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Abstract: We construct a (non-integrable) function f and two measure preserv-
ing, ergodic transformations S and T on a measure space (X ,A, µ), µ(X ) = 1,

in such a way that the ergodic means lim
n→∞

1

n

n
∑

k=1

f(Skx) and lim
n→∞

1

n

n
∑

k=1

f(Tkx)

exist for almost all x, they are finite constants not depending on x, but these
constants differ when we are averaging with respect to the operators S and T.
This means that in the case of a non-integrable function f and an ergodic trans-
formation T the ergodic mean depends not only on the function f , but also on
the transformation T. The construction applies some probabilistic arguments.

The aim of this paper is to construct a probability space (X ,A, µ), a function f and two
ergodic transformations T and S on it such that

lim
n→∞

1

n

n
∑

k=1

Tkf = 0 a. s. (1)

lim
n→∞

1

n

n
∑

k=1

Skf = a a. s. (2)

with some constant 0 < a < ∞. Here and in the sequel the same symbol is used for
a measure preserving transformation and the linear operator it induces on measurable
functions by composition. (Because of the ergodic theorem such an example is possible
only with a function f such that

∫

f+ dµ = ∞ and
∫

f− dµ = −∞.)

The question about the possibility of such an example was raised by Zoltán Buczolich.
He studied the problem that for how large class of functions the classical notion of integral
can be extended. He was interested in the relation of this problem to the ergodic theorem
(see [1]), and this was the reason for asking such a question. But we hope that this question
can also be interesting for its own sake.

We define the probability space (X ,A, µ) as X = [0, 1]Z, where Z is the set of integers,
A is the Borel σ-algebra on X and µ = λZ, the direct product of different copies of the
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Lebesgue measure on [0, 1]. Let T be the shift operator to the left on X , i.e. for x ∈ X ,
x = (. . . , x−1, x0, x1, . . . )

T(. . . , x−1, x0, x1, . . . ) = (. . . , x0, x1, x2, . . . ) .

To define the function f we introduce the sequences

An =

[

2n+10

n2

]

, n = 1, 2, . . . ,

B0 = 0, Bn = 2(A1 + · · · + An), n = 1, 2, . . . ,

where [·] denotes integer part. Put fk(u) = 0 for k ≤ 0, 0 ≤ u ≤ 1, define the functions
fk(u) for Bn−1 < k ≤ Bn, n = 1, 2, . . . , on [0, 1] as

fk(u) =

{

n3 for 0 ≤ u < 2−n

0 otherwise
if k is odd

fk(u) =

{

−n3 for 0 ≤ u < 2−n

0 otherwise
if k is even ,

and set

f(x) =
∞
∑

k=−∞

fk(xk) , x = (. . . , x−1, x0, x1, . . . ) .

The relation
∞
∑

k=−∞

µ(fk(xk) 6= 0) =

∞
∑

n=1

2An2−n ≤ 211
∞
∑

n=1

1

n2
< ∞

holds, hence the Borel–Cantelli lemma implies that for almost all x with respect to the
measure µ the sum defining f(x) contains only finitely many non-zero terms. Hence this
sum is meaningful. Moreover, since the sum defining f(x) contains finitely many non-zero
terms with probability one, the rearrangements of summation appearing in this article are
legitimate.

First we show that the above defined T and f satisfy (1), then define an operator S

which satisfies (2).

Write

1

n

n
∑

k=1

Tkf(x) =
1

n

∞
∑

m=−∞

Hm,n(xm) =
1

n

BL
∑

m=−n+1

Hm,n(xm)

+
1

n

∞
∑

m=BL+1

Hm,n(xm) = Z(1)
n (L) + Z(2)

n (L)

with arbitrary L > 0 and

Hm,n(u) =
m+n
∑

k=m+1

fk(u) , 0 ≤ u ≤ 1 .
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The relation

µ
(

Z(2)
n (L) 6= 0 for some n ≥ 1

)

≤

∞
∑

k=L

Bk+1
∑

m=Bk+1

µ(xm ∈ [0, 2−k−1]) (3)

= 2

∞
∑

k=L

Ak+12
−k <

const.

L
, where x = (xm, m ∈ Z)

holds.

Observe that the functions Hm,n(xm) are independent for fixed n, and Hm,n(u) =
j(n + m)fn+m(u)− j(m)fm+1(u), where j(m) = 1 if m is odd, and j(m) = 0 if m is even.

Define the moments E
(p)
n (m) =

∫

Hp
m,n(xm) dµ(x) of the random variables Hm,n(xm),

p = 1, 2 . . . . The identity E
(1)
n (m) = j(n+m)`3(n+m)2−`(n+m)−j(m)`3(m+1)2−`(m+1)

holds, where `(m) denotes the number l for which Bl−1 < m ≤ Bl if m ≥ 1, and `(m) = 0

if m ≤ 0. Also the inequalities |E
(p)
n (m)| ≤ C(p), p = 1, 2, . . . , hold with some constant

C(p). These relations together with the independence of the variables Hm,n(xm) imply
that

lim
n→∞

EZ(1)
n (L) = lim

n→∞

1

n

BL
∑

m=−n+1

E(1)
n (m) = 0 , (4)

and

E
(

Z(1)
n (L) − EZ(1)

n (L)
)4

≤
const.

n2
.

Hence

µ
(∣

∣

∣
Z(1)

n (L) − EZ(1)
n (L)

∣

∣

∣
> ε

)

= µ

(

∣

∣

∣
Z(1)

n (L) − EZ(1)
n (L)

∣

∣

∣

4

> ε4

)

≤
const.

n2ε4
,

and since the right-hand side of the last inequality is summable in n, the Borel–Cantelli
lemma implies that

lim
n→∞

Z(1)
n (L) − EZ(1)

n (L) = 0 a. s. . (5)

Since L can be chosen arbitrary large, relations (3), (4) and (5) imply relation (1).

The operator S we shall construct is an appropriate conjugate of T. First we conjugate
T with an operator Uπ which induces a permutation of the coordinates xk. Then we apply
another conjugation with an operator G which places the range of the functions fk to other
intervals. We describe this construction in more detail.

Let π be a permutation of the positive integers Z+ = {1, 2, . . . }. We denote its
extension to Z defined by the formula π(k) = k for k ≤ 0 again by π and define the
transformation Uπ on X as

Uπx = (xπ(k), k ∈ Z) , for x = (xk, k ∈ Z) .

For all k ∈ Z define a transformation gk: [0, 1] → [0, 1] such that either gk(u) = u or
it is an interval exchange transformation defined in the following way: We consider two
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disjoint intervals I
(1)
k = [a(k), b(k)) and I

(2)
k = [c(k), d(k)) such that 0 ≤ a(k) < b(k) ≤ 1,

0 ≤ c(k) < d(k) ≤ 1, b(k) − a(k) = d(k) − c(k), and put

gk(u) =















u if u ∈ [0, 1] \ (I
(1)
k ∪ I

(2)
k )

u + c(k) − a(k) if u ∈ I
(1)
k

u + a(k) − c(k) if u ∈ I
(2)
k

. (6)

Given the above defined set of functions gk(u), k ∈ Z, we introduce the following trans-
formation G of X :

G(x) = (gk(xk), k ∈ Z) , for x = (xk, k ∈ Z) .

We remark that G−1 = G and define with the help of the above considered permuta-
tion π and G the transformation

S = S(π, gk, k ∈ Z) = GUπTU−1
π G .

Clearly,

Sk = GUπTkU−1
π G .

Observe that

Skf(x) =
∞
∑

m=−∞

fπ(k+π−1(m))

(

gπ(k+π−1(m))(gm(xm))
)

for x = (xk, k ∈ Z) ,

and this formula together with the relations π(k) = k and fk(u) ≡ 0 for k ≤ 0 imply that

1

n

n
∑

k=1

Skf(x) =
∞
∑

m=−n+1

Um,n(xm) (7)

with

Um,n(u) =
1

n

n
∑

k=1

fπ(k+π−1(m))

(

gπ(k+π−1(m))(gm(u))
)

.

We want to construct the operator S in such a way that

lim
n→∞

∞
∑

m=1

Um,n(xm) = 0 a. s. , (8)

and

lim
n→∞

0
∑

m=−n+1

Um,n(xm) = a > 0 a. s. . (9)
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Relations (7), (8) and (9) imply (2). We want to guarantee (8) by defining π and G in
such a way that for large m the probability of the set where Un,m(xm) 6= 0 is negligibly
small and to deduce (9) from the law of large numbers. To accomplish this goal we make
such a construction where the cancellations between different functions fk guarantee that
Um,n(xm) is strictly positive and relatively small. Before this construction we show that
a transformation S defined in the above way is ergodic.

The transformation S is measure preserving. Given a measurable set A ⊂ X define
the set B such that A = GUπB. Then S−1A = GUπT−1B. Hence A = S−1A if and only
if B = T−1B. The latter relation can hold only if µ(B), hence µ(A) equals zero or one
because of the ergodicity of the operator T.

To define the permutation π and functions gk such that the operator S given with
their help satisfies relations (8) and (9) we introduce some sequences.

Put Mn = n32−n and

P1 = A1, Pn = 2

⌈

Pn−1

2

Mn−1

Mn

⌉

, n = 2, 3, . . . ,

R0 = 0, Rn = Bn−1 + Pn , Sn = Rn + 2(An − Pn) = Bn − Pn , n = 1, 2, . . . ,

where dxe denotes the smallest integer larger than or equal to x. Simple induction shows
that Pn ≤ An for all positive integers n, and Pn < An for n ≥ 2. Really, this relation
holds for n = 1, and by induction

Pn ≤ 2

(

An−1

2

Mn−1

Mn

+ 1

)

=
2(n − 1)3

n3
An−1 + 2 ≤ 2n+10 (n − 1)

n3
+ 2 < An

for n > 1. This relation implies that Rn ≤ Sn ≤ Bn ≤ Rn+1 for all n = 1, 2, . . . . Now
we define the value of the permutation π for 1 ≤ k ≤ P1 = S1, Rn < k ≤ Sn, n ≥ 2, and
Sn < k ≤ Rn+1, n ≥ 1, together with some functions b(k) and j(k) that we need for the
definition of the functions gk(u). Since R1 = S1, these sets cover Z+.

For 1 ≤ k ≤ P1 let π(k) = 2k − 1, j(k) = 0 and b(k) = 0. For Rn < k ≤ Sn, n ≥ 2,
put j(k) = 0, b(k) = n and define

π(k) = k + Pn if k − Rn is odd

π(k) = k − Pn if k − Rn is even.

(The numbers π(k), k and k − Rn have the same parity.) We have

{π(k), 1 ≤ k ≤ P1} = {k, 1 ≤ k < B1} ∩ {odd numbers}

and

{π(k), Rn < k ≤ Sn} = [{k, Bn−1 + 2Pn + 1 ≤ k ≤ Bn − 1} ∩ {odd numbers}]
⋃

[{k, Bn−1 + 2 ≤ k ≤ Bn − 2Pn} ∩ {even numbers}] .
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For Sn < k ≤ Rn+1, n ≥ 1, we define π(k) as a map from K(n) = [Sn + 1, Rn+1] to

J
(n)
1 ∪ J

(n)
2 with

J
(n)
1 = [Bn + 1, Bn + 2Pn+1 − 1] ∩ {odd numbers}

J
(n)
2 = [Bn − 2Pn + 2, Bn] ∩ {even numbers} .

The set J
(n)
1 has cardinality Pn+1 and J

(n)
2 cardinality Pn. The cardinality of K(n) equals

Rn+1 − Sn = Pn + Pn+1. We define the functions π(k), b(k) and j(k), Sn < k ≤ Rn+1,
by induction. The function j(k) equals either 0 or 1 and b(k) takes the values n or n + 1.
Let us assume that we have already defined these functions for all Sn < k ≤ L with some
L ≥ Sn + 1, but not for L < k ≤ Rn+1. Put

K
(n)
1 (L) = {k : Sn < k ≤ L, b(k) = n + 1}

and
K

(n)
2 (L) = {k : Sn < k ≤ L, b(k) = n} .

Set
Π

(n)
1 (L) = max

k∈K
(n)
1 (L)

π(k) and Π
(n)
2 (L) = max

k∈K
(n)
2 (L)

π(k) .

If Mn+1|K
(n)
1 (L)| ≥ Mn(|K

(n)
2 (L)|+ 1), where |K

(n)
i (L)| denotes the cardinality of the set

K
(n)
i (L), then define π(L + 1) = Π

(n)
2 (L) + 2, j(L + 1) = 0 and b(L + 1) = n. In the other

case define π(L + 1) = Π
(n)
1 (L) + 2, π(L + 2) = Π

(n)
1 (L) + 4, j(L + 1) = 0, j(L + 2) = 1

and b(L + 1) = b(L + 2) = n + 1. If the set K
(n)
1 (L) or K

(n)
2 (L) is empty, then we define

Π
(n)
1 (L) = Bn − 1 and Π

(n)
2 (L) = Bn − 2Pn respectively.

We have to show that the above definition is correct, i.e. the iteration can be stopped

in such a way that Π
(n)
1 (L) = Bn + 2Pn+1 − 1 and Π

(n)
2 (L) = Bn, what is equivalent

to saying that |K
(n)
1 (L)| = Pn+1 and |K

(n)
2 (L)| = Pn. To prove the correctness of this

definition first we make the following observation:

PnMn = 2
Pn

2

Mn

Mn+1
Mn+1 ≤ Pn+1Mn+1

< 2

(

Pn

2

Mn

Mn+1
+ 1

)

Mn+1 = PnMn + 2Mn+1 .

(10)

Let L̄ be a value for which one of the relations |K
(n)
1 (L̄)| = Pn+1 or |K

(n)
2 (L̄)| = Pn holds.

It is enough to show that if the cardinality of the other set is less than the corresponding
number, then in the next step of the iteration this set increases.

If |K
(n)
1 (L̄)| = Pn+1 and |K

(n)
2 (L̄)| < Pn, then |K

(n)
2 (L̄)| ≤ Pn−1 and |K

(n)
1 (L̄)|Mn+1

= Mn+1Pn+1. Hence by the left side of relation (10),

Mn(|K
(n)
2 (L̄)| + 1) ≤ PnMn ≤ Pn+1Mn+1 = Mn+1|K

(n)
1 (L̄)| ,
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and the value of |K
(n)
2 (·)| is increasing in the next step of the iteration.

If |K
(n)
2 (L̄)| = Pn and |K

(n)
1 (L̄)| < Pn+1, then |K

(n)
1 (L̄)| ≤ Pn+1 − 2. Hence we get,

using the right-hand side of (10), that

Mn+1|K
(n)
1 (L̄)| ≤ Mn+1(Pn+1 − 2) < PnMn < Mn(|K

(n)
2 (L̄)| + 1) .

This implies that the value of |K
(n)
1 (·)| is increasing in the next step of the iteration. Hence

the above definition of the functions π(·), b(k) and j(k) is meaningful.

It is not difficult to check that the above defined function π is an isomorphism from
Z+ to Z+. Hence we can use it as the permutation π in the definition of S. We define
the functions gk needed in this definition in the following way: Let gk(u) = u if k ≤ 0 or
j(k) = 0. If j(k) = 1 and b(k) = n, then let gk(u) be the interval exchange transformation

described in formula (6) with the intervals I
(1)
k = [0, 2−n) and I

(2)
k = [2−n, 2−n+1). (We

defined the function j(k) in order to decide whether we want to make an interval exchange
transformation gk(u) in the k-th coordinate. The function b(k) identifies in which interval
(Bn−1, Bn] the number π(k) lies.)

Now we turn to the proof of relation (8). First we show that if k ∈ (Bn−1, Bn], n ≥ 2,
then π(k) ∈ (Bn−2, Bn+1]. This follows from the following observations: If k ∈ (Rn, Sn]
then k ∈ (Bn−1, Bn] and π(k) ∈ (Bn−1, Bn], and if k ∈ (Sn, Rn+1] then k ∈ (Bn−1, Bn+1]

and π(k) ∈ J
(n)
1 ∪ J

(n)
2 ⊂ (Bn−1, Bn+1]. This relation implies that π(k) > Bn−1 and

π−1(k) > Bn−1 for k > Bn. Hence we get that if m > BL with some L > 1 then
π(k + π−1(m)) > BL−2 for all k ≥ 0, and

Um,n(u) = 0 if m > BL and 2−L+3 ≤ u ≤ 1 .

For 1 ≤ m ≤ BL write

Um,n(u) =
1

n

BL
∑

k=1

fπ(k+π−1(m))

(

gπ(k+π−1(m))(gm(u))
)

+
1

n

n
∑

k=BL+1

fπ(k+π−1(m))

(

gπ(k+π−1(m))(gm(u))
)

= Σ1
L(m,n, u) + Σ2

L(m,n, u) .

Then

Σ1
L(m,n, u) <

C(L)

n
,

and
Σ2

L(m,n, u) = 0 if 2−L+3 ≤ gm(u) ≤ 1 .

Hence

∞
∑

m=BL+1

Um,n(xm) = 0 on the set

DL = {x = (xj , j ∈ Z), xj ≥ 2−(p+L)+3 for BL+p < j ≤ BL+p+1, p = 0, 1, . . . } ,
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BL
∑

m=1

Σ2
L(m,n, xm) = 0 on the set

EL = {x = (xj , j ∈ Z), gj(xj) ≥ 2−L+3 for 1 ≤ j ≤ BL}

and

lim
n→∞

BL
∑

m=1

Σ1
L(m,n, u) = 0 .

Since

µ(X \ DL) ≤ 2
∞
∑

p=0

Ap+L2−(p+L)+3 < const.
1

L
,

µ(X \ EL) ≤ 2−L+3BL < const.
1

L2
,

and L can be chosen arbitrary large, the above relations imply (8).

Since π(m) = m and gm(u) = u for m ≤ 0, the expression Um,n(u) is simpler in this
case. We can write

Um,n(u) =
1

n

n
∑

k=1

fπ(k+m)

(

gπ(k+m)(u)
)

=
1

n

n+m
∑

l=1

hl(u) =
Hn+m(u)

n
for 1 − n ≤ m ≤ 0

with

hl(u) = fπ(l)(gπ(l)(u)) and HL(u) =
L
∑

l=1

hl(u) , (HL(u) = 0 for L ≤ 0) .

Let us study the expression HL(u). It follows from the definition of the functions π(k) and
gk(u) that

HL(u) =

{

L for 0 ≤ u < 1
2

0 for 1
2 ≤ u ≤ 1

if 1 ≤ L ≤ P1 ,

HL(u) − HRn
(u) =

{

n3 if 0 ≤ u < 2−n and L − Rn is odd

0 if 2−n ≤ u ≤ 1 or L − Rn is even
if Rn ≤ L ≤ Sn, n ≥ 2 .

In particular,
HSn

(u) − HRn
(u) = 0, for all 0 ≤ u ≤ 1, n ≥ 2 .

We have

HRn+1(u) − HSn
(u) =

{ 1
2Pn+1(n + 1)3 − Pnn3 if 0 ≤ u < 2−n

0 if 2−n ≤ u ≤ 1
,

and the functions

Pn,L(u) = HL(u) − HSn
(u) , Sn < L ≤ Rn+1 , n ≥ 1 ,
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satisfy the identity

Pn,L(u) =































































0 if 2−n ≤ u ≤ 1
1
2 |K

(n)
1 (L)|(n + 1)3 − |K

(n)
2 (L)|n3 if 0 ≤ u < 2−n

and |K
(n)
1 (L)| is even

1
2

(

|K
(n)
1 (L)| + 1

)

(n + 1)3 − |K
(n)
2 (L)|n3 if 0 ≤ u < 2−(n+1)

and |K
(n)
1 (L)| is odd

1
2

(

|K
(n)
1 (L)| − 1

)

(n + 1)3 − |K
(n)
2 (L)|n3 if 2−(n+1) ≤ u < 2−n

and |K
(n)
1 (L)| is odd

,

where the functions K
(n)
i (L), i = 1, 2, appeared in the definition of the function π(k). To

bound the function PN,L(u), first we prove the following relation for Sn < L ≤ Rn+1 by
induction:

0 ≤ Mn+1|K
(n)
1 (L)| − Mn|K

(n)
1 (L)| <

{

Mn + Mn+1 if |K
(n)
1 (L)| is odd

Mn + 2Mn+1 if |K
(n)
1 (L)| is even

. (11)

Indeed, relation (11) holds for L = Sn + 1. Taking into consideration the inequality which

decides which one of the sets K
(n)
i (L), i = 1, 2, increases in the next step of the iteration

we get the proof of relation (11) by separating the two cases by induction in the following
way. If

Mn ≤ Mn+1|K
(n)
1 (L)| − Mn|K

(n)
2 (L)| < Mn + 2Mn+1 ,

then |K
(n)
1 (L + 1)| = |K

(n)
1 (L)| and |K

(n)
2 (L + 1)| = |K

(n)
2 (L)| + 1, hence relation (11)

holds for L + 1. If

0 ≤ Mn+1|K
(n)
1 (L)| − Mn|K

(n)
2 (L)| < Mn and |K

(n)
1 (L)| is even ,

then |K
(n)
1 (L + i)| = |K

(n)
1 (L)| + i and |K

(n)
2 (L + i)| = |K

(n)
2 (L)|, i = 1, 2. Hence, in this

case relation (11) holds for L + 1 and L + 2.

Since n3 = 2nMn, relation (11) implies that

0 ≤ Pn,L(u) ≤ 3(n + 1)3 .

The above inequalities imply that for Bp < L ≤ Bp+1

0 ≤ HL(u) ≤











0 if 1
2 ≤ u ≤ 1

const. s4 for 2−s−1 ≤ u < 2−s for 1 ≤ s ≤ p

const. p4 for 0 ≤ u < 2−p−1

.

9



Define the moments of the random variables HL(xm)

E
(p)
L (m) = E

(p)
L =

∫

H
p
L(xm) dµ(x) =

∫ 1

0

H
p
L(u) du , for L ≥ 1 and m ≤ 0 .

Because of the bound given for the functions HL(u)

0 ≤ E
(p)
L < C(p) < ∞ for all p = 1, 2, . . .

with some appropriate constant C(p). In particular, the first moment E
(1)
L satisfies the

relation

lim
L→∞

E
(1)
L = E = A1 +

∞
∑

k=1

(Pk+1Mk+1 − PkMk) > 0 . (12)

Also the relation E = lim
L→∞

E
(1)
L < ∞ holds, since E = A1 + lim

k→∞

PkMk, and

Pk+1Mk+1 =

⌈

Pk

2
+

Mk

Mk+1

⌉

Mk+1 ≤ PkMk + Mk ,

hence sup
k

PkMk ≤ P0M0 +
∞
∑

k=1

Mk < ∞.

Introduce the random variables ξL(m) = HL(x−m) − E
(1)
L , m = 0, 1, 2, . . . , on

the probability space (X ,A, µ). The random variables ξL(m)(m), m = 1, 2, . . . , are
independent for an arbitrary sequence L(m), EξL(m) = 0 and Eξ4

L(m) ≤ C < ∞ for all
L ≥ 0 and m. Hence

E

(

ξn(0) + · · · + ξ1(n − 1)

n

)4

<
const.

n2
,

and

µ

(∣

∣

∣

∣

ξn(0) + · · · + ξ1(n − 1)

n

∣

∣

∣

∣

> ε

)

<
const.

n2ε4
for all ε > 0 .

Since the right-hand side of the last expression is summable in n for all ε > 0,

lim
n→∞

ξn(0) + · · · + ξ1(n − 1)

n
= 0 a. s. . (13)

Relations (12) and (13) imply that

lim
n→∞

0
∑

m=−n+1

Um,n(xm) = lim
n→∞

1

n

n−1
∑

m=0

ξn−m(m) + lim
n→∞

1

n

n−1
∑

m=o

E
(1)
n−m = E > 0 a. s. .

Relation (9), hence relation (2) is proved.
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