A THOULESS-LIKE EFFECT IN THE DYSON
HIERARCHICAL MODEL WITH CONTINUOUS
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ABSTRACT. In this paper we study Dyson’s classical r-component hi-
erarchical model with a Hamiltonian function which has a continuous
O(r)-symmetry, r > 2. This is a one-dimensional ferromagnetic model
with a long range interaction potential U(i,j) = —I(d(i,5))d (i, ),
where d(i, 7) denotes the hierarchical distance. We are interested in the
case when [, = [(2"), n = 1,2,.. ., is an increasing sequence, with a sub-
exponential growth as n — oco. For a class of free measures, we prove
a conjecture of Dyson. This conjecture states that the convergence of
the series 17 415" + ... is a necessary and sufficient condition of the
existence of phase transition in the model under consideration, and the
spontaneous magnetization vanishes at the critical point, i.e., there is
no Thouless’ effect. We find, however, that the distribution of the nor-
malized mean spin at the critical temperature T, tends to the uniform
distribution on the unit sphere in R" as the volume tends to infinity,
a phenomenon which resembles the Thouless effect. We prove that the
limit distribution of the normalized mean spin is Gaussian for T > T,
and it is non-Gaussian for T' < T.. We also show that the density of
the limit distribution of the normalized mean spin for 7" < T is a nice
analytic function which can be found from the unique solution of a non-
linear fixed point integral equation. Finally, we determine some critical
asymptotics and show that the divergence of the correlation length and
magnetic susceptibility is super-polynomial as T" — T-.
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1. INTRODUCTION. FORMULATION OF THE MAIN RESULTS.

In this paper we investigate Dyson’s hierarchical vector-valued model with
continuous symmetry. The model consists of spin variables o(j) € R", j €
N=1{1,2,...}, where r > 2. We define the hierarchical distance d(-,-) on N
as

d(j, k) = 2"0R=1 for j £k

with

n(j, k) = {minn: there is an integer [ such that (I —1)2" < j, k < 2"}
if j#k,

and d(j,7) = 0. The Hamiltonian of the ferromagnetic Dyson’s hierarchical

r-component model in the volume V,, = {1,2,...,2"} is

Hoo)=— 3 MG 550, (1.1)

2/ ;

where o(j)o(k) denotes a scalar product in R”, and I(t) is a positive func-
tion. In this paper we will be interested in the case when [(¢) is a positive
increasing function such that
It

lim [(t) = oo; lim i) =0, foralle>0.

t—o0 t—oo t€
Since the hierarchical distance d(j,k) for j # k takes the values 2", n =
0,1,2,..., only, we consider the function [(¢) for ¢ = 2" only and define

I = 1(2™).

Let v(dx) be a probability measure on R". Then the Gibbs measure in V;,
at a temperature T' > 0 with free boundary conditions and the free measure
v(dx) is defined as

o
pin(dx; T) = Z(T) exp {—BHn(x)} [[ v(dx;), B=T"".
j=1

We will assume that the free measure v(dx) is invariant with respect to
the group O(r) of orthogonal transformations, i.e., ¥(UA) = v(A) for all
U € O(r) and all Borel sets A € B(R"). Then the Gibbs measure p,(dx;T)
is O(r)-invariant as well,

pn(UAL, ... ,UAsn:T) = pin(Ayr,..., Ase;T), forall U € O(r),
A; € BRY), j=1,....2"
In [Dys2], Dyson proved the following theorem (see also [Dys3]). Assume

that r = 3, and v(dx) is a uniform measure on the unit sphere in R?. This
is the classical Heisenberg hierarchical model.



A THOULESS-LIKE EFFECT 3

Theorem 1.1. (see [Dys2]). The classical Heisenberg hierarchical model
has a phase transition if

B=) 1" <o (1.2)
n=1

It has a long-range order so long as B > B.

Dyson also formulated the following conjecture (see [Dys2]): “It also
seems likely that for sequences [, which are positive and increasing with
n the condition (1.2) is necessary for a phase transition in Heisenberg hier-
archical models.” The goal of this paper is to prove Dyson’s conjecture for a
class of hierarchical models and to study the limit distribution of the normal-
ized mean spin both below and above the critical temperature if condition
(1.2) holds. Dyson’s proof is a clever application of correlation inequalities.
Our approach is based on an analytical study of the renormalization group
transformation for the hierarchical models.

The renormalization group (RG) approach to the Dyson hierarchical mod-
els was initiated in the works of Bleher and Sinai [BS1]-[BS3] (see also the
monograph [Sin] and the review [Ble], and references therein). The Dyson
hierarchical models are of a great interest because for this model the RG
transformation reduces to a nonlinear integral equation, and this allows a
study of critical phenomena unavailable in other models. The works of
Bleher and Sinai were concerned with the critical phenomena and phase
transitions in the scalar Dyson hierarchical models. They were extended to
the study of critical phenomena and phase transitions in the vector Dyson
hierarchical models with continuous symmetry in the works of Bleher and
Major [BM1]-[BM5]. The present paper is a continuation of the works
[BM1]-[BM5].

We apply a perturbation technique which works if the free measure v(dx)
is a small perturbation of the Gaussian measure. Hence, we cannot treat
the case when v(dx) is a uniform measure on the unit sphere. On the other
hand, we will consider arbitrary spin dimension r > 2. We will focus on free
measures v(dx), which have a density function p(x) on R" such that p(x) is
close, in an appropriate sense, to the density function

2 4
X X
po(x) —C(/f)exp{—’;—/f’i} (1.3)
with a sufficiently small parameter x > 0. Precise conditions on p(x) are
given below. We also will assume some regularity conditions about the
sequence [, = [(2") (see below).
We are investigating the following question. Let p,(x,T") denote the den-
271/
sity function of the mean spin 27" Y o(j), where (o(1),...,0(2")) is a
j=1
pn(T)-distributed random vector. Because of the rotational invariance of
the model, the function p,(x,T) is a function of |x|. We are interested in
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the limit behaviour of the function p,(x,T) as n — oo, with an appropriate
normalization. In our papers [BM1]-[BM5] this problem was considered for
the Hamiltonian

1
Hn(a) == Z da(j, k‘) U(])U(k)7
1<j<k<aon
where 1 < a < 2. Observe that if @ < 1 then the thermodynamic limit of
the model does not exist, and if @ > 2 then there is no phase transition,
hence the range 1 < o < 2 is natural. We distinguished in [BM1]-[BM5] the
three cases for a:

(i) 1 <a<3/2, (ii) a=3/2, and (iii) 3/2 < a < 2.

The difference between these cases appears in the asymptotic behavior
of pn(x,T) at small T. When T is small the spontaneous magnetization
M(T) is positive, and the function p,(x,T') is concentrated in a narrow
spherical shell near the sphere |x| = M(T'). The question is what the width
of this shell is and what the limiting shape of p,(x,T) is like along the
radius after an appropriate rescaling. In case (i), the width is of the order
of 27"/2 and the limit shape of p,(x,T) is Gaussian (see [BM1]). In case
(ii), there is a logarithmic correction in the asymptotics of the width, but
the limit shape is still Gaussian (see [BM4]). In case (iii), the width of
the shell has a nonstandard asymptotics of the order of 2-(2-9) " and the
limit shape of p,,(x,T’) along the radius (after a rescaling) is a non-Gaussian
function which is a solution of a nonlinear integral equation (see [BM3] and
the review [BM2]). In the present paper we are interested in the marginal
potential 1(d(j,k))/d?(j, k), with an extra factor I(t) of a sub-polynomial
growth.

Before formulating the main results we would like to discuss the impor-
tance of Dyson’s condition (1.2). In the case of the Ising hierarchical model
(r = 1), Dyson proved in [Dys2] that there exists a “weakest” interaction
function [(t) for which the hierarchical model (1.1) has a phase transition.
This function is [(t) = loglogt, which corresponds to I, = logn. Dyson has

proved that if
l
lim —— =0,
n—oo logn

then the spontaneous magnetization is equal to zero for all temperatures
T > 0. On the other hand, if

ln
logn

> ¢ for all n > 0 with some € > 0,

then the spontaneous magnetization is positive at sufficiently low tempera-
tures T' > 0. In the borderline model, when

lp, = Jlogn, J >0,

Dyson proved that the spontaneous magnetization M (7T) has a jump at the
critical temperature T.. The existence of the jump for the 1D Ising model
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with long-range interaction was first predicted by Thouless (see [Tho], and
also the works [YA] of Anderson, Yuval and [Ham| of Hamann and references
therein) for the translationally invariant Ising model with the interaction

_ N~ o)o(k)
H(o) = ]Zk: G (1.4)

This phenomenon (the jump of M (T') at T' = T) is called the Thouless effect.
The existence of a phase transition in the ferromagnetic one-dimensional
Ising model with 1/(j — k)? interaction energy was proved by Frohlich and
Spencer in [FS]. A rigorous proof of the existence of the Thouless effect
in the Ising model with the inverse square interaction (1.4) was given by
Aizenman, J. Chayes, L. Chayes, and Newman [ACCN]. Simon proved in
[Sim] the absence of continuous symmetry breaking in the one-dimensional
r-component Heisenberg model with the interaction (1.4), in the case when
r>2.

Dyson formulated a general heuristic principle in [Dys2] which tells us
when one should expect the Thouless effect in a 1D long-range ferromagnetic
model: It should occur for the “weakest” interaction (if it exists) for which a
phase transition appears. Dyson wrote that in the hierarchical model “in the
Ising case, there exists a borderline model [,, = logn which is the ‘weakest’
ferromagnet for which a transition occurs, and this borderline model shows
a Thouless effect. In the Heisenberg case there exists no borderline model,
since there is no ‘most slowly converging’ series (1.2). Thus we do not expect
to find a Thouless effect in any one-dimensional Heisenberg hierarchical
ferromagnet.” This conjecture of Dyson, about the absence of a Thouless
effect in the Heisenberg case, plays a very essential role in our investigation.
We show that in the class of the r-component hierarchical models under
consideration, the spontaneous magnetization M (7T) approaches zero as T
approaches the critical temperature, i.e., there is no Thouless effect. On the
other hand, we observe a phenomenon which resembles the Thouless effect:
at T = T, the rescaled distribution

1/2
M (T)pn (M (T.)x, T,.) dx, M, (T) = (/T %)% pn(x, T) dx) ,

approaches, as n — oo, a uniform measure on the unit sphere in R", r > 2.
Thus, although the spontaneous magnetization M(T,) = nh_}n(go M, (T.) is
equal to zero at the critical point, the distribution of the normalized mean
spin converges to a uniform measure on the unit sphere. This is a “remnant”
of the spontaneous magnetization at the critical temperature 7.

To formulate our results we will need some conditions on the sequence
l, = 1(2"). We need different conditions on I, in different theorems. We
formulate the conditions we shall later apply.
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Conditions on the sequence [,, n = 0,1,2,.... Let us introduce the
notation l
Chn=-—- n=01,..., with [_; =1
ln—l
Condition 1.
lo=1, 1<¢,<1.01 foralln; lim ¢, = 1. (1.5)

n—00

Remark. The requirement [y = 1 is not a real condition, it can be reached
by a rescaling of the temperature. We use it just for a normalization.

Condition 2.
o0
. -1 _
nlingoln E lj = 00.
j=n

Moreover, the above condition is uniform in the following sense: For all
e > 0 there are some numbers K(g) > 0 and L(g) > 0 such that

n+K(g)

Iy Z >t
j=n

for all n > L(e).

Condition 3. )

sup Zn: lk:zn:lj_l < 0.
k=1 =k

1<n<oo _
Condition 4.
o0
>t > 400k
n=1

Condition 5.
Ly

ln+k

>7n forall n=0,1,2,..., andallk=1,...,L.

The numbers «,7 > 0, and L € N in these conditions will be chosen
later. An example of sequences [,, satisfying Conditions 1-5 is given in the
following proposition.

Proposition 1.2. The sequence
ln=>0+an),  a>0 A>1, (1.6)

satisfies Conditions 2 and 3 for all a > 0 and X\ > 1. There exists a number
ag = ap(A) > 0 such that this sequence satisfies Condition 1 for all 0 < a <
ap, a number a; = ai(k, \) > 0 such that this sequence satisfies Condition 4
for all 0 < a < a1, and finally there exists a number as = as(7, L) > 0 such
that this sequence satisfies Condition 5 for all 0 < a < as.
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Thus, for all A > 1 there exists a number
a3 = a3()‘7 K, 1, L) - min{a()()‘)v al("@ )‘)7 a2(777 L)} >0

such that for all 0 < a < as, the sequence (1.6) satisfy Conditions 1—5. We
prove Proposition 1.2 in Appendix B below. Now we describe the class of
initial densities we shall consider.

Class of initial densities. We say that a probability density p(x) on R”
belongs to the class P, if

2 x?
p(x) = C(1 +e([x[")) exp Ty TR ) (1.7)
where C' > 0 is a norming factor, and

le(®) | gy < 0.01. (1.8)

Now we formulate our main results. We denote by p,(x,T) the distri-
bution of the mean spin 27"[o(1) + - - - 4+ o(2")] with respect to the Gibbs
measure fi,(dx;T) and put

1/2
M, (T) = ( 1x|?pn(x, T) dx) . (1.9)

By pn(x,T) we denote the rescaled density function

Rr

Pn(x,T) = M} (T)pn(Mn(T)x,T) (1.10)
and by 7, 7(dx) the corresponding probability distribution
Up,r(dx) = pn(x,T) dx. (1.11)

Formulation of the main results. We fix a sufficiently small positive
number 1 which will be the same through the whole paper. For instance,
n = 10719 is a good choice. Define the following number N = N(n):

N =min{n: I, >n'}. (1.12)
Assume that an arbitrary number 7 in the interval 0 < 77 < 7 is fixed. (The
number 7 appears in Condition 5).

Theorem 1.3. (Necessity of Dyson’s condition). Let us consider the case

when
o0
_1 _
g l,~ = oo0.
n=1

Then there exists a number ko = ko(N) such that for all 0 < k < kg the
following statements hold.

Assume that the density p(x) = ”(d(i‘) belongs to the class P, and the
sequence {l,, n > 0} satisfies Conditions 1-3. Then there exists a constant
L = L(n, k) such that if the sequence {l,, n > 0} satisfies Condition 5, then
for oll T > 0, there exists the limit

lim 2"M2(T) = x(T) > 0. (1.13)

n—oo
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In particular, the spontaneous magnetization satisfies the relation
M(T) = lim M,(T) =0.
n—oo

In addition, the distribution v, 7(dx) tends weakly to the r-dimensional stan-
dard normal distribution as n — 0.

To formulate our results for the case when the Dyson condition (1.2)
holds, we define a function p,,(t,T") by the formula

pn(X7T) = Cn(T)_lﬁn(‘xva)v (1‘14)

for t = |x| > 0 and p,(t,T) = 0 for ¢ < 0. The norming constant C,,(T") is
chosen in such a way that p,(t,7) is a probability density function, i.e.

/ Pn(t,T)dt = 1.
0

We will call p,(t,T) the probability density of the mean spin distribution
along the radius.

In Parts 2 and 3 we will describe the limit behaviour of an appropriate
rescaling of the probability density p,(¢t,T) for T'= T, and T' < T,. Then we
will formulate a Corollary which gives a good asymptotics for the norming
constants Cy,(7) in (1.14). In such a way we get a good asymptotics for the
probability density functions py,(x,7T") for T' < T.. To do this we introduce
the notations

zmm:/w%wn%

—00

- 1/2 (1.15)
@) = ([~ e-sn@pmena)
and the rescaled probability density
Tt T) = Vi (T (MH(T) + Vo (T) t,T) (1.16)
which can be rewritte in an equivalent form as
Pu(t,T) = VniT) - (t _V%;()T), T> . (1.17)

Observe that, in general, M, (T) and M, (T), which is defined in (1.9), are
different, but as we will see later,
lim [M,,(T) — M,(T)] = 0.

n—o0

Our aim is to prove that in the case when the Dyson condition (1.2) holds,
there exists a critical temperature T, such that the spontaneous magnetiza-
tion M(T) = lim M,(T) is positive for T" < T, and it is zero for T > T..

n—o0

For T' < T, the density function p,(¢,T") is concentrated near the point

~

t = M, (T), and the function m,(¢,T") represents a rescaled distribution of
Pn(t, T') near this point. We want to prove that m,(t,7) tends to a limit 7 (¢)
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as n — 0o. It turns out that this limit does exist, and the limit function ()
is a nice analytic function, although it is non-Gaussian. The function 7 ()
is expressed in terms of a solution of a nonlinear fixed point equation, and
the next proposition concerns the existence of such a solution. Introduce
the space of probability densities p(¢) on the line

A= {p(t): /Z e“ltlp(t) dt < oo for some € = e(p(t)) > O} .

Consider also the subspace Ay C A,

Ay = {p(t): p(t) € A, /Z 1p(t) dt = 0} |

Proposition 1.4. There exists a unique probability density function g € Ag
which satisfies the following fixed point equation:

2 2 r—1 lv|?
g(t) = — / e—|"|g(t——u+)
( ) 7771 u€R! veRr—1 4 2

-1 2
><g<t—r4+u+|‘;|> du dv.

(1.18)

The density g(t) can be extended to an entire function on the complex plane,
and for real t it satisfies the estimate

0<g(t) < Ceexp{—(2—¢)|t|}, foralle>D0. (1.19)

For a proof of Proposition 1.4 see the proof of Lemmas 12 and 13 in
[BM3]. It is worth noticing that the Fourier transform of g,

solves the equation

9(&) = ——4 (1.20)

Using the probability density g(t) of Proposition 1.4, we introduce a prob-
ability density m(t) on the line of the form

7(t) = ce 2 3g(bt — a), (1.21)

where the numbers b > 0, ¢ > 0, and a are chosen in such a way that

m(t)dt =1, t(t)dt =0, 2r(t)dt = 1. (1.22)
. A .
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Observe that such a, b, ¢ exist and are unique. Indeed, after the change of
variable u = bt — a, the second equation in (1.22) gives a as

ffooo ue‘2u/3g(u) du
2 e 2 B3g(u) du

o0

a=— (1.23)

Then the first and third equations determine b and ¢ uniquely from the

system,

c /oo 6_2(u+a)/3g(u) du =1,
— 0o

b (1.24)

c oo
b3/ (u+ a)?e 2FD/3g () du = 1.
—0o0
Estimate (1.19) secures the convergence of the integrals in (1.23) and (1.24).
Now we formulate

Theorem 1.5. Assume that
[o@)
i< o (1.25)
n=1

Then there ezists a number ko = ko(IN), where N is defined in (1.12), such
that for all 0 < k < kg the following statements hold.

Assume that the density p(x) = V(d(i:() belongs to the class Py, and the
sequence {l,, n > 0} satisfies Conditions 1—4. Then there exists a constant
L = L(n, k) such that if the sequence {l,, n > 0} satisfies Condition 5, then

there exists a critical temperature T, > 0 with the following properties:

(1) If T > T, then
lim 2"M>*(T) = x(T) > 0, (1.26)

n—oo
and the distribution Up r(dx) tends weakly, as n — oo, to the r-
dimensional standard normal distribution. The function x(T) in
(1.26) satisfies the following estimates near the critical point: There
exists a temperature Ty > T, and numbers Co > C7 > 0 such that
for all Ty > T > T, there exists a number n(T) such that

Cy i ' <T-T.<C i i

9n(T) 9n(T)
Cy <x(T) < Cy .
la(r) la(r)

(The number £(T) = 2™T) is the correlation length.)
(2) At T = 1T, nan;O M, (T.) = 0 (there is no Thouless’ effect), and
moreover
lim L M, (T.) =1, (1.28)
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where M, (T) is defined in (2.12), and

1/2
r—1

o
Ln=|—¢ >t . (1.29)
j=n
(Condition (1.25) implies that lim L, =0.)
n—oo

Let us define the rescaled version py(t) of the probability density
function py(t,T.) as

M, (T - t
pult) = j)M«Mﬂm<Lﬂi»ﬂ>, (1.30)
where M,(T) is defined in (1.15), and
. (r—1)l, - -1
dn =, ;lk . (1.31)

(Observe that ILm d, = oo by Condition 2 on {l,}.) The function
pn(t) is defined on the half-line [—d,, o). Then

Jim llpu(®) = 7)) = 0. (132

where the probability density m(t) is defined in equations (1.21),
(1.22) and

- (1.33)

2
MWZZ&g&W

j=0 t>—dn

djf(t)‘ }

If T < T, then the numbers M, (T) and V,(T) defined in formula
(1.15) satisfy the following relations: The limit

lim M, (T) = M(T) >0 (1.34)
exists, and
C1|T — T.|V? < M(T) < Cy|T — Ty V2. (1.35)

In addition,
T

lim [,V (T) =~(T) = 0 1.36
with the number b appeared in formula (1.21), and
le |mn (t, T) — w(t)]| =0 (1.37)

where the probability densities m,(t,T) and 7(t) are defined in equa-
tions (1.16) and (1.21), (1.22), respectively, and || f(t)|| is defined in

(1.98), with dy, = 2.
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Theorems 1.3 and 1.5 are the central results of the present paper. Let us
make some remarks about Theorem 1.5. Relations (1.26) and (1.28) imply
that

M(T) = lim M,(T) =0, forallT>T,,
n—oo

i.e. the spontaneous magnetization M (T") vanishes at T > T.. Relation
(1.35) implies that
lim M(T) =0,
T—Te
with the classical critical exponent 1/2 for the magnetization.

The number 7(7") in (1.27) is very important for our investigation in the
subsequent sections. It shows how many iterations of the recursive equation
(renormalization group transformation) is needed to reach the “high tem-
perature region” (see Section 3 below for precise definitions). The quantity
&(T) = 2™T) is the correlation length. Usually the correlation length has a
power-like asymptotics £(T') < |T — T.|™" as T — T, where v is the critical
exponent of the correlation length (see, e.g., [Fish] or [WK]). It follows from
(1.27) that in the case under consideration, £(T") grows super-polynomially
as T — T.. For instance, if [,, is a sequence determined by equation (1.6)
then £(T") grows like exp [Co(T — Tc)l/()"l)}. Similarly, (1.27) implies that
the magnetic susceptibility x(7") diverges super-polynomially as T — T.t.

Relation (1.36) shows that the mean square deviation of the mean spin
along the radius behaves, when n — oo, as

bT
Vo (T') ~ ML T < T,
so that it goes to zero very slowly as n — oo (comparing with the standard
behavior of €2~/ 2). In fact, it goes to zero sub-polynomially with respect
to the number of spins 2. And according to (1.31), at T' = T, the scaled
mean square deviation of the mean spin along the radius, d,;!, goes to zero
even slower, than at T' < T,, namely,

2b > o

d-t~ — (zn21;1> . T=T.
k=n

On the other hand, observe that by (1.32) and (1.37) the limit distribution

density 7(t) of the normalized mean spin along the radius is the same for

all T < T, and for T =T, as well.

Let us say some words about our methods. The questions we investi-
gate in this paper lead to a problem of the following type: We have a
starting probability density function pg(x,7") which depends on a parame-
ter T', the temperature, and we apply the powers of an appropriately defined
nonlinear operator Q to it. This operator Q is the renormalization group
operator. We want to describe the behavior of the sequence of functions
pn(x,T) = Q"po(x,T), n = 1,2,.... In particular, we want to under-
stand how the behavior of this sequence of functions p,(x,T), n=1,2,...,
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depends on the parameter 7. Our investigation shows that if the function
pn(x,T) is essentially concentrated around the origin, then a negligible error
is committed when p,4+1(x,T) = Qpn(x,T) is replaced by the convolution
of the function p,(x,T") with itself, and this is the case for all n if the pa-
rameter T is large. The replacement of the operator Q by the convolution
is called the high temperature approximation.

On the other hand, if the function p,(x,T) is essentially concentrated
in a narrow shell far from the origin, and this is the case for all n if the
parameter T is small, then another good approximation of the function
Pnt1(X,T) = Qupn(x,T) is possible. This is called the low temperature
approrimation. The high temperature approximation actually means the
application of the standard methods of classical probability theory. The low
temperature approximation applied in this paper is a natural modification of
the methods in our paper [BM3] where a similar problem was investigated.
But in the present paper we have to make a more careful and detailed anal-
ysis. The reason for it is that while in [BM3] it was enough to investigate
only very low temperatures T, now we have to follow carefully when the high
and when the low temperature approximation is applicable. Moreover, —
and this is a most important part of this paper, — to describe the behavior
of the functions p,(-,T) for all temperatures T" we have to follow the be-
havior of these functions also in the case when neither the high nor the low
temperature approximation is applicable. This is the so called intermediate
region. (See Section 3 for precise definitions.)

We study the intermediate region in Section 5. There we show that if the
function p,(x,T) “is not very far from the origin”, namely, the low temper-
ature approximation is not applicable for it, then the functions p,1x(x,7T)
are getting closer and closer to the origin as the index n + k is increasing.
Moreover, after finitely many steps k the high temperature approximation
is already applicable, and the number of steps k we need to get into this
situation can be bounded by a constant independent of the parameter T
The proof given in Section 5 contains arguments essentially different from
the rest of the paper. Here we heavily exploit that the numbers ¢, = ; ijl
are very close to one. Informally speaking, the sequence of numbers ¢, — 1
behaves like a small parameter, and this “small parameter” enables us to
handle our model near the critical temperature.

The setup of the rest of the paper is the following. In Section 2 we give an
analytic reformulation of the problem and connect Dyson’s condition (1.2)
with an approximate recursive formula for some quantities M, (T') related to
the spontaneous magnetization (see (2.20) below). In Section 3 we introduce
a notion of low and high temperature regions together with an intermediate
region. Then we formulate the basic auxiliary theorems about the char-
acterization of these regions. In Sections 4, 5, and 6 we prove the main
estimates concerning the low temperature region, the intermediate region,
and the high temperature region, respectively. In Section 7 we prove the
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convergence of the recursive iterations to the fixed point for all T' < T,. Fi-
nally, in Section 8 we prove Theorem 3.4 concerning some asymptotics near
the critical point T, and derive Theorems 1.3 and 1.5 from the auxiliary
theorems.

2. ANALYTIC REFORMULATION OF THE PROBLEM. STRATEGY OF THE
PROOF.

The hierarchical structure of the Hamiltonian (1.1) leads to the following
recursive equation for the density functions p,(x,T') (see, e.g., Appendix A
to the paper [BM3]):

pon(6T) = Col) [ exp (062 =) ) oo = . T+ 0. T)

T
(2.1)
for n > 0, where po(x,T) = po(x) is defined in (1.7),

L, =1(2"),

and C,(T) is an appropriate norming constant which turns p,4+1(x,7T) into

a density function. We are interested in the asymptotic behaviour of the

functions p,(x,T) as n — oco. For the sake of simplicity we will assume that

e(t) = 0 in (1.7), so that po(x) coincides with (1.3). All the proofs below

are easily extended to the case of nonzero £(t) satisfying estimate (1.8).
Define

Cn = , n=0,1,... with [ =1, (2.2)
ln—l
+1 +j _ _
An:1+z "2 "2J:1+lnlz2 Tprjy,  n=0,1,.... (2.3)
J=1 7j=1
Then
n
ln—ch, n >0, (2.4)
7=0
and
lni1A
oAy = 1y + % (2.5)

Indeed, by (2.3),

x o
WA, =1, + Z 2_jln+j = Z 2_jln+ja
p= =0

hence

= —q 1 = —j ln+1An+1
lnAp — L, = ;2 Mgy = 2;)2 R e X))

and (2.5) follows.
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Define

qn(x,T) = Ap(T) texp (Anl;X2> (VT x,T), (2.7)

where A, (7T") > 0 is a norming constant such that

/ an(x,T)dx = 1.

Let
W =01+4,)l,, n=012... (2.8)
Then it follows from equations (2.1) and (2.5) that
1 n
b (.T) = 5 / g T T) e (29)
Also, by (1.3),
(%,T) = — exp 4 (coA TﬂXF Pl (2.10)
= X —T)—/ — — 7. .

The norming constants Z,,(T") in the previous formulas are determined by
the condition that

/ an(x,T) dx = 1.

Thus, the functions ¢,(x,7T) are defined recursively by formulas (2.9) and
(2.10). Our goal is to derive an asymptotics of the functions g, (x,T) as
n — oco. Then the asymptotics of the functions p,(x,7) can be found by
means of formula (2.7). The advantage of the functions ¢, (x,T’) is that their
recursive equation (2.9) does not depend on 7.

The method of paper [BM3] can be adapted in the study of the low
temperature approximation. We shall follow this approach. Due to the
rotational symmetry of the Hamiltonian (1.1), the function ¢,(x,T") depends
only on |x|. Define the function g,(¢,T), t € R!, n=0,1,2,..., such that

4n(x%,T) = Cn(T) gu([x[, T), (2.11)
with a norming constant Cy,(7") such that
o0
/ Gn(t.T) dt = 1.
0

We will define
an(t,T)=0 for t<O.
Put also -
M, (T) = / tqn(t,T)dt, n=0,1,..., (2.12)
0

and define the rescaled probability density functions

n@gj:ii% MMTHLiqT , teRY, n=0,1,.... (2.13)
C(n) c(”)
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Then

Ga(t.T) = e £ (e (1 = My (T), T), (2.14)
and

e e] oo

/ Folt, T)dt =1, / tfo(t,T)dt = 0.

—0oQ — 0o
The order parameter M, (T") in (2.12) is very convenient for the asymptotic
recursive analysis. Later we will relate it to the parameters M, (T) and
M, (T) introduced in formulae (1.9) and (1.15), respectively.

A low temperature approximation can be applied in the case when M, (T')
is relatively large, comparing with the size of the neighborhood of M, (T') in
which the function f,, (¢, T') is essentially concentrated. In this case we follow
the behaviour of the pair (f,(¢,T), M,(T)). To describe this procedure
introduce the notation ¢ = {¢(™, n = 0,1,...}. The rotational invariance
of the function ¢, (-, T") suggests the definition of the operator

"\ C u2 2
n,Mf(t) = / exp {_ (n) v }
u€Rl veRr—1 c

t u \2  v2
(n) v " N
x flc \/<M+ persy + c(")> + ¥ M

2 2
(n) NN R A
x flec \/(M—{— D) c(")> + ) M dudv.

Formula (2.9) together with the definition of the function f,,(¢,T") yields that

t C(n+1) _
n+1 <Mn(T) + C(n+1)’T> = 70 M (1) I, T)
with -
—c(+D) M, (T)

The norming constant Z,(7") is determined by the condition

o

(jn+]_ (t, T) dt =1.

S—

Define also

| )
mn(T) = ma(fn(t:7) = 5 / oo oy Bt a0V (219
and

1 .
Q7 ar () (6. T) = Za(T) M (1) o (t+ ma(T), T).

Then

Far1(6,T) = QS oy 1y ot T)  and My (T) = My (T) Gy

c(n+1)

. (2.16)
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To formulate a good approximation of the operator Q7 My (T)? let us in-
troduce the numbers

() (1+ Ap)l
c n)ln
Cr = = . on=1,2.... 2.1
T D T (U Ap)ly (2.17)

The arguments of the function f in the definition of the operator be Mo

2 2
et — ™ _t 4w A
G (tu,v) =c \/(M + D) + c(")> + o) M|, (2.18)

can be well approximated by a simpler expression because of the estimate

t v2 [v|4 t2 +u?
CF (tu,v) — + —
n,M( u, V) <En+1 u+ 2M> +

<
=100 <c(”)M3 EONY;
which holds for [t| < eV, |u| < 2™ M and v? < ™ M2 This
estimate suggests that for low temperatures 7', when M, (T) is not small,
the operator Q% M, (1) CA1L be well approximated by the operator TfL’ Mo (T)
defined as

_ t V2
TC t,T :/ eV’ ( +u+,T>
n’Mn(T)f< ) u€R!, veR 1 ! Cn+1 2M,(T)

x f ( t LY T) dud
— U+ —, udv.
Cn+1 2M, (T)

The elaboration of the above indicated method will be called the low tem-
perature approzimation. It works well when M, (T) is much larger than the
range where the function f,(¢,T') is essentially concentrated. For n = 0 the
starting value My(T') at very low temperatures T > 0 is very large. In this
case the low temperature expansion can be applied. As we shall see later,
the approximation of QY My (T) by T () yields that

(2.19)

r—1
My1(T) ~M,(T) — —————, 2.20
which, in turn, implies that
9 9 = 1
M2, (T) ~ MAT) = . (2.21)
It follows from (2.3) and (1.5) that
2 <A, <2.03, li_>m A, =2, (2.22)

hence if Condition 1 is satisfied, then not only lim ¢, = 1, but also lim ¢, =
n—oo n—o0
1, and by (2.8),

3<S <303  lim — =3 (2.23)
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This allows us to rewrite (2.21) as

r—1
61,

Mg 1 (T) ~ M(T) ~ (2.24)

This formula underlines the importance of the Dyson condition (1.2).
Namely, if the series

B=> 1,1 (2.25)
n=1

converges then M, (T') remains large for all n if 7" > 0 is small. Indeed,
assume that T < cpAp/2. Then it follows from (2.10) that MZ(T) >
C(kT?)~!, hence by (2.24), neglecting the error term,

YLt =CHT) T =G> 1

n=0

r—1
6

M(T) > M§(T) -

for all n if T' > 0 is small, which was stated. On the other hand, if the series
(2.25) diverges, then for some n, M, (T) becomes small, and the approxima-
tion (2.20) becomes inapplicable.

The low temperature approximation can be applied when M, (T) is not
small. When M, (T") is small a different approximation is natural. If the
function ¢,(x,T) is essentially concentrated in a ball whose radius is much

less than (c(”))_l/ 2, then a small error is committed if the kernel function

e~ in formula (2.9) is omitted. This means that the formula express-

ing gn+1(x) by gn(x) can be well approximated through the convolution
Gn+1(X) = @n * gn(x). This approximation will be called the high tempera-
ture approzimation. If the high temperature approximation can be applied
for ¢, (x,T), then the function g,1(x,T) is even more strongly concentrated
around zero. Hence, as a detailed analysis will show, if at a temperature T
it can be applied for a certain ng, then it can be applied for all n > ny.

Finally, there are such pairs (n,T') for which the function ¢, (x,T) can be
studied neither by the low nor by the high temperature approximation. We
call the set of such pairs an intermediate region. We shall prove that if the
sequence ¢(™ sufficiently slowly tends to infinity and the function an(x,T)
is out of the region where the low temperature approximation is applicable,
then the density function g¢,+1(x,7) will be more strongly concentrated
around zero than the function g, (x,7"). Moreover, in finitely many steps the
function ¢,1x(x,T") will be so strongly concentrated around zero that after
this step the high temperature approximation is applicable. It is important
that the number of steps k needed to get into the high temperature region
can be bounded independently of the parameter T'.

The main part of the paper consists of an elaboration of the above heuris-
tic argument.
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3. FORMULATION OF AUXILIARY THEOREMS.

To describe the region where the low temperature approximation will be
applied we define some sequences [3,,(T") which depend on the temperature 7T'.
Define recursively,

V)2

(3.1)

=2
Bri1(T) = <0n2+1 + 62((3)> Bn(T) + ]\41(()71) for n > N,

where the number N is defined in (1.12), &, in (2.17) and M, (T) in (2.12).
As it will be seen later, these numbers measure how strongly the functions
fn(x,T) are concentrated around zero. We define the low temperature re-
gion, where low temperature approximation will be applied.

Definition of the low temperature region. A pair (n,T) is in the low
temperature region if the following properties (1) and (2) hold.

(1) 0 < T < c¢pAp/2, where Ay was defined in (2.3).
(2) Either 0 <n < N with the number N introduced in (1.12) orn > N
anl(T) <

C(nfl) —

and n with the number n appearing also in (1.12).

The temperature T is in the low temperature region if the pair (n,T) is in
the low temperature region for all numbers n. Let us remark that by (2.4)

and (1.5)
1<, =[] <1017,
j=1

hence by (2.23),
3 <™ <3.03-1.01" (3.2)
Therefore, by (3.1),
BN(T) ) 1
= < <
(N TN S =T (3:3)
hence the pair (N + 1,7 is in the low temperature region if T" < ¢y Ag/2.

Since Bp41(T") > % the pair (n,T") can get out of the low temperature

region only if M, (T') becomes very small.
To define the high temperature region introduce the notations

hate1) = ()0 (257),

D2(T) = /r x?hy, (x,T) dx.

(3.4)

where the function gy, (x,7T) is defined in (2.7). Let us also introduce the
probability measure H,, r,
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)

H,r(A) = / hn(x,T)dx, A CR", (3.5)
A
on R".

Definition of the high temperature region. A pair (n,T) is in the
high temperature region if D2(T) < e~V with the number n in formula
(1.12), where D2(T) is defined in (3.4). The temperature T is in the high
temperature region if there exists a threshold index ny(T') such that (n,T) is
in the high temperature region for all n > ng(T).

It may happen that a pair (n,T’) belongs neither to the low nor to the high
temperature region. Then we say that (n,T") belongs to the intermediate
region. Let us remark that we introduced two numbers N and 7 in formula
(1.12), and in the formulation of the subsequent results N and n will denote
these numbers. The following result is very important for us.

Theorem 3.1. There exists a number ko = ko(N) such that for all 0 <
k < Ko (where K appears in formula (1.3)) and 0 < 77 < n there is a number
L = L(n, k) for which the following is true. Assume that Conditions 1 and 5
(with 7 and this number L = L(7,k)) hold. We consider such temperatures
T for which there are numbers n such that the pair (n,T) does not belong
to the low temperature region. Let n(T') > 0 be the smallest number n with
this property.

If the pair (n(T'),T) does not belong to the high temperature region (which
means that (n(T),T) is in the intermediate region), then there exist some
numbers K = K(n,k) >0, n=10(n,k) >0, and k = k(7, k) € N such that

~ _ 2
D2py(T) <K, 71 <Dy (T) <e /7.

n

This implies in particular that the pair (n(T)+k,T) with this index k belongs
to the high temperature region.

We shall also prove the following corollary of Theorem 3.1. (See the
Remark after the proof of Lemma 6.1.)

Corollary. Under the conditions of Theorem 3.1 all temperatures T > 0
belong either to the low or to the high temperature region. If the Dyson
condition (1.2) holds, then all sufficiently low temperatures belong to the low
and all sufficiently high temperatures to the high temperature region. If the
Dyson condition (1.2) is violated, then all temperatures T > 0 belong to the
high temperature region.

The next theorem concerns the low temperature region.

Theorem 3.2. There exists a number kg = ko(N) such that for all 0 <
Kk < Ko the following is true. Assume that the Dyson condition (1.2) and
Conditions 1 and 2 hold. Assume that the temperature T is in the low
temperature region. Then the numbers M, (T') defined in (2.12) have a limit,
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and ) )
n—o00 re—
25 %
In addition,
t
1 n 7T - t =Y
i oy () o0 =0 35
where )
& f(t
FI=Y  sp M| TS0 (39)
=0 tZ—c(’ﬂ)Mn(T)

fn(t,T) is introduced in (2.13), and the probability density g(t) is defined as
a solution of the fized point equation (1.18).

Part (3) of Theorem 1.5, with the exception of estimate (1.35), follows
from Theorem 3.2 and the additional relation Mo (T") > 0 if T' < T, which
follows from the results in Theorem 3.4 formulated at the end of this section.
Indeed, we can express the function p,(x,7T) in terms of f,(¢,7). Namely,
by (2.7), (2.11), and (2.14)

Anln|x|2
2T

pn(x,T) = Lfll(T) exp (—

) (3.10)
% f < (|x| - \/TMn(T)> ,T)

VT
with an approriate norming constant L, (7). Let us write that |x|? =
2
(ﬁ Mo (T) + |x| — VT Mn(T)> , hence

Anln‘XP Aply 2
_Anin XY _Ann 20
eXp( 2T ) eXp{ o [TMi(T)

FVT Mo(T) (x| — VT Ma(T)) + (1] — VT Mo (T))?] }

and substitute it into (3.10). This leads to the equation

pn(%,T) = LN (T) o (W T) (3.11)

with an appropriate norming constant En(T), where
Mn(T) = VTM,(T), Vu(T)=

~ Anly,
tT) = fo (Mnt(T)’T> exp < C(n)t _ 5n(t,T)> ,

A, L, t2
2(cM)2MA(T)

en(t, T) =
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Observe that by (2.22) and (2.23)

nooo o™ 3" ntoo 2(cM)ZMR(T)

hence (3.8) implies that there is some Cy > 0 such that

/

fn(t, T) — Cog (t) e2/3

where
2

O =3 sup e

j=0 t>—c™WM2(T)

dti

df(t) ’

This also implies that there exist some real number a and C’ > 0 such that

/

falt—a,T) = C'g(t —a)e 23| =0, (3.12)

i ||
n00 || M (T))

with such numbers @ and C’ > 0 for which the relations
/ C'g(t —a)e /3 dt =1 and / Cltg(t —a)e 23 dt = 0

hold.
Let us define for all b > 0 the function 7(t|b) = C'bg(bt — a)e 2%/ dt.
These functions satisy the relations

/mdmmwﬁ—lmd/wUWﬁWﬁ—Q
Moreover, the number b > 0 can be chosen in such a way that the identity
/wc%ﬁMHMﬁ = K{/wcwwﬂﬂﬂmﬁ
= b2 h C't2g(t — a)e?Bdt =1

also holds. Let us define the function m(¢) = 7(t|b) with this parameter b.
In such a way we constructed a function 7(t) that satisfies relations (1.21)
and (1.22). Moreover, if we define the functions

Tn(t,T) = Co(T) fr(bt — a,T) (3.13)

with these numbers a and b and with such a norming constant C,(7) for
which

/ Fult, T) dt = 1,

—0o0

then these functions satisfy the relation

Jim [7(8) = =) = 0 (314)
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because of relations (3.12). Because of (3.14) we also have [*_ 7, (¢,T) dt =
1, nh_}rrolo 75t (¢, T) dt = 0, nh_{r;o 7 27, (¢, T)dt = 1, and because of

(3.11) and (3.13)
frn(ta T) = C;L(T)_lﬁn((bt - a)VN(T) + Mn(T)v T)
= b‘?n(T)pn(bt - a)VN(T) + Mn(T)v T)'

(The normalization constant in the second identity of the last formula is
determined by the fact that both p,,(¢,T") and 7,t,T") are probability density
functions).

Hence

/ h ti,(t, T)dt = bV, (T) / b tpn (bt — a)Vn(T) + M, (T),T) dt

[t = My(T) + aViy(T) _
_ /_ ) S (6, T) dt (3.15)
= Mi(T) = Mu(T) + aVu(T) —0 asn— oo
bV, (T) ’
and
/ T 2R (LT dt = bT,(T) / 2 (bt — @)V (T) + N (T), T) dt

) - ~ 2
[ <(t_M”(T))+(MZ(vT3£> Mn<T>+avn<T>>> Pt T) dt

_ - - 2
VAT) + (M (T) = Mo (T)) + aV(T))
= - —1 asn— oo. (3.16)
b2V2(T)
Relations (3.15) and (3.16) together with Theorem 3.2, the inequqailty
Moo(T) > 0 and the definition of the quantities M, (T) and V,(T) im-
ply relations (1.34) and (1.36). Indeed, by Theorem 3.2 ILm M, (T) =

M(T) with M(T) = VTMq(T), and since Vo(T) — 0 as n — oo rela-
tion (3.15) implies that li_>m (M, (T) — M,(T)) = 0. Formula (1.34) fol-
lows from these relations with the above defined number M (T'). Relations

(3.15) and (3.16) together imply that lim V"Eii = b. On the other hand,

. ot . (n) . .
nh_{rgo L, Vo(T) nlggo%c("h/’%Mn(T) = 3]\/[T(T)' These relations imply (1.36).

Finally to prove relation (1.37) let us observe how the functions m, (¢, T)
and 7, (¢, T) can be expressed with the help of the function p, (¢, 7). Besides,
both are probability density functions, and the integrals ffooo tin (t,T) dt
and ffooo 27, (t,T) dt tend to zero and 1 as n — oo, while the correponding
integrals for m, (¢, T) are equal exactly to these limit values for all parameters
n. This implies that the identity 7, (t,7) = (1 + en)7n((1 + n)t + 0p, T)
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with such numbers ¢, = £,(T) and ¢,, = 6,(T) for which lim &, = 0, and
n—0o0

lim §, = 0. It can be proved with the help of this observation that relation

n—oo
(3.14) remains valid if we replace the functions 7, (¢t,T) by 7,(¢t,T) in it,
and this means that formula (1.37) is valid.

Now we formulate a theorem about the high temperature region. Put

r/2
- (n) [c(n)
_ 9—rn/2 —n/2 _ c ¢
hn(x,T) =2 n (2 X,T) ( o ) hn ( o X,T) . (3.17)

and define the probability measures
H,r(A) = / ho(x,T)dx, A CR" (3.18)
A

on R".

Theorem 3.3. There exists a number ko = ko(N) such that for all0 < k <
ko and 0 < 7} < n there exists a number L = L(7, k) such that the following
is true. Assume that Conditions 1 and 5 (with 7 and this L = L(7].x)) hold,
and T 1is in the high temperature region. Then the measures .FNInyT defined
in (3.18) converge weakly to the normal distribution on R" with expectation
zero and covariance matriz o*(T)I with some o*(T) > 0, where I denotes
the identity matriz.
If T belongs to the high temperature region, but the pair n = (0,T) does
not belong to it, (i.e. the temperature T is not too high), then the inequality
on(T) ) on(T)
Clm <o*(T) < Cbm (3.19)

also holds with some Cy > C1 > 0, where n(T) is defined in Theorem 3.1.

Remark. Not only the convergence of the measures E[n;r but also the con-
vergence of their density functions hn (x,T) could be proved. But the proof
of the convergence of the distribution is simpler, and it is also sufficient for
our purposes.

Corollary. Let H, r denote the probability measure on R” with the density
function

272, (272N Tx, T).
Under the conditions of Theorem 3.3 the measures FIn,T have the same
Gaussian limit as the measures I:ImT defined in Theorem 3.3 as n — oo.

Our last theorem concerns the critical point. We want to show that there
is a critical temperature 7T, such that above it all temperatures belong to the
high and below it all temperatures belong to the low temperature region.
We also want to describe the situation in the neighborhood of the critical
temperature in more detail. In Theorem 3.4 we state such a result.

Theorem 3.4. There exists a number kg = ko(N) such that for all 0 <
Kk < Ko there ezists a number L = L(7, k) such that the following is true.
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Assume that Conditions 1—4 are satisfied. Then for a fized n the set of
temperatures T' for which (n,T') belongs to the low temperature region forms

an interval (0,T,], and the sequence T,,, n = 1,2, ..., is monotone decreasing
in n. Define the critical temperature T, as the limit, T, = lim T,. Then
n—oo

colo/4 > T. > 0. The function M (T) = nlgglo M, (T) exists in the interval

(0,T¢], and for a fized n the function M, (T) is strictly decreasing on the
interval (0,T,,]. The relation M (T.) = 0 holds. If T, +¢e > T > T, with
some € > 0, then the inequality

Cy (3.20)

k=n(T) k=n(T)

holds with some appropriate numbers Cy > C1 > 0, where n(T) is defined
in Theorem 3.1. If T, — e < T < T, with a sufficiently small € > 0, then

Cy(T, — T)Y? < Moo(T) < Co(T. — T2 (3.21)

4. BAsic ESTIMATES IN THE LOw TEMPERATURE REGION.

In this section we give some basic estimates on the function f,(x,T) and
its derivatives (with respect to the variable z) if the pair (n,7T) is in the
low temperature region. These estimates state in particular, that in the
definition of the functions f,,(x,T) the right scaling was chosen. With the
scaling in formula (2.13) the function f,(x,T) is essentially concentrated in
a finite interval whose size depends only on M, (7). Both the results and
proofs are closely related to those of Sections 3—6 in paper [BM3].

First we consider the case of small indices 0 < n < N, where the num-
ber N defined in (1.12) (cf. Section 4 in [BM3]), and we begin with n = 0.
Assume that T' < c9pAo/2 and k > 0 is small (exact conditions on the small-
ness of xk will be given later). In this case the function gy(x,T) has its
maximum in the points My(T) (see (2.10)), where

o TN\ 1/2
Mo(T) = <AOI;;~2T) (4.1)

is a large number. From (2.10) we obtain that

1 _ x
FORL (MO(T) + FOR T) (4.2)
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where
x x
Zo(T) = exp{ —(Agco —T) | —= 14— dx.
0( ) /—MO(T) p ( 0€0 ) (C(O)) < 2C(O)M0(T)>
(4.3)
It can be proved by means of the identity
O (Mo(T) — My(T)) (4.4)

foz(mMO(T)l’eXp{—(COAO— (C ) ( O)M (T))Q} dx

) f—02<0)1\7[0(T) exp {—(AOCO -T) (%) (1 + 2::(0)]\/[0(T)>2} dx

that
const.

Mo(T)

where My(T) is defined (2.12). This shows that My(T) is a very good
approximation to My(T'). Straightforward calculation yields with the help
of formulas (4.1) and (4.3) that

|Mo(T) — Mo(T)| < < const. kT, (4.5)

(0)
Zo(T) — (ilﬁT) < const. V& T, (4.6)
0Co —
and from (4.1)—(4.6) we obtain that
A(]CO T T\ 2
( Bl {(Aoco ~T) (;0) })’ (4.7)
< const. k'/%e —2lzl/e 4 lz| <logr™, j=0,1,2,
and
8j (A()Co - T) ZE2
’Wfo(a:, T)‘ < Cexp {_40(0) 21 + TN T)

for & > —cOMy(T), j=0,1,2. (4.8)

A relatively small error is committed if M, is very large and the arguments
EiMn (x,u,v) (defined in formula (2.18)) of the function f,, in the operator
sz afn are replaced by x 4 u. Exploiting this fact one can prove, using
a natural adaptation of the proof of Proposition 1 of paper [BM3], the
following

Proposition 4.1. There exists a number ko = ko(N) such that if

(i) 0 < Kk < Ko, and
(11) 0<T< Cvo/Q,
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then the relations

< B(n)/fl/4e_2n+1|x‘/0<n), if x| <2 "logr™, §=0,1,2,
o (Aoco —T') 27 z?
< _
D7 fn(z, T)| < B(n) exp{ 1 o 2x + N (T)

for & > =M, (T), j=0,1,2,
and
|M,(T) — My(T)| < B(n)v/sT (4.9)
hold for all 0 < n < N with the function My(T) defined in (4.1) and a
function B(n) which depends neither on T nor on k.

We formulate and prove, similarly to paper [BM3], certain inductive hy-
potheses about the behaviour of the functions f,(z,T") for n > N if the
pair (n,T') is in the low temperature region. In the formulation of these
hypotheses we apply the sequence 3, (T") defined in (3.1) and the sequence
an(T) defined as

(N)N2
aN(T) = ﬁ(CQN) )

_92 _
a1 (T) = <Cn2+1 _ 5;(&?) on(T) + % for n > N.

(4.10)

To formulate the inductive hypotheses we also introduce a regularization of
the functions f,(z,T).

Definition of the regularization of the functions f,(z,T). Let us
fix a C™-function ¢(x), —co < x < oo, such that p(z) = 1 for |x| < 1,
0<o¢(x)<1lifl<xz<2andep(x)=0 for|x| >2. Then the reqularization
of the function f,(x,T) is

T+ By,

on(fu(2,T)) = Anp <W

with norming constants A,, and B, such that

/OO on(ful(z, T)) dz = 1, /°° wion( (. T)) da = 0.

—0o0 —0o0

> fulx + By, T),

Now we formulate the inductive hypotheses.
Hypothesis /(n).
& fr(z,T) 1 z?
o | = BamuE P\ mm | dng )
forj=0,1,2, x> ™M, (T),

with a universal constant C > 0. One could choose, e.g., C = 10%°,
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Hypothesis J(n).
eﬁn(T)sQ 2
onfn(t+is,T)| < ————— 4 = B (1)
[P fn )l 1+ an(T)t? Bn+1(T)

where
‘;Enfn(t +is, T) = /ei(t—i_is)x@(fn(xa T)) dx.

Corollary of Proposition 4.1. Under the conditions of Proposition 4.1,
the inductive hypotheses I(n) and J(n) hold for n = N with a universal
constant C > 0 in hypothesis I(n). (For instance, one can choose C = 10°.)

Before formulating the main result of this Section, we introduce the oper-
ators Ty,. They are appropriate scaling of the operators TfL’ Mo (T) defined in

formula (2.19), but these operators will be applied only for the regulariza-
tion of the functions f,(x,T") and not for the functions f,(z,T") themselves.
Put

2 2
Tnon(fu(z,T)) = 7‘—1/ e
u€RL, veRr—1

Cn1m 2

x r—1 v2
<on (00 (0~ Ty oy T) ()

T r—1 v?
— — ——— T ) dud
e (f " <an+1 (@) " ATy >> o
with the constants ¢, defined in (2.17) and the number V' (S7~2) introduced
in Proposition 1.4. The main result of this section is the following

Proposition 4.2. There exists kg = ko(IN) > 0 such that if

(i) the inductive hypotheses I(n) and J(n) hold for the function f,(x,T),
(ii) 0 < Kk < Ko, (K appears in formula (1.3)), and
(iii) the pairs (m,T) belong to the low temperature region for all
0<m<n,

then the inductive hypotheses I(n + 1) and J(n + 1) hold for the function
frny1(z,T). Also there exist universal constants C1, K1, Ko and Ks such
that the following estimates hold:

(a)

+1(7) (1) = o M, (T) +T ) (4.12)
where (7)) < 71D /5y
(b) (T)
5n+1 T
@ = o
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(¢) For x> —c™tVM, 1(T) and j =0,1,2,

o KyC*  Bu(T)
‘8 J [frt1(z,T) — nﬂon(fn(va))}' < 67(5;:-11)/2(T) c(n)
X | ex —¥ 2z + wz‘ 4.14
U VB | o M (7) (419
+ exp {—M}
/Bn-i-l(T)
(d) Forz € R! and j =0,1,2,3,4,
o4 K3C? 2|z|
‘MTnSOn(fn(anT))‘ < WGXP {_5n+1(T)} : (4.15)

The proof of Proposition 4.2 is based on the observation that the operator
T, approximates the operator Qf M, (T) Very well, and it has a relatively

simple structure. Namely, it can be written by writing the vectors v € R™ 1
in formula (4.11) in spherical coordinates in the form

Tn@n(fn(l’,T)) = 4_1)/0 w’r—Qe_wQ
2

anI‘(T

2x w? r—1
n(fn) * n(fn) (Cn—H + VL(T) 2Mn(T)’T> dw,

where w = |v|. Then we get with the substitution M“’i?T) = u that

Tron(fn(z,T)) = My (T)u)7=3)/2¢=Mn(T)u

-1
oulfa) * alfa) <n+1 bum gL ) o
2 _ 2z r—1
- Cn+1 n(fn) * @n(fn) * an(T) (C +1 2Mn(T)) ’ (4.16)

where x denotes convolution, ky, (z) = kag, () (=), and Ky, (1y(7) =
. _ 1 -z _ p(r=3)/2¢—=

M, (T)k (M, (T)x) with k(z) = NCad k(x) T for z > 0, and

k(x) =0 for x < 0.

The operator T, has a certain contraction property which can be ex-
pressed in the Fourier space. the Fourier transform of T,,¢,(fn(£,T)) can
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be expressed with the help of formula (4.16). One gets that
Tun(fal6,T))

ot (5 ) o e

jr=ent1 =
e = M) S
IM,, (T)

In this calculation we have exploited that k:(a:) is the density function of

the gamma distribution with parameter %, whose characteristic function

equals (1 —i&)~("=D/2 Tt follows from formula (4.17) that T,@n(fn(x, T))
is the density function of a random variable with expectation zero.

The proof of Proposition 4.2 is a natural adaptation of the proof of the
corresponding result (of Proposition 3) in paper [BM3|. Hence we only
explain the main points and the necessary modifications.

Because of the inductive property I(n) f,(z,T) is essentially concentrated
in a neighbourhood of the origin of size 1/3,(T), and if (n,T) is in the low

x
100| Ic(") -
15 for |z| < \/Bn(T), and the function f,(z,T) (disregarding the scaling
with the numbers A, and B,) is not changing in the typical region by
the regularization of the function f,(x,T). This is the reason why such a
regularization works well.

The proof of Proposition 4.2 contains several estimates. First we list those
results whose proof apply the bound on f,(x,T) formulated in the Inductive
hypothesis I(n). One can bound the differences

J

QS ity I T) = Qg gyl (2. T))) - (Lemma 4 in [BMS]),

J
QS at, e, T)) = Ty 2, 7)) (Lemma 5 in [BM3]),
with the help of Property I(n) similarly to paper [BM3]. The absolute value
of these expressions can be bounded for all € > 0 by

Bn Ci(e)C? C2(l-¢) x? ‘
@ 552y P\ e /B | O (T)

with some appropriate constant Cy(g) > 0 if f,(x,T) satisfies Condition
I(n).

The main difference between these estimates and the analogous results
in paper [BM3] is that the upper bounds given for the above expressions

contain a small multiplying factor % In paper [BM3] the multiplying

temperature domain and 7 > 0 is chosen sufficiently small, then

factors 27" and 1/ ™ appear instead of this term. In the proof of this paper
we had to make some modifications, because while in paper [BM3] only very
low temperatures were considered when M, (T') is strongly separated from
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zero, now we want to give an upper bound under the weaker condition
formulated in the definition of the low temperature region. The proofs are
very similar. The only essential difference is that in the present case the
typical region, where a good asymptotic approximation must be given is
chosen as the interval |z| < 10vV¢(™), i.e. it does not depend on the value of
M, (T). B

Also the expression QZ,Mn(T) fn(x,T) can be bounded together with their
first two derivatives with the help of Property I(n) in the same way as
in Lemma 3 of paper [BM3]. But this estimate is useful only for large
x. It can be proved, similarly to the proof of the corresponding result in
paper [BM3] (lemma 7) that the scaling constants which appear in the for-
mulas expressing th Mo (T) through Qfl Mo (T) and T,, through Tfh M, (T) T€
Bn(T)

ey
in the error term instead of the multiplying factor 1/c¢(™ in paper [BM3].
This Lemma 7 in [BM3] is a technical result which expresses the difference
of the functions Tfh My F1 (z) and T;, (1) F2 () together with its deriva-
tives if we have a control on the difference of the original functions F}(z) and
F5(z). We gain such kind of information from the inductive hypothesis I(n).
They give a good control on the difference f1+1(z,T) — Thon(fu(z,t)).
The consequences of these results are formulated in Proposition 2 in pa-
per [BM3]. These results also imply an estimate on the Fourier transforms
Ont1(fn+1(§,T)) — Tnén(fn(&,T))) and Typon(fn(€,T)) and also on their
analytic continuation. This is done in lemma 8 in paper [[BM3]. Now again

the analogous result holds under the conditions of the present paper with
Bn(T)
(

cn) -~

very close to each other. Here again the multiplying factor appears

the difference that the term ¢~ must be replaced The estimate ob-

tained for T, @n(fy(&,T)) in such a way is relatively weak, it is useful only
for large &.

The above results are not sufficient to prove Proposition 4.2. In particu-
lar, they do not explain why the right scaling was chosen in the definition
of the function f,(x,T). Their role is to bound the error which is com-
mitted when Q;MH(T)fn(a:, T) is replaced by Tpo(fn(z,T)). The function

Thon(fn(z,T)) together with its derivatives and Fourier transform can be
well bounded by means of formula (4.17) and the inverse Fourier transform.
In the estimations leading to such bounds the inductive hypothesis J(n)
plays a crucial role. The proof of Lemma 9 in paper [BM3] can be adapted
to the present case without any essential difficulty. But, the parameters a,,,
B and ¢ must be replaced by ., (T), 5,(T') and ¢,+; in the present case.
Proposition 4.2 can be proved similarly to its analog, Proposition 3 in
paper [BM3]. The notation must be adapted to the notation of the present
paper. Besides, the small coefficient ¢~"/2 appearing in the proof of Propo-
Bn(T)

c(”)
really new argument is needed in the proof. This argument requires a more

detailed discussion. It is the proof of relation (4.13), i.e. of the fact that

sition 3 in [BM3] must be replaced by

. There is one point where a
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an(T) and B, (T) have the same order of magnitude. Their ratio must be
bounded by a number independent of 1. The proof of the analogous result
in paper [BM3] exploited the fact that in the model of that paper the se-
quence ¢(™ tended to infinity exponentially fast. In the present case this
property does not hold any longer, hence a different argument is needed.
The validity of relation (4.13) has a different cause for relatively small and
large indices n.

For large n it can be shown that both 3, (T) and «a,,(T) have the same
order of magnitude as M,, 2(T), and for large n these relations imply (4.13).
If n is relatively small and My(T) is large, then M, ?(T) is much less than
an(T) and B, (T). In this case the above indicated argument does not work,
but it can be proved that for such indices n the numbers 3,,(T") are decreasing
exponentially fast, and the proof of relation (4.13) for such n is based on
this fact.

To distinguish between small and large indices n define the number

1
N(T) = {minn: n > N, and B,41(T) < ]\4,120((;)}’
(N1(T) = oo if there is no such n).  (4.18)
where the number N was defined in formula (1.12). We shall later see that

Ni(T) < oo forall 0 < T < cpAo/2.
First we prove relation (4.13) under the additional condition n < Ny (T).

2
In this case B,4+1(T) < Cm%ﬂm(T) + 57”17@ for m < n, and because of
Condition 1

2 .
Bm+1(T) < gﬁm(T) it m < Ny(T) (4.19)
for all N <m < n.

Bm (T) 5 ﬂm(T) Bm(T) 5 m—N /B (T)
Hence |/ Z5555" < 51/ S . S (3) Y Fea

2
Sm+1 Bm(T)
T m2 + c(m
1< Berl( ) < max 5 (m) i ﬁm(i)7 1013
am+1(T ‘m+1 [ Bm(T) am(T)
2 c(m)

Bm(T) Bm (T) 13
< max (exp{ c<m)} " (T)? 10 )

for N <m <mn, and

Br+1(T) (BN(T) 13> ~ [ Bn(T)

—— = < max , 10 expy o < K.

(D) = \an(T) P n;v ()
The above argument together with the observation that Sy (7T) > M &2 (T)
if the parameter ¢t > 0 in (1.3) is sufficiently small and 7' < ¢pAp/2 imply
that N < Ny(T), and the pair (n,T) is in the low temperature region for all
n < N1(T). The latter property follows from the fact that by formula (4.19)

the sequence B :(S:‘)F) is monotone decreasing for N < n < Ny(T).
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In the case n > Ni(T) we can prove by induction with respect to n
together with the inductive proof of Proposition 4.2 that

Busr(T) < —0

M(T)

and (n,T) is in the low temperature region. (4.20)

if n > Ny (T).

By applying formula (4.20) for n — 1 and the fact that (n,T) is in the low
temperature region we get that the term ~,_1(7") in formula (4.12) can be
bounded as

Bu(T) 10 |
(7)) < T) < <
|’Yn 1( )| - ) Bn( )7 nMn_l(T) B SCan_l(T)

with the same number Cy which appears in (4.12) if the number n > 0
was chosen sufficiently small. Then formula (4.12) implies that M, (T) <
My+1(T). Hence we get by applying again formula (4.20) with n — 1 that
Mn(T) < Mnfl(T)v and

Bun(T) < 36u(T) +

(4.21)

10 < 200 4 10 < 100
MAT) = NG, (T) M)~ M)

This means that formula (4.20) also holds for n. Relation (4.20) together
with the definition of the sequence o, (T") imply that for n > Ny (7))

—12
M (T)
i.e. formula (4.13) is also valid for n > Ny (7T) if (n,T) is in the low tempera-
ture domain. With the help of this argument Proposition 4.2 can be proved
by an adaptation of the proof of the corresponding result in [BM3].

We formulate and prove a lemma which describes some properties of the

numbers (3,(T) in the cases when n < Ni(T') or n > Ni(T). Several parts
of it were already proved in the previous arguments.

Lemma 4.3. Let 0 < T < cgAo/2. If the parameter k > 0 in formula (1.3)
is sufficiently small, then the following statements are valid:

(1) The number N1(T) defined in (4.18) is finite, and N1(T) > N.

(2) The pair (N1(T),T) is in the low temperature region.

(3) The relations (4.19), (4.20) hold.

(4) If n > N1(T) and (n,T) is in the low temperature region then

3 1

an1(T) > > 1071 8,(T),

M, (T) — W < Mp1(T) < My (T) — W (4.22)
(5) If N <n < Ny(T) then
1 2 (n—N)/2
M)~ (2 < Myar (T)
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(6) We have that
Ni(T) — N < 10log(1/xT?). (4.24)
(7) If M,(T) < 10 then n > Ny(T).

Proof of Lemma 4.3. Formulas (4.19) and (4.20) were already proved in the
previous argument, and since (N,T') is in the low temperature region, i.e.
BN (T) > ne?, relation (4.19) implies that (n,T) is in the low temperature
region for all N < n < Ny(T'). Formula (4.22) follows from formula (4.21)
with the replacement of n — 1 by n and formula (4.12). By relation (4.19)

Bn(T) < (%)H_N if N <n < Ni(T). Hence it follows from (4.12) that

Brn+1(T) \/ Bry1(T)

Mn—i-l(T) S Mn(T>+ (n) (n)
C C

9\ (n=N)/2
< M, (T)+n <3> , (4.25)
and even relation (4.23) holds in this case.

Relation (4.25) and the estimate obtained for 3, (T) imply that M2(T) <
(My(T) + 1)% < 2M2(T) and B, 1 (T)M2(T) < 2MZ(T) (2)" " if n <
N1(T). This relation together with the definition of the index Ny (7") de-

fined in (4.18) imply that 2M3(T) (%)an > 100 if n < N1(T). Applying
the last formula for n = Ny(T') — 1 we get that (N1(T) — 1 — N))log 3 <

2
log M%’éT). Since M%(T) ~ const. H% this relation implies that Ny (T') is fi-

nite, and moreover it satisfies (4.24). Finally, if the inequalities M,,(T") < 10
and n < N1(T) held simultaneously, then the inequality M2(T)Bp+1(T) <

100 (%)n_N < 100 would also hold. This relation contradicts to the assump-
tion n < N1(T). Hence also the last statement of Lemma 4.3 holds. O

The previous results enable us to describe the different behaviour of the
model in the cases when the Dyson condition (1.2) is satisfied and when it
is not. This will be done in Lemma 4.4. It shows that if (1.2) is not satisfied
then for all T" there is a pair (n,T") which does not belong to the low temper-
ature region, while if (1.2) is satisfied, then all sufficiently low temperatures
T belong to the low temperature region. In the latter case the asymptotic
behaviour of the spontaneous magnetization M, (T) can be described for
large n. The description of the behaviour of the function g,(x,T) in the
case when T does not belong to the low temperature region needs further
investigation, and this will be done in Sections 5 and 6. A more detailed
investigation of the case when T belongs to the low temperature region will
be done in Section 7. We finish this section with the proof of a result about
the behaviour of the magnetization M, (T) at low temperatures 7' > 0 which
will be useful in the subsequent part of the paper.

Lemma 4.4. Let 0 < T < ¢9Ao/2, and let the parameter k > 0 be suf-
ficiently small. If the Dyson condition (1.2) is not satisfied, then for all
T > 0 there is some n = n(T) for which (n,T) does not belong to the low
temperature region. If, on the other hand, condition (1.2) is satisfied, then
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T belongs to the low temperature region for sufficiently small T > 0. In this
case relation (3.6) and, under the additional Condition 2, also relation (3.7)
hold.

Proof of Lemma 4.4. It follows from formulas (4.22) and (4.23) that
W S My (T) — My (T) < e (4.26)

if n > Ni(T') and the pair (n,T) is in the low temperature region, and

1 9 n—N
o —10(3) (MN(T) 1) < M2 (1) - M)
N (4.27)
1 2\""
< - -z
) +10 <3) (My(T)+1)
if N < n < Ni(T). Formula (4.26) can be obtained by taking square in
formula (4.22) and observing that ¢(™ M, (T)? > 10n~!. Formula (4.27) can
be deduced similarly from (4.23) by observing first that the right-hand side
of (4.23) implies that M, (T) < My (T) + 1 for N <n < Ni(T).
Formulas (4.26) and (4.27) imply that if a temperature 7' > 0 is in the
low temperature region, then
n
1
> iy < SIME(T) = M(T))+30(My (T)+1) < 8MF(T)+30(M(T)+1)
k=N
for all n > N, where the number N is defined in (1.12). Since the right-hand
side of the last formula does not depend on n, this implies that (1.2) holds.
In the other direction, if (1.2) holds, then since by Proposition 4.1

lim My(T) = lim Mpn(T) = oo,
T—oo T—o0
there is some number T < coAg /2 such that for all temperatures 0 < T' < T
o
M3Z(T) > 8 ZN C(%) +30M,(T)+31. If T > 0 satisfies the above inequality,

n=
then the left-hand side of the inequalities (4.26) and (4.27) imply that if the
pair (n,T') is in the low temperature domain and n > N1(7T'), then

M2(T) > M2(T) — 87;”;\[ £3O(MH(T) 1)) > 1

Hence M2(T) > 1 for all n, and T is in the low temperature region.

Let T' > 0 be in the low temperature region. If n > m > N;(T), then by
(4.26)
n

IMAT) - ME(T) < 3
k=m
Since in this case Condition 1 holds, the last relation implies that M2(T),
n=1,2,..., is a Cauchy sequence, and relation (3.6) holds. We claim that

1
c®
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if Condition 2 also holds, then for any € > 0
r—1+e¢ r—1-—c¢
2¢(n) 2¢(n)
if n > n(e). Relation (3.7) is a consequence of (4.28). Relation (4.28) can be

deduced from (4.12) and (4.20) if we show that for any temperature 7" > 0
in the low temperature region

< M2 (T) — M(T) < — (4.28)

lim Bn(T)

n— 00 C(n)

Relation (4.29) holds under Condition 2, since by (4.26) in this case for all
n > Nj (T),

= 0. (4.29)

Iem 1
2 S T 2 a2 > 1 L
and .
Bn(T) 100 m o 1)
< < 800 | ¢\ — :
c(n) Mz_l(T)c(") k;l c(k)
Under Condition 2 the last expression tends to zero as n — co. This implies
formula (4.28). Lemma 4.4 is proved. O

5. ESTIMATES IN THE INTERMEDIATE REGION. THE PROOF OF
THEOREM 3.1.

In this section we give some estimates on ¢,(x,7") when the pair (n,T)
belongs neither to the low nor to the high temperature region and prove
Theorem 3.1 with their help.

Let us consider the number 7 = n(7T) introduced in the formulation of
Theorem 3.1, namely

A(T) = min{n: D2(T) < e Y/}

In Lemmas 5.1 and 5.2 we shall prove some estimates about a scaled ver-
sion of the function gz(7y(x,T), where g,(x,T) was defined in (2.7). In
Lemma 5.1 the case T' < ¢gAyp, and in Lemma 5.2 the case T > coAg will be
considered. Lemmas 5.1 and 5.2 yield some estimates on the tail-behaviour
of a scaled version of the function gz (1 (x,7"). This will be needed to start an
inductive procedure for all n > n(7") which state that the functions ¢, (x,T")
become more and more strongly concentrated around zero as the index n
is increasing. This procedure is based on Lemmas 5.3 and 5.4. The role
of Lemma 5.3 is to give an appropriate lower bound for the norming con-
stant Z,,(T') in the definition of the function g, (x,7"). Then in Lemma 5.4
we prove some contraction property of the operator which maps an ap-
propriate scaled version of the distribution function with density function
const. ¢,—1(|x|,T) to an appropriate scaled version of the distribution func-
tion with density const. g,(|x|,T), x € R". The proof of Lemma 5.4 will
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exploit the rotation symmetry of the model. Theorem 3.1 will be proved by
means of these lemmas.

To formulate these results we introduce some notations. Let us introduce
the functions

~ _ —T/2 X
— (1)) _ r
hn(x,T) (c ) Gn ( cﬁ(T)’T> , xeR", (5.1)
and measures
H,7(A) = / ho(x,T)dx, A CR", (5.2)
A
in the space R". Define also the function
H,7(R) = Hyr({x: |x| > R}) for R>0. (5.3)

The functions BH,T and measures ﬁn,T are similar to the functions h,, 7 and
measures H, 7 defined in (3.4) and (3.5). The only difference is that the
scaling of ¢,(x,T) in (5.2) and (5.3) is made by means of ¢™”)) instead of
™. If Condition 5 is satisfied with a sufficiently small 7 and sufficiently
large L(7,T), and n — 72(T) is not too large, then the approximation of ¢(™)
by ™) is sufficiently good for our purposes. Hence it will be enough to
have a good control on the measure ﬁan. In Lemma 5.3 we give a bound
on it for large |x| and in Lemma 5.4 we prove an estimate which enables to
bound H, 7(R) for small R too.

With the help of these results we can prove that starting from n = n(T")
after finitely many steps k the pair (n + k,7T") is in the high temperature
region. Moreover, this number k£ can be bounded from above independently
of the temperature T'. First we formulate Lemma 5.1.

Lemma 5.1. Under the conditions of Proposition 4.2, the function
hary(x,T) defined in (3.4) satisfies the inequality

K |xP

hﬁ(T)(X,T) < exp {77 10 } if T< CoA0/2 (54)

with an appropriate K > 0. For T < ¢gAy/2 the pair (n(T),T) does not
belong to the high temperature region, and there exists some 7 = 7(n) such
that the function Hy r(-) defined in (5.3) satisfies the inequality

Huryr (7) <1/2, if T < codo/2, (5.5)

i.e. for T < coAp/2 there is a ball with its center in the origin whose radius
depends only on n, and whose Hy(ry  measure is greater than 1/2.

Proof of Lemma 5.1. Let us introduce the function

_ 1 x
hn 7T — dn 7T y 20
@ 1) =7t ( ) ) !

with the function g, introduced in (2.11). Observe that

/ ho(z,T)dx = 1.
0
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Let us apply Proposition 4.2 with the choice n = n(T") — 1. Since hypothesis
I(n) holds for n = n, we obtain that

with some universal constant K > 0. It follows from this relation that the
function gy (z, T) = VD) fr0p) (v (D) g — c(ﬁ(T))Mn(T)),T> satis-
fies the inequality

hary (2, T) < K e\
n €, = a
@) Bar)-1(T)

L (amny, T_l‘2> '
exp{ gl RO Ry

The inequalities (51 (T) > ne™™) and Bary—1(T) < nc™T)=1) hold.
By (T) My (T)
Br(ry-1(T)’ Myry-1(T)
Brr) (T) Myr) (T)? are separated both from zero and infinity, hence

ZCQ

) M) (T)

K
fary (@, T) < ————exp{ ————
Brig (1) Brry(T)

if 2 > —c™D) Ny (T)

2x +

Lemma 4.3 implies that the fractions and

() const.
<

Bary—1(T) = 7
(1)) M) (T) _ _coust.
Bﬁ(T)(T) - "

and
1 1
> 20°
M1y (T) /) By (T)

These inequalities together with the last relation imply that

Bﬁ(T) (x,T) < eK/me=a?/20 5 > 0, (5.6)
with an appropriate K > 0. Since
haer) (%, T) = C(T)hay (x|, T), x €R, (5.7)

with an appropriate number C(T') > 0, estimate (5.4) can be deduced from
(5.6) if we give a good upper bound for the constant C(7') in (5.7). Observe
that because of (5.7)

C’(T)*1 = /RT Eﬁ(T)(|x|,T) dx = Vol(S’"l)/O xrflhﬁ(T)(m,T) dzx, (5.8)
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hence

o
o)™t = vol(s™h /0 & hiyry(x, T) d

R
> Vol(ST YRt (1— / Bn(T)(x,T)dx>
0

for any R > 0. On the other hand, by formula (5.6)

R 1
/ iy (@, T) do < =5
0

if0 < T < ¢pAp/2 and R < e K/M with a sufficiently large K > 0. Hence
C(T)~! > iVol(S™~1)e K1 This means that C(T) < K"/7 in (5.7),
and inequality (5.4) follows from (5.6).

We shall prove that 7(7") does not belong to the high temperature region
with the help of the following estimate on D?L(T) (T'). In its proof we shall

apply formula (5.8).
D?L(T) (T) = o ‘X’Qhﬁ(T) (X, T) dr = VOl(Sr_l) /0 l’T—Hh,—L(T) (QZ, T) dr

= CO(T)Vol(S™™1) / & hyyry(, T) d
0

%) B (r+1/(r—1)
> C(T)Vol(S™1) ( /O & by (2, T) da:)
0o 7 2/(r—1)
= (/ xrflh,—z(T) (x,T) da:)
0
oo 2 - 9
Since M2 > 6 if n > N +1, N+ 1is in the low temperature region if

T < cpAo/2, (see (3 3) and the subsequent sentence in our discussion), and

My
T _ < const., hence

Mp(Ty-1
i (7)) N
DTgL(T) (T) > M,—%(T)C("(T)) > const. - — > cons
(T) n
This implies that n(¢) is not in the high temperature region. O

In the next Lemma 5.2 we shall formulate some properties of the function
hn(x,T) defined in (3.4) in the case n = 0. For the sake of a better discussion
we define the function hy,(z,T), > 0, by the formula hy,(z,T) = hy (x|, T),
and from now on h,(z,T) means this function. (It differs slightly from
the function h,,(z,T) applied in the proof of Lemma 5.1 where a different
norming constant was applied.)
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If T > cpAp/2, then n(T) = 0, and
iy (11, T) = const. o ((©) /2, 7)),

where go(x,T) is defined in (2.10). Hence

- 1 Agco — T\ =2 4
hiry (2, T) = exp { (OCO> T /QTQx} it T > coAp/2

Zy(T) c(0) 2 4(c(0))2
(5.9)
with the norming constant (for the function hyry(z,T))
o Agco — T =2 xt
o r—1 r—1 0¢0 < 2
Zo(T) = Vol(S )/0 " exp { (c(o) ) 5 KT 4(0(0))2} dx.
(5.10)

Using formulas (5.9) and (5.10), we will prove the following

Lemma 5.2. There is a constant ko = ko(IN) > 0 such that if 0 < k < Ko,
Condition 1 is satisfied, and T > coAo/2, then n(T) =0, and

- 1 T coA
_ < 7'/2 - 2 - > 0410
hay (2, T) < const. T/ exp { - 5,07 } if T > 5 (5.11)
- Ta? coA
_ /2 ; 0470
haery (@, T) < const. T"/=exp { 520) } if T > 5 (5.12)

hiary(@,T) < const. e T4 i T > 104y, and z > T3, (5.13)
The const. in formulas (5.11)—(5.13) depend only on the dimension r of
the model.

The pair (n(T),T) belongs to the high temperature region if T is very
large, e.qg. if T > 6_1/7’9, and it does not belong to it if T > 0 is relatively
small, e.g. if T < n~00. If (n(T),T) does not belong to the high temperature
region, then the function hyr)(x,T) defined in formula (3.4) satisfies the
inequality

hay (%, T) < exp{K(n, x) — a|x[*} (5.14)

with a constant o = a(n) > 0 and an appropriate number K (n, k) depending
only on k and n. In this case there is a constant B = B(n, k) > 0 in such a
way that the quantity Hﬁ(T)yT(-) defined in (5.3) satisfies the inequality
A 1
Hy(r)r(B) < 5.
This means that if the pair (n(T'),T) is not in the high temperature region
(and T > coAo/2), then there is a radius B = B(n, k) such that the Hy 1

measure of the ball {z: |z| < B(n,k)} is bigger than 1/2.
If (n(T),T) = (0,T) is in the high temperature region, then

(5.15)

fAIT—L(T)’T(a:) < Kye 5277 forallz >0 (5.16)

with some universal constants K1 > 0 and K9 > 0.
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Proof of Lemma 5.2. First we estimate the norming factor Zy(7T') from
below. Let us observe that

i > > _
@ 2 "gee = T 500 T ageye ) = T
if kTx% < 1 and Condition 1 holds. Hence
1/VK&T ,
Zy(T) > Vol (Srl)/ g Lem 10T gy (5.17)
0
1/VE r—1,—10z>
= Vol (5™ T i > const. T~ "/2.
0 Tr/2

Now, if T' > ¢9Ap/2, then

A ~Ta? o @t 1Ta? Ta? s (Ta?)*
0 2 "o = T T o T3 (o

T o1
QC(O)w K

and combining this with (5.17), we obtain (5.11). The estimate Agcg T 2> _

¢(0) 2
4 2
KTQAl(cgin))? < 27;% yields (5.12).

If T > 10Ay, then

il e _ Y 22
O 2 op =Tyt ST T

for |z| > T3,
which together with (5.17) imply inequality (5.13).

Furthermore, (5.13) implies that if 7" > e~1/7" then the pair (0,T) be-
longs to the high temperature region. Indeed, if we estimate the integral
expressing D3(T), then by this relation the contribution of the domain
{x: |x| > T7Y/3} to this integral is very small. On the other hand, the
contribution of the domain {x: |x| < T~1/3} is less than T~2/3 which is
also very small in this case. To see that for T < 7% the pair (0,7) does
not belong to the high temperature domain it is enough to observe that in
this case by formula (5.12) the Hor measure of the ball {x: |[x| < 7'} is
less than const. 77/2n'%0" < 1/2. Hence in this case D3(T) > 31?0, (We
get this estimate by restricting the integral expressing DZ(T) to the domain
{x: |x| > n1%}). This means that T is not in the high temperature region.

Inequality (5.11) together with the fact that if the pair (0,7) does not
belong to the high temperature region then T' < e~ 1/’ imply relations (5.14)
and (5.15).

Since T > 7719 if the pair (0,7) is in the high temperature region,
relation (5.13) implies relation (5.16). Lemma 5.2 is proved. O
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To formulate Lemmas 5.3 and 5.4 we rewrite formula (2.9) for the func-
tions hy(z,T) defined in (5.1). It has the form

R 1 c(n) 5| - R
hni1(x,T) = Zn(T)/r exp{—c(ﬁ(T))u }hn(x— u, T)h,(x+u,T)du

(5.18)
with

~

(n) .
Zn(T) = / exp {—(Cn(ip))u2} hn(x—u,T)hp(x +u,T)dudx (5.19)
R" xR" c

for all n > n(T).
Let us also introduce the moment generating function of the measures

H,, 7, defined in (5.2):

On(u) = / e h, r(x)dx, ueR",

where ux denotes scalar product. By studying the properties of the mo-
ment generating function ¢, r(u), we get an upper bound for the function

~

H,, r(R) for large values R. Namely, we have the following result:

Lemma 5.3. There ezists some ko = ko(N) such that for all 0 < k < Ko
and 0 < 71 < n (with the numbers N and n defined in (1.12)) the following
relations hold. If we have such a positive integer L for which Conditions 1
and 5 (with 1 and this number L) are satisfied, then for all such temperatures
T > 0 for which the number n(T) exists, and the pair(n(T'),T) does not
belong to the high temperature region, the inequality

Hyryar(R) < e 2°F/ if R>D and 0<1< L (5.20)

holds with appropriate constants o > 0 and D > 0, and also the norming
factor Z,(T) in (5.19) can be estimated as

Zﬁ(T)—l—l(T) Z D1 fOT‘ 0 S l S L (521)
with some constant D1 > 0. These constants can be chosen as some func-
tions of k and 7, i.e. a = a(k,n), D = D(k,n) >0 and D1 = Dy(k,7) > 0.
This means in particular that they do not depend on the temperature T .
Proof of Lemma 5.3. It follows from formulas (5.4) and (5.14) that

2
on(r),r(u) < exp {Ko + u} for all u € R”
’ @

with some Ko = Ko(n,k) > 100 and o = a(n) > 0. It can be seen by
induction with respect to [ that

2
a(r)+1,r(1) < exp {QZKI + 2111} forall0 </ < LandueR" (5.22)
«
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with some Ky > 0 and

log Zy(T)+1-1,T
2! ’

Indeed, the function iAL,—L(T)HH’T(x, T) is increased if the kernel term

o(m)

exp{—muz} is omitted from the integral in (5.18), and the integral

K =K i — 1<I<L. (5.23)

turns into the convolution 2fzﬁ(T)+l,T * ﬁﬁ(T)+l7T(2x) after this change. By
computing this convolution with the help of the inductive hypothesis and
dividing it by Zj (1) 1141 we get an upper bound for ¢y )41, 7(1). Formulas
(5.22) and (5.23) follow from these calculations. We will prove formulas
(5.20) and (5.21) from these relations by induction for [ together with the
inductive hypothesis that

K, <B foral0<I<L (5.24)
with some constants B > 10 depending only on x and 7.
Observe that formula (5.22) with the choice of vectors of the form (u,0),

uw € R uw>0,0€ R L implies that the function flﬁ(T)+l7T(R) defined in
formulas (5.2) and (5.3) satisfies the inequality

. . , R
Hyryr(R) < rHpypypr <{X = (71,%2) €R", 21 > \/77>
ulR u?
< 7“exp{—\/77 +2°K; + 2la}
for all real numbers u. In particular,
. R?
Hﬁ(T)+l,T(R) < rexp {2l <Kl - 4Toz>} (5.25)
with the choice u = 221%. Hence
. 4 1B 1
H’FL(T)+Z,T ( T(T(—’y_)> S ,rele’r‘B S 5 (526)

with the number B > 0 appearing in (5.24). Formula (5.26) implies that

- 4 B 1
Hyry4,r ({Xi xeR', x| < W}) 2 5

a
For z € R" and u > 0 let K(z,u) = {x: x € R", |x — z| < u} denote the ball
with center z and radius u. Since the ball {X: x € R |z| < A‘T(T;FUB}

can be covered by C(r)B(a)~! balls of radius /7, where C(r) > 0 depends

only on 7, there is a ball K (z,/7) of radius /i) whose H,, r measure (this

measure was defined in (5.2)) is greater than %. Hence

N R _ _ a2
Hﬁ(T)-‘,—LT X Hﬁ(T)+l,T (K(Z: Vi) x K(z, \/ﬁ)) > mv
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and because of Condition 5 the expression Z,(T") defined in (5.19) can be
estimated for n = n(T') + [ as follows:

(R(T)+1) ( _ )2
c X—u
Z5 T) > 2_7’/ expl ———

(T)+z( ) K (2./7), ueK (2/7) { (T) 4 }

X f%-(T)+l (%) Ay, (1) dx du
> e (T>+lT x Hyerypur (K (2,v/0) % K (2,V/7))
> 5ot :
=° ©nBp
In the above estimation we have exploited that because of Condition 5 and
S(A(T)+1) (A(T)+1) (x—u)?

Condition 1 “Z75— < %, hence < 77 T <5bif x € K(z,y/n) and

ue K (z,/7)

The last relation implies (5.21) with Dy = (C(s )2 B2 although we still have

to show that the number D; (depending on B) can be bounded by a number
which does not depend on the parameter 7. We show with the help of (5.21),
(5.23) and the inductive hypothesis (5.24) that K; < (1 — 2-UF))B if the
number B is chosen as B = max(2Ky, K*), where K* is the larger solution
of the equation = = 2log}7:f)—21 with Dy = % This means that B in
(5.24) can be chosen as a number not depending on 7.

Indeed, this relation holds for [ = 0, and if it holds for [ — 1, then

BQ
K < (1-2"t)p — o=+ <B — 2log D) <(1-2""B
1

if B> K*.

This implies (5.21) (with the constant D; not depending on 7' and the
validity of the inductive hypothesis (5.24) for 0 < ! < L. Finally, relation
(5.20) follows from (5.24) and (5.25). Lemma 5.3 is proved. O

Formulas (5.18) and (5.19) can be rewritten for the function H, r(R)

defined in (5.3) as
_ A e
x|>R JueR" R

X hn(x —u, T)hn(x +u,T) dudx

70 Jrsapon | e
s 2 Jucmr G

X HnT(dX) nT(du

A" (x—u)? | -
am= /uewexp{_c(nm) 7 [ (@0 (du).

Hpi17(R)
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for all R > 0. We apply these formulas in the proof of the following
Lemma 5.4. The prqof of Lemma 5.4 also exploits the rotational invari-
ance of the measure H,, 7.

Lemma 5.4. Let the conditions of Lemma 5.3 hold. Then there exist some
numbers 0 = (7, D1) > 0 and M = M (7, D1) > 0 depending only on the
numbers Dy in formula (5.21) and 7 in Condition 5 in such a way that

R 1. R
Hyryppr(L=0)R) < - Hyryqr((1 = 0)R) + M Hyry41,7(R))

2
for all R>0 and 0 <1 < L. (5.28)

Proof of Lemma 5.4. Observe that

U{|x| > (1 = 0)R, arg(x,u) < a}U{|u] < (1 —-0)R, arg(x,u) > a}

for all R > 0 and 0 < § < 1 with a@ = 2arccos(1l — 0). Indeed, if ‘i;‘ >
(1 — d)R, then either |x| > R or |u] > R or both |x| and |u| is less than
R, but in this case either [x| > (1 — )R or |u| > (1 — §)R, and the angle
between the vectors x and u must be small. On the other hand, because of
the rotational invariance of the measure fImT

X+ u

> (- 6>R} C {}x] > R} U{ju| > R}

Hyyoryiir X Harywr ({(%,y): x| > (1= 0)R, arg(x,u) < a})
o~ O~
< ;Hﬁ(T)—l-l,T({X: x| > (1-06)R}) = ;Hﬁ(T)H,T((l —6)R).

The last two relations together with (5.27) and the inequality & < V0 imply
that

Hary (1= 0)R) (5.29)
1 - .
< oy (Vo1 = OR) + 2y 10 (R))
Relation (5.28) follows from (5.29) and (5.21) if we choose § > 0 so small
that the inequality % < % holds. Lemma 5.4 is proved. (]

Next we prove Theorem 3.1 with the help of the previous results.

Proof of Theorem 3.1. First we give a good estimate on Hy(7y(R) if the
conditions of Lemma 5.3 hold with a sufficiently large L = L(k,7) and | < L
is sufficiently large. For this goal we introduce the following quantities.

Put P(j,1) = P(j,1,T) = Hyry (1—=6)D), j = 0,1,...,0 < I < L with
the number D appearing in (5.20) and J in Lemma 5.4. Clearly, P(j,1) <1
for all j and I. By Lemma 5.4

N
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and by relation (5.20) P(0,1) < ¢=°2'D*/57 if | < L. Hence there is a constant

ko > 0 in such a way that P(0,kg +1) < (%)l if kg +1 < L. Because of this
relation, the inequality P(j,1) < 1 and formula (5.30) there is a constant

ki > ko in such a way that P(1, k1 +1) < 537 (%)l and P(1,k; +1) < (%)l if

k141 < L. Similarly, there is a constant ko such that P(2, ke +1) < ﬁ (%)l,

and P(2,ks +1) < (%)l if kg 4+ < L. This procedure can be continued, and
we get a sequence kg < k1 < ko < --- in such a way that the inequality
P(p,k,+1) < (%)l holds if k, + 1 < L. The numbers k, depend only on the
parameter £ in (1.3) and the number 77 in Condition 5. The above procedure

can be continued till k, < L. In such a way we have proved that for all fixed
J=0

l
Aoy (1= 67D) < 009) (3) |

if 0 <1 < L. The above relation together with formula (5.20) imply that
if Condition 5 holds with a sufficiently large constant L = L(7},t), then an
integer k > 0 can be chosen independently of the parameter T in such a way
that

. el/n’ R2
Hyyry4,r(R) < 2exp { — forall R >0 and k <1 < L(7,t).

/5
(5.31)
Indeed, by (5.20) relation (5.31) holds for R > D if [ > k{ with some
ky > 0 and by the previous inequality for all j = 1,2,... it also holds for
(1-6)YD < R < (1—3)Y7'Difl > Kj with a sufficiently large k’j >.
On the other hand, it is enough to demand this inequality for finitely many

1/173 R2
£ 775 < log2.
Since the measure H,, 7 defined in (3.5) satisfies the relation

indices j, since relation (5.31) automatically holds if

. (R (T)) : 7
Hyrypr{x: x| > R} = Hyry 1 WR < Hy(1my41,r gR

relation (5.31) implies that
Hyryqr(R) < 2exp {—el/ngRQ} forall R>0, and I" <1< L (5.32)

with some appropriate [* > 0. Relation (5.32) implies in particular that
D%(T)H(T) < e Y/ ie. ((T))+1,T) is in the high temperature region if
I* <1< L. The inequality D?L(T) (T') < K follows from (5.20) with [ = 0.

To complete the proof of Theorem 3.1 we have to give a lower bound for
D?L(T) +x(T). Let us introduce the following notation: Given two positive
numbers Ry > Ry > 0 let K(Ry, R2) = {x: x € R", R; < |z| < Ry} denote
the annulus between the concentrical balls with center in the origin and
radii R; and Re. We claim that for any 0 <[ < L there exist some positive
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numbers Ry(l) = Ri(l,7, k), Ra(l) = Ra(l,7,k) and A(l) = A(l,7,k) > 0
such that the measure of the annulus determined by these numbers satisfies
the inequality

A~

Hary 0 (K(R1 (1), Ro(1)) > A1), 0<1<L (5.33)

if the pair (n(T"),T) does not belong to the high temperature region. Ob-
serve that the relation between the measures Hy (7)1 and Hy(7) 1 r implies
that relation (5.33) also holds for Hp ) 7(K(R1(k), Ra(k)) (i.e. the func-

tion H(-) can be replaced by H(-) in formula (5.33)) if the radii Ry(k) and
Ri(k) > 0 are multiplied with an appropriate number. This implies that the
variance D?L(T) 4k Can be bounded from below by a positive number which
depends only on k and 7. Hence we can choose e.g. k = L = L(k,7) as the
number k satisfying the properties demanded in Theorem 3.1.

We shall prove a slightly stronger statement than relation (5.33) which
will be useful in later applications. We shall prove that

!
Hyryr | K %Rl, (éﬁ) Ry > A(l), 0<I<L. (5.34)
with some numbers Ry > Ry > 0 and A(l) > 0 if the pair (0,7") does not
belong to the high temperature region. The numbers R; can be chosen in
such a way that R; = R;j(n, k), j = 1,2.

Let us first observe that relation (5.34) holds for [ = 0 if 72(T") is not in the
high temperature region. This follows from relations (5.4) and (5.5) in the
case T' < ¢9Ap/2 and from (5.11) and (5.15) if T" > ¢9Ao/2, but (n(T"),T)
does not belong to the high temperature region. Indeed, formulas (5.5)
and (5.15) make possible to choose the number Ry in such a way that the
Hpy ), measure of the ball with center in the origin and radius Ry = Ra(n)
is greater than 1/2. By formulas (5.4) and (5.11) we can choose the number
R; = Ri(n) in such a way that by cutting out from this ball the ball with
radius Ry and center in the origin the remaining annulus K(Ry, Ro) has a
measure greater than 1/4. In the case T > ¢gA/2 we also exploited in the
above argument that 7' cannot be very large if (2(7"),T) is not in the high
temperature region. By Lemma 5.2 T' < e~1/7" in this case.

We claim that

) R V3 I o
Hyryyii1r (K <1 RQ)) > B(Ry, Ry, ) Hyyry 417 (K(R1, Rp))?

- - (5.35)
for all 0 <! < L and Ry > Ry > 0 and an appropriate constant

B(Ry, Ry, 1) > 0.

Relation (5.34) follows from (5.35) and the fact that it holds for [ = 0.
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In the proof of relation (5.35) we exploit the relation

{(u,x): ueR’",xeRT,% <

It follows from relation (5.19) that Zj(p)441(T) < 1, since we get an upper
o)

bound for it by omitting the kernel term exp {—mu2} from the integral

in (5.19). Hence the previous relation together with (5.27) and the rotational
invariance of the measure Hy(1);; 7 yield that

. Ry V3 1 //
i, K|S SR =y :
(T)““’T< (2 2 2)) Znyin(T) ) S| =2 B ek

AU+ (x —u)? | - ~
C X u
exp {_ (1)) }Hﬁ(T)H,T(dX) n(r)+1,7(du)

4

>e” / 8 Ryz x5 B e uepe, Ha(-+17(42) Ha(r) 417 (du)
X

5<
> e—RE/n//_ ﬁﬁ(T)H,T(dX) Aﬁ(T)H,T(du)
Ro>|x|,|u

|>R1,§ <arg(x,u)<7%

= C(T)G_R%/ﬁﬁﬁ(T)-i-l,T(K(Rl7 Rz))2

with an appropriate constant C' (r)_> 0. The last estimate implies relation
(5.35) with B(Ry, Ry, 7j) = C(r)e 12/7. Theorem 3.1 is proved. O

6. ESTIMATES IN THE HIGH TEMPERATURE REGION. THE PROOF OF
THEOREM 3.3.

To study the behaviour of the function f,(z,T) in the high temperature
region we need a starting index n = n(7T") for which a good estimate is
known about the tail behaviour of the measure Hy ). We also need a
lower bound for the variance D2(T') defined in (3.4) for n > #(T). This
requirement will be also taken into consideration in the definition of n(7).
Let us first define the number

l
lo = lo(T) = min{ I: (*f) Ry < % (6.1)

if the pair (0,7 is not in the high temperature region, where 7j appeared
in Condition 5, and the number Ry was introduced in formula (5.34). Now
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0 if (0,7) is in the high temperature region
n(T) + | with the smallest [ satisfying both (5.32) and the
inequality [ > Iy with [y defined in (6.1)
if (0,7) is not in the high temperature region.
(6.2)
It follows from the results of the previous section that for a temperature T'
which is not in the low temperature region the inequality 0 < n(T") —n(T") <
L(7,t) holds if the number L in Condition 5 is chosen sufficiently large. The
measure Hj(ry 7 introduced in formula (3.5) is strongly concentrated around
the origin. Indeed, formulas (5.16) and (5.32) give a good estimate for the
Hj,(r),r measure of the sets {x: [x| < R} for all R > 0.
Let us introduce the moments of the functions hjry4i(x, 7)) defined in
(3.4).

My (1,T) :/ x|"haryi(x, T)dx 1>0, k> 1.
RT‘

We shall estimate the moments Ms(l,T) and My(l,T). It follows from rela-
tions (5.16) and (5.32) that
M(0,T) <n* and My0,T)<n* withy*=e /7  (6.3)

for all T > 0 which is not in the low temperature region. To get lower
bounds for the second moments My (l,T) let us introduce the truncated
second moments

1
MZ,tr.(laT) = M2,tr. P lvT = / ’X|2hﬁ(T)+l(XaT) dx.
10 xI<

It follows from (5.13) if (0,7) is in the high temperature region and from
(5.34) and the definition of n(T") if (0,7) is not in the high temperature
region that

Ms4.(0,T) > 0, for all T > coAgy/2
M (0,T) > 17, if T'> cpAp/2 and (0,7') is not in the
high temperature region (6.4)

with some 77 = 7(77, k) > 0. First we shall bound M2 (l,T) and My(l,T) from
above in Lemma (6.1) for all { > 0. Then the second moment M(l,T") will
be bounded from below in Lemma 6.2. These estimates enable us to prove
the central limit theorem for gs(ry4i(z,T) by means of the characteristic
function technique.

Simple calculation yields that

2" u2 X
M +1T) = g [ By (m_“’T>

hia(T)+1 (X +u, T) dxdu (6.5)

/CA(T)+1+1
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for all I > 0 and k > 1 with

Z(T) = 2T/6“2hﬁ S S

hﬁ(T)Jrl ; + u, T dx du (66)
CR(T)+1+1

with the constants ¢,, n = 1,2,... defined in (2.17). These formulas will be
used in the proof of the following

Lemma 6.1. Under the conditions of Theorem 3.3 the inequalities

l
) < o (3) (67)
l
Z(T) > (eamy)” (1—8\/777 (2) >, (6.8)

= l
My(l+1,T) < C”(T;““<1+1o\/n* (2>>M2(Z,T), (6.9)

_ _ 2
M(ZT)<2-2_lw* d My, T)<5-47" CUAAGR I
2\t = C(ﬁ(T)) n an 4\, = n

hold for all I > 0 with the same number n* which appears in (6.3).

Proof of Lemma 6.1. Relation (6.7) holds for [ = 0 by relation (6.3). We
shall prove that if relation (6.7) holds for an integer [, then relations (6.8)
and (6.9) also hold for this [. Then we prove that if relations (6.7) and (6.9)
hold for some [, then relation (6.7) holds also for I + 1. These statements
imply relations (6.7), (6.8) and (6.9). We prove them with the help of the
following calculations.

It follows from formulas (6.5) and (6.6) that

- r/2 Xx—u
Mi(1+1,T) = —( n(;)l—;l;;) /exp{—( 1 )2}

X—l—uk

2

(6.11)

_ k
(Ca(T)+i+1) 2 Py (%, T hisry1 (w, T) dx du
(k+r)/2

CR(T)+1+1
(Ca(r)+1+1) ) /‘XJFu|khﬁ(T)+l(x,T)hﬁ(T)+z (u,T) dxdu

B 2kZl(T
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forall />0 and k> 1, and

x —u)?
2(T) = (Eﬁ(T)+z+1)r/2/eXp{_(2)}
hiary+1(%, T hiyry 1 (w0, T) dx du

> (Eﬁ(T)+z+1)r/ e~ WVAL(LT)
|x|<Ma(1,T)1/4, ju|<Mo(1,T)1/4
hs, (T)+I(X7T)h (T)+l ( u, )dXdu
> (Cagr )+l+1)r/2 —44/Mo(1,T) < / hﬁ(T)H(x,T)dx)
|x|> M2 (1,T) /4
> (Eﬁ(T)+l+1)r/26_4 My (1,T)

2
Y Aot 2hﬁ x,T)dx | .
( VMy(I, T /XZMz(l,T)1/4 " hir)+1(%, T) )

Hence
ZUT) > (earypasn)2eVIEED (1 2/ AL T)) .

The last relation and formula (6.7) for [ together imply that

Z(T) = (enye)”? (1-5VIRAT)) (1-20/260,T))
> @) (1-8VLAT))
> (Car)+i+1)" (1—8\F< ))

and this is relation (6.8) for the number [. Relation (6.11) for £ = 2 and
formula (6.8) for [ together yield that

(_ﬁ(T)+l+1)(2+r)/2
2Z,(T)

< n(T)2+l+1 <1+10\/*( ) )Mg l T)

MQ(Z+17T) < MQ(Z7T)

and this is formula (6.9) for {. Finally, if n is chosen sufficiently small, then
formulas (6.7) and (6.9) for [ imply (6.7) for  + 1. Thus formulas (6.7) —
(6.9) are proved.

The first relation in (6.10) follows from the first relation in (6.3) and (6.9).
Formula (6.11) with the choice k£ = 4, (6.8) and the first formula in (6.10)



52 PAVEL BLEHER AND PETER MAJOR

imply that

(Eﬁ(T)+l+1)(r+4)/2
8Z,(T)

My(l+1,T) < (3Ms(1, T)* + My(1,T))

1,

< GG <1+ 1of< ) ) (3Ma(1, T)? + My(1,T))

- 2
A(n(T)+1+1) Mu(.T
ol c *2 4(7 )
§24<C<ﬁm>>"+ 6

The second relation in (6.10) follows by induction from the last inequality
and the second inequality in (6.3). Lemma 6.1 is proved. O

Remark. The Corollary formulated after Theorem 3.1 follows from The-
orem 3.1, formula (6.10) and Lemma 4.4. Indeed, if 7" is not in the low
temperature, then by Theorem 3.1 the pair (2(7"),T") with the definition of
n(T) given in (6.1) is in the high temperature domain. By formula (6.10)
all pairs (n,T), n > n(T), are in the high temperature region, i.e. if " > 0 is
not in the low temperature region, then it is in the high temperature region.
The remaining statements of the Corollary are contained in Lemma 4.4.

In the next lemma we prove an estimate from below for My (I, T).

Lemma 6.2. Put

| AT

2 _
o*(1L,T) = (D) +1)

My(1,T), 1>0.

Under the conditions of Theorem 8.8 the limit

2(T) = lim o*(1,T) > 0
=00
exists, and it is positive for all T > 0. If n(T) # 0, i.e. if (0,T) is not
in the high temperature region, then there exist two constants Cy > Cy > 0
depending only on the parameter 1 in formula (6.4) in such a way that the
imequalities

C1 <3%(T) < Cy (6.12)

hold. The upper bound in (6.12) holds for all T > 0 which is not in the low
temperature region.

Proof of Lemma 6.2. The hard part of the proof is to show that o2(I, T) has
a non-negative liminf. It follows simply from formula (6.6) that Z;(T") <
(Eﬁ(T)+l+1)r/2. A natural lower bound for My(l,T") can be obtained in the
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following way. By formula (6.5) and the upper bound for Z;(T')

My(1+1,T) > Cﬁ(T)+l+1/e(xu)2/4 X;Lu

i)+ 05 T)hiyry4 (0, T) dx du

— C”(T?# 2My(1,T) — / Ix + ul? (1 _ e*(xfy)2/4)

‘ 2

hia(ry+1(%, T) sy (0, T) dx du)

Cy 1
D (a01) [ Gl P

v

hiy(T)+1 (x, T)hﬁ(T)—H (u,T) dx du)

Cit(T)+141 1
D (t1) [ S0l 4l

Y]

hia(ry+1(%, T)hisery 0 (0, T) dx du)

- 5"”’% (Mo(1,T) — My(1,T)). (6.13)

However, this estimate is useful only if we know that the right-hand side in
it is non-negative. We do not know such an estimate for small [, hence in
this case we apply a different argument. Clearly

Mg(l, T) > MQ,tr. (l’ T),

where My (I,T) is the truncated moment. On the other hand, we get
by using an argument similar to the previous calculation and making the
observation

X+u
2

1
<
1)

1
D {(x,u):xeRT,ueRQ,M < E,]u\ <

{(x, u): x € R",ueR", ¢r)1141
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with I = (25, %) U (5, %) that

50 50 ° 50
24X+ 1 2
MZ,tI‘.(l —'I_ 1, T) Z Eﬁ(T)+l+1 / ) —(X ll) /4 2
Cn<T>+l+1\ <15
Riry+1(%, T hizry 4 (0, T) dx du
2
_ _ X+ u
> Ca(T)+1+1€ 1/100/ >
\X\<10,|u\_10,arg(x,u)cl

hﬁ(T)Jrl(X, T)hn( T)+1 (u, T) dx du

= cﬁ'(T)+l+16—1/100/ (X2 + u2)
4 |x\<10,|u\<10,arg (x,u)Crl
hﬁ(T)-i—l(Xa T)hn( T)+1 (u,T) dxdu

_ 12 _
= Ch(T)+1+1€ I/IOO%MZU.U,T) > gcﬁ(T)—l—l-l—lMQ,tr-(laT)-

—_

The last estimate implies that

| CA() (R(T))

2 l
mMg(l,T) > QZWMQJJT-(LT) > (3> MQ’tr.((),T).
(6.14)

On the other hand, it follows from (6.13) and the second inequality in (6.10)
that

o2(1,T) =

2 I+1 C( D)

57,’* C( n(T)+l1) 3 l
> 2 _ > 2 _ * _ .
= D) 2l (rypigr )~ o"(1.T) = 50m 4

Because of (6.14) and (6.4) an index [ > 0 can be chosen in such a way that

l
o?(1,T) > 1000n* (i) ,

and if the pair (0,7") is not in the high temperature region, then we may
choose [ so that | < K (7, k) with some appropriate K (7, ). Hence relation
(6.15) implies that
AU +1+1.T) (I +1LT) 1 (3 :
o2(I,T)  ~— o2(,T) 20 \ 4
This relation and the bound on (I, T) imply that lilm inf o2(1,T) > 0, and
—00

this lim inf can be bounded by a positive number which depends only on 7
and k if (0,7) is not in the high temperature region. The analogous result
for lim sup follows from (6.9). To complete the proof it is enough to show
that the lim inf is actually lim. To prove this let us observe that for any € > 0
and N > 0 there is some m > N such that o?(m,T) < linni)gf o?(n,T) +¢.
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Then by formula (6.9)

n l
o’(n,T) < o*(m,T) H <1+ 104/n* (2) )
l=m

< liminfo?(n,T) + 26, n>m

- n—00

for any ¢ > 0 if N = N(e) is chosen sufficiently large. Lemma 6.2 is
proven. O

To prove Theorem 3.3 let us introduce the characteristic functions
on(s,T) :/ e Fhy(x,T)dx, seR

and moments

Mk(naT) = ’X|k}~Ln(X7T) dx,
RT

where the function i(x,T) was defined in (3.17). Clearly,

) N
Mi(n, T) = <2> Mi(n — #(T),T) if n > #(T).

c(n)

In particular, My(n,T) = %02(71 — n(T),T). We shall prove Theo-

rem 3.3 by means of the usual characteristic function technique. The fol-
lowing lemma plays a crucial role in the proof.

Lemma 6.3. Under the conditions of Theorem 8.3 the relation
(@)
lim ———— My (n,T) = 6*(T) (6.16)

n—00 Qﬁ(T)

holds with the constant 5*(T) appearing in Lemma 6.2, and

I 1 )+ 2 2y S 1
A, sup |log on (8, T) + “map® M5 |20 (6.17)
for all A > 0.
Proof of Lemma 6.3. Relation (6.16) follows from Lemma 6.2, and it follows

- A 2
from the second relation in (6.10) that My(n,T) < 5 (C%TCTF?)) n*. Hence

the characteristic function ¢ can be estimated as

. &2 gi(T) \ 2 o
enls.7) - (1 M2<n,T>2>\ <(Za) vt @s)
for n > n(T) and s € R".

In the proof of formula (6.18) we exploit that [(s, X)hp(x, T) dx = 0 and
J(8,%x)3hn(x,T) dx = 0 because of the rotational symmetry of h,(x,T). The
coefficient of |s|* in (6.18) is bounded by a constant (depending on T'), and
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: o A(T)
the coefficient at |s|? converges to the positive constant 21752

“ray 0 (T). Hence
formula (6.18) implies that for any £ > 0,
1 2 2y f dls| <o
—0 — < i <
ogpn (s, T) + @)’ (T) 5| S¢€ ifn>npan s| < (6.19)

with some ny = ny(e,T) and § = (e, T). By a rescaled version of the
recursive formula (2.9) we can write

A" (x — u)?
‘pn+1(\f257T) = Zn:ET) /eXp {z’s(x—l— u) — z(l)}

.on

hn(x, T)hy, (0, T) dx du

. M (x — )2
= ZntT) |:90n (S,T)2 _ /ezs(x—f—u) (1 — exp {_ 4(1‘2" ) })

h%(x,TUﬁn(u/T)dxchq

cdM(x—u)?| - ~
Zn(T) = /exp {—f”n)} hi (%, T)hp(u, T) dx du.

with

The estimates

| Mx—w?)) - .
/ezs(eru) (1 — exp {_W}) hn(X7 T)hn(u7 T) dx du

M) (x — )2 - ) (m)
S/wamm@nmmnamzc

9. 9n MZ(”’? T)
and similarly
e
1>Z,(T)>1- 5. 2TLMQ(n,T)
hold. Hence
(n) 2 (s, T) + 2 Ny(n, T
2 c n (Sa ) + 2.9n 2(”7 )
® (SvT) - MQ(na T) § 2 +1(\/587T) S n) -~ .
n 2. 2n ! 1 — &2 Mo(n, T)

The term C;—:)Mg(n,T) is much less than (3

5)” for large n. If we have a
positive lower bound on ¢,,(s) then we get by fixing some K > 0 and taking
logarithm in the last relation that

2\" 1

’10gg0n+1 (\/§S,T> — 2log wn(s,T)‘ < <3> if n > ng and @, (s, T) > 17
(6.20)

with some ng = no(K,T). Formula (6.17) can be deduced from (6.19) and
(6.20). Indeed, define an index k by the relation A < 52?/2 < V24 with
the numbers A and ¢ in (6.17) and (6.18). Put K = 2e=2"1F* (1) A2 /(T

(=)
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and let ¢ < BLK. Choose a number ng such that (%)n3 g, and let us

<
consider such indices n for which n > max(ni(e,T),n2(K,T),n3). Then

simple induction yields that
2\ " 9 J+1
< 3| = 1—-1( - <4
seoafs) (-(G) )=

1
and a5 (5,T)| =

on(T) B g2
Pn+j (Sa T) + (1)) o (T)§

for j < k and |s| < 627/2. Since ¢ can be chosen arbitrary small in the last
relation, it implies (with j = k) relation (6.17). Lemma 6.3 is proved. O

Theorem 3.3 follows from Lemmas 6.2 and 6.3. Indeed, Lemma 6.3 implies
that the measures H, r converge in distribution to the normal law with

expectation zero and covariance %62(T)I. The bounds obtained for
the variance follow from Lemma 6.2 and the observation that the difference
n(T) — n(T) can be bounded by a number depending only on 7 and .

Let us finally show that Corollary to Theorem 3.3 follows from Theo-
rem 3.3. By formulas (2.7), and (3.17) we can write

27", (272 Tx, T) = C(n) exp {—;ﬁ’l‘x?} hn(x,T) (6.21)
with an appropriate norming constant C'(n). Observe that the expressions
at both sides of this identity are density functions, the measures with density
function hy, (x,T') have a limit as n — oo, the term {—3;{1’{ x2} is bounded,
and it tends to 1 uniformly in any compact set as n — oo. These facts
imply that C(n) — 1 in (6.21), and the measures with density functions
27"p,(27"/2\/Tx, T) have the same limit as the measures with density func-

tions h,(x,T). Hence the Corollary of Theorem 3.3 holds. O

7. ESTIMATES IN THE LOW TEMPERATURE REGION. THE PROOF OF
THEOREM 3.2.

The proof of Theorem 3.2 heavily exploits the results of Section 4. These
results show that the replacement of the operator Q, whose application
makes possible to compute the function f,,4+1(x,T) by its linearization T,
causes only a negligible error. Formula (4.17) enables one to investigate the
operator T, in the Fourier space. In such a way good estimates can be
obtained for the Fourier transform of a regularized version of the function
fo+1(z,T). The results of Theorem 3.2 can be proved by means of these
estimates with the help of inverse Fourier transformation.

It is simpler to work with an appropriately scaled version of the functions
fo(z,T). Put

Fol@ T) = —
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and

eulfa(w.T)) = 3177 (fn <M°””(T)T>> |

We defined the function @, (f,(z,T")) by means of the definition of the reg-
ularization of the function f,(x,T') introduced in Section 4.
Let us also introduce the functions

22 T)) = 3777 T <fn (M(T)T>> |

The estimates of Proposition 4.2 and relation (4.17) can be rewritten for
these new functions. We shall rewrite formulas (4.14) and (4.15) only in the
case when n > Nj(T') with the number N;(7T) defined in formula (4.18), i.e.
in the case when 3,(T) and M, }(T) have the same order of magnitude. In
this case M, (T)+\/Bn+1(T) < 10,

o
‘aﬂ- (fata(a,T) - ¢n+1(fn($’T)))‘
Bul(T) ! a’ 2 1
SEE G |SP U0 P e | f TP TS =
< Kz%@"‘r‘/ OO as —dMIMEL(T), §=0,1,2,
c n
and
Ky

%ﬁmmmfwsmfwiwem j=0,1,2,34, (7.2)

with some universal constants K1, Ky and K3. Formula (4.17) can be rewrit-
ten as

&n-‘rl(fn(gv T)) - Tn@n(fn(Mn(T>£a T))

(r=1)Cn41 _
_ exp {'l 1 5} 852 (f <Cn+1€ T)) (73)
.En r—1)/2 Tn\Jn ) )
(g 2
We claim that under the conditions of Theorem 3.2,
o -
lim sup — (fulx, T) — 3(fulz,T)))| /20 = 0,
n—=00 s cmp2(T) | 027 (ful@ T) = ¢fu(, 1) (7.4)
i=0,1,2.
Indeed, by relations (7.1) and (7.2)
J o _
‘;xjfn(x,T) <e [0 5 =012 if x> —-c"MAT), (7.5)

and @p(fn(x,T)) is the appropriate scaling of the function

(o) (iom)
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Under the conditions of Theorem 3.2, formula (4.29) holds, which implies

that
Iim Ve M

n—oo

This fact together with (7.5) allow us to give a good bound on the difference

between the functions @, (fn(z,T)) and ¢ (\/(TM ) fn (\/C(TM T ))
Relation (7.4) can be deduced from this bound and formula (7.5).

It follows from Lemma 4.4 that ILm MA’/}I(II(:‘)F) = 1. Relations (7.1) and
(7.4) together with this fact imply that

I
lim sup (wn(fn 1($ T)) _@n(fn(xaT)))

n—00 |z|<oo ok

7 =0,1,2.

ell/20 — 0,

(7.6)

Now we prove, using an adaptation of the proof of Lemmas 14 and 15 in
[BM3], that the Fourier transforms of the functions ¢,,+1(fn(x,T')) converge
to the Fourier transform of the function g(x), and this convergence is uniform
in all compact domains. First we prove a modified version of this statement,
where 1), is replaced with ¢, in a small neighbourhood of the origin. We
want to work with the functions log @, (f,(¢,T))). To do this, observe first
that for n > Nj(T) there is some constant A > 0 such that all functions
Gni1(fn(&,T))) are separated from zero in the interval |£] < A. Indeed,

1= Ga(ful& T < / €€~ 1@ (fu(, T))) de

IN

/ €112l@n(fu(z, T))) dz < const. [€].

Similarly,
o’
’afj on(fnl€, T))‘ < C(j) forall j >0andn > Ni(T).

Hence a constant A > 0 can be chosen in such a way that

sup max (u—g(m, sup rl—én<fn<g,T>>|) <

l€]<2A n>N1(T)

These estimates imply that
2

oe?

sup sup
[€<A

log G (fa (£, T)))\ < o), (7.7)

with a constant C'(T") < oo independent of n. We claim that
2 2

5z o8 Gl Fa(€. 1)) -

sup
|€<A

log g(g)‘ —0 asn — oo. (7.8)
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To prove (7.8) let us first observe that lim ¢, = 1 by Condition 1. By (7.6),
n—0o0
2

0
o€?

lim sup

(108 P 41(fa(6: ) — log Gt (fr1 (€, 7)) ’ o,

and because of the estimates obtained for the derivatives of ¢, (¢, T)
2

862 log Son(fn(glv )))

0?
92 log @n(fn(&2,T)))| < const. & — &

if |§1] < Aand [& < A

for all large indices n with a constant independent of n. Taking logarithm
and then differentiating twice in formulas (7.3) and (1.20) we get with the
help of the above observations that

2 2
|Zu§€1 0e log Oni1(frr1(§,T))) — pers logg(f)‘
1 2 2

with some sequence lim 6,(7") = 0. This relation together with (7.7) imply
n—0o0
(7.8). Since

5 d
35 log @ (fn(€, T)))LO dig logg(f)'go -

and log én(fn(O’T))) = log g(0) =0,
relation (7.8) also implies that

lim sup [Gn(fn(§,T))) = §(€)] = 0. (7.9)
ol <A
Moreover, relation (7.9) holds for all A > 0. This can be proved similarly to
the argument of Lemma 15 in [BM3]. One has to observe that because of
the structure of formulas (7.3) and (1.20), the relation ¢, — 1 as n — oo,
the continuity of the function g(§) and the relation

Dt (fal&sT)) = Gt (fara (6, T))| =0,

lim sup
n—oo |£|<OO

the validity of relation (7.9) in an interval |£| < A also implies its validity
in the interval || < (2 —¢)A for any € > 0. In relation (7.9) the function
&n(fu(€,T))) can be replaced by ,11(fn(€,T)), i.e. the relation

U1 (fal€,T))) — \ ~0 (7.10)

lim sup

holds for all A > 0. It can be proved from (7.10), by means of inverse Fourier
transformation, that

i (1)~ L g(a)| =

o 0, j=0,1,2. (7.11)

lim sup
n—oo ‘$|<OO
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To prove (7.11) we need, besides the estimate (7.10), some bound about
the decrease of the functions §(€) and ¢,41(fn(€,T))) as € — £oco. The
estimate (1.19) gives a good bound for the Fourier transform of the function
g(x). We can get a good estimate for the Fourier transform of the function
Un+1(fn(z, T)) with the help of the inductive hypothesis J(n) in Section 4
and relation (7.3). Rewriting the inductive hypothesis J(n) for the func-
tion @, (fn(z,T)) we get with the help of some standard calculation that
the Fourier transform ¢, 1 (f, (&, T)) decreases at infinity faster than [£|~%.
These estimates are sufficient for the proof of (7.11). Relations (7.11) and
(7.1) give an estimate on the function f,(x,T) and its derivatives, which is
equivalent to (3.8). Theorem 3.2 is proved. O

8. ESTIMATES NEAR THE CRITICAL POINT. THE PROOF OF THEOREMS
3.4, 1.3, AND 1.5.

Our previous results suggest that M2, | (T) ~ M2(T) — £%, hence the

T 2¢m)
2
derivative d]\{i"T(T) , as a function of n, changes very little if the pair (n,T') is in

the low domain region (observe that ¢(™ does not depend on T'). Therefore,

2
it is natural to expect that CIM%}(T) is of constant order below the critical

value Tp., and M2 (T) — M2,(T.) ~ const. (T.—T) for T < T.. If T;, denotes
the smallest T' for which the pair (n,7T) leaves the low temperature region
at the n-th step, then the following heuristic argument may suggest the
magnitude of T}, — T}, for large n. Since both ¢™M?2(T,,) ~ n~' and
d"OMZ, (Toga) ~ nt, besides this M2A(Tyy1) — M2 (To1) ~ 255,

n

M2(Ty11) — M2(Ty,) ~ IZ5. On the other hand, M2(T,.1) — M2(T;,) ~

n 2¢(n) n

Th+1 — T,,. This argument suggests that Ty, 11 — T}, ~ ;C%l and T, — T, ~
o

n)

r—1
2c(k)

In this section we justify these heuristic arguments. The proofs

are based on the following result:

Theorem 8.1. There exists kg = ko(N) such that if (i) 0 < kK < Ko in
formula (1.7), (i) Conditions 1—j are satisfied, (iii) 0 < T < coAo/2, and
(iv) the integer n > 1 has the property that the pair (n,T) belongs to the low
temperature region, then for all 0 < T < T the pair (n,T) also belongs to
the low temperature region, and the following inequalities hold for T < T':

a.) If 0 <n < N, then

\/2}2 - _dMZl-;(T) < \/g;2 with some oo > Cy > Cy > 0.
b.) If n > N, then
dMp i1 (T) _ dM,(T) <1 4= 1 5n(T)>
T T 4 M2(T) T e )

ﬁn+1 (T)

where |5,(T)| < C )

Bn(T') with some appropriate C' > 0.
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We will prove Theorem 8.1 in Appendix A below with the help of Propo-
sition A which is proved also there. This result can be interpreted in an
informal way as the “differentiation” of the asymptotic identity (4.12). The
main difficulty in the proof of Proposition A is to bound the error caused by
the linear approximation of the operator Q,, by T,, when differentiating with
respect to 1. To overcome this difficulty we need a good control not only on
the functions f,(z,T) but also on their derivatives {;% fn(x,T). Hence we
have to work out the estimation of these derivatives. In particular, we have
to find the inductive hypotheses describing their behaviour. These are the
analogs of the inductive hypotheses I(n) and J(n) formulated in Section 4.
It demands fairly much work to work out the details, but after the formu-
lation and proof of these inductive hypotheses the proof of Proposition A is
simple.

Proof of Theorem 3.4. We prove with the help of Proposition A that if the
conditions of Theorem 3.4 hold, 0 < T < ¢gAp/2 and the pair (n — 1,T)
belongs to the low temperature region, then there exist some constants 0 <
C < C5 independent of T such that

G _ dMX(T) _ Cy
kT3 dT RT3

(8.1)

forall0 < T <T.

For 0 <n < N (n,T) is in the low temperature region for 0 < T' < ¢oAg /2.
In this case Properties K7(n)—K4(n) hold by Proposition A, and the validity
of (8.1) for n = 0 follows from relations (4.1), (4.5) and (A.1). Its validity
for 0 < n < N can be proved by induction with the help of Properties Ki(n)
and K3(n), 1 <n < N.

To prove formula (8.1) for n > N first we show that

_dMVQL(T) exp {—K (B"H(T))Z} < _dMgH(T) (8.2)

dT c(n) dT
dM3(T) But1(T)
< T ny 7 o 7
< DD o L (PoafD)

for all T < T and n > N with an appropriate K > 0. Relation (8.2) is
a consequence of Part b) of Proposition A, formula (4.12), the inequality

Brni1(T)M2(T) > 10 and the relation ﬁ";’(ii()T) < nif (n,T) is in the low
temperature domain. Indeed, since

JAMENT) () ma(T) (ST aMAT)
dr (DM, (T) 1) (1) dT
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these relations imply that

(- r—1 _C Bifl(T)
A DMR(T) e )2 0, (T)
+ r—1 _C 72z+1(T) dM(T)
4+t M2(T) (cnt1))2 ar
< _dM7%+1(T)
- dTl
(- r—1 L C ﬁgfl(T)
4 IMET) T k)20, ()
r—1 5g+1(T) dM(T)
1 2 .
( Tz T e ) T ar

IN

In this calculation we have exploited that ¢("*DM2(T) > B"JFTI(T)MTQL (T) >
1.
The left and right-hand side of this inequality can be bounded by

re1(T) dM(T)
c(n)? ar -’

—(1:|:K

and formula (8.2) can be deduced from these relations.

For N < n < Ny(T) with the number N;(T') defined in relation (4.18)
relation (8.1) follows from (8.2) and (4.19). Since by (4.20) B,+1 M2(T) <
100 if n > N1(T') and the pair (n,T') is in the low temperature domain, to
prove formula (8.1) with the help of (8.2) for n > Ny(T) it is enough to
show that

. 1
2
ke () (P ME(T))

and (n,7T) is in the low temperature domain

< Lifn> Ny(T)

with a constant L > 0 independent of 7' and n. Since M2(T) > m >

n—1
s and ME(T) = MA(T) + (ME(T) = MAT) 2 gk + 5 gy
j:
———— < const. Z <L
ey (CDMR(T))* k=) () 55 1 :
C —
j:k C(J)

because of Condition 3. Hence formula (8.1) holds.

It follows from (1.2), Condition 4, and the results of Section 4 that all
T > cpAp/4 belong to the high temperature region. Indeed, it follows from
formulas (4.26), (4.27), (4.1), (4.5) and (4.9), that if T > 0 is in the low



64 PAVEL BLEHER AND PETER MAJOR

temperature region, then

o0

=1 3
2 2
0 < M2(T) < M3(T) — 30(Mn(T) +1) — § o) < e Z

n=1 n=1

1
8c(n)

o0

—1/2
foralln > N, and T < <Z 246'*@)) . Hence Condition 4 implies that

n=1
T S C()Ao/4.

It follows from (8.2) that for a fixed n the function M2(T) is strictly
monotone decreasing. Hence a simple induction with respect to n yields
that the function (,(7") is a monotone increasing, continuous function of T
for all n > N. Put

T,, = sup{T': (T, n) is in the low temperature region}. (8.3)

The sequence T}, is monotone decreasing, hence the limit 7, = lim 7,, exists,
n—o0

and by Lemma 4.4 T, > 0 under Dyson’s condition (1.2). We want to show
that
= 1 = 1
Clz@STn—Tchgzm. (8.4)
k=n k=n
Since we can handle the sequence M, (T") better than the sequence 53, (T") we
also introduce besides the sequence T;, defined in (8.3) the sequence T'(n)

100
T(n) =sup T: M2(T) > —— +.
c(”)n
We will show that
Thix <T(n) <T, (8.5)
for all sufficiently large n with an appropriate K > 0, and
Cl CQ
< _ it
T S Tn)—T(n+1) < o) (8.6)

with some appropriate Co > C7 > 0 for all sufficiently large n. Because
of Condition 5 relation (8.4) follows from (8.5) and (8.6) together with the
relation lim T, = T..

n—o0
If T <T(n), and m < n then either m < N;(T") with the number N;(7T)
defined in (4.18) or Sp4+1(T) < Mi%??T) < Ml%o(%,) < ™. This implies that
for T' < T'(n) the pair (m,T) is in the low temperature region for all m < n,
and T'(n) < T,. This is the right-hand side of relation (8.5).
To prove its left-hand side observe that because of Condition 5 there is

some K such that

n+K—1 1 100

SRR
Pt 80() el )'r’

for all sufficiently large n with appropriate K > 0. We claim that for
T > T(n) the pair (n 4+ K,T) is not in the low temperature region. This
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relation implies the left-hand side of (8.5). If (n + K,T) were in the low
temperature region, then we would get with the help of formula (4.26) that

n+K—1 n+K
1 100 1 100 100
MnJrK(T) - Mn(T) Z 80(”) < c(”)n Z 80(”) < c(n)n c(”)n 07

k=n k=n

and this is a contradiction.

To prove formula (8.6) let us first observe that because of the continuity
and strict monotonicity of the function M2(T), M2(T(n)) = C},?)On. It follows
from the last statement of Lemma 4.3 and formula (8.1) that N1(T") < n for
all T(n) —e < T < T(n) with an appropriately small £ > 0. (The number
Ni(T') was defined in (4.18).). Hence we get with the help of formula (8.1)

that for sufficiently large n and T'(n) —e < T < T'(n)

100 2 - 100 1 -
7c(”)77 - @ + Cl (T(n) - T) § 7C(n+1)’l7 - @ + C1(T(n) — T)
< M7 (T)
100 1 =
100 1

S D T g +Co(T(n)—T)
with some appropriate constants Cy > C; > 0. Hence the solution of the
equation M2 ,(T) = c<i29)n satisfies the inequality K; < c¢™(T — T(n)) <
Ky with appropriate constants Ko > K; > 0. Since the solution of this
equation is T'(n + 1), this fact implies relation (8.6).

It is not difficult to see that T, is in the low temperature region. Since
the inequality M;(Te) = M (T(n)) + (M3(T) — MA(T(N))) < 0% +
const. (T'(n) — T,) holds for all large n because of (8.1), nILH;O M, (T) = 0.

Then relation (8.1) implies that
Ci(T. = T)) < Mi(Te) = M(T) < G (T. — T)

with some positive constants Co > C; > 0if T, > T > T, — . Letting
n tend to infinity in the last relation we get formula (3.21). Since formula
(8.4) is equivalent to (3.20) Theorem 3.4 is proved. O

Proof of Theorem 1.3. By Corollary of Theorem 3.1, if the Dyson condition
(1.2) is violated then all temperatures 7' > 0 belong to the high temperature
region. By Corollary of Theorem 3.3 relation (1.13) holds, and the measures
Un7(dx) tends to the standard normal distribution as n — co. Theorem 1.3
is proved. O

Proof of Theorem 1.5.

Part 1). The convergence of 7, 7(dx) to the r-dimensional standard Gauss-
ian distribution and relation (1.26) follow from Corollary of Theorem 3.3.
The asymptotics (1.27) follows from (3.19) and (3.20).
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Part 2). Formula (1.28) follows from (3.7), and the convergence of 7, 1, (dx)
to the uniform distribution on the sphere follows from Theorems 3.2 and
3.4. Namely, Theorem 3.4 tells us that the critical temperature 7. belongs
to the low temperature region. Then formula (3.8) proves that the probability
distribution 7, 1, (dx) converges to the uniform distribution on the sphere.
As a matter of fact, (3.8) proves much more: it proves the convergence at
T =T, of the distribution of normalized fluctuations of the mean spin along
the radius to a limit. Indeed, by (3.8),

. 1 t
i [z (i ) 0] =0
where
2 .
FOI=Y  swp |20 ‘

j=0 t>—cWM2(T)

and the probability density ¢(t) is defined as a solution of the fixed point
equation (1.18). By (2.13),

1 t
fn(taTc) = an Mn(Tc) + 7Tc 5
c(n) cn)

hence

. n <Mn(TC) + WR(I—‘C), TC)
lim
n—00 c(”) Mn (Tc)

—g ()]l =0.

To obtain a scaling limit of ¢, near M, (T.), let us rewrite the latter formula
as

- (M) (1+ oz ) T2)

n—o00 C(n)Mn(Tc) -9 (t) = 0. (87)

Let us evaluate the asymptotics of ¢ M2(T,) as n — oco. By (3.7),
MXT.) r—1

lim %) ) (8'8)
n—00 Zk:n d%) 2
since Moo (1) = 0. Define
J— i Ly (8.9)
Uk
k=n
By Condition 2 on the sequence {l,},
lim A, = oo. (8.10)
n—oo
By (2.23)
(n)
lim i 3,
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hence
lim k= c(ilk) 1
n—oo 30 zi 3
and by (8.8), (8.9),
lim %Tf = iy a7 L (8.11)
noee Y G An 6

which relation is equivalent to (1.28). Therefore,

lim " M2(T) _r—1

Substituting this limit into (8.7), we obtain that

My(Te) _
qu <Mn(Tc) (1 + rgltAn> 7Tc> —g(t)

This implies that the probability density Z,(T.)™" G, (M, (T.)x,T.) is local-
ized in a neighborhood of order A.! of the point 1, and after the proper
scaling it converges to g (t) as n — oc.

Let us consider now the scaling limit of the probability density py(z,T¢).
By equations (2.7) and (2.11),

lim

n—0o0

=0. (8.12)

AnlnT(jlw2

pn(x, Te) = Zn(TC)_1 exp (— 5

> QH(TC_I/QfL'aTc)y >0,

where Z,(T.)~! is a norming factor, hence

P (T2 M, (T.)z, Te)
Apl, M2(T.)x?

— Zn(Tc)_1 exp (— 5

) 0 (Mo (T2)z, T,).

Applying the same scaling as in (8.12), we obtain that

B (TJ/ZMn(Tc> (1 + r_f) ,Tc>
5 A

2

AL, M2?(T. t

= Zn(TC)_l exp _2n() (1 -+ rlA) (813)
9 n

X (jn (Mn(Tc) <1 + T_1t> 7Tc> .
5 A
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Consider the expression in the exponent,

2
Anl, M2(T.) t AplaM2(T.) 24,0l M2(T,)t
2 n

2 2 (r—1)A, (8.14)
2Anl, M2(T, )t
(r—1)222
By (8.11), (2.22) and (8.10)
2 2
lim 2AnbMn(Te) _ 2 gy 24l MalTe) (8.15)

n—oo (1 —1)\, 37 mooo (r—1)2X2
The constant term in (8.14) is not important, because it changes in (8.13)

the norming constant only. Therefore, from (8.12)-(8.15) we obtain that

lim '
n—oo

Z;L—le(2/3)t13n <T<:1/2Mn(Tc) (1 + T_f/\) ,Tc> — g(t)H =0 (8.16)
2 n

This implies that

2T M, (T,) t
lim |25 T2 M, (T, ([ 1 T,
nEEOH G S Sl =Sy R
(8.17)

/

=0.

— 77 e @B (1)

where Z~1e=(/3)tg (1) is a probability density (this determines the constant
Z), and
2

5| f(t)
r— ltl/3 |2 S0
IfOI'=>_ s e T (8.18)
j=0 t=2="5"An
Substituting ¢ for (bt — a) in (8.17), we obtain that
.|| An ¢ '
nhﬁrrolo Hdnpn <An <1 + dn>> —7(t)]| =0. (8.19)

where A,, > 0 is some constant. Since

/thn (Mn(Tc) <1+;n>> =0, /th(t)dtzo,

we can replace A, by M, (T.) in (8.19). This proves equation (1.32).

Part 8). The results of Part 3) of Theorem 3 were already proved with
the exception of relation (1.35) in the discussion after the formulation of
Theorem 3.2. But relation (1.35) is a direct consequence of relation (3.21)
proved in Theorem 3.4 and the identity M(T) = VT My (T) for T < T,
which was also proved in the above discussion. Theorem 1.5 is proved. [
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APPENDIX A. THE PROOF OF THEOREM 8.1.

To prove Theorem 8.1 we need good estimates on the partial derivatives

0

gn(x,T) = ainn(va%

of a scaled version of the functions g, (x,T). This can be done similarly to
the estimation of the functions f,(x,T’), done in Section 4. First we give
estimates for the starting function go(x,T"), then prove that similar estimates
hold for small indices n, more explicitly for n < N with the index N defined
in (1.12). Then inductive hypotheses can be formulated and proved for the
functions g,(x,T). In Section 4 we have introduced certain operators Q,,
their normalization Q,, and the linearization of these operators denoted by
T,, and T,,. The inductive hypotheses formulated there were closely related
to the properties of these operators. Now we want to work similarly. To
do this we have to introduce some new operators. We introduce certain
operators R,, and R,, which are the derivatives of the operators Q,, and
Q,, with respect to the variable T'. We also need their linear approximation
which we shall denote by U,, and U,. We have to study the action of
these operators on the functions g¢,(z,T) = a% fn(z,T) and their Fourier
transform.

An appropriate description of the asymptotic behaviour of the start-
ing functions fy(x,T) and numbers My(T') were already given in formulas
(4.2) — (4.8). Some more calculation yields, with the help of some formulas
in Section 4, the following estimates for the derivatives of the magnetization
My(T) and the norming constant Zo(7T') if T' < cpAp/2.

d

o (Mo(T) — MO(T))‘ < const. v/k.

G _ _dM(T) _ G
JET? dT JET?

with some oo > Cy > C > 0, (A.1)

and

ar 2(Ag — T)3/2
The derivatives of the functions go(z,T") and fo(x,T') satisfy the inequalities

Od(z + Mo(T),T) VAT (, 1 o~ (Ao—T)a?
T NG (A —T)

< const. k4, if z| < log k™1,

< const. VK.

’ dZo(T) VT

and

‘8({0(:6 +81\;0(T)7T)‘ < Cexp {_(AO;T) ’235 + ngT)‘} (A.2)

for x > —My(T).
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We shall apply the notation

Ofn(x,T)
or

Since fo(x,T) = qo(x + Mo(T'),T) the previous estimates together with

the results of Section 4 yield a sufficiently good control on go(z,7"). The

gn(z,T) = n=01,.... (A.3)

functions g, (z,T), n = 1,2,..., can be estimated inductively with respect
to the parameter n.
Put
R’ﬂfn(x7T) QnMn )fn(flf,T>
and 9
Ry fn(z,T) = T nMn fn(x T) = gn+1(z,T).

Then - B ~

R fo(z,T) = RY fo(x,T) + RP fo(,T) (A.4)
with

2
ROp 1) = 2 exp{ 5 =V |y )
ueR!, veRT—1 cm)

9n (6:;;471(7‘) (:U> U, V)v T) du dV>

where the functions g, (z,T") and EZ?/I”( (x,u,v),T) were defined in (A.3)

and (2.18), and

2
RO 1) = -2 [ exp {5 = 2} 15 ). T)
u€R?, veRr—1 c(m

T)

hy(x, “7V’T)%f"(£;?4n(T) (z,u,v),T)dudv

with
e (z,u,Vv)
hn(x,u,v,T) = — n’M"(g%F
_ ML)V
2 2
@)+ - 25) 4 25

2 ) '
)+ ey — ) 5 (M) + g )

The function gn+1(x, T) can be expressed as

gn-f—l(va) = n( )
_ nfn(x +ma(T),T) | 2 Qufal +mu(T),T) dm,,(T)
a Zn(T) Zn(T) dT

~ Qufula +mn(T),T) dZ,(T)
Z2(T) dT

(A.5)
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with
o0 —
Z,(T) = / Qufo (. T) dz.
—c(M M (T)

If the parameter £ > 0 in formula (2.10) is sufficiently small, then go(z, T)
and the functions g,(z,T), n < N, can be estimated similarly to the proof
of Proposition 4.1 or Proposition 1 in [BM3]. Relation (A.7) formulated
below can be deduced from formula (A.2) similarly to the proof of Lemma 1
of that paper. Then an argument similar to the proof of Lemma 2 in [BM3]
enables one to prove formula (A.6) formulated below. In this argument one
can observe that a negligible error is committed if in the integrals appearing
in the definition of R, f,,(x,T) the arguments é:j@(T) (z,u,v) defined in

T

o + uw. Some calculation also shows that

formula (2.18) are replaced by

(1)
with Be fnleT)

we commit a negligible error by replacing R, f,,(z,T) 7.0T)

such a way we get that

VAT, 1
Jr e \" T2, —1) 2n

exp {—(Ao ~7) 2'a? H

n

gn(x,T)

c(n)?

Ag—T) 2" x?
< 1/4 (Ao
< C(n)k/"exp { 1 | + (7 ‘}
if |z| < 27" log k™!, (A.6)
(Ag—T) 2" z?
< _ I >
lgn(z, T)| < C(n) exp{ TN L viT D for & > —M,(T),

(A7)

VT 1/2
Zn(t) m‘ < C(n)k
with some constant C'(n) which may depend on n but not on the parameter
% of the model.

The previous results are sufficient to handle the functions g,(x,T) for
small indices n < N. To work with indices n > N we have to introduce,
similarly to the argument in Section 4, the regularization of the functions
gn(x,T), the linearization U,, and U, of the operators R,, and R,, and to
describe their action in the Fourier space.

Define the regularization of the function g, (x,T') as

onlgn(@,T)) = W-

We want to approximate the operator R, with a simpler operator U, in
analogy with the approximation of Q, by T,. Then we formulate and
prove some inductive hypothesis about the behaviour of the operators R,
and U,,.

| Mo (T) = Mo(T)] < C(n)w'/?,

(A.8)
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A natural approximation of the operators R, and R, by some oper-
ators U, and U, can be obtained by differentiating T, (f.(z,T)) and
Tron(fn(x,T)) with respect to the variable T'. These considerations sug-
gest the definition of the operators

_ 2 x V2
U,on(fulz, T :2/ eV n(fn< +u+,T>)
#nlfnl ) ueR!,veRr—1 v Cn+1 2M,(T)
x v2
{on (o0 (54 o 7))
M/ (T) 0 x v2
2 on\ ) P _
v 2M,,(T)? ot <fn <5n+1 “r 2Mn(T)’T>> dudv

with the functions gy, (z,T") and ¢, (gn(x,T")) defined in (A.3) and (A.8) and

Unpn(falz,T)) = Ugll)cpn(fn(%T)) + Ug)@n(fn(xaT))

with

ngl)%@n(fn(x,T)) = ?
2

En+1F(T;)V(ST_2)

2 T r—1 v2
e—v — +u— + >T>>
LGR17VeRr1 Pn <f " <cn+1 4M,(T) = 2M,(T)

€T r—1 v2
n n |\ Z —u-— , T s
° <g <+ UML) M, (T) >>d“dv

and

2) = :
U on(fulz, T)) e (5L V(57-2)

[ (P DM(T) M)
ucRl, veRr—1 4M%(T) 2Mn(T)2
T r—1 \&
n n| Z - , T
o (0 (5 o= s * s 7))
0 x r—1 v2
9 (i (= 7)) dudv.
ox” (f <cn+1 T AML(T) T 20, (T) )) na
We can calculate the Fourier transform of the functions Uy, (fn(z,T)),
Ugll)cpn( fu(z,T)) and Uglg)cpn( fn(z,T)) by expressing them with the help of

convolutions. This is similar to the proof of formula (4.17). In the calcula-
tions we exploit the following identity. As simple integration by parts shows
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Lon(fn(§) = [T L 0 on(fu(2)) dr = —i&@(fn(€)). Hence we get that
~¢m@m )
:Cn+1F(T )V(STﬁz) @n (fn (Cn+1§7(T)))/ @ (Q (En+1é T))
r—1)/2 7 \J" ’
2 (1+z C”J“(IT)§>
LG DCOEIVST™) M(T) 20 (Fn (%526.T))
8 M, (T)? (1+ - 5)<r+1>/2’
yymes)
UL @n(fal&,T)) (A.9)
(r—1)én+1€
oxp {ZW(T)} Cnt1 Cnt1
BN yatn (2 (F576T)) 6o (o0 (F576.7))
and

(r=Den41§
2) > (f (g T)) . CnJrl(T - 1)M/ (T) exp {Z AM,,(T) } ¢
n 2Mn(T) . C (7«_1)/2
(1 +imie)

2 (s (e 7)) (1 - 1+Z1+1€> . (A.10)

2M, (T)

The above relation can also be extended to a larger set of the variables £
in the complex plane by means of analytic continuation.

Now we formulate the inductive hypotheses we want to prove in the Ap-
pendix.

Property Ki(n).

dMy(T)
_T > 0-
Property Ks(n).

(@D = | (e, T)
gn\Z, = lar/n €T,

dM,(T) 1 z? ’

K - 2z +
‘ T m{ BuD) | ML (T)

if 2 > —c™ M, (T)

with a universal constant K.



74 PAVEL BLEHER AND PETER MAJOR

Property Ks3(n).
|gn (2, T) = Up—1n-1(fr-1(z, T))|

dM,(T)| Bn(T) 1.4 x?
< K’ dr | o™ eXp{_,/ﬁn(T) et c(n)Mn(T)‘}

if 2 > —c™ M, (T)

with a universal constant K. The inequality remains valid if the function
gn(x,T) is replaced by its reqularization oy (gn(z,T)).

The following property K4(n) which gives a bound on the Fourier trans-
form of ¢, (gn(x,T)) is an analog of Property J(n).

Property Ky(n).

ulanl=in D) = | [ onlanto ) do| < G20 | D) | i
if |s] < #
Bn1(T)

In Property K4(n) we formulated a weaker estimate than in J(n). It is
enough to have a good bound on the moment generating function, i.e. on
the analytic continuation of the Fourier transform to the imaginary axis
together with the trivial estimate |@,(gn(—is + ¢, T)| < @n(gn(—is, T) for
all t.

The main result of the Appendix is the following Proposition A.
Proposition A. Let the properties Ki(m), Ka(m), K3(m) and K4(m) hold
in a neighbourhood of a parameter T together with the property 6"0‘7(,7) <n
(with the same small number n > 0 which appeared in the proof of Proposi-
tions 4.1 and 4.2) for all N < m <n, and let also the inductive hypotheses
I(n) and J(n) be also satisfied. Then the properties Ki(n+ 1), Ko(n + 1),
Ks(n+1) and K4(n+ 1) also hold for this parameter T'. The expression

d r—1 dm,(T) r—1 dM,(T)
—ar (m"(T) - 4Mn(T)> = Tar twoem ar

satisfies the inequality

On(T)

dM,(T)
dT

with an appropriate C > 0, where m,(T') was defined in (2.15).

a1 (T
Ol am) (A1)

5.7 < |

If we want to apply Proposition A, then first we have to show that prop-
erties Ki(n), Kao(n), K3(n) and K4(n) hold for n = N if T < ¢yAo/2.
This can be done with the help of an argument similar to the proof in the

Corollary of Lemma 1 in [BM3]. Property K (V) holds since %ﬂ hardly

differs from %T(T). Property K2(N) can be proved by means of relations
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(A.6) and (A.7). In the proof of Property K3(N) still the following addi-
tional observation is needed. Relation (A.6) remains valid if the function
gy (x,T) = Ry fn-1(z,T) is replaced by Unpn—_1(fn-1(z,T)) in this for-
mula. (The term %T(T) on the right-hand side of the inductive hypotheses
do not play an important role for n = N. It is strongly separated from zero
if T < CoA0/2.)

Relation K4(N) can be proved again with the help of formulas (A.6),
(A.7) and the relations

[ ntonta 1)) dz = [ wulguw 1)) do =0,

These relations imply that the value of the function @, (g,(s,T) and of its
first derivative is zero in the point s = 0. Hence it is enough to give a good
estimate of the second derivative of ¢, (gn(s,T).

Let us formulate the following Corollary of Proposition A.

Corollary. Under the Conditions of Theorem 3.4 the set of the points T
for which (n,T) is in the low temperature region is an interval (0,T,) for
all n > 0. The inductive hypotheses Ki(n), Ka(n), Ks(n) and K4(n) hold
for all T € (0,T5,).

Proof of the Corollary. The Corollary simply follows from Proposition A by
means of induction with respect to n. In this induction we assume the state-
ment of the Corollary for a fixed n together with the assumption that g, (7")
is monotone increasing in the variable T for 0 < T' < T;,. The Corollary and
the additional assumption hold for n = N with Ty = ¢9Ap/2. If properties
Ki(n), Ka(n), K3(n) and K4(n) hold for n, then because of Property Ki(n)
the function M, (T") is monotone decreasing and f,4+1(7") is monotone in-
creasing in the variable T. Then T, = min(7T,, max(T: B,+1(T) < 1)),
and by Proposition A the statements of the Corollary hold for n + 1. O

Before turning to the proof of Proposition A we prove Theorem 8.1 with
its help.

Proof of Theorem 8.1. The proof of Part a.) is contained in the previous
estimates of the Appendix. Part b.) can be obtained by differentiating the
second formula in (2.16), and applying formula (A.11). O

Proof of Proposition A. Some calculation yields that because of properties
Ky4(n), J(n) relations (A.9) and (A.10) the Fourier transforms

UVGn(fa(6,T)), UPGn(ful€,T))
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satisfy the inequalities
OO Ga(fult +is,T))|

dM,(T)| ren 2
<20 (551 s

P { (ciﬂgnm " M31<T>> } 1+al<T>t

and
UD(fult +is,T))|
GalMyU(DI, 5 & 180 (T) 1 9
< ¢+ oo (P g ) 7
1
(1+ an(T)2)? (1= 55s)
for |s] <

4
Ent1y/ Brnt1(T) "

The function ¢, (g, (x,T)) can be computed by means of the application
of the inverse Fourier transformation and by replacement of the domain of
integration from the real line to the line

2
z =181gn T —F——x—= + 1, teR' Y.
/Bn—l—l(T)

We get, by applying the above estimates for the Fourier transforms U( )

and U and exploiting the relation 5 Mngg?, < 550 L3 (T )2M together

with the fact that the constants «,(T) and 3, (7T") introduced in the definition
of Properties I(n) and J(n) have the same order of magnitude that

M, (T _
L (A12)
dM,(T) 1 ‘ 22 '
<-Ky————exp ———r—-— 204+ —~———| 5.
*dr p{ V@) | DM (1)

The estimates obtained for U(l) and U( ) yield, with the choice t = 0 and
some calculation that

[Un@n(ful—is, T))| < 190dM( )5n L(T)3/22ePn1(T)s?
if|8|<#. (A.13)
Bn+2(T)

(In the proof of Property K4(n+1) it will be important that the right-hand
side of (A.13) is less than the expression at the right-hand side of the formula
which defines Property K4(n +1).)
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We need a good estimate on the difference of Ry, f,,(z, T)—Upon (fn(z, T))
and its Fourier transform. These expressions can be bounded similarly to
the proof of the corresponding inequalities in the proof of Proposition 3 in
paper [BM3]. One has to compare the difference of the corresponding terms
in the expressions Qnpn(fn(z,T)) and Ry (fn(z,T)). Some calculation
yields that

2a(r) = VT < B o) 4 | < 20 VAT
(A.14)
0] < A,

d | B (T) dM, (T)
dT<m"(T)+4Mn(T)>‘ < Pl @),

Relation (A.11) is a consequence of (A.15). Property Ki(n + 1) can be
deduced from the above inequalities, since

CdMua(T)  dMy(T) 1 dma(T)
dT N dr clntl)  gT
dM,(T) 1 1 B (T)
> TR/ _
= Tar <1 D) <4M,§(T) R
_ 1dM,(T)
- 2 dT

Now we turn to the proof of Property K3(n+1). We do it by estimating
the errors we make by replacing the terms in the sum at the right-hand
side of (A.5) by their natural approximation if we replace R, f(x,T) by
Unon(frn(z,T)). (We also use formula (A.4) in that calculation.) We get,
by applying again inequalities (A.14) and (A.15) together with the estimates
obtained for f,(x,T), similarly to the proof of the estimates in the lemmas
needed for the proof of Lemma 3 in [BM1] that

‘ Qufn(® +ma(T),T) dZ,(T) ‘

Z2(T) dT
Bn(T) | dM,(T) 1.5 x?
=K ’ ar | { JBa(T) ‘29” T, () ’}

if &> —c "M, (T),
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%ann(fl: + mn(T)7 T) dmn(T) ( MA(T)

Zn(T) dT Cnp1 I (5 )V(S’"‘Q) AM(T)

2 T r—1 v2
eV — fu-— + ,T>>
/ueRgveR” Pn <f " <cn+1 4M,(T) ~ 2M,(T)

0 T r—1 v2
a n n - - 7T
oz <f <cn+1 T M) T 2, (T )) dudv

Bn( ) o(T) ~1.5 z?
) ‘ dT ’eXp{\/m 2$+C(n)Mn(T)’}

if £ > —c" UM, (T)

and
R fo(z + mn(T),T) . 8 M/ (T)
Zn(T) Cn D (551 V(S7=2) 2M2(T)

2
9 _y2 T r—1 v ))
vie - + T
/ueRl,veRr—l on (f " (cn+1 AN (T) " 2M, (1)

% (f” <+ ST 2MV:<T>’T>> dudv
Ko )! R
if &> —c" UM, (T).

To prove Property Ks3(n + 1) we still need an estimate which compares the
terms

X

Rl Jule £ maTLT) i (o ).

Zn(T)
We claim that
R fu(z + ma(T),T) 1 On(T) | dM(T)
Zn(T) — U on(fulz, T))| < o(n) ‘ dT ’

+1(T).

exp if 2 > —c"tY g,
{ \/ﬁn ' <”>M )‘}

This estimate can be proved by means of Property K3(n). With the help of
this relation it can be shown that a negligible error is committed if in the
integrals defining R fn(x 4+ mp(T),T) and UL, (fu(z,T)) the functions
gn and ¢, (gn) are replaced by the function Uy,pp—1(fn—1). After this re-
placement the proof of Theorem 3.2 can be adapted, since we can bound not
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only the function U, p,—1(fn—1), but also its partial derivative with respect
to the variable x.

These estimates together imply Property Ks(n-+1), and some calculation
shows that a version of Property K3(n+ 1), where the function g, y1(x,T) is
replaced by its regularization ¢n41(gn+1(z,T)) is also valid. Since we gave
a good estimate on U, p,(fn(x,T)) in (A.12), some calculation yields the
proof of Property Ks(n + 1). It remained to prove Property Ky(n + 1).

Because of (A.13) and (A.15) (The latter formula together with (2.15)
and (2.16) imply that formula (A.13) remain valid with a slightly bigger

coefficient if the term %T(T) is replaced by %ﬁﬂ in it), it is enough to

give a good bound on the difference @py1(gnr1(—i5)) — Upn@n(fn(—is)) to
prove property K4(n + 1). This can be done in the following way:
By applying the modified property of Ks(n + 1), where the function

gn+1(x) is replaced by @n119n+1(x) we get that

(;)522 [¢n+1(9n+1(_i57 T)) - ﬁn‘ﬁn(fn(_isj T))] ‘

S—/g,ﬂ i Mexp{(ﬂ—m>x} dr

B2 (T) dM2

< int1i "/
<K cn+1) g7
: 2
if |s] < V/Brt2(T)
Since

Gn+1(9n+1(0,7)) — ﬁn@ﬂ(fn(ov 1))
0

= (@nﬂ(énﬂ(—is,T) - ﬁn¢n(fn(_¢57T))

the last relation implies that

s=0

N _ . = . Br+1(T dMy(T
Son-‘rl(gn-‘rl(_zsa T) - Unson(fn(_l'% T) S —-K (J;:_(l) )52f1 dT( )32

c
if |s| < ﬁ This estimate together with relation (A.13) imply Prop-
n+2

erty K4(n+ 1) if the number 7 which is an upper bound for 8,1 (T) /"1
is chosen sufficiently small. Proposition A is proved. O

APPENDIX B. THE PROOF OF PROPOSITION 1.2.

Condition 1. We have that for n > 1,

1< 1+an A
Ch=|——"7——
" 1+a(n—1)

Observe that ¢, is decreasing and

lim ¢, =1, cn<cr=(1+a)

n—oo
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This implies Condition 1.
Condition 2. We have that

ez o K(1+ an)>
(1+an))‘j§:;l(1+aj) A > 0+ aln+ K)* - K

as n — 0o. This implies Condition 2.

Condition 3. For k < n/2 we estimate

> L= 1+ak)> (1+aj) ™ > CA+ak)* A+ak) ! = C(1+ak)™!
j=k j=

k
and for k > n/2 and n > j > k we estimate
Il ' > Co>0

hence
Y > Coln—k+1)
=k
Thus,
n n —2 n/2 n

Swd L <0 (A+ak) P+ Y (n-k+1)7 <Oy

k=1 j=k k=1 k=n/2
Condition 3 is checked.
Conditions 4 and 5 are obvious. O
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