <
4a(tG)}. Then p, (K) > 3, since by the Markov inequality

L — pin e (K) < pint(y: a1(y) > 4Ear(tG)) + pne(y: ao(y) > 4tEas(tG)) <

DO | —

Beside this, the set K has the symmetry property —K = K which yields that

pnt(y: y € R", aq(y — ) <4Eaq(tG), az(y — ) < 4Eas(tG))

=C, e~V /2 gy — Cn/ e~ Wkl /2% gy = o~ llzl®/2e" / N el )
K+x K K

2 2 1 2 2 2 2
I e / 5 (e(y,m/t 4oyt ) f i (dy) > e NP2 (Y
K

with the norming constant C, = (v/2mt)™". Hence the relations p,.(K) > 3, and
|z]| <1 (i.e. x € B™) imply that
pne({y: y € R?, an(y — x) < 4Eaq(tG), aa(y — z) < 4Eas(1G)})
L —lo? /262
> —e >

1
Ze—1/2t%
2

The proof of Proposition 4.2. In the case d = 1 Proposition 4.2 immediately follows from
Proposition 4.1 if it is applied for @ = a1 = ag, and the relation 4Fa(tG,,) = Ea(4tG,,)
is exploited. Hence it is enough to prove Proposition 4.2 for d under the inductive
hypothesis that it holds for d — 1.

Let us fix some x = (x1,...,x4) € B™ X --- x B"_ where B™ denotes the unit ball
in R™. We can write

Pa(y) =1 @ QUYi—1 OYd — 21 @ - @ Xg_1 D Tq)

<a(z1® - Rxg-1 @ Wa—2a) + (1 @ @ Yge1 — 21 @ -+ Tg—1) @ Ya)
(A1)

for arbitrary y = (y1,...,y4) € R™ X -+ X R"4.

We shall define some sets A, B and C. We shall not denote their dependence on
the vector x € B™ x --- x B™@ we have fixed. To define the set A first we introduce the
following quantity W7 (y|a, t) similar to the quantity W7 («,t) defined in formula (4.2).

Let us fix d independent standard normal vectors G; = (g;(1),...,g,(n;)) of di-
mension n;, 1 < j < d, and define for all ¢t > 0, y € R™ and I C {1,...,d}, I # 0 the
quantity

Wi(yle,t) = Ea(z1 ® -~ ® z4) where z; = tGj if j € 1,
zi=wx;ifj¢ Tand j#d, andzg=yifd¢ 1.
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Then we put
A= {yd: Ya € R™, a1 ® - @241 @ (Yya — z4)) < Ea(r1 ® -+ @ x4-1 Q@ 4Gy),

S W za)laadt) < 3 Wf(a,4t>},

I: IC{1,...,d—1}, I#0 I IC{1,...,d},del, In{1,....d—1}#0

B:{y:(yl,...,yd): yeR™M x .- x R,

(@ QYg1—T1® - Qxg1) Qya) < Z W}”(yd\a,élt)}
I IC{1,...,d—1}, T#0

and
C=Bn{y=(y1,...,¥d): y € R™ x--- x R" y4 € A}.

I claim that the inequalities

ng(A) > Se” /2 (A2)

N | —

and
Py ttng_ (BN ((R™ X -+ x R™1) X y4)) > 2—(d—1)e—(d—1)/2t2

for all yq = (ya(1),...,ya(na)) € R™

hold, where (R™ X -+ x R"-1) X yq = {(y1, .-, Ya—1,Ya): (Y1,---,Yd—1) € R™ x -+ X
RMa-1},

Relation (A2) follows from the identity 4Fa(tG,,) = Ea(4tG,,) and Proposition 4.1
with the choice a1 (2) = a(21®- - ®@z4-1®2) and ay(z) = > W7 (z|a, 4t)
I 1c{1,-- ,d—1}, I#0
for z € R™. Observe that both a;(-) and ay(-) are pseudonorms in R™, hence Propo-
sition (4.1) is applicable for them.

(A3)

Relation (A3) follows from Proposition 4.2 with parameter d — 1 if it is applied for
the pseudonorm &,, on R™ ® --- ® R"*-! defined by the formula a,,(u) = a(u ® yq)
for u € RM ® --- ® R™-1 with a fixed y4 € R™. Here u ® yg is that function in
R™ ® ---® R™ for which v ® yq(i1,...,17q) = u(i1,...,iq-1)ya(iq) for all 1 < i; < nj,
1 < j < d. Observe that &,, is really a pseudonorm for all y; € R"?, hence we can
apply Proposition 4.2 with parameter d — 1 for it.

Relations (A2), (A3) and the Fubini theorem imply that
iy oimg 1 (C) = 277 4/28, (A4)

Indeed, fin, 4 tng_y t(BO((R™ X -+ X R™=1) X y4)) > 2-(d=1)=(d=1)/2t* for a]] points
yq € R™ by relation (A3). We get relation (A4) from this inequality, relations (A2)
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and the Fubini theorem by integrating this inequality on the set {yq € A} with respect
to the measure f, ;.

Finally, I claim that

CC y:(yl,...,yd):yGR”lx---xR”d,pa(:p,y)S Z W;:<O‘74t)
I IC{1,...,d}, I£0
(A5)
Indeed, if y = (y1,...,yq) € C, then

Pa(z,y) Co(r1® - @T3—1 @ (Yg —xq)) + (NN ® - @ Yg—1 — 1 @ -+ Tg—1) ® Ya)

<Fa(x1® - @xg_1 @ 4tGq) + Z Wi (ya|a, 4t)
I IC{1,...,d—1}, I#0
< EBa(zy ®--- @xq1 ®@4Gy) + > W (yq — zqlo, 4t)

I: 1c{1,...,d—1}, I#0

+ Z Wi (a,4t)

I IC{1,...,d—1}, I£0

< EBa(r)® - @xg_1 ®4tGq) + > W (o, 4t)
I: IC{1,...,d}, del, In{1,...,d—1}#£0
+ > Wi (a,4t) = > W (o, 4t).
I: IC{1,...,d—1}, I£D I: IC{1,...,d}, T#D

The first inequality of this series of inequalities holds because of relation (Al). The
second inequality was based on the first relation in the definition of the set A and
on the definition of the set B. The third inequality is valid because of the relation
a(z®y) <alz®x)+ a(z® (y — z)) for arbitrary pseudonorm « on the tensor product
R"®---®@R" and z € R™ ®---® R™~-1, The last inequality follows from the second

relation in the definition of the set A. In the closing step we have applied the identity
Ea(z1 @+ @x4-1 @ 4Ga) = Wi (o, 4t).

Proposition 4.2 is a simple consequence of relations (A4) and (A5).
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