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Summary: D. Mason and W. van Zwet (1987) gave an approximation of the uniform

empirical process by a Brownian bridge which is a refinement of a result of Komlós–Major–

Tusnády (1975). Their result is an improvement only if the process is considered in a small

interval. In this note we show that in such cases a much better Poissonian approximation

is possible which seems to be better applicable in certain cases. We also prove a mul-

tidimensional version of this result, where a sequence of uniform empirical processes is

simultaneously approximated by partial sums of independent Poisson processes.

1. Introduction. Let ε1, ε2, . . . , be a sequence of independent, on the interval [0, 1]
uniformly distributed random variables, and define the empirical distribution function
Fn(t), n = 1, 2, . . . , as Fn(t) = 1

n#{εj , j ≤ n, εj ≤ t}, 0 ≤ t ≤ 1. In this paper
we investigate the (uniform) empirical process

√
n(Fn(t) − t). Mason and Zwet (1987)

proved the following

Theorem A. For all n ≥ 1 a Brownian bridge Bn(t), 0 ≤ t ≤ 1, and a sequence of
independent and on the interval [0, 1] uniformly distributed random variables ε1, ε2, . . .
can be constructed in such a way that the empirical distribution function Fn(t) defined
with the help of the above ε-s satisfies the relation

(1.1) P

(

sup
0≤s≤ d

n

|n(Fn(s) − s) −
√

nBn(s)| > C log d + x

)

< Ke−λx

with some universal positive constants C, K and λ for all 0 ≤ x < ∞, 1 ≤ d ≤ n.

This is a refinement of a former result of Komlós, Major and Tusnády (KMT) (1975),
where the same estimate is proved in the special case d = n. Theorem A is a real
improvement only for d < nε, where ε > 0 can be chosen arbitrarily small. For such
numbers d the empirical distribution function can be much better approximated in the
interval [0, d/n] by a Poisson process. In Theorem 1 formulated below we present such
an approximation.

Let Pn(t), 0 ≤ t ≤ 1, denote a Poisson process with parameter n, i.e. let Pn(t) be
a process with independent stationary increments, Pn(0) = 0, and let Pn(v) − Pn(u),
0 ≤ u < v ≤ 1, be Poisson distributed with parameter n(u − v).
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Theorem 1. For all n ≥ 1 a Poisson process Pn(t) with parameter n on the interval
[0, 1] and a sequence of independent, on the interval [0, 1] uniformly distributed random
variables ε1, . . . , εn can be constructed simultaneously in such a way that the empirical
distribution function defined with the help of these ε-s satisfies the relation

P

(

sup
0≤s<n−2/3

|n(Fn(s) − s) − (Pn(s) − ns)| > C

)

< K exp
(

− 1
8

√
n log n

)

with some universal constants C > 0 and K > 0.

We shall also prove the following variant of Theorem 1.

Theorem 1′. Let tn → 0 be such that also
√

ntn → 0. For all n ≥ 1 a Poisson
process Pn(t) with parameter n on the interval [0, 1] and a sequence of independent, on
the interval [0, 1] uniformly distributed random variables ε1, . . . , εn can be constructed
simultaneously in such a way that the empirical distribution function defined with the
help of these ε-s satisfies the relation

P

(

sup
0≤s<tn

|n(Fn(s) − s) − (Pn(s) − ns)| = 0

)

→ 1 .

In Theorems 1 and 1′ we have approximated the empirical process by a Poisson
process in a small neighbourhood of zero. This approximation can be combined by a
Brownian bridge approximation of the empirical process in the remaining domain with
the help of Theorem 3 in the KMT (1975) paper. We formulate this result in the case
of Theorem 1′ in the following

Proposition. Beside the processes Pn(t) and Fn(t) in Theorem 1′ a process Bn(s),
tn ≤ s ≤ 1, can be constructed which is the restriction of a Brownian bridge to the
interval [tn, 1] in such a way that

(1.2) P

(

sup
tn≤s≤1

∣

∣

√
nBn(s) − n

(

Fn(s) − s
)∣

∣ > C log n + x

)

< Ke−λx ,

where C > 0, K > 0 and λ > 0 are appropriate constants, and the processes Bn(s),
tn ≤ s ≤ 1 and Pn(t), 0 ≤ t ≤ tn are conditionally independent with respect to the
events nFn(tn) = k for all k = 0, 1, . . . .

Theorems 1 and 1′ can be useful if we want to investigate the limit distribution of
a sequence of random variables which is obtained when a sequence of functionals Fn

are applied to the empirical processes, i.e. when the functional may also depend on n.
Such a problem is investigated e.g. in the paper of M. Csörgő et al. (1986). If the
functional Fn depends only on the values of the empirical process in the interval [0, tn]
then by Theorem 1′ the uniform empirical process can be replaced by a standardized
Poisson process, and the limit distribution of our sequences will be the same after this
replacement. A Gaussian approximation is not always allowed, because the Gaussian
approximation of the empirical process is not so good as the Poissonian one. If the
functional Fn depends on the values of the empirical process on the whole interval
[0, 1], but this dependence is much stronger on the interval [0, tn] then Theorem 1′ can
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be applied together with the Proposition. Theorem 1 can be useful if we want to get a
better information about the error committed by the Poissonian approximation.

Another problem where the Gaussian approximation is not always applicable, and
a Poissonian approximation may be useful is the investigation of the law of iterated
logarithm for the empirical process in small intervals. This problem is studied in Kiefer’s
(1972) paper. If one tries to study this problem in the usual way then one has to apply
the Borel–Cantelli lemma several times, and the main technical problem is to check
whether certain sums of probabilities are convergent or divergent. If one substitutes
these probabilities by those suggested by the Gaussian approximation one gets in certain
cases wrong result, because the error committed by this substitution is too large. On
the other hand Theorem 1 would allow us to make a Poissonian approximation also in
such cases. Nevertheless it is more appropriate to have a result which automatically
guarantees that the empirical process can be replaced by a Poisson process in such
problems. This is done by Theorem 2 formulated below, or more precisely by its Part b).

Theorem 2. Part a) For all n = 1, 2, . . . , and 1/2 ≥ α ≥ 0 a sequence ε1, ε2, . . . , εn

of independent and on the interval [0, 1] uniformly distributed random variables can be
constructed together with a sequence P1(t), P2(t), . . . , Pn(t), of independent Poisson
processes with parameter 1 on the interval [0, 1] in such a way that

(1.3) P



sup
k≤n

sup
0≤t<n−(1/2+α)

∣

∣

∣

∣

∣

∣

k(Fk(t) − t) −
k
∑

j=1

(Pj(t) − t)

∣

∣

∣

∣

∣

∣

> m



 ≤ C(m)n−2(m+1)α

for all m = 0, 1, 2, ..., where the constants C(m) depends only on m.
Part b) For any δ > 0 an infinite sequence ε1, ε2, . . . of independent random variables

with uniform distribution on the interval [0, 1] and an infinite sequence of independent
Poisson processes P1(t), P2(t), . . . with parameter 1 on the interval [0, 1] can be con-
structed in such a way that

(1.4) P

(

sup
n

sup
0<t<n−1/2−δ

∣

∣

∣

∣

n(Fn(t) − t) −
n
∑

j=1

(Pj(t) − t)

∣

∣

∣

∣

< ∞
)

= 1 .

Part b) of Theorem 2 implies in particular that the restrictions of the empirical
processes to the intervals [0, tn], tn → 0, satisfy the same laws of iterated logarithm
as the averages 1

n

∑n
i=1 Pi(t) of independent Poisson processes restricted to the same

intervals [0, tn], if n1/2+δtn → 0 with some δ > 0. Hence the problems investigated
by Kiefer can be reformulated to equivalent problems about the sums of independent
Poisson processes. The condition tn < n−1/2−δ could be slightly weakened, but it is not
essential, since it is satisfied in the most interesting and important case, namely when

tn = L(n)
n , and L(n) is bounded, or slowly tends to infinity.

2. The proof of Theorem 1, Theorem 1′ and the Proposition. Let F (x) =
Fλ(x) denote the (right continuous) Poisson distribution function with parameter λ, and
G(x) = Gn,p(x) the (right continuous) binomial distribution function with parameters
n and p. The following Lemma 1 plays an important role in the proof of Theorem 1. In
Lemma 1 two random variables are constructed with distributions F and G which are
close to each other if the parameters λ, n and p are appropriately chosen. We apply the
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quantile transformation, i.e. we make the following construction. Let γ be a uniformly
distributed random variable on [0, 1], and put

(2.1) ξ = k if F (k) ≤ γ < F (k + 1), k = 0, 1, . . .

(2.1′) η = k if G(k) ≤ γ < G(k + 1), k = 0, 1, . . . .

Clearly ξ has a distribution F , and η a distribution G. We prove the following

Lemma 1. Choose λ = np and p = n−2/3 for the parameters of the distribution func-
tions F and G. There is a constant C > 0 and a threshold n0 in such a way that for
n > n0 the random variables ξ and η defined by (2.1) and (2.1′) satisfy the relation

|ξ − η| < C if ξ ≤
√

n.

Proof of Lemma 1. It is enough to show that under the conditions of Lemma 1 there is
some C > 0 such that

(2.2) G(x − C) ≤ F (x) ≤ G(x + C) if x ≤
√

n.

Let f(k) and g(k), k = 0, 1, 2, . . . denote the density functions of F and G. We shall
prove (2.2) with the help of the following relations: There are some integers C > 0 and
n > n0 such that if n > n0 then

(2.3) 1 − G(
√

n − C) > 1 − F (
√

n) > 1 − G(
√

n + C)

(2.3′) g(k − C) > f(k) > g(k + C) if np + C < k <
√

n

(2.3′′) g(k − C) < f(k) < g(k + C) if 0 ≤ k < np − C.

(We define g(k) = 0 for k < 0 in (2.3′′).) Relations Relations (2.3)–(2.3′′) imply (2.2)
(with constant 2C instead of C). Indeed, by summing up (2.3) and (2.3′) for j = k ,k+1,
. . . ,

√
n−1 we get that 1−G(k−C) > 1−F (k) > 1−G(k+C) for np+C < k <

√
n, and

relation (2.3′′) similarly implies that G(k −C) < F (k) < G(k + C) for 0 ≤ k ≤ np−C.
Finally, for |k − np| ≤ C these relations imply that G(k − 2C) < F (k − C) < F (k) <
F (k + C) < G(k + 2C).

To prove (2.3) and (2.3′) we estimate the ratios g(k)
f(k) and f(k+1)

f(k) . Since λ = np,

g(k)

f(k)
=

n(n − 1) · · · (n − k + 1)

nk(1 − p)k
(1 − p)nenp

= exp

{

n(p + log(1 − p)) − k log(1 − p) +
k−1
∑

j=0

log
(

1 − j
n

)

}

,
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and

(2.4)
g(k)

f(k)
= exp

{

O

(

np2 + kp +
k2

n

)}

for k ≤
√

n.

Since p = n−2/3 the last relation implies that

(2.5) α−1 <
g(k)

f(k)
< α for k <

√
n

with some 1 < α < ∞, and

(2.5′)

∣

∣

∣

∣

g(k)

f(k)
− 1

∣

∣

∣

∣

< αn−1/3 if |k − np| <
np

2
.

Since

(2.6)
f(k + 1)

f(k)
=

λ

k + 1
,

the relations f(k+j)
f(k) > (3/2)j and f(k−j)

f(k) < (4/5)j hold if k > 3
2np and 0 < j < np/4.

These inequalities together with (2.4) imply (2.3′) for 3
2np < k <

√
n with a sufficiently

large C which is independent of n. Relation (2.3′′) for k < np/2 can be proved similarly.

Since λ = n1/3, relation (2.6) also implies that f(k−j)
f(k) < (1− 1

2n−1/3)j < 1− j
4n−1/3 and

f(k+j)
f(k) > (1+n−1/3)j > 1+jn−1/3 if k > np+C and j < C with a sufficiently large C > 0

independent of n. This relation together with (2.5′) imply (2.3′) for np + C < k < 3
2np.

A similar estimation of f(k±j)
f(k) for k < np − C yields (2.3′′) in the remaining domain

np/2 < k < np − C. To prove (2.3) it is enough to check that f(k)
1−F (k) and g(k)

1−G(k) are

bounded away from zero (and naturally also from infinity) for k >
√

n−C, and then the

estimates given on f(k±j)
f(k) and g(k)

f(k) imply the required inequality. Lemma 1 is proved.

Proof of Theorem 1. Let us construct a pair of random variables (ξ, η) with distri-
butions F and G satisfying Lemma 1. Let ε′1, ε

′
2, . . . be a sequence of independent

uniformly distributed random variables on [0, n−2/3], ε′′1 , ε′′2 , . . . a sequence of indepen-
dent uniformly distributed random variables on [n−2/3, 1] such that the pair (ξ, η) and
the sequences ε′1, ε

′
2, . . . , ε′′1 , ε′′2 , . . . are independent of each other. Put nFn(s) =

#{ε′j , ε′j < s, j < η}, Pn(s) = #{ε′j , ε′j < s, j < ξ} for s < n−2/3, and de-

fine n(Fn(s) − Fn(n−2/3)) = #{ε′′j , ε′′j < s, j ≤ n − η} if n−2/3 < s < n − η, and

Pn(s) − Pn(n−2/3) as a Poisson process with parameter n on the interval [n−2/3, 1]
independent of the above defined process Pn(s), 0 < s < n−2/3. Then Fn(s) can be
considered as an empirical distribution function (corresponding to the sample obtained
from the random permutations of ε′1, . . . , ε

′
η, ε′′1 , . . . , ε′′n−η), since it has the prescribed

conditional distribution under the condition η = k. Similarly, Pn(s), 0 < s ≤ 1, is a
Poisson process with parameter n. On the other hand |nFn(s) − Pn(s)| ≤ |ξ − η| for
0 < s < n−2/3. Hence by Lemma 1

P

(

sup
0<s<n−2/3

|n(Fn(s) − s) − (Pn(s) − ns)| > C

)

< P(|ξ − η| > C) < P(ξ >
√

n) .
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Since

P(ξ >
√

n) ≤ const.P(ξ =
√

n)

= const. exp
{

−n1/3 + 1
3

√
n log n − log(

√
n!)
}

≤ Kexp
{

− 1
8

√
n log n

}

the above estimates imply Theorem 1.

Proof of Theorem 1′. We may assume without violating the generality that ntn → ∞.
The proof of Theorem 1′ is very similar to that of Theorem 1. The main difference is
that now we need for each n, instead of the construction of Lemma 1, a pair of random
variables (ξn, ηn) with distributions Fλ(x) and Gn,p(x), λ = npn and p = pn such that

(2.7) P(ξn = ηn) → 1 as n → ∞ .

Then we can apply the same costruction as in the proof of Theorem 1, only now we have
to work with the above pair (ξn, ηn), and the intervals [0, n−2/3] and [n−2/3, 1] must be
replaced by the intervals [0, tn] and [tn, 1]. So it remains to prove relation (2.7).

We claim that

(2.8)

∞
∑

k=0

|P(ξn = k) − P(ηn = k)| → 0

First we show that relation (2.7) can be satisfied with an appropriate construction
because of (2.8). Indeed, define the pair (ξn, ηn) by the following formulas:

P(ξn = ηn = k) = min{P(ξn = k),P(ηn = k)}

and

P(ξn = k, ηn = j)

= B−1
n

(

P(ξn = k) − min{P(ξn = k),P(ηn = k)}
)(

P(ηn = j)

− min{P(ξn = j),P(ηn = j)}
)

if j 6= k ,

where Bn = 1 −
∑∞

k=0 min{P(ξn = k),P(ηn = k)}. (If Bn = 0 then we have 0
0 in

the last formula which we define as 0.) Then the random variables ξn and ηn have the
prescribed distribution, since

P(ξn = k, ηn 6= k) = P(ξn = k) − min{P(ξn = k),P(ηn = k)} ,

and a similar relation holds also for ηn. It follows from (2.8) that Bn → 0, hence (2.7)
also holds.

To prove (2.8) observe first that similarly to (2.4) we have

(2.9)
P(ξn = k)

P(ηn = k)
= exp

{

O

(

np2
n + kpn +

k2

n

)}

= exp{O(np2
n)} if k < 2npn .
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Hence

2npn
∑

k=0

|P(ξn = k) − P(ηn = k)| ≤
{

exp{O(np2
n)} − 1

}

∑

P(ηn = k) = O(np2
n) .

On the other hand

∞
∑

k=2npn

|P(ξn = k) − P(ηn = k)| ≤ P(ξn ≥ 2npn) + P(ηn ≥ 2npn) → 0 as n → ∞ .

These relations imply (2.8). Theorem 1′ is proved.

Proof of the Proposition. The conditional distribution of the process n[(Fn(s) − s) −
(Fn(tn)− tn)], tn ≤ s ≤ 1 under the condition nFn(tn) = k agrees with the distribution
of an empirical distribution function multiplied by n−k from a sample of n−k elements
with uniform distribution on the interval [tn, 1]. Hence we can construct, with the help
of Theorem 3 of KMT (1975), a Brownian bridge B̄n(u), 0 ≤ u ≤ 1, on the conditional
probability space P(· |nFn(tn) = k) such that

(2.10)

P

(

sup
tn≤s≤1

∣

∣

∣

∣

n[(Fn(s)−Fn(tn)) − (s − tn)] −
√

n − kB̄n

(

s − tn
1 − tn

)∣

∣

∣

∣

> C log n + x

∣

∣

∣

∣

nFn(tn) = k

)

≤ Ke−λx .

Since the distribution of B̄n(·) does not depend on k it is a Brownian bridge also with
respect to the original unconditional probability.

By Lemma 2 of KMT (1975) a standard Gaussian random variable ξn can be con-
structed with the help of the quantile transformation in such a way that

(2.11) P
(∣

∣

∣

√

ntn(1 − tn)ξn − n(Fn(tn) − tn)
∣

∣

∣
> C

)

≤ Ke−λx .

Since Fn(tn) is independent of B̄n(·) the random variable ξn, which is obtained as a
transformation of the random variable Fn(tn) − tn with some randomization, is also
independent of it. Define

Bn(s) =
√

1 − tnB̄n

(

s − tn
1 − tn

)

+
1 − s

1 − tn

√

tn(1 − tn)ξn, tn ≤ s ≤ 1.

We claim that the above defined process Bn(s) satisfies the Proposition. It is a Gaussian
process, and simple calculation shows (by using the independence of B̄n(·) and ξ) that
it has the covariance function s(1 − s′) for tn ≤ s ≤ s′ ≤ 1. The processes Bn(·) and
Pn(·) are conditionally independent with respect to the condition Fn(tn) = k. We have
to prove relation (1.2).

Remark first that (2.10) also implies that

(2.12)

P

(

sup
tn≤s≤1

∣

∣

∣

∣

n[(Fn(s) − Fn(tn)) − (s − tn)] −
√

n(1 − Fn(tn))B̄n

(

s − tn
1 − tn

)∣

∣

∣

∣

> C log n + x

)

≤ Ke−λx .



8 Péter Major

Moreover, we claim that
(2.12′)

P

(

sup
tn≤s≤1

∣

∣

∣

∣

n[(Fn(s) − Fn(tn)) − (s − tn)] −
√

n(1 − tn)B̄n

(

s − tn
1 − tn

)∣

∣

∣

∣

> C log n + x

)

≤ Ke−λx ,

(with possibly different constants C, K and λ.) To prove (2.12′) we have to show

that a negligible error is committed if the coefficient of B̄(·) in (2.12)
√

n(1 − Fn(tn))

is replaced by
√

n(1 − tn). This follows from the following estimate:

P

(

sup
tn≤s≤1

∣

∣

∣

∣

(

√

n(1 − tn) −
√

n(1 − Fn(tn))
)

B̄n

(

s − tn
1 − tn

) ∣

∣

∣

∣

> x

)

≤ P
(∣

∣

∣

√

n(1 − tn) −
√

n(1 − Fn(tn))
∣

∣

∣
>

√
x
)

+ P

(

sup
0≤s≤1

|B̄n(s)| >
√

x

)

≤ P
(√

n|Fn(tn) − tn| > 1
2

√
x
)

+ K exp
(

−x
2

)

≤ Ke−λx .

Now we can write for tn ≤ s ≤ 1

√
nBn(s) − n(Fn(s) − s) =

1 − s

1 − tn

{

√

ntn(1 − tn)ξn − n(Fn(tn) − tn)
}

+

{

√

n(1 − tn)B̄n

(

s − tn
1 − tn

)

− n
[

Fn(s) − Fn(tn) − (s − tn)
]

}

=
1 − s

1 − t0
I1(tn) + I2(s, tn) .

Since the term I1(tn) is bounded in (2.11) and the term I2(s, tn) in (2.12′) the last
identity implies (1.2). The Proposition is proved.

3. The proof of Theorem 2. First we formulate a lemma which is proved similarly
to Theorem 1.

Lemma 2. Given some positive integer n and β > 0 let ξ1, . . . , ξn be independent
Poisson distributed random variables with parameters n−β and η1, . . . , ηn independent
random variables such that P(ηj = 1) = 1 − P(ηj = 0) = n−β, j = 1, . . . , n. A
sequence ε1, . . . , εn of independent, uniformly distributed random variables on [0, 1] and
a sequence P1(t), . . . , Pn(t), 0 < t < 1, of independent Poisson processes with parameter
1 can be constructed in such a way that

(3.1) sup
1≤k≤n

sup
0≤s≤n−β

∣

∣

∣

∣

k(Fk(s) − s) −
k
∑

j=1

(Pj(s) − s)

∣

∣

∣

∣

= sup
1≤k≤n

∣

∣

∣

∣

k
∑

j=1

(ξj − ηj)

∣

∣

∣

∣

,

where the functions Fk(·) are the empirical distribution functions defined with the help
of the above ε-s.

Lemma 2 enables us to reduce Part a) of Theorem 2 to a simpler problem. Namely,
if we have a sequence ε1, . . . , εn of independent uniformly distributed random vari-
ables on [0, 1] and a sequence P1(t), . . . , Pn(t), 0 ≤ t ≤ 1 of independent Poisson
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processes with parameter 1 define ξj = Pj(n
−(1/2+α)) and ηj = jFj(n

−(1/2+α)) − (j −
1)Fj−1(n

−(1/2+α)), j = 1, . . . , n, where Fj , j = 1, . . . , n, are the empirical distribution
functions defined with the help of the sample ε1, . . . , εj . Then Lemma 2 implies that
a new sequence of independent uniformly distributed random variables on [0, 1] ε̄j ,
j = 1, . . . , n and a new sequence of independent Poisson processes with parameter 1
P̄j(t), j = 1, . . . , n, can be constructed in such a way that

sup
1≤k≤n

sup
0<s<n−(1/2+α)

∣

∣

∣

∣

k(F̄k(s) − s) −
k
∑

j=1

(P̄j(s) − s)

∣

∣

∣

∣

= sup
1≤k≤n

∣

∣

∣

∣

k(Fk(n−(1/2+α)) − n−(1/2+α)) −
k
∑

j=1

(

Pj(n
−(1/2+α)) − n−(1/2+α)

)

∣

∣

∣

∣

.

This relation enables us to drop sup0<t<n−(1/2+α) from (1.3) and to consider only the

argument t = n−(1/2+α) instead.

Proof of Lemma 2. Let ε′1, ε′2, . . . , be a sequence of independent uniformly distributed
random variables on [0, n−β ] which is independent of the random variables ξ-s and η-

s, put Sk =
∑k

j=1 ξj , and Tk =
∑k

j=1 ηj , k = 1, . . . , n. If ηk = 1 define εk = ε′l
with l = Tk. Define the Poisson process Pk(t) in the interval [0, n−β ] in the following
way: It has jumps in the points ε′j , . . . , ε

′
j+p with j = Sk−1 + 1, j + p = Sk. (If

Sk−1 + 1 > Sk then it has no jumps in this interval.) Define the Poisson processes
Pk(t), 0 < t < 1, in such a way that on the interval [0, n−β ] they agree with the already
defined Poisson processes, and the processes Pk(t)−Pk(n−β), n−β < t < 1, k = 1, 2, . . .
are independent of the processes Pk(t), 0 < t < n−β , and of each other. Otherwise they
are arbitrarily defined. Finally, let ε′′1 , ε′′2 , . . . be a sequence of independent uniformly
distributed random variables on the interval [n−β , 1] which is independent both of the
sequence ε′1, ε

′
2, . . . and the η-s, and define εk = ε′′k if ηk = 0. Then the sequences

ε1, . . . , εn and P1(t), . . . , Pn(t) have the prescribed distributions. On the other hand
relation (3.1) holds, since for all 1 ≤ k ≤ n

sup
0≤s<n−β

∣

∣

∣

∣

k(Fk(s) − s) −
k
∑

j=1

(Pj(s) − s)

∣

∣

∣

∣

= |Tk − Sk| .

Proof of Theorem 2. Part a.) By Lemma 2 it is enough to construct a sequence of
independent Poisson distributed random variables ξ1, . . . , ξn with parameter n−(1/2+α)

and a sequence of independent random variables η1, . . . , ηn, P(ηj = 1) = 1 − P(ηj =

0) = n−(1/2+α) in such a way that

(3.2) P

(

sup
1≤k≤n

∣

∣

∣

∣

k
∑

j=1

(ξj − ηj)

∣

∣

∣

∣

> m

)

≤ C(m)n−2(m+1)α

for all m = 0, 1, . . . . Let us consider two independent Poisson processes P1(t) and P2(t)
with parameter 1, and define ξj = P1(jn

−(1/2+α))−P1((j−1)n−(1/2+α)), j = 1, 2, . . . , n.
To define ηj let us first introduce the random variables ξ′j = P2(js)−P2((j − 1)s), j =
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1, . . . , n, where e−s = (1−n−(1/2+α)) exp(n−(1/2+α)). Let ηj = 1 if ξj +ξ′j ≥ 1, and zero
otherwise. Then both sequences ξ1, . . . , ξn and η1, . . . , ηn consist of independent random
variables with the right distribution. (Observe that P(ηj = 0) = P(ξj = 0, ξ′j = 0) =

exp(−n−(1/2+α)−s) = 1−n−(1/2+α).) It remains to show that the above defined ξj-s and

ηj-s satisfy (3.2). Observe that
∑k

j=1(ηj −ξj) ≤
∑k

j=1 ξ′j , and
∑k

j=1(ξj −ηj) ≤
∑k

j=1 ξ̄j

with ξ̄j = ξj − 1 if ξj > 0, and ξ̄j = 0 if ξj = 0. Hence

(3.3) P



 sup
1≤k≤n

k
∑

j=1

(ηj − ξj) > m



 ≤ P





n
∑

j=1

ξ′j ≥ m + 1



 ≤ C(m)n−2(m+1)α,

(here we use that
∑n

j=1 ξ′j is a Poisson distributed random variable with parameter

ns ≤ n−2α) and

P



 sup
1≤k≤n

k
∑

j=1

(ξj − ηj) > m



 ≤ P





n
∑

j=1

ξ̄j ≥ m + 1



(3.4)

≤ exp(−2α(m + 1) log n)E exp

(

2α log n

n
∑

j=1

ξ̄j

)

= (E exp(2αξ̄1 log n))nn−2(m+1)α.

We claim that E exp(2αξ̄1 log n) ≤ 1 + C
n with some C > 0 independent of n. This

inequality together with (3.4) and (3.3) imply (3.2) and hence also Part a) of Theorem
2. We have

E exp(2αξ̄1 log n) ≤ 1 +
∞
∑

j=1

exp(−n−(1/2+α) + 2jα log n)

(j + 1)!
n−(j+1)(α+1/2)

≤ 1 +
∞
∑

j=1

1

(j + 1)!
n(j−1)(α−1/2)−1 ≤ 1 +

C

n

for 0 ≤ α ≤ 1/2.
Proof of Part b.) Let us fix some 1/2 > δ > 0, and apply Part a) with α = δ and

2n, n = 0, 1, . . . . Because of formula (1.3) in the special case m = 0 we can construct a

sequence of independent Poisson processes P
(n)
1 (t), . . . , P

(n)
2n (t) with parameter 1 and a

sequence of independent uniformly distributed random variables on [0, 1] ε
(n)
1 , . . . , ε

(n)
2n

in such a way that
(3.5)

P

( k
∑

j=1

P
(n)
j (t) = kF

(n)
k (t) for 0 ≤ t < 2−(1/2+δ)n and all k = 1, . . . , 2n

)

≤ C2−2nδ.

(The upper index in F
(n)
k denotes that this empirical distribution function is constructed

with the help of the sample ε
(n)
1 , . . . , ε

(n)
2n .) We may assume that the above defined

sequences ε
(n)
j and P

(n)
j are independent for different n. Define Pj(t) = P

(n)
j+1−2n(t) and
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εj = ε
(n)
j+1−2n for 2n ≤ j < 2n+1, n = 0, 1, 2, . . . . Then relation (3.5) implies that the

events An

An =

{ k
∑

j=2n

Pj(t) = kFk(t)−(2n − 1)F2n−1(t)

for all 0 ≤ t ≤ 2−n(1/2+δ) and 2n ≤ k < 2n+1

}

satisfy the relation
∞
∑

n=1

P(An) < ∞.

Hence by the Borel–Cantelli lemma there is a random threshold n(ω) such that for
n > n(ω)

k
∑

j=2n

Pj(t) − t = k(Fk(t) − t) − (2n − 1)[F2n−1(t) − t]

for all 2n ≤ k < 2n+1 and t < k(−1/2+δ)

with probability 1. The last relation implies Part b) of Theorem 2.
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