Zeitschrift fir

Z. Wahrscheinlichkeitstheorie verw. Gebiete ‘Wahrscheinlichkeitstheorie
59, 515-533 (1982) und verwandte Gebiete

© Springer-Verlag 1982

On Renormalizing Gaussian Fields

Péter Major

Mathematical Institute of the Hungarian Academy of Sciences,
Reéltonada n. 13-15, 1053 Budapest, Hungary 5

Summary. We investigate the Gaussian self-similar fields and their Gauss-
ian domain of attraction. Both discrete and generalized fields are consid-
ered.

1. Introduction

In recent time several papers investigated the construction of self-similar fields
and their domain of attraction. In the general case this problem is very hard,
but if we restrict ourselves to the Gaussian case it becomes much simpler. The
reason for this simplicity is that the distribution of a Gaussian field (with zero
expectation) is completely determined by its correlation function, or in the case
of a stationary field by its spectral measure. The problems about self-similarity
property and domain of attraction can be formulated in terms of spectral
measures in a natural way. Nevertheless these problems, which we are going to
investigate in this paper lead to some not completely trivial analytical prob-
lems.

First we consider generalized fields. We recall some definitions.

The set of random variables X{g), ¢ €%, where & denotes the Schwartz
space of infinitely many times differentiable rapidly decreasing functions on the
v-dimensional Euclidean space R, is a v-dimensional generalized field if

a) X(c,@,+c,0,)=c, X{¢)+c,X(p,) for all real numbers ¢, ¢, and all
P1s P2 € S

b) X{(p,)— X(¢p) stochastically if ¢,—> ¢ in the topology of &

The field X is called stationary if X (qo)iX (T,) for all ¢ and teR’,
where T,p(x)=¢(x+1), and Z denotes equality in distribution. The field X is
Gaussian if X (¢) is Gaussian for all pe & It is self-similar with self-similarity
parameter o if t”“X(q)t)iX((p) for all ¢ and >0 with ¢, (x)=¢ (—?) We

say that the generalized field X has a large scale (short scale) limit with
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normalizing factor 4, if for all pe &
At_IX((Pt)j')XO(qD) as t— oo (t—0),

where —Z» denotes convergence in distribution.

It has been proved (sce [2]) that the large scale (short scale) limit of a
stationary generalized field is always a stationary generalized field. If the
limiting field has self-similarity parameter « then the norming constant A, must
be chosen as A,=t*L(t}, where L(+) is a slowly varying function at infinity (at
zero). Obviously the large scale (short scale) limit of a Gaussian field is again
Gaussian,

We shall assume throughout this paper that the generalized fields we are
considering have zero expectation, ie. EX(¢)=0 for all ¢e€& Then their
distribution is determined by their correlation function R{e,¥)=EX ()X (¥);
o, ye& If X is a stationary field then by the Bochner-Schwartz theorem (see
e.g. [4]), there is a unique o-finite measure G on R” such that

R(p, ¥)={ &(x)}(x) G(dx), (1.1)

where ~ denotes Fourier transform. The measure G, which is called the spectral
measure of the field X, has the properties G(4)=G(— A4) and

[ +]x))~" G(dx)< 0 (1.2)
with some r>0.

The Gaussian stationary generalized self-similar fields are completely de-
scribed in [1] by means of their spectral measure. A Gaussian stationary
generalized field is self-similar with a self-similarity parameter o, a<v if and
only if its spectral measure G satisfies the relation G(t4)=t*""YG(4) for all
t>0and A€%". In case a=v this means that G is concentrated in the origin. If
a>v then the only Gaussian self-similar field is the trivial one, ie. X(@)=0
for all pe &%

Now we are interested in the following question: Which stationary Gauss-
ian generalized fields have a large scale (short scale) limit? This question will
be answered in the following Theorem 1. First we recall that a sequence of
locally finite measures p, on RY tends vaguely to a locally finite measure p, (in
notation p,—%~ u,) if and only if [/(x) u,(dx)— [f(x) uo(dx) for all continuous
functions f with a bounded support.

Theorem 1. Let X be a Gaussian stationary generalized field with spectral
measure G. It has a large scale (short scale) limit with the normalizing factor A,
=t*L(t), where L(+) is a slowly varying function at infinity (in zero), if and only

if the measures G, w2 » ,
G,(A)=t LGt 4), Ae% (1.3)

tend vaguely to a measure G, as t— oo, (t—0). If the limit G, exists then it has
the homogeneity property

Go(A)=1>""9G,(t"'A) forall AcH and 1>0, (1.9

and it is the spectral measure of the limiting field.
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if a sequence of measures G, defined by (1.3) tends vaguely to a measure G,
which satisfies (1.4) as t— co then

it e l) e

for a set A with zero G, boundary, and if G,—> G, as t— 0 then
~L2(g) as ¢—0.

Hence, roughly speaking, Theorem 1 states that a Gaussian stationary genera-
lized random field with a spectral measure G has a large scale (short scale)
limit field with a spectral measure G, if and only if the spectral measure G
behaves similarly to the spectral measure G, in a neighbourhood of zero
(infinity).

Now we turn to the investigation of discrete fields. Let X,, nc %", be a
stationary Gaussian field, where 2 denotes the lattice of points with integer
coordinates in R*. We assume throughout this paper that EX,=90. Introduce
the notation

BY={je2"; Nn <j, <N, +1), k=1,...,v}, neZ, N=12,..,

where the subscript k denotes the k-th coordinate of a vector. Given a sta-
tionary field X , ne 2", we define the fields

ZX=—Y X, neZ" (1.5)

n r
AN peBY

for all N=1,2,..., where the norming constants 4, are appropriately chosen.
We say that the field X, has a large scale limit Z¥* neZ”, if the finite
dimensional distributions of the fields Z¥ defined in (1.5) tend to those of the
field Z}. A stationary field X,, ne 2", is called self-similar with self-similarity
parameter o if 4
(zy,...zZ))=(X

ny?

.

with A,=N* for all N=1,2,...,k=1,2,...,nje=.5fv, j=1,...,k Tt can be seen
that, just like in the case of generalized fields, under some slight regularity
conditions the large scale limit of a random field must be self-similar. If the
limiting field has self-similarity parameter o then the norming constant A, in
the definition of ZY must be of the form 4,=N*L(N), where L(*) is a slowly
varying function. We remark without proof, that if the random field X,
satisfies a certain continuity property to be defined below then it has the above
mentioned properties.
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Definition. Let X,, ne 2", be a discrete stationary random field such that EX,
=0, EXZ < o0. Set
=E[(Y X)), N=12...

peBg

The field X, satisfies the continuity property if for all 1<k=<v and ¢>0 there
exists a d=05(¢)>0 and an N,=N,(g) such that for all rectangles P< Z" of the
form P=[L,M;]x...x[L,M,] with the properties 0=<M;,—L,<N, j
=1,...,v, M, — L, <8N, N2z N,, the relation

E( Z Xp)zj <eDi
peP
holds true.

The heuristic content of the above continuity property is the following. If
the set By in the sum » X, is slightly perturbated then the sum ) X,

peBY
changes relatively little.

We are interested in the description of the stationary Gaussian self-similar
fields and their Gaussian domain of attraction. We restrict ourselves mainly to
the fields satisfying the continuity property.

The correlation function r(n)=EX X, of a discrete stationary random field
can be written in the form

r(n)=[e"? Gdx), neZ”,

where G is a finite even measure on the torus [ —=, 7)*. The measure G is called
the spectral measure of the field X, ne &
Let G be a o-finite even measure on R” with the following two properties:

G(tA)=t>0"9G(4) forall Ae®’ and t>0 (1.6)
and
IH L% Gax) < o (1.7)

Then, as it is proved in [1] or [5], the measure G defined on the torus
[ ==, n)" by the formula

GE)= ¥ jl_[2(1 COS X;)

G(dx+2mnq), Ec T, 1.8
I Gy Gt 2mg, E[—mny (9

is the spectral measure of a Gaussian self-similar field with self-similarity
parameter «. We shall prove the following

Theorem 2. A v-dimensional discrete Gaussian stationary random field is self-
similar with self-similarity parameter o and it satifies the continuity property if
and only if its spectral measure can be written in the form (1.8), where G is an
even measure on R’ satisfying (1.6) and (1.7). The random field determines the
measure G and G uniquely.

We shall prove Theorem 2 by the help of the following Theorem 3 which
describes when a stationary Gaussian random field satisfying the continuity
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property has a large scale limit. The formula uy—*-p, will indicate weak
convergence.

Let X,, neZ” be a stationary Gaussian random field with a spectral
measure G. Define the measures Gy and py, N=1,2,... by the formulas

A
Gu(A) =N~ [-2(N)G (N) Ae B (19)
v 1— )
(A= 1 X _Gudx), Aed, (1.10)
4i=1 N2 [l—cosﬁj]

where L(+) is an appropriately chosen slowly varying function. We formulate
the following
Theorem 3. a) The following two statements are equivalent:

(i) The field X, satisfies the continuity property and it has a large scale limit
with Ay=N*L(N).

(i) There exists a measure y, such that py—-> .

The limiting Gaussian field Z*¥, ne %" is self-similar with self-similarity pa-
rameter o, and its correlation function is defined by the formula

EZ*Z¥, = exp [i(n,x)] to(dx). (1.11)

b) The relation py~*% p, implies that there exists a locally finite measure G,
such that Gy—2—G,. The measure G, has the homogeneity property

Go(A)=120"9G,(t=1A)  for all t>0 and Ae B". (1.12)
Moreover
vo1— )
[ T 2% G (dx) < o0 (1.13)
=1 X
and
1— ,
po(A)=1 ] 2—XiGy(dx), AeB. (1.14)
Aj=1 Xj

c) In the case v=1 and oa>0 the relation Gy—2— G implies that py—"- i,,
where u, is defined in (1.14). In case vz 2 it may happen that Gy—"> G, but the
relation py—2— u, does not hold even if a>0.

By comparing the correlation function of the limiting fields in Theorem 3
defined by formulas (1.11), (1.12) and (1.14) with the self-similar fields appear-
ing in Theorem 2 one can sce that the large scale limit of a field which satisfies
the continuity property is a self-similar field also satisfying the continuity
property. This fact may indicate the importance of self-similar fields with
continuity property.

Let us compare Theorems 1 and 3. In both cases the relation Gy—>G, is a
necessary condition for the existence of a large scale limit. In the case of a
generalized field this relation is also sufficient. In the case of discrete fields
with v=2 however the somewhat stronger condition uy—*- p, is needed.
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In this paper we do not intend to give a complete deseription of discrete
Gaussian stationary self-similar fields. We only show through an example that
there exist discrete Gaussian fields which do not satisfy the continuity proper-
ty.

Let ...&_,,¢0,¢,,... be a sequence of independent standard Gaussian
random variables. Then X, =¢, ,—¢&,, n=...—1,0,1,... is a self-similar se-
quence with self-similarity parameter zero, and it does not satisfy the con-
tinuity property. In higher dimensions such fields can be constructed also with
positive self-similarity parameter. Indeed, let &, —-1,0,1,..., be a self-
similar Gaussian sequence with self-similarity parameter o, oc>0 Let S
=...—1,0,1,... be independent copies of this sequence, and define the two-
dimensional field X =Cki1= i kon=...—1,0,1,... This field is self-simi-
lar with self-similarity parameter o, and it does not satisfy the continuity property.

This paper consists of three sections. Section 2 contains the proof of the
theorems with the help of a lemma. This lemma is proved in Sect. 3.

The author would like to thank to professor R.L. Dobrushin for several
useful discussions about this subject.

2. Proof of the Theorems

Proof of Theorem 1. First we show that if the field X has a large scale (short
scale) limit then the measures G, tend vaguely to a measure G, as t— co (t—0).
Choose a function ¢ € %, and define the measures g, ,,

b= 10 G ), A

for all £>0. Observe that

lim [ ¢, (dx)=lim 47 2EX () X (T,

=R (s) ast—ow (t—0), @1)

where R (s)=EX y(p) X, (T ¢) and X is the limit field. Moreover, since R, (s)
s a contmuous function in s, relation (2.1) implies that p, ,—*-pu, w1th an
appropriate measure y, as t— oo (t—0). This relation holds for all ¢ €%, hence
G,— G,

Now we show that if G,——>G, as t— o (t—0) then G, satisfies the
homogeneity property (1.4). Let f be an arbitrary continuous function with a
compact support. We claim that

[f(x) Goldx)=c>"2*[f(cx) Go(dx)  for all ¢>0. (2.2)
Indeed,

lim { £(x) G, (dx) = [ f(x) G o(dx)
and

lim {f(x) G,(dx)=1lim ¢*'~** (&)2 [f(ex) G, (dx)
2v 2o J‘f cx dx)
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as t— o0 (t—0). The last two relations imply (2.2), and since the continuous
function f with a compact support can arbitrarily be chosen, (2.2) implies
relation (1.4).

Finally we are going to show that if G, —— G, then

lim 4,72 EX (p)* =lim [ |$(x)]* G,(dx)= [ 1p(x)|* G, (dx). (2.3)

This relation completes the proof of Theorem 1.
Since @& (the Fourier transform of a function ¢ €% also belongs to %)
and G, is a homogeneous measure, we have

[ e Goldx)<e

|x]>K

for K> K(g). On the other hand

f 101G dx)— | [9(x)* Goldx)

[x| =K x| <K

for arbitrary K >0. Hence to prove formula (2.3) it is enough to show that

| 101”6 dx)<e

|x{>K

if K is sufficiently large for all £>2 (¢<1). Since [@(x)| < C,|x|™! for all />0 and
xe R’ it is enough to prove that

[ IxI"'Gdx)<e forall t>2(t<1),

|x|>K

where [ is chosen sufficiently large (independently of t and ¢). Let us remark
that G,—%> G, implies that

G (x]=1)sB  forall s=2(ss1) (2.4)

with an appropriate B>0. Let us first consider the case when the large scale
limit exists.
Set L=Jlog K. We can write

1= | IX7G,@x)= Y 271G, <|x| <27 1Y)

|x]>K jzL
= Y + Y =&+
jzL i>L

271y 27t st

Because of relation (2.4)

S Y 2R ELa 2 PR 2 Gy (e S 1)
z-2{?Ll;1

<pa-m Yy penewEC2TD ¢

= = @y ~2

fe2-i 121
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if first [ and then L (ie. K) are chosen sufficiently large. (The choice of [ is
independent of ¢.) In the last step of this estimation we have exploited that

B(t-2777Y)

A €2

for all ¢>2, ¢-277='21 and >0, which, in turn easily follows from
Karamata’s theorem.

To estimate %, observe that because of (1.2) for all sufficiently large p>0
there exists a C,>0 such that

G(|x1<t‘12j“)§Cpt‘P2f” if t-277-1<1.
Therefore
2,SC, ) 27 LA () 2R,

jzL

Let us choose p so large that (**~2*~? [ 2(1)<1 for all t=2, and let I>2p.
Then i
2

I,2C, Y 2 2

JZL

NSRS

if L is chosen sufficiently large. In the case when the short scale limit exists the
proof is simpler. In this case we may write

271G (2 < x| S )= 20D [ 2(g) (. 2 )P
¥
2(-2796,, ,(1<x|<2)<C-27?

if t<1,j=1 and L is chosen sufficiently large. Summing up these inequalities
for j>L we get that I(t)<¢ if L (ie. K) is chosen sufficiently large. Theorem 1
is proved.

Now we turn to the proof of Thorem 3. First we formulate two lemmas
which will be needed during the proof We introduce the following notation:
Given an xeR” its integer part [x] is the vector ne%” satisfying the in-
equalities x;— 1 <n;=x;, j=1,...,v.

Lemma 1. Let py, p,,... be a sequence of finite measures on R” such that uy(R”
~N[=Cyw, Cyn]")=0 with some sequence Cy— oo. Define the functions

ox)= ] exp [ ”CC;V] )| avtan.

If for all teR” the sequence @(t) tends to a function @,(t) continuous at the
origin then the sequence p, weakly tends to a finite measure u,. The function @,
is the Fourier transform of p,.

Lemma 2. For all v=1 there exists a B=B(v)>0 and an Ny=N,(v) such that
forall N>N, and xe[ - Nz, Nn)"

(2.5)
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Lemma 1 coincides with Lemma 2 in [3]. We prove Lemma 2 in Sect. 3.

Proof of Theorem 3. a) Let X,, ne &, satisfy the continuity property, and let it
have a large scale limit Z* with normalization Ay=N*L(N). We show that
there exists a measure u, such that u,—*-> p,. Set

P = jexp[([N] )]MN(dx), teR".

Since the measure uy is concentrated in [—N=n Nxn)" it is enough to prove,
because of Lemma 1, that the limit ¢, (¢)= lim @y(?) exists for all teR”, and it
N-w

is continuous at zero. Observe that

o=jern [ (5] le~
D

=N">*I">(N)E[( Y X

leBY peBf

(2.6)

where
B+m={x; x=y+m, yeB}.

. . 1 .
Let us choose a sufficiently small #>0 of the form n=p where M is an
integer. Define the set A(t,y), teR”

At,n)={n, ne &, tj+g§njn§tj+1—%n for all j=1,...,v}.
Set
C(N,t,m)= |j BV
ne A(t, )
and

D(N,t,n)=(BY +[Nt])~ C(N,t,).

(Our aim with the definition of the set C(N,t,#) was the following. We wanted
to fill the cube BY +[N¢] almost completely with the union of non-overlapping
cubes B in such a way that the set of the subscripts n of the cubes BV
which are contained in this union does not depend on N.)

Observe that for N>2x#~* C(N,t,n) < BY+[Nt]. We define the functions

E[( > X)( ¥ X))

Py(t)=
N*I2(N) " “jec®om 7 iectiom

Then there exists a function @, such that

lim gy(0)=lim p**E( Y ZMz0=y2 Y EZ¥Z¥=6,1). (2.7)
N— oo N 1e A(0,n) le A(O,n)
peA(t.n) peAlt,n)

On the other hand

o ECY X+ Y XY X+ Y X))

2072
N=L (N) jeC(N,0,n) JjeD(N,0,n) leC(N,1,1) leD(N,t,m)

oy()=
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if N>2n~1. Hence

s (E X. X
N*LX(N) jeD(;,O,rl) 11535,;[1\1:] :

+E Z XjZXl_E Z Xj Z Xz)-

jeD(N,t, ) leBY jGD(Ns 0,7n) e D(N,t,1)

limsup |@(1) — @ (£)| = limsup
(2.8)

The sets D(N,t,4) and D(N,0,%) can be represented as the union of at most 2v
rectangles in such a way that the length of the edges of these rectangles is less
than or equal to N, and the length of one of these edges is less than nN.
Hence the continuity property of the field X, implies that

N-*LANE( Y X)<e (2.9)
JjeD(N,0,n)

N="2LXNE( Y X)P<e (2.9)
jeD(N,t,m)

if n<n(e) and N> N,(e). Relations (2.8), (2.9), (2.9) and the Schwarz inequality
imply that '
limsup |@ (1) —@y(t)] <e (2.10)

for y<n(s), where 5 does not depend on . Relations (2.7) and (2.10) imply that
the limit @, (f)=lim ¢,(f) exists. Moreover, since @,(t) is constant for lt|<g

hence the function ¢, is continuous at zero. Then Lemma 1 implies that
iy —"> [ho- )

Let us now assume that uy—*— u,. Then there exists a Gaussian stationary
field Z#, ne 2 whose correlation function is defined by (1.11). Moreover

lim EZYZYN = hm je’(" X unldx)= "I p (dx)=EZYZ},
N—ow
therefore Z*, ne 2, is the large scale limit of the field X,. We shall prove with
the help of Lemma 2 that the field X, satisfies the continuity property.
Let P=[L,,M ]x...x[L,M,], Pc %" be a rectangle such that 0<M,
—L,<6N,0=M;~L;=N, j=2,...,N. We have to show that

1
X))
N2ocL2 ng
if 6 <d(e). We can write
M.—L.
1 , 1—cos (~—’N—’xj>
NZocLZ ZPX 5 1—[ GN(dx)
pe Jj=

1 a2 xj)
N|1— L
( COSN

oo, 1 (M,—L;
<Cj 'H1 min (F ( JN ) ) Gy(dx)
5 | ) |

1j=2 |x1}<K Ixs|>K
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Because of Lemma 2 and the compactness of the sequence of measures uy the
following estimates hold true:
vl
= f n ——— Gy(dx)
R el
| , l—cos—x;
— ——— Gy{d
~ BN ZN <|x11j>1<} jljl 2 Xj V(@)
(5] N l—~cosj\7

N 2v—2a 72 v
I
12[2] {Ix4] > }:ll2 (1 cosTj)
c ¥ N
éﬁ Z ﬂl(|x1|>TK)§3
N
lz[gj

if K>K(e).
1
Observe that if [x| <K and O<K then
52 )
v < Y
14+8%x2 T 1+x*

By using this estimate together with Lemma 2 the following estimate can be
obtained:

. v 5 N ND-mP(N)
o —_— <— — " (RY
(|xl‘J<K}< j,-gllerjGN(dx)—BNl %N] g HR)<e
“ Lz

if >0 is sufficiently small. Part a) of Theorem 3 is proved.
b) Let uy—%>u,. Choose a non-negative continuous function h with a

support in —[2 2) Then

v 2

[ h(x) Gy(dx)= [ hy(x) puydx)— [ h(x) [] o

d
L2 COSX)MO( x)

as N — oo with
X,
N2 (11— —1)
. ( cosN

=h(x) []

ket 1—cosxj

E

2

since hy(x)— h(x) H uniformly as N— co. Let us define the mea-

—cos ;)

Z.Zm 20: A
sures G,, G,(4)= Lz(t) G (7), Ae % for all t>0. It is easy to see that

v 2

lim { h(x) G,(dx)=[ h(x) ]|

d .
lim e Cosx)uo( x) (2.11)
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since
(A)
Gpy(A)

G __,

<1, lminf—F-<1,
G[z]+ 1(4)

lim sup

and relation (2.11) is already proved for the case when ¢ takes only integer
values.

Let us now consider a non-negative continuous function 4 with a compact
support. Let this support be contained in a rectangle [ — B, B]". Let us choose a
number b>B. Then

lim [ h(x)G dx)— hm p2x—2v

t—

Lo )5 h(bx) G,y(d)
. (2.12)

=b>=2"{h(bx) n

2(1 cosx;) Holdx).

Relation (2.12) means in particular that lim {h(x)G,(dx) exists for all continuous

t— 00

functions h with a compact support, and this implies that there exists a measure
G, such that G,—*>G,. Applying relation (2.12) to the function h(sx), s>0,
with the constant s~*b instead of b we get that

lim [ h(x) G (dx)—hm s> 2% [ h(sx) G (dx).

t— 0

Taking limit in the last relation we get that
[h(x) Go(dx) =50~ [ h(sx) G,(dx).

This relation implies the homogeneity property (1.12) since it holds for all s>0
and all continuous function h with compact support.

Let f be a continuous function with compact support. The relation
Uy — po implies that

lim 100 ()= 109 (). (2.13)
On the other hand since Gy—*— G, and
ll[ 1—cosx; A’ﬁ21_;(2)sxj
i=1 2 WANNES i
N*[l—cosZ
( cos N)
uniformly in all bounded regions
. . hd —COS X;
lim [f(x) puy(dx)=lim [f(x) l_[ ———x Gy(dx)
N=e Nz =1 N? (1—cosN)

(2.14)
- COS X

={f(x H Go(dx).
j= J
Relations (2.13) and (2.14) imply (1.14). Since the measure g, is finite, relation
(1.13) also holds. Part b) of Theorem 3 is proved.
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¢) If Gy—G, then puy—2>u,, where py is defined in (1.10) and g, in
(1.14). To prove that in case v=1, >0 even the relation py,—*> u, holds we
have to show that the sequence of measures p, is uniformly tight, ie.
uy(lx|>K)<efor all N=1,2,... if K> K(g). We can write

1—cosx
py(x|>Ky= | **;"GN(dX)
Nezx>K N2 (l—cosv>
N
[log N

sc [ LGavsy

2j
Nrnzx>K Jj=L 2

Gu(@IxI2Y),

where L=[log K]. On the other hand

Gy =x| <27 ) SGy(x| <277 )
N?*=2 2(IN-271]+1)
é LZ(N) ([Nz_j]+1)2A2aG([N2*J]+1)([_1511)
é C/2j[(2~20c)+5],

where 6>0 can be chosen arbitrary small, if C’ is sufficiently large, since the
sequence G, ([—1,1]), M=1,2,... is bounded. Let §<2a Then the above
estimations imply that

s3]

ay(XI>K)SC' Y 2020 <¢

Jj=L

forall N=1,2,... if K and therefore L is sufficiently large.

In the case v=2 we show an example where G,—%>G, but the relation
Uy —> u, does not hold.

Let us consider a spectral measure G satisfying relations (1.6), (1.7) and (1.8)
with some O<a<v—1. Such a G exists. (See e.g. [1].) Let us fix a point
b=(b,,0,...,0)eR’, O0<b,;<mn, and let the measure p be concentrated in
the points b and —b, p(b)=p(—b)=1. Set G'=G+p. Then Gy—— G, and
Gy~ G, with Ay,=N>®~% On the other hand if puy is defined by formula
(1.10) with the measure Gy then

limsup py (R") = limsup N?*~2*~2 p(b)= oo,

and therefore the relation y, —* y, does not hold.
Now we turn to the

Proof of Theorem 2. Let Z*, ne%”, be a Gaussian self-similar field with self-
similarity parameter « which satisfies the continuity property. Then, as its
distribution coincides with that of its large scale limit with 4,=N* Theorem 3
implies that its correlation function is defined by formulas (1.11), (1.12), (1.13)
and (1.14). Hence its spectral measure satisfies relations (1.6) (1.7) and (1.8) as it
was claimed. Conversely we have to show that if the spectral measure of the
Gaussian random field Z# satisfies formulas (1.6), (1.7) and (1.8) then this field
is self-similar with self-similarity parameter o, and it satisfies the continuity
property. The following calculation proves the self-similarity property.
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. N v e Nx.
7t 7 1 G(d
= JEZBN )( Z o= j NZ* ,-1:_[1 1—cosx; ()
ol Nx) v 2(1—cos ij)

_Rj; Nch—Zv i (ij)z

G(dx)=[ e G(dx)=EZ}Z}.

Let us define the measures Gy, iy, N=1,2,..., and y, by formulas (1.9), (1.10)
and (1.14) with L(N)=1, where G is the spectral measure of the field Z¥, and
G, coincides with the measure G appearing in (1.6). By part a) of Theorem 310
prove that the field Z¥ satisfies the continuity property it is enough to show
that py—">u,. Let Ac[—N=n, Nn)*. Then

cosNx

A NZv 20 d
iyid)= j ﬂ N2(1 cost)G( )
T cosNx Gldx+ 2t
ts;viN nzN2(>c T2n1) Gldx+2mt)
N v _ ) R
— Y [ T]20N Gkt 2a )

egva =1 (;T2uNL)
= po(A+2ntN)=po(A)+ Y po(A+2mtN).

teZv teZv~ {0}
The second term in the last expression can be bounded by py(R"~
[ — N, N=n)’ which tends to zero as N— co by condition (1.7). Hence uy—¥— 4,
as we claimed. Finally observe that the field Z* determines uniquely its

. A A
spectral measure G, and since Gy—2>G with Gy(4)=N>"*G (N) also the
measure G. Theorem 2 is proved.

Remark. We considered self-similar fields whose spectral measures were given
by formulas (1.6), (1.7) and (1.8). Relation (1.7) can be replaced by

f 1‘[ G dx)< (2.15)

It is clear that relation (2.15) implies (1.7). We show with the help of Lemma 2
that relations (1.6) and (1.7) imply (2.15). Let us choose a sufficiently large N,

N
and let [j]éléN. Let us define the cube B(N)={xeR"; —Nn=x;<Nm,

j=1,...,v}. Then !
—COS —
v N ] . v 1_ .o
[ [ ————G@n=C [] —a G(dx)
BV =1 p2 (1_005%) =1 %

N
for all [7] =I<N, where the constant C does not depend on N. Summing up

these inequalities, and applying Lemma 2 we get that
v 1 C. 5 1—cosx; ,
G(dx _—
J L e Ca=gI T —— 6

B(N) j=1 7

Since this inequality holds for arbitrary large N, relation (1.6) implies (2.15).
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3. The Proof of Lemma 2

We shall deduce Lemma?2 from a result formulated below. This result is
actually equivalent to Lemma2. For all positive integers n we define the
transformation T,: [—=n,n)—[—n,7) by the formula T x=nxmod(2xn), xe
[ —n, ). We formulate the following

Lemma 3. For all positive integers k there exists a threshold N,=N,(k) and
some numbers p=p(k)>0, 6=5(k)>0 such that for all N>N, and x,,...,%;,

L<|x|_7r] 1,...,k we have

2N
Card A(N)zpN.

where
N ,
A(N)=A(N, x,, ...,xk)={n;7<n<N, and |T,x;|>é for all j=1, ...,k}.

Proof of Lemma 2 via Lemma 3. Let us introduce the notation

Jh=J(, x,, ...,xv)zfl

N
for [5]§Z§N and [x;|SNx, j=1,...,v.

X 1 x 1 1 X 1
Let (s = 1%l 2 gpg (Mgt 05
NN N TN TN P Sy We are going
to show that
v
JhzC 3.1
zcll i 6.1

for all leA(N,%,...,%) with some C=C(v)>0. Since J())=0 for all

[5] <I=N relation (3.1) and Lemma 3 together imply Lemma 2. We can write

1= COSN i >1—cosé>1—cos5 1
): 5 T 5 1+x7

1
N2 (1—cosﬁx1

for I<j<kandleA (N%%") and
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for k<j<v and [E] <I=N. These inequalities imply (3.1) and therefore also
Lemma 2. 2

Now we turn to the proof of Lemma3. The idea of the proof is the
following: It is well-known that the distribution of the sequence T,x, n
=1,...,N tends to the uniform distribution as N—oo, if x/n is irrational.
Therefore it is natural to expect that if x/z is relatively far from all rational
numbers with small denominator then |7,x|>¢ for a very large proportion of

N . . .
the numbers ?§n<N. We shall prove this by adapting some ideas from the
theory of concentration functions. Then we can reduce Lemma 3 to the special
case when all —L j=1,...,k are near to a rational number with a small

denominator, and this latter case is relatively simple.

Proof of Lemma 3. In the proof we do not give sharp estimates. We shall
deduce Lemma 3 from the following three statements: For all e>0 there exists
an A=A(¢) and Ny=N,(4,¢) such that if A>A(g), N>N, (4,¢) then the
following estimates hold:

(i) For all xe D, (N)

1
:0< —
Card {n, <n<N, |T,,xl<2A}<eN
where
A2
D(N)=[—m, n)\lul Dy ()
and

D,(h=D (I, N)= {x <i for some j=0, +1, ...,—_F([l]—kl)}

=/N 2

2
Xx—2nils

(i) For all xeD,(N)

Card {n;0<n=N, |Tx|<A™°}<eN
where

Z(N):191 Dz(l, N);

and

1 [
D,(I,N)= { 2NA2< ]//Lforsome] 0, +1 ...,i([z]—kl)}.

(iii) If x, € D3(N), .., x;€ D4(N), j<k, with

x2n

Dy(N)y=[—m,m)~ (Dl(N)UDz(N)U [_% %])

then
N 1 ,
Card{ 5§1<N IT,x, |> 5 for all m=1,. ,]}>pN

with p=p(j)=% H ( ) where p, denotes the I-th prime number.
=1 l



On Renormalizing Gaussian Fields 531

We remark that statements (i) and (ii) are very similar to each other. We
separated these two statements because their proofs are different. The estimates
(1), (i) and (i) imply Lemma3. Indeed if x,eD,(N) for 1ZI<],
x; €D (N)UD,(N), j<I=<k, and ¢ is chosen in such a way that p=p(k)—ke>0
then there are at least pN indices ﬁ<n<N such that {nx,|>6 for all I=1, ...,k

h 5= mi L1 1y 1
wit =min <ﬂ’ Zs—’ TAZ) —1-4—5.

Proof of (i). Let us choose a sufficiently large 4>0 (independently of N),

and define the function

1
1—AJu] for |u|<Z

fa)= |
0 otherwise

Fix a number x, and set

1
FN(M):N_ Card {j; j<N, T,x <uj}.

We express the function f,(u) by its Fourier series:

1 - A m imuy —imu
fA(u)zﬂJr ¥ T (l—cosz> (e 4 o~ im¥),

m=1

The following estimate holds:
1
Card {n; n<N, 1Tnx|§2—g}<2N | fa(u) Fy(du). (3.2)

On the other hand -
All— —
© ( €08 A)

1 . .
VB =+ Y, J (e e~ Fy(du

= 2miy
= ! + f + i = ! + 2, +Z
—Aﬂ: m=1 m:A2+1_An ! >

Clearly

If xe D,(N) and 1<m<A4?, then

iNmx __1 |
Re-S Lo 4 <8
N(@™ —1)| = N(1—cos mx) = A2’

|Re | e™ Fy(du)| =

A
since |mx —2kn|>—— for all integers k=0, +-1, +2, .... Therefore

VN

1 1 ® 24 8 10
— 2 S p—— <
An | 1= 7'C+

2 T2 =
mogmn AT A
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These estimates imply that for x € D, (N)

11

ij dx)<j4-

) ) . . 22
The last relation together with (3.2) imply that (i) holds if 4 >—.
e

Proof of (ii). Let xe D,(l, N), 1=I<A” Then there exists an integer j such
1 A j 2
that Wémé_ﬁ for yzx—Zan. Define T'y=ny (mod%) for n

=0,1,.... Obviously |T,x|<A~> can hold only if |T};y|<A~°. Hence to prove
(11) it 1s enough to show that

Card {n;0<n<N,|T'y|<A~5)} <eN (3.3)
1
if ————<y £¥
LaaNETE
Set M= (-[ﬁ—l—l) For arbitrary integer j the sequence T}, y,..., T} v

2 3
contains at most A +2<7§ elements such that |T},  y|<A~> (Here we
y

. ) . . I_VN
have exploited that in the sum yTJrZ the first term dominates since ;gg,
and we may choose N very large) Since [<A4> the inequality
3 3 4 _ N
A5y<A3l _Zs—M holds. Put NZM([M]'H)- The sequence T}y, ..., Tty

contains at most

4 N 4 QA2+1)
- — < <4-— -
M ([M]+1)=A3 (N+M)S4=—F—=N

elements such that |T!y|<A~5. Since N=N this relation implies that for
sufficiently large A4 relation (3.3) and hence (ii) hold.

. . 7y
Proof of (iii). If x,, ..., x;€ D;(N) then there exist some rational numbers -,
s

5

I=1,...,j, such that 1<s,< A2, —%grlgé, n=+0, r, and s, are relatively primeé
1 . S

TN I=1,...,j. This implies that
1 1

s, 247 ‘ZAZ

enough to show that the proportion of n, ?§n§N satisfying the relations

1
<27f12 if

nx;— 2mn !
St

and <

X, — 2n
5)

n=<N, and |T,x,|= if nr,+0 (mods;). Hence to prove (iii) it is

rin+0(mods,), ..., r;n+0(mod s) (3.4)

simultaneously is greater than 2p(j). We may assume that s, ..., s; are (distinct)
prime numbers. Otherwise the proportion of the numbers satisfying (3.4) can
be decreased by substituting s, with one of its prime divisors. For large N the
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<n

IIA

N satisfying (3.4) is asymptotically

(-2t 1)

=1 1

Statement (iii) and hence also Lemma 3 is proved.
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