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1. INTRODUCTION

Let X,,X,,... be independent, identically distributed random va-
riables (i.i.d.r.v.) with distribution function Fe€ &, where

#,={F: F is a distribution function,
(1.1) - o -
[ xdF=0, [x*dF=1, [ |xI"dF<}.

— oo — oo

Let the function s, be defined on [0, 1] by

1 k—1
sn(t)=V; [Xl #wmuitt Kl 4 +n(t—~T)Xk] for
(1.2)
1‘—_—1<t<1—‘; k=1,2,....m;
n n

and let the probability measure Sf be generated by s,(f) on the space
C(0, 1) of continuous functions on [0, 1]. It is well known that the se-
quence Sf converges to the Wiener measure W on C(0,1) for any
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Fe #,. Similarly, if Yis¥y, .00 are ii.d.r.v.-s uniformly distributed
on [0, 1], the function z, is defined by

(1.3) zn(t)=ﬁ(%.2’1—t) for 0<t<I,

l:Yi<t

and Z is the distribution of z, on the space D(0, 1) of real functions

on [0, 1] without discontinuities of second kind, then Z, tends weakly
to the distribution B of the Brownian bridge.

The weak convergence can be metrized by the Prohorov distance,
which is defined in a metric space M by

p(PO, Pl) = inf {e > O: PO(E) <e+ P {y: Ix € E,d(x,y) < e}
(1.4)
for all closed E},

where d is the metric of the space, especially on C(0, 1) it is

(1.5) dix,y)= sup |x()—y(@®)I,

0<t<l1

and the metric on D(0, 1) is

d,(x, y) = inf{e > 0: 3 a homeomorphism ¢
(1.6) .
of [0,1]: lp(¥)—tI<e€, and sup Ix(p() —y(@)| < e€}.
0<t<1
Hence p(S,f, W) tendsto O forany FE #,, and also  lim p(Z,, B) =

n—> oo
= (0,

The investigation of the rate of convergence of p(Sf ,W) or p(Z,,B)
is usually based on the following remark. Let M be any metric space
with a metric d, and let Py, P, be probability measures on (M, %),
where # is the o-algebra of Borel-measurable sets of M. Let p, (w),
p,(w) be Borel-measurable mappings from a probability space (2, «, P)
to (M, #) such that p; generates the measure P, on M (i=0,1).
Then

(1.7 p(Py, P;) < inf (e + P(d(py, P )=>€).
e>0
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We shall call such a pair Py, P, acoupling of the measures Pys P;- Espe-
cially, if (£2, «,P) equals (M, %, PO ), and ¥, is the identity, then
¢, will be called an embedding of P, into 5 F

The first coupling of Sf and W was made by Skorohod, and it is
the following. For any Fe€ &, there is a Wiener process w(x) and a
sequence of i.i.d.r.v.-s 7 such that the distribution of the function s, (2)
is Sf , Where

= t—9 ‘
$n (D)= 55— WO _ )+ 5oL w(9))
(1.8) kT Yk-1 ET Yk-1
for 19k_1<t<z9k, K=1,200.,m

and 19k =Ty +...+ 7, 7,=0. Here Er; =1, and if Fe #, then
E‘rf < eo. Using this coupling of Sf and W, Dudley [8] proved that
if Fe #,, then

LS 2
0((10gn)2n 2(’“)] for 2<r<4,
(1.9) P(Sf,W)= 1
Oo(n 2 logn) for r>5,
and

1
(1.10)  o(Z,,B)=0(n % logn).

Sawyer [14] showed that the Skorohod embeldding method cannot

yield a speed of convergence faster than o(n ?)_ Borovkov [3]
_r-2
proved that (S, W) = o(n20+ D) for 2<r<3.

The goodness of a coupling can be characterized in different ways.
Let ¢ (Py, P,) be the set of all possible couplings of Po> P; (where also
the space (L2, &/, P) may vary). Strassen and Dudley [7] proved
that if M is separable, then

(1.11) p(PO,P1)= inf inf (e + P(d(po,p1)>e).
(po,pl)E‘g(Po,Pl) e>0

In the light of this theorem we can find couplings which yield good esti-
mations for the Prohorov distance. An other possibility for measuring the
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goodness of coupling is to check whether Ed(p,,p,;) is near to the
Wasserstein-distance of P, P, which is defined by

(1.12) pO(PO,P1)= inf Ed(p0>p1)~
®o.P1)E € (Pg,Pp)

One may also try to find the coupling, which minimizes the probability
P(d(po, pl) > €) for a given e.

A pair of random functions ';(t), J(t) defined for 0<t <o will
be called an infinite coupling of Sf , W if the pair

(1.13) sn(t)=s§;l_nt); wn(t)=%’l’—), 0O<r<1
n
is a coupling of Sf,W for n=1,2,... . Strassen extended the

Skorohod embedding to an infinite coupling, and proved in [15] that
if Fe # 4> then for the corresponding infinite coupling

1 1 1
(1.14) sup | s(t) —w(t)| = O(n* (log n)? (log log n)*)
0<t<n
holds true with probability 1. It was widely guessed that the Skorohod
embedding, at least asymptotically, is best possible. This guess was dis-
proved by Csdrgé and Révész [4]. Following their and Bartfai’s
ideas we proved in [13] the following theorems.

Theorem A. If F€ #,, and [ e™F(dx)<= for |t|<t,

— o0

(ty > 0), then there is an infinite coupling s, w of Sf, W such that
forall x>0 and every n

(1.15) P sup I5(8) — w(t)|=> x) < Kn€e™ ™ |
0<t<n

where C, K, \ are positive constants depending only on F.

Theorem B. If Fe # , r> 3, then there is a constant C and a

sequence €, tending to 0 with n— « such that for every n and X,
1 1 1

n’ < x < Cn? (log n)i, there is a coupling s, ,w, of Sf, W such that
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1

(1.16) P sup n? s, (6) —w(t)| > x) < ne,x~" .
0<t<1
Theorem C. For every n there is a coupling z,,b of Z, and B
such that for all x> 0

1

(1.17)  PC sup n? |z,(t) —b(t)| > x) < Kn€e ™ |
0<r<1

where C, K, N\ are positive absolute constants.

Our couplings are, in fact, embeddings of S": (or Z,) into W (or
into B), and they are constructed by a new method called conditional
quantile transformation on a diadic scheme. As we shall see, the investiga-
tion of couplings is closely related to the so-called stochastic geyser prob-
lem, so this is the topic of the next section.

2. THE STOCHASTIC GEYSER PROBLEM

Once upon a time there was a man who lived on a desolate island,
and the only companion he had was a geyser. The geyser burst out peri-
odically, and the man wanted to report the distribution of the random
period of the consecutive bursts to his homeland. He had no watch and
no possibility whatever to measure the hours. So he created a primitive
calendar and put down carefully, day by day, the total number of bursts.
Our man had a very long, let us say an infinitely long life, and only after
he, and the geyser had died, found his fellow-countrymen the whole in-
finite sequence of his records. Can they figure out the distribution of the
burst-time of the geyser?

The answer is yes, and it was given by Bartfai [1]. He investigated
the following problem. Let X = {Xn; n=1,2,...} beiid.r.v.-s with
distribution function F, and Sp = X, + s+ X ;n=1,2,...} the
sequence of partial sums. Let e = {e,; n=1,2,...} be an arbitrary se-
quence of r.v.’s such that

2.1 P(lim supi'i < 1) =l

n=»oo n
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where a={a,; n= 1,2,...} is a given monotone increasing sequence.
We call the sequence a estimation-permitting in a set & of distributions,
if the infinite sample

22  Sp@={X;+...+X, +e;n=12.1}

determines the distribution F with probability 1 for all F€ # and
for all e having the property (2.1). This means that given a and # we
can construct a system {4,, FF€ #} of disjoint Borel-measurable sets of
infinite sequences of real numbers in such a way that for any Fe &

23)  PSpe€dy) =1

for any choice of S, and e such that e satisfies (2.1). Let E(F) be
the set of all monotone increasing sequences, estimation-permitting in £.
Combining Theorem A and the theorem of Bartfai we get

Theorem 1. Let the set & _ be defined by
F, ={F: thereisa t,>0 such that [ e™ Fdx) < =
(2.4) s
for 1t1<¢,},

then a€ E(F ) if and only if

o . an
(2.5) lim inf Tog—n =0

n—> oo

This theorem will be proved later. First we define two other sets
similar to E(%). The first of them is the set T(FO, %) of monotone

increasing test-permitting sequences in & with respect to F,. A se-
quence a is test-permitting in & with respect to F|, if the infinite
sample S, (e) determines, with probability 1, whether F'=F, or '€ F#
(of course Fy & #). This means that given a, F;, # there is a measur-
able set A, such that for any choice of the error e satisfying (2.1) we

have

(2.6)  P(Sp (@A) =1,

LS e A




for any choice of SF0 and
2.7 P(Sp(e)eA,)=0
for any choice of FE€ & and SF.

Lemma 1. For any Foe 7, F={Fy}v F
(2.8)  E(F)CEF)C T(F,, #)C T(F,, F,)
holds true.

Proof. The monotonity of the sets E(F), I(Fy, #,) isa trivial

consequence of their definition. For proving the third statement choose
Ag =4 Fy-

A sequence a is couple-permitting with respect to F, and F, if

. T : ~ F F
there is an infinite coupling 0»5; of Sno and Sn1 such that

159 (1) =5, (m)]
(2.9) P{lim sup - —<2|=1

n-> o n

The set of all monotone increasing couple-permitting sequences with re-
spect to F; and F, will be denoted by CF s Fy)

Lemma 2. The sets aF,, F)), T(F,, F,) are disjoint for any Fs
#,.
Proof. Assume that there is a sequence @ such that a € arF,, Fy)n
@ T(FO, F1 ). Then there is a set such that (2.6) and (2.7) hold true with
F = {F1 }, and there is an infinite coupling 5¢»>S; such that (2.9) holds
true. Put SFO = {so(n); n=1,2,...}, SF1 — {sl(n); n=1,2,...},

|

.]', then e satisfies (2.1), and

Sa(n) — 5. (n)
e={0 L ,n=1,2,..

P(Sy, () € 4g) = P(Sy (— )€ Ag) =
= P({% (;o(n)+§1(n)); R= 1,2,...}GAO) ,

hence (2.6) and (2.7) can not hold true simultaneously.
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Theorem 2. Forany F,,F, € #,0 #, (cf. (1.1) and (2.4)) there
are positive constants t(Fo, F 1) < c(FO, F 1) such that if a monotone in-
creasing sequence a satisfies

a
5 ¢ n
(2.10) lim inf Tb—g - < t(FO, F1 ),

n—> oo

then a€ T(FO, Fl), and if

% . an
(2:1D lim inf EE>C(F0’F1)’

n—>co

then ac C(F,, F,).

Proof. If FO, F L € F,NF, then Theorem A implies that there
are infinite couplings ';i, w of S:i and W such that
i) P[l, I5;(n) — w(n)| . _
(2.12) 1msup—~T§—n———\Ci =2 Gi=1,2)

n-—> oo

where C, C, are positive constants. As we have remarked, our couplings
are embeddings of Sf:i in W, hence in the couplings (;0, x), (:;1, ﬁ;)
the process w may be chosen the same. Hence (;0 . ;1) is an infinite coup-
ling of Sfo and S:l , and (2.9) holds true with a, = % (Cy + C) log n.
Thus the second statement of Theorem 2 holds true with c(FO,F 1) —
= % (G, + ). The proof of the first statement is based on the following
theorem of Erdés and Rényi [10].

Theorem D. Let X1’X2’ ... be iidrv.-s with distribution func-
tion Fe #_. Let R(t) be the moment-generating function of F,
A* = inf{x: F(x)= 1}, A~ =sup{x: F(x)=0} and
m(x) = sup (tx — log R(¢)). Then for any EX; <x < A*

t

@13 P(im " sp + 3 x,=x)=1,

n—e 1<j<n-m ME=j

and for any A~ <x < EX,
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' . 1
(2.14)  P(lim inf = 2 X, =x)=1,
(n%w 1<j<n-m mk=j k )
_ [logn
where m = [ ) ]
Let us denote the corresponding quantities for F; by A,.+ , A7 and
m(x) for i=0,1 andlet B = lim m(x), Bf = lim (%),

x=A} -0 x=A7 +0
Bt = min (B}, By), B =min (By,By). The functions m(x) are mon-
otone increasing for x > 0, let us denote their inverse here by u,(x),
and let v,(x) be the inverse of mi{x) for x < 0. Then we prove the first
statement of Theorem 2 with the following constant

luo(x) - ul(x)l

HF,, F,)= 71 max [ sup

x b
o<x<Bt
vy (x) — vy (X)]
su .
p 3 X
0<x<B

Indeed, if a monotone increasing sequence a statisfies (2.10) with
this HF,, Fl ), then there are real numbers Xg,X; such that Xgx; >0,
My(xy) = m (x;) = A, and there is a sequence n, such that

ank Ixo _xll
log ny < 44 ’

We may assume that 0< xg <x;. Let A, be the set of all sequences
{c, } of real numbers such that

X5 X
_c])<.0____1.’

. 1
lim sup sup = 5

(c;
+
k= o 1<j<nk—mk ’nk Trmg

log n;,
where m, = [—T] , then (2.6) and (2.7) hold true with this 4

hence a € T(FO,F1 ).

0°

Proof of Theorem 1. It is easy to see that for any e > 0 there are
distributions F; such that (2.12) holds with a C;<e (eg. let F;, be
the convolution power of some functions in #_). Hence Theorem 2,
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Lemma | and Lemma 2 imply that (2.5) is necessary to a € E(# ). The
sufficiency is a consequence of Theorem D and the fact that the function
m(x) determines the distribution function F.

It is easy to see that Theorem D remains valid if we substitute the
set #_ by

F_ ={F: thereisa t+# 0 such that [ e™F(dx)< o} .

Hence Theorem 1 and the first statement of Theorem 2 hold true also for
this &

o °

It is a natural question, what is the situation if in the above theorems
we substitute # _ by #,. One can expect that functions with few
moments are far from each other, farther than functions in # _. Sur-
prisingly enough, this is not so. Haldsz and Major [12] proved that

there are distributions F,, F; such that there is an infinite coupling ;0,
~ Fo oF
s; of Sno, Sn1 such that

P(5y(n) —s; (M<K, n=1,2,..)=1

with some positive constant K. Actually they proved that even this K

oo

may be arbitrarily small and still F, F; € ﬂ2 # .. Hence E( N g«‘r)
=

r=2
is empty. On the other hand, it is easy to see that for any F, F; there
is an € such that the sequence {a, =€, n=1,2,...} is an element of

T(FO, F 1 ). It is also trivial that

P( lim en=0)=1

Nn—> oo
implies that S.(e) determines F with probability 1 within any family
F .

One can expect that the sets E(%), I(F,, #), C(F,, F;) determine

mutually each other in the sense that

E(F)= N TWF,, F\{FyD,
Foe s




T(F, ,57\{Pb})==F B ﬂwF'}JKFb,FH),
1€ F M

and T(F0 ,Fi)u C(FO, Fl) is the set of all monotone increasing sequences.
Let C,(F,,F;) be the set of all monotone increasing sequences a such
. e . ~ o~ F F
that there is an infinite coupling Sgs 8y of Sn0 and Sn1 such that
( 55 (1) =5, ()|

P llim sup
n—>co an

<2]>0.

The sets C, (FO, Fl), I(F,, F,) are also disjoint for any FO, Fl, hence
our conjecture means that CO (FO,F1 Y= C(FO, Fl). Nevertheless, we can
not prove any statement of this type.

In particular, we cannot answer the following question. Let # be
the set of all distributions F' such that for any G we can test whether
the sample-distribution is F or G if the error is bounded. Can we esti-
mate the sample-distribution in & if the error is bounded?

3. THE PROHOROV DISTANCE

Theorem 3. If Fe 7,n 7 _ (cf. (1.1) and (2.4)), then there are
positive constants CO, C, such that for all n>1

log n F log n
3.1 c, lo8n o \sF wy<c, 187
(3.1) 0 <PE,,WI<C S

Proof. Theorem A implies that if Fe 7, N 7 _, then

oo )

; €~ reln log n
p(Sn (FH,W)< inf (e+ Kn-e )< C1 ,
0<e<1 Vn
which is the upper part of (3 1). Theorem D implis that there are positive
constants AO, CO, n, such that if A4, is the subset of C(0, 1) consisting
of all functions f for which

(3.2) sup At + A,) — f(1)1> Gy O,
0<r<1-a4, in
log n

where A = AO e then the probability of A, and an is greater

n
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than 3/4 with respect to SnF and W, respectively, for any n>n, (or
conversely, the probability of A, is large with respect to W and the
probability of A, is large with respect to SF). This yields the lower part
of (3.1).

Theorem 4. If r>2, Fe 7, (cf (1.1)), then

r—2

(3.3)  pSF,Wy=o(n 20+D) .

On the other hand, for any sequence w, tending to o with n—>o°
there isan Fe #, such that

r=2
(3.4) lim sup w,n 20+ p(SF, W) == .
n— oo
Proof. For 2<r<3 (3.3) was proved by Borovkov [3]. If
r>3 and Fe 7, Theorem B implies that

ne A r=d,

pSE,Wy< inf (e+ L ]<Ke’+1n 20+ 1)

0<e< 1 ( (eVn)" "

with some positive constant K. So the first part is proved.

Given any sequences w,, X, tending to « with n - e thereisan
Fe #_  such that

lim sup w,x (1 —Fx, )} =2

n— o
Hence if X, X,,... are i.i.d.r.v.-s with distribution F, then
. 3
lim sup wnnz(’“)P(maX (X503 X, )2 n20+D ) = oo,
n— oo

This yields (3.4).

Theorem 5. There are positive constants C, ¢ such that for every
n>1

logn

(B35 1€ <p(z,,B)<C

logn
Vn
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Proof. The metric d, of D(0,1) is majorated by the metric
(0, 1), hence Theorem C implies that

p(Z,,B)< inf (e+ Pdy(z,,b)>€)<
0<e<l1

< inf (e+ Pd(z,,b)>e)< C, 181
0<e<1 Vn

with some positive constant C, where (z,,b) is the coupling given by

Theorem C.

For proving the lower part of (3.5) we shall apply again Theorem D,
now for Poisson variables. If X X s - - - are independent Poisson vari-
ables with parameter 1, then the moment generating function of (X g = 1)
is R(t)=exp{e’—1 —t}, hence

(3.6) mx)=1+(x+ Ddog(x+1)—1).

Let y(¢,\) be a Poisson process on the plane with parameter 1, and let
Y}\(A) be defined by

G7) Y, (A= sup G+ AN - N),

0<t<1-A

where ;(t, N = (1, N)” 1’Z(y(t, A) — ty(1,N)). In the same way, as The-
orem D was proved, one can prove that

) /8N logAy _ x y_
(3.8) P( lim Fax YA(M(X)] = n(x)) =1.

A—> oo

It is well known that if w(x) is a Wiener process and W(A) is defined
by

(3.9) W(A)= sup sup  (w(t+ 8) —w()),
0<6<A 0<t<1-5
then
| o VR eghy 1Ty
(3.10) P[)\linl oex ¥ Gatey) = — I
For the function n defined by (3.6)
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. x 2 1
lim (‘1;&—)—— ;(—x—))r-g

N

holds true, hence it is enough to prove that (3.8) holds true if we substi-
tute YA(A) in it with

Z (A= sup (z,(t+A)—z,(1),
0<t<1-8

where z,(¢) is defined by (1.3), i.e. if we prove that

. ¥Vn logny _ _x y_
(3.11) P[hm lognZ"(mf(x)) - W(X))—l’

n—> oo

where m(x) is the same function as in (3.8). Let v(x) be a Poisson
process on the real line, and let the processes v(\), {z,(f), n=1, 25 is 5}
be independent. Then the processes

BeN) 7 (1ogv(>\)) 12N Y(log)\]
log v(A) T Yv(A)w(x)’ > log A " AV AT(x)

are equivalent (they generate the same probability measure), hence

(3.12)  P(k v (logv(k))_ X))

v Togv() 0 S ax)) T wlx)

A—> o0

This implies (3.11), and thus the proof is complete.

Remark. The statement of Theorem 5 remains valid if we use the
metric d of the space C(0, 1) instead of d, in the definition of
p(Z,, B). In fact the two versions of p(Z,, B) are asymptotically equal.

4. APPLICATIONS

(a) The Wasserstein metric. Inequalities (3.1) and (3.5) remain valid
if we substitute the Prohorov metric p by the Wasserstein metric p, de-
fined by (1.12). The coupling given by Theorem B depends on the level x,
hence it is not applicable for the estimation of the Wasserstein distance.
It seems us, however, that there is no difficulty in getting rid of the ef-
fect of the level x in the construction, and taking so, to estimate the
Wasserstein distance of SnF and W if Fe # .
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(b) Embedding of functionals. Let us say that the random variables

¢, have a limit distribution F of rate - if the limit

Vn
lim Vn (P(§, < x) — F(x)) = F, (x)
n— o
exists for any continuity point of F. All the known functionals on the
empirical process z,(f) defined by (1.3) have a limit distribution of rate

1
V‘:, nevertheless there is no general theorem ensuring a limit distribution
n
of rate for a whole class of functionals. As it was stated in [13], Theorem
C have a Corollary on functionals fulfilling a Lipschitzian condition, but
log n

n
tion, whether all the Lipschitzian functionals on z,(#) have a limit dis-

this Corollary gives only an estimation of rate . So it is an open ques-

tribution of rate —V%, or not.

(c) The law of iterated logarithm. Strassen applied the Skorohod
embedding for proving the extension of the law of iterated logarithm. The
law of iterated logarithm holds true for any distribution having a finite
second moment, hence our improvement of the Skorohod embedding for
distributions having higher moments does not yield any improvement of
the law of iterated logarithm. This holds true even for the law of iterated
logarithm on the empirical process z,(f) made by Finkelstein [11].
One may' expect improvements concerning the tail-behavior of z, (1), ie.
the investigation of the supremum sup Z"(—tz—. In connection

ep<t<l-e, V(1 —1)
with this problem we refer to the paper of Cs6rgé and Révész [5].
Another possible application of the new embedding scheme would be the
investigation of the law of iterated logarithm in the multidimensional case.
This is hampered by the fact that our embedding is extended only to two
dimensions yet.

(d) The estimation of the density function. Bickel and
Rosenblatt [2] extended the heuristic approach of Doob to the
Kolmogorov theorem for investigating the estimation of the density func-
tion. Our new embedding yields only a minor extension of their theorem,
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so we do not state it here explicitely. A real extension of their theorem
would be the investigation of the multidimensional case, hence again the
multidimensional embedding is needed.

(e) Goodness-of-fit in the presence of nuisance parameters. Durbin

[9] extended the heuristic approach of Doob to the Kolmogorov theorem
for investigating the case when some parameters of the distribution were
estimated. Cso6rgé6, Révész and the present authors applied Theorem
C for this problem in [6].
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