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A NOTE ON KOLMOGOROV’S LAW
OF ITERATED LOGARITHM

by
P. MAJOR

Summary: Let the sequence of independent random variables X;, X, ... satisfy
the conditions of Kolmogorov’s law of iterated logarithm. Then the partial sums

S,= 2> X;, n=1,2,... can be approximated by an appropriate Wiener process.

i=1

This implies a Strassen type law of iterated logarithm.

Introduction

Kolmogorov’s law of iterated logarithm (see e.g. [1]) states the following result:
Let X,, X,, ... be independent random variables EX;=0, EX?=0¢%, i=1,2, ...,
Sy = Z ; By= Z 0%, n=1,2,.... Let B,—~c. Assume the existence of a numerical

sequence M,,, n—l 2, ..., such that
_ /B,
P = "[ ioglog'BI]

P(IXnI =M)=1

and

Then the relation

Sy
lim sup —
V2B, loglog B,

=1 withpr. 1
holds true.

Let us define the process S(t), t=0 in the following way: S(B,)=S,,
(8:=0, S©=0) and ()= 5, Boxml g _1TB e B _y—B,.. We
—B Bn+1_Bn
prove the following

THEOREM. Let the sequence of independent random variables X, X,, ... satisfy
the conditions of Kolmogorov’s law of iterated logarithm. If the probability space
where the X,-s are given is sufficiently rich, one can construct a standard Wiener
process W (t) such that

t~=  Vtloglogt

Since B,,,—B,=MZ, and M?=0(B,) Strassen’s law of iterated logarithm for
Wiener process (see [2]) yields the following

=0 with probability 1.
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COROLLARY. Define
Sy(0) = =)

e n:1,2,...,0§t§1.
V2B,loglog B,

This sequence of functions is relatively compact in the Banach space C|0, 1], and its
limit points agree with the set K, K={f(t), 0=t=1; f(0)=0, f(¢) is absolute con-
1

tinuous, ffz(t)dtél} with probability 1.

0
This corollary contains Kolmogorov’s law of iterated logarithm as a special case.
PROOF OF THE THEOREM. We need an estimate of P(S,—S,,>x). Though this
estimate is very similar to those needed in the proof of Kolmogorov’s law of iterated
logarithm, for the sake of completeness we prove it. Our estimation is based on an
idea of FELLER (see [3]).

LEMMA. Let ¢, 8, L be arbitrary positive numbers. Under the conditions of the
Theorem we have for every large n

x2

x2
2(B,,—Bm)] = P(S,— S, > x) = exp [.~(1_5) ]

cexp [— (1+9) I
if n>m, B,— B, >¢B,, 0=x=L VB, loglog B,. (c is a universal constant.)

PrOOF. First we estimate the moment generating function of S,—S, from
log log B,

below and from above. Let 0=¢ étO:KV where K=2L/e.
We have for j=n tM;<9/3 if n is sufﬁcient?y large. Thus

12

i i t
EexptX; = 1+k§E!—EX}‘ = 1+a2.—(1+—Mj+ B

i3 3 M,?+...] =

:l—l—zaj 1—I—2Mj:exp 1+20j2,
and

EexptX >1—i—t—2 2(1—LM—t—2M2-~ ]>ex [(1—3]021—2]
xptX; = 5 95 3j12j...:p 7) %5

These estimations imply that

exp [[l ——g—] 122— (B,— Bm)] = Eexp[t(S,— S,)] = exp [(1 +%) —tzi (B,— Bm)] .

Define the probability distributions
Fidx) = Z2WE@D -y
j exp (1x)F;(dx)
G (dx) = (FL* ... * F})(dx),

where F;(x) is the distribution function of X;, and * means convolution.

and
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For any Borel set H the equation
P(S,~Sn€H) = E[exp 1(S,— S,)] [ exp (—1x) G}, ,,(dx)
H

holds. (These formulae follow from the basic properties of conjugated distributions,
see e.g. [4] Chapter XVI. 6.)
Choose

X

(B,,—B,,,)(l-l—%] '

a—

Since
LVB,loglogB, _ ,

t
eB, 0

IIA

the estimation
P(S,—S,, > x) = Eexp [t(S,— S,)] exp (—tx) = ex [_ (1—5)x2_]
WO = ORI e ) = P T2, B
holds true.
Set
E} = [xFi(dx), (DY) = [ x2Fi(dx)—(E}?
and

Et.= 3 E, (D)= 3 (DY
Jj=m J=m

In order to get an estimate from below first we show that

® (1-3) B-B) <@t < (1+3) 8-

and

2 [1 ——%] t(B,—B,)<E} ,< (H—%] t(B,—B,)

if t<t,. "

?3) (D%)? é_j{: exp (tx) x*F;(dx) = [1 +%]fx2Fj(dx) = (1 +%] o}

if j=n since tM,=J/4.

Similarly, exploiting that ¢tM,—0, as n—o=, we obtain that

@ JxE@n = (1-2] o

and

M; M, 5 M
If XF}(dx) ——f ij(dx)l = T f xXF;(dx),
0 0 0

0 0 0
| [ xFidx)— [ ij(dx)| =2 [ x| E;(dx).
—M; —M; 4 —M;

11* Studia Scientiarum Mathematicarum Hungarica 12 (1977)



164 P. MAJOR

The last two inequalities imply

(3) (B = [_Z_ f x| F; (dx)]2§ —f% ol

(3), (4) and (5) give that

(1 ,%) 02 < (D)2 = [1+—g—] of if j=n

Summing up this inequality from m to n we obtain 1.

Since

d
'(EErtn,n = (l):n,n)2
relation (1) implies (2).
Let us choose 7 as the solution of the equation Ej, ,=x+2 VB,—B,,. (EL. , is
monotonically increasing in ¢ therefore the equation has a unique solution.)

(1—%] (x+2VB,=B.) (1+%} (x+2VB,— B,)

I <
Bn_Bm Bn—Bm
because of (2).
Relation (1) and the Chebyshev inequality yield that

x+4VB,—B,,
exp (—ix) G ,,(dx) =

x

= CeXp [- i (X _l_4 VBn* Bm)] [Gril,m (x+4 ‘/Bn~ Bm) - Gril,m(x)] =4 ‘

= %exp (—ix—4t VB,— B,) = T(l)—OeXP (= ix).

Thus we can make the following estimation:
P(S,—S, > x) = P(S,— S,—x—2VB,— B,| <2VB,— B,) =
x+4VB,—B,,

= EexplE(S,—S)] [ exp(~I0)Gla(dx) =

x

_ 1 [ 5) i _]> [ (1——0")x2]

= 100 exp[ 1— > —5(3,, B,—ix]| = cexp “3B.—Byl

This estimation completes the Proof of the lemma. -
Similar inequality holds in the case 0=x=—L VB, loglog B,.

Set G, ,,(x)=P(S,—S,,>x), and let « be a uniformly distributed random vari-
able in [0, 1] independent of the S;-s.
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Define 5
n= Gn,m(Sn-Sm)
and

IO S . R -
VBn_Bm

where G, ,,(x)=G, ,,(x)+(G, ,,(x+0)—G, .(x)), and &(x) is the standard normal
distribution function. 5 is uniformly distributed in [0, 1] and 7, — 7}, has a normal

distribution functions with expectation 0 and variance B,==B..
Our lemma has the following

COROLLARY. Let ¢, § and L be arbitrary positive numbers. Let B,—B,>¢B,.
We have for every sufficiently large n

|(Sn = Sm)— (Tn_ Tm)l =1 VBn log lOg Bn

on the set |S,—S,|<L JB,loglog B,.

Proor. Since the Lemma holds for every =0 we have

e o
—nVB1 B B logloz B
@{x n VB, loglog "JéGn,m(X)f (p(xwl// , loglog J
VB, -8B, VB, —B,

if [x]<L VB, log log B,. This relation implies the corollary.
PROOF OF THE THEOREM. Given any ¢>0 we show that for n=n(g) there exists
a Wiener process such that

b B o
©) P |sup S SMt B, >¢g| <e.
1=B, Vtloglogt
Define a sequence of integers ny,n, ... in such a way that n,=n and

[1+v2%J B,,k<Bnk+1<[l+%) B, . Let us construct a sequence of random vari-

ables 7,, -7, _, k=1,2, ... as it was done in the corollary. We may assume that
the random variables 7, —7, ., k=1,2, ... are independent. If the probability
space is rich enough, a Wiener process W(t), t=0 can be constructed in such a
way that W(B, —B,)=T, —T, for any k=0. We claim that this Wiener process
satisfies relation (6).

First we show that

- P[SEP [S(B,)—=S(B)~W(B,,~ B _ _.g] e

]/B,,k loglog B,, 2 2
Indeed,

k
IS(Bnk)_S(Bn)_W(Bnk_—BnN = g]’- (Snj_Snj_l)_(Tnj_'Tnj_l)
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But the last sum is less than
X ] P
1 j;; VB,,loglog B, < n-— VB, loglog B,,

if [S,,=S,,_,|<L VB,,J, log log B,, for every j=1, 2, ...

But choosing L sufficiently large the Lemma implies that the exceptional set
has very little probability. Thus choosing n=¢2/40 we obtain relation (7).
To finish the proof of relation (6) it is enough to show that

5 P( wp SO=5@,) >%]< ‘

me<t<mq VB,,kloglogB,,k 4’
and
= W (t—B,)—W (B, —B,
Z'P[ sup i —)___(_L )l>i]<-i
k=0 M <I<Mp 41 VBnklog IOg Bnk 4 4

Using a well-known estimation about the supremum of independent random
variables one gets that the first sum is less than

o E T
2 3 P(IS(Bu,) =SB, = 5 VByloglog B,) =

= 10
=2 3 P(IS,— Snl = 5 +— (ogk+c(m)),
k=0

where C(n) o= as n—co. If n is sufficiently large then this sum is less than ¢/4 because
of the Lemma. The second relation may be proved similarly.
One can choose a monotone sequence ry, k=1, 2, ... in such a way that rela-

tion (6) is satisfied with 82% for n=r,, and the relations
1
® P(s,| = VB, logloglog B,) =< 75
, _— 1
8" 1— @ (Ylogloglog B,) < -

also hold. (Here again we apply the Lemma.) One can construct a sequence of Wiener
processes

w1, 0=t=B, B

ric?

k=12 s

K+l

which satisfy
6" P [ sup

By a1<P s Yiloglog? k2

IS)—SBII-WE—B,) _ 1] _ !
k2
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We may assume that the processes Wk(¢), k=1, 2, ... are independent. Let WO(r),
0<r<B,, be an arbitrary Wiener process, independent of the W*(¢)-s, k=1,2, ....
Define W (¢), t=0 as

k—1
w() = > Wi(B,,,,—B,)+W*"(t—B,) if B, =t<B,,,.
j=0
We claim that this W(¢) satisfies the Theorem. Let us first observe that
S(B,,) W(B,)
VB,k log log B,, ' VB,k log log B,,
because of (8), (8”) and the Borel—Cantelli lemma. Thus
S(B,)—W(B,)
VB,k log log B,,

On the other hand using again the Borel—Cantelli lemma and relation (6”) one
gets that

— 0 with probability 1

— 0 with probability 1.

i IS()—S(B,)—W({O)—-W(B,)I
im  sup D
koo By, =t<B,, Vtloglogt

= 0 with probability 1.
These last two relations imply the theorem.
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