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Summary: In this paper we construct the equilibrium states of Dyson’s vector-valued
hierarchical model with parameter c =

√
2 at low temperatures and describe their large-

scale limit. The analogous problems for
√

2 < c < 2 and 1 < c <
√

2 were solved in
our papers [1] and [2]. In the present case the large-scale limit is similar to the case√

2 < c < 2, i.e. it is a Gaussian self-similar field with long-range dependence in the
direction orthogonal to and a field consisting of independent Gaussian random variables
in the direction parallel with the magnetization. The main difference between the two
cases is that now the normalizing factor in the direction of the magnetization contains,
beside the square-root of the volume, a logarithmic term too.

1. Introduction

First we briefly describe the model we are investigating. Dyson’s hierarchical model is
a one-dimensional classical spin model on the lattice Z = {1, 2, . . . }. Its Hamiltonian
function depends on a parameter a, 1 < a < 2, and is defined as

H(σ) = −
∑

i∈Z

∑

j∈Z

j>i

d(i, j)−aσ(i)σ(j) , (1.1)

where d(i, j) = 2n(i,j)−1, and

n(i, j) = min {n, there exists some k such that (k − 1)2n < i, j ≤ k2n} .

We are dealing with vector-valued models, where σ(j) ∈ Rp with some p ≥ 2. If x ∈ Rp

and y ∈ Rp then xy denotes scalar product. We consider models with the free measure
ν,

dν

dx
(x) = p0(x) = p0(x, t) = C(t) exp

{

−x
2

2
− t

4
|x|4
}

, x ∈ Rp, (1.2)

where t > 0 is a sufficiently small number, and C(t) is an appropriate norming constant
which turns p0(x) into a density function. For the sake of convenience we shall work in
the sequel with the number c = 22−a instead of the parameter a.
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We investigate the following problem: First we construct an equilibrium state µ =
µ(T ) at low temperatures with magnetization in the direction of the first coordinate
x(1) and then we want to describe its large-scale limit. In more detail, let

σ =
{

σ(j) =
(

σ(1)(j), . . . , σ(p)(j)
)

∈ Rp, j ∈ Z
}

be a random field with the distribution of the equilibrium state µ = µ(T ), and define
for all n = 1, 2, . . . the random field

Rnσ =
{(

Rnσ
(1)(j), . . . ,Rnσ

(p)(j)
)

∈ Rp, j ∈ Z
}

, (1.3)

Rnσ
(1)(j) =

1

An

j2n

∑

k=(j−1)2n+1

[

σ(1)(k) − Eσ(1)(k)
]

, j ∈ Z , (1.4)

Rnσ
(s)(j) =

1

Bn

j2n

∑

k=(j−1)2n+1

σ(s)(k) , j ∈ Z, s = 2, . . . , p, (1.5)

where An and Bn are appropriate norming constants. We want to choose them in such a
way that the finite dimensional distributions of the fields Rnσ converge as n→ ∞, and
also want to describe the limit field. Here An is the norming constant in the direction
of the magnetization and Bn in the direction orthogonal to it.

We have solved this problem for
√

2 < c < 2 in our paper [1] and for 1 < c <
√

2
in [2]. In both cases we have to choose a “critical” normalization Bn = 2nc−n/2 in the
direction orthogonal to the magnetization, and the limit is a self-similar Gaussian field
with long-range correlation. On the other hand, in the direction of the magnetization we
have a different situation in the two cases. For

√
2 < c < 2 we have to choose An = 2n/2

and get a field of independent Gaussian variables for the limit. For 1 < c <
√

2 the
right choice in (1.4) is An = 2nc−n, and the limit is a non-Gaussian field which we
have described explicitly in [2]. Our aim in this paper is to solve this problem for

c =
√

2. The answer is very similar to the case
√

2 < c < 2. Namely, we have to choose
Bn = 2nc−n/2 = 23n/4 and get a dependent Gaussian field in the direction orthogonal
to the direction of the magnetization. In the direction of the magnetization we have
to choose An = 2n/2

√
n, and the limit is a field consisting of independent Gaussian

random variables. The main difference between the cases
√

2 < c < 2 and c =
√

2
is the appearance of a multiplying term

√
n in the normalizing factor An in the latter

case. It is expected that translation invariant models with short-range interaction in the
cases d < 4, d = 4 and d > 4 show a behaviour similar to Dyson’s model in the cases
1 < c <

√
2, c =

√
2 and

√
2 < c < 2. Thus Dyson’s model with c =

√
2 corresponds

to four-dimensional translation invariant models.

Let us formulate our results in more detail. In Theorem 1 formulated below we
construct the equilibrium state whose large-scale limit will be investigated.

Given some h ∈ R1, h ≥ 0, and a positive integer n let us define the Gibbs measure
µh

n = µh
n(T, t) on (Rp)2

n

with the density function

ph
n(x1, . . . , x2n) = ph

n(x1, . . . , x2n , t, T ) , xj =
(

x
(1)
j , . . . , x

(p)
j

)

∈ Rp , j = 1, . . . , 2n ,
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given by the formula

ph
n(x1, . . . , x2n)

= Z−1
n (T, t, h) exp

{

− 1

T

(

−
2n−1
∑

i=1

2n
∑

j=i+1

d(i, j)−3/2xixj − h
2n
∑

j=1

x
(1)
j

)} 2n
∏

j=1

p0(xj , t) ,

(1.6)

where

Zn =

∫

exp

{

− 1

T

(

−
2n−1
∑

i=1

2n
∑

j=i+1

d(i, j)−3/2xixj − h

2n
∑

j=1

x
(1)
j

)} 2n
∏

j=1

p0(xj , t) dxj

is the grand partition function, and p0(x, t) is defined in (1.2). Let ph
n(x) = ph

n(x, T )

denote the density function of the average 2−n
∑2n

j=1 σ(j) of the µh
n distributed random

vector (σ(1), . . . , σ(2n)). Put µn = µh
n, pn(x1, . . . , x2n) = ph

n(x1, . . . , x2n) and pn(x) =
ph

n(x) in the case h = 0.

Let us introduce the functions

qn(x) = qn(x, T ) = Kn exp

{

a0

2a1
2n/2x2

}

pn

(
√

T

a1
x

)

(1.7)

with a0 = 2
2−

√
2
, a1 = a0 +1 and the above defined functions pn(x), where the norming

constant Kn will be appropriately chosen. The function qn(x, T ) is rotation invariant,
i.e. the function q̄n(z, T ), z ∈ R1, defined by the formula q̄n(z, T ) = qn((z, 0), T ),
z ∈ R1, 0 = (0, . . . , 0) ∈ Rp−1 satisfies the relation qn(x, T ) = q̄n(|x|, T ). Choose the
constant Kn in (1.7) in such a way that

∫ ∞

0

q̄n(x, T ) dx = 1 ,

and define the numbers

Mn =

∫ ∞

0

xq̄n(x, T ) dx . (1.8)

Now we formulate the following

Theorem 1. There are some thresholds T0 > 0 and t0 > 0 such that if 0 < T < T0

and 0 < t < t0 then the limit M = limn→∞Mn > 0 exists, and M2 = a1(a0−T )
tT 2 + O(1)

with a0 = 2
2−

√
2

and a1 = a0 + 1. Moreover, the following relation holds: Put

M̄ =

√

T

a1
M, (1.9)

and consider an arbitrary sequence of real numbers hn, n = 0, 1, 2, . . . such that

2M̄

2 −
√

2

(

1√
2

)n

≤ hn ≤ D

(

1√
2

)n

(1.10)
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with some ∞ > D > 2M̄
2−

√
2
. Then the measures µhn

n tend to a probability measure

µ̄ = µ̄(t, T ) on (Rp)Z. More precisely, for all k ≥ 0 the measures µhn

k,n, the projections

of the measures µh
n to (Rp)2

k

, converge to the projection of µ̄ to the first 2k coordinates
in variational metric as n → ∞. The measure µ̄ does not depend on the choice of
sequences hn.

The main result of this paper is the following

Theorem 2. Let σ =
{

σ(n) =
(

σ(1)(n), . . . , σ(p)(n)
)

∈ Rp, n ∈ Z
}

be a µ̄ distributed
random field with the distribution µ̄ defined in Theorem 1. Then the finite dimen-
sional distributions of the random fields Rnσ defined in (1.3), (1.4), (1.5) tend, with
the choice An = 2n/2

√
n and Bn = 23n/4, to those of a Gaussian random field Y =

(

Y (n) =
(

Y (1)(n), . . . , Y (p)(n)
)

∈ Rp, n ∈ Z
)

. For all numbers k ≥ 0 the density func-

tion hk (x1, . . . , x2k), xj =
(

x
(1)
j , . . . , x

(p)
j

)

∈ Rp of the random vector (Y (1), . . . , Y (2k))

is given by the formula

hk (x1, . . . , x2k)

= C(k) exp

{

− 1

T

[ p
∑

s=2

(

2 +
√

2

2

2k
∑

j=1

x
(s)2
j −

(√
2 − 1

)

(√
2

4

)k
( 2k
∑

j=1

x
(s)
j

)2

−
2k−1
∑

i=1

2k
∑

j=i+1

d(i, j)−3/2x
(s)
i x

(s)
j

)

+ (6 + 2
√

2)M2
2k
∑

j=1

x
(1)2
j

]}

.

(1.11)

It follows from the result in Appendix E of [2] that the measure constructed in Theo-
rem 1 is an equilibrium state. We restricted ourselves to the construction of equilibrium
states for low temperatures where we are interested in their large-scale limit. The proofs
of Theorems 1 and 2 are based, similarly to the papers [1] and [2], on two analytic prob-
lems, where the action of an integral operator must be investigated. We formulate these
problems in the next Section.
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2. The basic steps of the proof

In this Section we discuss two analytical problems which play a central role in the proof
of Theorems 1 and 2. The first one is connected with the asymptotical behaviour of the
density function pn(x) of the average of a µn distributed vector defined after formula
(1.6). It is proved (see e.g. Appendix A in [2]) that pn(x) satisfies the recursive relation

pn+1(x) = Cn(T )

∫

exp

{

2n/2

T

(

x2 − u2
)

}

pn(x− u)pn(x+ u) du (2.1)

with the starting function p0(x) defined in formula (1.2). For us it is more convenient
to work with the functions qn(x) defined in (1.7) instead of the functions pn(x). Simple
calculation shows that relations (2.1) and (1.7) imply the recursive relations

qn+1(x) = Kn

∫

exp{−2n/2u2}qn(x− u)qn(x+ u) du (2.2)

with the starting function

q0(x) = q0(x, T, t) = K0 exp

{

a0 − T

2a1
x2 − tT 2

4a2
1

|x|4
}

, (2.2′)

where a0 = 2
2−

√
2
, a1 = a0 + 1, and Kn is an appropriate norming constant. (The

numbers a0 and a1 will denote these numbers in the whole paper.)

In Theorem A formulated below we describe the asymptotic behaviour of the function
qn(x). We recall that we have introduced the functions q̄n(z) = q̄n(z, T ), z ∈ R1 in
Section 1, and they satisfy the relation qn(x, T ) = q̄n(|x|, T ).

Theorem A. There are some thresholds t0 and T0 such that for 0 < t < t0 and
0 < T < T0 the functions qn(x) defined by formulas (2.2) and (2.2′) satisfy the following
relations:

There are some M = M(T, t) > 0 and n0 = n0(T, t) > 0 such that for n > n0

2−n/2
√
nqn(x, T ) = 2−n/2

√
nq̄n(|x|, T )

=

√
2M√
π

exp

{

−2n+1M2

n
(|x| −M)2

}

+ rn(x) (2.3)

with

|rn(x)| ≤ K√
n

(2.3′)

and
∣

∣

∣

∣

M2 − a1(a0 − T )

tT 2

∣

∣

∣

∣

≤ K (2.4)

with some K > 0. Also the estimate

2−n/2
√
nq̄n(x, T ) ≤ K exp

{

−2n/2µ√
n

|x−M |
}

for all x > 0 (2.5)

holds with some K > 0 and µ > 0 depending on T and t.

For x −M À 0 or x −M ¿ 0 we need a better bound on q̄n(x, T ) than that given
in (2.5). This is given in the following
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Proposition A. Under the conditions of Theorem A

2−n/2
√
nq̄n(x, T ) ≤ K exp

{

−β 2n

n
(x−M)2

}

for x > M (2.6)

with some β > 0 and K > 0 depending on t and T .

If 0 < x < M then for all ε > 0 there are some thresholds t0 = t0(ε), T0 = T0(ε)
and a real number rn, C1n2−n/2 < M − rn < C2n2−n/2 with C2 > C1 > 0 such that if
0 < t < t0 and < T < T0 then

2−n/2
√
nq̄n(x, T ) ≤ K exp

{

−β 2n

n
(x−M)2

}

for rn < x < M (2.7)

and

2−n/2
√
nq̄n(x, T ) ≤ K exp

{

−(1 − ε)2n/2
(

r2n − x2
)

− β
2n

n
(rn −M)2

}

for 0 < x < rn . (2.7′)

(With some extra-work it can be shown that the number rn can be chosen in the form
rn = M − Cn2−n/2 with some C > 0. We do not prove it, because the slightly weaker
statement formulated above is sufficient for our purposes. Also the dependence of the
thresholds t0 and T0 on ε can be dropped with the help of some additional investigation.
We do not do it, because we do not need Proposition A with very small ε. What we
need is that it holds with some ε > 0 such that 1 − ε > a0

2a1
.)

Now we formulate the second problem we are interested in. Given some integers
0 ≤ n ≤ N and positive real number h > 0 consider the measure µh

N with density
function ph

N (x1, . . . , x2N ) defined in (1.6) (we replace the number n by N in it), and
define its projection µh

n,N to the first 2n coordinates x1, . . . , x2n . We want to give a

good asymptotic formula for the Radon–Nikodym derivative
dµh

n,N

dµn
(x1, . . . , x2n), where

µn is µh
n with h = 0. It can be expressed explicitly by the following recursive integral

formula: (See e.g. Appendix C in [2].)

Formula for the Radon–Nikodym derivative.

dµh
n,N

dµn
(x1, . . . , x2n) = fh

n,N

(

2−n
2n
∑

j=1

xj

)

, n ≤ N (2.8)

fh
N,N (x) = K(N,h) exp

(

2Nhx(1)

T

)

(2.9)

fh
n,N (x) = K(n,N, h)Snf

h
n+1,N (x) (2.10)

with

Snf(x) =

∫

Rp

exp

(

2n/2

T
xy

)

f

(

x+ y

2

)

pn(y) dy (2.10′)
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where K(n,N, h) are appropriate norming factors and pn(x) is the density function of
a µn distributed random vector.

In Theorem B formulated below we give an asymptotic formula for the function
fh

n,N (x) if h = hN satisfies the relation

2M̄

2 −
√

2

(

1√
2

)N

≤ hN ≤ D

(

1√
2

)N

(2.11)

with some ∞ > D > 2M̄
2−

√
2
. To formulate it we introduce the sequences gn, An,

n = 1, 2, . . . , N defined by the recursive relations

gN = gN (N,hN ) =
2NhN

T
(2.12)

gn = gn(N,hN ) =
gn+1

2
+

2n/2

T
M̄ for n < N (2.12′)

AN = AN (N,hN ) = 0 (2.13)

An = An(N,hN ) =
An+1

4
+

(

2n/2

T
+
An+1

2

)2

2(n+2)/2

T
+
gn+1

M̄
−An+1

for n < N ,
(2.13′)

where M̄ is defined in (1.9), and M and T are the same as in Theorem A.

For the sake of simpler notations let us restrict ourselves to the case Rp = R2. Let
us define the domains

Ω1
n = {x ∈ R2,

∣

∣|x| − M̄
∣

∣ < 2−0.2n , |x(2)| < 2−0.2n , x(1) > 0} (2.14)

Ω2
n =

{

x ∈ R2,
∣

∣|x| − M̄
∣

∣ < 2−0.2n
}

\ Ω1
n (2.14′)

Ω3
n =

{

x ∈ R2,
∣

∣|x| − M̄
∣

∣ ≥ 2−0.2n
}

. (2.14′′)

Clearly Ω1
n ∪ Ω2

n ∪ Ω3
n = R2. Now we formulate the following

Theorem B. For all q, 2−0.1 < q < 1, there is some n0 = n0(T, M̄,D, q) such that

if (2.11) holds, and N ≥ n ≥ n0 then the Radon–Nikodym derivative fn(x) = fhN

n,N (x)

defined by formulas (2.9)–(2.10′) satisfies the following relations:
a) In the domain Ω1

n

fn(x) = Ln exp
{

gn

(

x(1) − M̄
)

+Anx
(2)2 + εn(x)

}

(2.15)

with
sup

x∈Ω1
n

|εn(x)| ≤ qn .

b) In the domain Ω2
n

0 ≤ fn(x) ≤ Ln exp

{

gn(|x| − M̄) −
(

gn

2M̄
−An

)

2−0.4n + qn

}

. (2.16)
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c) In the domain Ω3
n

0 ≤ fn(x) ≤ Ln exp
{ gn

2M̄

(

|x|2 − M̄2
)

}

, (2.17)

where the numbers An and gn are defined in (2.12)–(2.13′), and Ln = Ln(N,hN ) is an
appropriate norming constant.

We also need the following result which describes the asymptotic behaviour of the
sequences gn and An defined by (2.12)–(2.13′).

Proposition B. Let us choose some integer N and real number hN > 0. Define the
sequences gn and An, 0 ≤ n ≤ N , by formulas (2.12)–(2.13′) and put ḡn = 2−n/2gn,
Ān = 2−n/2An. If hN satisfies relation (2.11) then ḡN ≥ ḡN−1 ≥ · · · ≥ ḡ0 ≥ ḡ

and 0 = ĀN ≤ ĀN−1 ≤ · · · ≤ Ā0 ≤ Ā with ḡ = 2
2−

√
2

M̄
T , and Ā =

√
2−1
T . If the

relations N > N0 and N > nB also hold with some appropriate N0 = N0(M̄, T,D) and
B = B(M̄, T,D) then |ḡn − ḡ| < 4−n and |Ān − Ā| < 4−n.

The above results enable us to carry out a limiting procedure analogous to that in
Sections 6 and 7 in Part II of [2], which leads to the proof of Theorems 1 and 2. The
main step of this limiting procedure is to give a good estimate for the expression

pn

(

2−n
2n
∑

j=1

xj

)

fhN

n,N

(

2−n
2n
∑

j=1

xj

)

. (2.18)

Since we can express the function pn(x) through qn(x) Theorems A and B together
with Proposition B enable us to give a good asymptotic formula for this expression
in a typical domain around the point (M̄, 0) ∈ R2. Then Theorem B together with
Proposition A guarantee that the region outside this typical domain has a negligible
effect.
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3. On Theorem A. The method of the proof

The proof both of Theorem A and B is based on the ideas of [2]. Most proofs can be

carried out in almost the same way, only the number c must be replaced by
√

2. The
proofs of such parts will be omitted, we only refer to the corresponding result in [2].
From now on the letters C, C1, K etc. will denote absolute constants. The same letter
in different formulas may denote different constants if it is not stated otherwise.

Let us introduce, similarly to Part I in [2], the numbers Mn defined in (1.8) and the
functions

fn(x) = fn(x, T ) = 2−n/2q̄n

(

Mn + 2−n/2x, T
)

, (3.1)

where the function q̄n(x) was defined after formula (1.7). We shall deduce Theorem A
from the following

Theorem A′. Under the conditions of Theorem A the limit limn→∞Mn = M > 0
exists, and

M2 =
a1(a0 − T )

tT 2
+R(T, t) (3.2)

with some |R(T, t)| < const. Moreover, there is some n0 = n0(t, T ) such that for n > n0

Mn = M +
2 +

√
2

4M
2−n/2 + δ(n)2−n/2, |δ(n)| < K2−n/2 (3.3)

with some K > 0. The function fn satisfies the relations

∣

∣

∣

∣

∣

fn(x, T ) −
√

2M√
nπ

exp

{

−2M2

n
x2

}

∣

∣

∣

∣

∣

<
K

n
for x > −2n/2Mn (3.4)

and

fn(x, T ) ≤ KM√
n

exp{−µ|x|} for x > −2n/2Mn (3.5)

for n > n0 with some µ > 0 and K > 0.

To prove Theorem A′ let us introduce, similarly to [2], the operator Q̄n,M ;

Q̄n,Mf(x) =

∫

exp
{

−2−n/2u2 − v2
}

f

(

2n/2

(

√

(M + 2−(n+1)/2x+ 2−n/2u)2 + 2−n/2v2 −M

))

f

(

2n/2

(

√

(M + 2−(n+1)/2x− 2−n/2u)2 + 2−n/2v2 −M

))

du dv ,

(3.6)
its standardization defined by the formula

Qn,Mf(x) =
Q̄n,Mf(x+mn)

∫∞
−2(n+1)/2M

Q̄n,Mf(x) dx
(3.7)
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with

mn =

∫∞
−2(n+1)/2M

xQ̄n,Mf(x) dx
∫∞
−2(n+1)/2M

Q̄n,Mf(x) dx
(3.7′)

together with their approximations TM and T̄M given by the formulas

T̄Mf(x) =

∫

e−v2

f

(

x√
2

+ u+
v2

2M

)

f

(

x√
2
− u+

v2

2M

)

du dv (3.8)

and

TMf(x) =

√

2

π
T̄Mf

(

x−
√

2

4M

)

. (3.8′)

The same calculation as that in (2.20) of [2] yields that the Fourier transforms of the

operators TM and T̄M defined by the formulas ˜̄TM f̃ = (T̄Mf )̃ and T̃M f̃ = (TMf )̃
satisfy the relation

˜̄TM f̃(ξ) =

√

π

2

f̃
(

ξ√
2

)2

√

1 + iξ√
2M

(3.9)

and

T̃M f̃(ξ) =
exp

(

i
√

2ξ
4M

)

√

1 + iξ√
2M

f̃

(

ξ√
2

)2

. (3.9′)

The relation

(fn+1(x), Mn+1) =
(

Qn,Mnfn(x), Mn + 2−(n+1)/2mn

)

(3.10)

holds with the starting pair (f0(x), M0) defined by the relations

M0 =

∫ ∞

0

xq̄0(x) dx f0(x) = q̄0(x−M0) , (3.10′)

where the function q̄0(x) was defined after formula (1.7) (with n = 0).

We have
Qn,Mf(x) = TMf(x) + εn(x) , (3.11)

where εn(x) is a small error term. We get a heuristic explanation of Theorem A′ by
investigating the expression Tn

Mf(x) for large n with a function f(x) satisfying the
relations

∫

f(x) dx = 1 and
∫

xf(x) dx = 0. Put

ϕk(ξ) = log T̃k
M f̃(ξ) =

∞
∑

j=2

dj,kξ
k .

It follows from (3.9) that

dj,k+1 = 2(2−j)/2dj,k +
(−i)j

2j(
√

2M)j
, j ≥ 2 .
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Hence

lim
n→∞

dj,n =
(−i)j

2j(
√

2M)j(1 − 2(2−j)/2)
for j ≥ 3 ,

and
d2,n = − n

8M2
+ d2,0 .

The above relations imply that

lim
n→∞

ϕn

(

ξ√
n

)

= − 1

8M2
ξ2 .

Since fn(x) behaves similarly to Tn
Mf0(x), the above calculation suggests that the ex-

pression
√
nfn(

√
nx) is asymptotically Gaussian with variance 1

8M2 . We justify this
heuristic argument similarly to the method of [2]. First we show that if t and T are suf-
ficiently small then for all not too large n fn(x) is asymptotically normal with variance
σ = a1

2(a0−T ) . More precisely, we prove the following

Proposition 1. For all positive integers N ≥ 1 there are some thresholds t0 and T0

such that if 0 < T < T0 and 0 < t < t0 then for all n ≤ N
∣

∣

∣

∣

dj

dxj
[fn(x) − φ(x, σ)]

∣

∣

∣

∣

≤ B(n)√
Mn

exp
{

−2(n+2)/2|x|
}

if |x| < logMn, j = 0, 1, 2,
(3.12)

∣

∣

∣

∣

dj

dxj
fn(x)

∣

∣

∣

∣

≤ B(n) exp

{

−2n/2

∣

∣

∣

∣

2x+
2−n/2x2

Mn

∣

∣

∣

∣

}

if x > −2−n/2Mn, j = 0, 1, 2,

(3.13)
and

|Mn − M̂0| ≤ B(n)t1/2T , (3.14)

where M̂2
0 = a1(a0−T )

Tt2 , σ2 = a1

2(a0−T ) , φ(x, σ) denotes the normal density function

with expectation zero and variance σ, and B(n) is some appropriate multiplying factor
depending on n, but not on t and T .

If t0 and T0 are sufficiently small then M̂0 is very large, therefore (3.14) states that

for fixed n (depending on t and T ) Mn is very close to M̂0. Then (3.12) gives a good
Gaussian approximation of fn(x) and (3.13) a good bound on its tail behaviour.

The proof of Proposition 1 is based on the observation that M0 almost agrees with
the positive maximum M̂0 of the function q̄0(x), f0(x) is almost Gaussian, and we

commit a small error by substituting the operator Q̄n,M for small n by the operator T̂n,

T̂nfn(x) = C

∫

exp
{

−v2 − 2−n/2u2
}

fn(x+ u)fn(x− u) du dv

= C
√
π

∫

exp
{

−2−n/2u2
}

fn(x+ u)fn(x− u) du .

Since the proof is almost the same as the proof of the corresponding result for 1 < c <
√

2
given in Section 4 of Part I in [2] we omit it. By the same reason we omit the proof of
its Corollary formulated below. To formulate this result first we have to introduce the
following notion:
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Definition of the regularization of a function. Let us choose some fixed function
ϕ(x) ∈ C∞

0 (R1) such that 1 ≥ ϕ(x) ≥ 0 for all x ∈ R1, ϕ(x) = 1 for |x| < 1, and
ϕ(x) = 0 for |x| ≥ 2. Put ϕn(x) = ϕ

(

1
1002−n/2x

)

. Given some function f(x), f(x) ≥ 0,
∫

f(x) dx <∞ we define its n-th regularization ϕn(f) as ϕn(f)(x) = 1
An
ϕn(x+Bn)f(x+

Bn) with An =
∫

ϕn(x)f(x) dx and Bn = 1
An

∫

xϕn(x)f(x) dx, provided that the above
formula is meaningful, i.e. An > 0.

Now we formulate the following

Corollary of Proposition 1. Under the conditions of Proposition 1 we have for all
n ≤ N

|ϕ̃n(fn)(t+ is)| ≤ exp s2

1 + t2

200

for |s| < 2, t ∈ R1 ,

and
∣

∣

∣

∣

dj

dxj
fn(x)

∣

∣

∣

∣

≤ 105 exp

{

−
∣

∣

∣

∣

2x+
2−n/2x2

Mn

∣

∣

∣

∣

}

for x > −2n/2Mn, j = 0, 1, 2.

Let us fix some positive integer N , and define the sequences αn, βn, n = N , N+1, . . . ,
as

αN =
1

200
, (3.15)

αn+1 =
(

1 − 2−n/4
)

αn +
10−12

M2
n

for n ≥ N (3.15′)

and

βN = 1 , (3.16)

βn+1 =
(

1 + 2−n/4
)

βn +
10

M2
n

for n ≥ N , (3.16′)

where Mn is defined in (1.8).

Now we define the following Properties I(n) and J(n).

Property I(n). Let n ≥ N . The function f(x) satisfies Property I(n) (with the starting
index N and parameter C) if
∣

∣

∣

∣

dj

dxj
f(x)

∣

∣

∣

∣

≤ C

β
(j+1)/2
n

exp

{

− 1√
βn

∣

∣

∣

∣

2x+
2−n/2x2

Mn

∣

∣

∣

∣

}

for x > −2n/2Mn, j = 0, 1, 2

with the above defined sequence βn and the number Mn defined in (1.8).

Property J(n). Let n ≥ N . The function f(x) satisfies Property J(n) (with the
starting index N) if

|ϕ̃n(f)(t+ is)| ≤ exp{βns
2}

1 + αnt2
for |s| < 2√

βn
, t ∈ R1 ,

with the above defined sequences αn and βn.

Now we formulate
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Proposition 2. The multiplying factor C and the starting index N can be chosen in
Properties I(n) and J(n) in such a way that under the additional conditions Mn > K
with some universal constant K, |Mn −Mn−1| < 1, 100n > βn > max(9M−2

n , 4−n)
Properties I(n) and J(n) for the function fn(x) imply Properties I(n+ 1) and J(n+ 1)
for the function fn+1(x) (with the same parameters N and C). Also the following
relations hold true:

Mn+1 = Mn + 2−(n+1)/2mn, mn = −
√

2

4Mn
+ γ(n)

with γ(n) < C12
−n/2

√

βn (3.17)

∣

∣

∣

∣

dj

dxj
fn+1(x) − TMnϕn(fn)(x)

∣

∣

∣

∣

≤ C1C
4

β
(j+1)/2
n+1

2−n/2

[

exp

{

− 1
√

βn+1

∣

∣

∣

∣

2x+
2−(n+1)/2x2

Mn+1

∣

∣

∣

∣

}

+ exp

{

− 2|x|
√

βn+1

}]

for x > −2(n+1)/2Mn+1, j = 0, 1, 2, (3.18)

and

∣

∣

∣

∣

dj

dxj
TMnϕn(fn)(x)

∣

∣

∣

∣

≤ C1C
2

β
(j+1)/2
n+1

exp

{

− 2|x|
√

βn+1

}

, x ∈ R1, j = 0, 1, 2, 3, 4 (3.19)

with some absolute constant C1. As a consequence, if 0 < T < T0 and 0 < t < t0 with
some suficiently small t0 > 0 and T0 > 0 then Properties I(n) and J(n) hold for the
functions fn(x) with some appropriate parameters C and N , and these functions satisfy
relations (3.17)–(3.19). Also the relation βn < 100n holds.

Proposition 2 is proved similarly to the analogous result for 1 < c <
√

2 in Sections 5
and 6 in Part I of [2], only the number c must be replaced by

√
2 everywhere. The

expressions Qn,Mf(x), TMϕn(f)(x) and Qn,Mf(x) − TMϕn(f)(x) can be bounded
with the help of Property I(n), as it is formulated in Proposition 3 and proved in
Section 5 in Part I of [2]. This enables us to reduce the problem to the investigation of
TMnϕn(fn)(x), which can be done with the help of Property J(n) and formula (3.9′).

The only difference between the cases 1 < c <
√

2 and c =
√

2 is that for c =
√

2
the condition β < 100 must be replaced by the condition β < 100n when the operator
Qn,M is investigated. This is so, because we apply our estimates with β = βn, and

the sequence βn defined in (3.16), (3.16′) is of order const. n. (In the case 1 < c <
√

2
it was bounded by a constant.) Nevertheless, this difference causes no problem. The
condition β < 100 was applied in [2] for such arguments as to show that the estimate
(5.4) of that work implies Lemma 3 for large x. To make such a conclusion we need
some upper bound on β, but the estimate β < 100n is sufficient for our purposes.

Proposition 2 enables us to bound the error term εn(x) in (3.11) when the operator
Qn,Mn is applied for fn(x). With the help of this estimate we can turn the heuristic
argument after formula (3.11) into a rigorous proof.
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4. The proof of Theorem A

We prove Theorem A by estimating the Fourier transforms ϕ̃n(fn)(t). Let us fix some
constants N and C in such a way that Propositions 1 and 2 hold with this choice of
the parameters. Let us introduce the functions ψn(t) = log ϕ̃n(fn)(t) and the numbers

β̄n = − d2

dt2ψn(t)
∣

∣

∣

t=0
, provided that these quantities are well-defined, i.e. we can take

logarithm in these expressions. We shall prove the following

Lemma 1. If 0 < t < t0, 0 < T < T0 with some sufficiently small t0 > 0 and T0 > 0
then
a)

β̄N =
a1

2(a0 − T )
+ δ(N) |δ(N)| ≤ 4−N (4.1)

β̄n+1 = β̄n +
1

4M2
n

+ δ(n) |δ(n)| ≤ 2−n/4 for n ≥ N (4.2)

b) For |t| <
(

n
βn

)1/3

and n ≥ N ψn(t) is well-defined, and

∣

∣

∣

∣

d3

dt3
ψn(t)

∣

∣

∣

∣

≤ 2

M3
n

+ 2−n/4 for |t| ≤
(

n

β̄n

)1/3

and n ≥ N (4.3)

Proof of Lemma 1. Because of Proposition 1 ϕ̃N (fN )(t) is very close to the Fourier
transform of the normal density function φ(x, σ) with σ2 = a1

2(a0−T ) , and the analogous

result also holds for its derivatives. This implies (4.2) and (4.3) for n = N , since if

ϕ̃N (fN )(t) were exactly normal then we would have β̄N = a1

2(a0−T ) and d3

dt3ψN (t) = 0.

We prove (4.2′) and (4.3) in the general case by induction from n to n+ 1.

Let us introduce the operator T̂n by the formula T̂nψ(t) = log T̃Mn expψ(t). It
follows from (3.9′) that

− d2

dt2
T̂nψn(t)

∣

∣

∣

∣

t=0

=
1

4M2
n

+ β̄n , (4.4)

and
d3

dt3
T̂nψn(t) =

1√
2
ψn

(

t√
2

)

+

√
2i

16M3
n

(

1 +
it√
2Mn

)3 . (4.4′)

Since Mn is very large, (4.4′) together with our inductive hypothesis imply that
∣

∣

∣

∣

d3

dt3
T̂nψn(t)

∣

∣

∣

∣

≤ 2

M3
n+1

+
1√
2
2−n/4 if |t| <

(

n+ 1

β̄n+1

)1/3

. (4.5)

Because of the identities T̂nψn(0) = d
dt T̂nψN (t)

∣

∣

∣

t=0
= 0 it follows from (4.4) and (4.5)

that

<T̂nψn(t) ≥ −
(

β̄n +
1

4M2
n

)

t2

2
−
(

2

M3
n+1

+
2−n/4

√
2

) |t|3
6

≥ − n

10

for |t| ≤
(

n+ 1

β̄n+1

)1/3

,
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where < denotes real part. (Observe that 1 < β̄n < n/10.) This relation implies that

∣

∣

∣
T̃Mn ϕ̃n(fn)(t)

∣

∣

∣
≥ e−n/10 for |t| ≤

(

n+ 1

β̄n+1

)1/3

. (4.6)

We get similarly, by expressing the derivatives of T̃Mn ϕ̃n(fn)(t) through ψn(t) and its
derivatives, that

∣

∣

∣

∣

dj

dtj
T̃Mn ϕ̃n(fn)(t)

∣

∣

∣

∣

≤ en/10 for |t| ≤
(

n+ 1

β̄n+1

)1/3

j = 1, 2, 3. (4.6′)

On the other hand, some calculation with the help of (3.18) yields that

∣

∣

∣

∣

dj

dtj
ϕ̃n+1(fn+1)(t) −

dj

dtj
T̃Mn ϕ̃n(fn)(t)

∣

∣

∣

∣

≤ K2−n/2 for |t| ∈ R1 and j = 0, 1, 2, 3 .

(4.7)

By expressing d3

dt3ψn+1(t) and d3

dt3 T̂nψn(t) by the corresponding Fourier transforms we
get that relations (4.6), (4.6′) and (4.7) imply that

∣

∣

∣

∣

d3

dt3
ψn+1(t) −

d3

dt3
T̂nψn(t)

∣

∣

∣

∣

≤ 1

100
2−n/4.

The last relation together with (4.5) imply (4.3) for n+ 1.

It can be proved similarly that
∣

∣

∣

∣

d2

dt2
ψn+1(t)

∣

∣

∣

t=0
− d2

dt2
T̂nψn(t)

∣

∣

∣

t=0

∣

∣

∣

∣

≤ 2−n/4

which relation together with (4.4) imply (4.2′) for n+ 1. Lemma 1 is proved.

The proof of Theorem A′. It follows from Lemma A that

ϕ̃n(fn)(t) = exp

{

− β̄n

2
t2 +Rn(t)t3

}

with |Rn(t)| < 2

M3
n

+ 2−n/4 if t <

(

n

β̄n

)1/3

.

Hence
∣

∣

∣

∣

∣

∫

|t|<
“

n
β̄n

”1/3
e−itx

[

e−
β̄nt2

2 − ϕ̃n(fn)(t)

]

dt

∣

∣

∣

∣

∣

≤ 2

(

2

M3
n

+ 2−n/4

)

1

β̄2
n

(4.8)

On the other hand
∣

∣

∣

∣

∣

∫

|t|>
“

n
β̄n

”1/3
e−itxe−

β̄nt2

2 dt

∣

∣

∣

∣

∣

≤ exp

{

−n
2/3

2
β̄1/3

n

}

, (4.8′)

and by Property J(n) and the relation αn > 10−14β̄n

∣

∣

∣

∣

∣

∫

|t|>
“

n
β̄n

”1/3
e−itxϕ̃n(fn)(t) dt

∣

∣

∣

∣

∣

≤ 1014n−1/3β̄−2/3
n . (4.8′′)
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Relations (4.8), (4.8′) and (4.8′′) imply that

∣

∣

∣

∣

∣

ϕn(fn)(x) − 1
√

2πβ̄n

exp

{

− x2

2β̄n

}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

e−itx
[

ϕ̃n(fn)(t) − exp{−β̄nt
2} dt

]

∣

∣

∣

∣

≤ 2

β̄2
n

(

2

M3
n

+ 2−n/4

)

+ 1014n−1/3β̄−2/3
n + exp

{

−n
2/3

2
β̄1/3

n

}

≤ 1

β̄2
n

(

4

M2
n

+ 2−n/4

)

+ 2 · 1014n−1/3β̄−2/3
n . (4.9)

In relation (4.9) ϕn(f)(x) can be replaced by fn(x), since for |x| < 2n/2 they are very
close to each other by (3.8), and for |x| > 2n/2 both terms at the left-hand side of (4.9)
are negligible small. (The norming constants An and Bn appearing in the regularization
are almost 0 and 1.)

Hence (4.9) implies that

∣

∣

∣

∣

∣

fn(x) − 1
√

2πβ̄n

exp

{

− x2

2β̄n

}

∣

∣

∣

∣

∣

≤ 1

β̄n

(

4

M2
n

+ 2−n/5 + 1015

(

β̄n

n

)1/3
)

for n ≥ N .

(4.10)

Since
∣

∣β̄n − n
4M2

∣

∣ < 10, hence

∣

∣

∣

∣

∣

1
√

2πβ̄n

exp

{

− 1

2β̄n
x2

}

−
√

2M√
πn

exp

{

−2M2

n
x2

}

∣

∣

∣

∣

∣

≤ const.

n
. (4.10′)

For large n the term 1
β̄n

can be replaced by 5M2

n in (4.10), hence (4.10) and (4.10′) imply

(3.4). Relation (3.5) holds because of Property I(n), and relations (3.2) and (3.3) can
be deduced from Proposition 2 in the same way as the analogous result in [2] in Lemma
10 of Part I. Theorem A′ is proved.

The proof of Theorem A. By Theorem A′ and (3.1)

2−n/2
√
nq̄n(x, T ) =

√
2M√
π

exp

{

−2n+1M2

n
(x−Mn)2

}

+ rn(x) (4.11)

with

|rn(x)| < K√
n
.

We have to check that an error of order O
(

1√
n

)

is committed if Mn is replaced by M
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in (4.11). We have

∣

∣

∣

∣

exp

{

−2n+1M2

n
(x−M)2

}

− exp

{

−2n+1M2

n
(x−Mn)2

}∣

∣

∣

∣

≤ exp

{

−2n+1M2

n
(x−M)2

}

2n+1

n
M2

∣

∣(x−M)2 − (x−Mn)2
∣

∣

≤ 2n+1M2

n
|M −Mn| (2|x−M | + 2|M −Mn|) exp

{

−2n+1

n
M2(x−M)2

}

≤ K√
n
,

since |M −Mn| < CM−12−n/2. This estimate together with (4.11) imply (2.3). The
remaining statements of Theorem A also follow from Theorem A′.

Theorem A gives a good Gaussian approximation only for large n. On the other
hand, the error term in (4.10) is small for all n ≥ N . Beside this, Proposition 1 yields

a good Gaussian approximation for all n ≤ N if M̂0 is very large. These observations
imply the following

Corollary of Theorem A′. Define the sequence β̄n by (4.1) and (4.2) for n ≥ N and
β̄n = β̄N for n ≤ N . For all δ > 0 some positive integer N and thresholds t0 > 0 and
T0 > 0 can be chosen in such a way that

∣

∣

∣

∣

∣

fn(x) − 1

2
√

πβ̄n

exp

{

− 1

2β̄n
x2

}

∣

∣

∣

∣

∣

< δ for all n ≥ 0 and x ∈ R1 (4.12)

if 0 < t < t0 and 0 < T < T0. As a consequence, for arbitrary L > 0 the inequality

fn(x) <
10
√

β̂n

exp

{

− 1

2β̂n

x2

}

for |x| < L

√

β̂n, n = 0, 1, 2, . . . (4.13)

holds with the sequence

β̂n = 10 +
n

M
1/2
n

for 0 ≤ n ≤ N (4.14)

β̂n+1 = β̂n

(

1 + 2−n/4
)

+
1

8M2
n

for n ≥ N (4.14′)

if the conditions of (4.12) hold with a sufficiently small δ = δ(L).
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5. The proof of Proposition A

First we prove formula (2.6). Choose an appropriately small ε > 0 and a large L =
L(ε) > 0. We are going to show that if 0 < t < t0 and 0 < T < T0 with some
t0 = t0(ε, L), and T0 = T0(ε, L) then

fn(x) ≤ 10
√

β̂n

exp

{

− 1

2β̂n

x2

}

for |x| < L

√

β̂n, n = 0, 1, 2, . . . (5.1)

and

fn(x) ≤ ε
√

β̂n

exp

{

− 1

4β̂n

x2

}

for |x| > L

√

β̂n, n = 0, 1, 2, . . . . (5.1′)

Since limn→∞
β̂n

n = 1
8M2 , relations (5.1) and (5.1′) imply (2.6). Because of the

Corollary of Theorem A′ we may assume that relation (5.1) and relation (5.1′) for

L

√

β̂n < |x| < 3L

√

β̂n hold. It is enough to apply this Corollary for 3L, and to choose

L in such a way that exp{−L2

4 } < ε
10 . Moreover, it can be seen from the form of f0(x)

that for n = 0 (5.1′) holds for all x > L

√

β̂0. Hence it is enough to prove (5.1′) for

x > 2L

√

β̂n by induction from n to n+ 1. We shall do it with the help of the following

Lemma 2. If ε > 0 and L > L(ε) > 0 are appropriately chosen (in dependence of the
number C appearing in the conditions of this Lemma), n is some non-negative integer,
M > K > 0 with an appropriate K > 0 and

f(x) ≤ 10√
β

exp

{

− 1

β
x2

}

for |x| < L
√

β (5.2)

f(x) ≤ ε√
β

exp

{

− 1

2β
x2

}

for |x| > L
√

β (5.2′)

f(x) ≤ C√
β

for all x ∈ R1 (5.2′′)

then

Q̄n,Mf(x) ≤ ε3/2

√
β

exp

{

− 1

2β
x2

}

for x > 2L
√

β

Proof of Lemma 2. The proof applies the same ideas as that of Lemma 19 in Part I
of [2]. Let us introduce the functions

`±n,M (x, u, v) = 2n/2

(
√

(

M + 2−(n+1)/2x± 2−n/2u
)2

+ 2−n/2v2 −M

)

,

P (x, u) =

∫

exp
{

−v2
}

f
(

`+n,M (x, u, v)
)

f
(

`−n,M (x, u, v)
)

dv (5.3)

and
P (x) = P (x, 0) . (5.3′)
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Then

Q̄n,Mf(x) = 2

∫ ∞

0

exp
{

−2−n/2u2
}

P (x, u) du , (5.4)

and by the Schwarz inequality

P (x, u) ≤
[

P
(

x+
√

2u
)

P
(

x−
√

2u
)

]1/2

. (5.5)

Let us estimate P (x). It follows from (5.2)–(5.2′′) and the inequality `±n,M (x, 0, v) ≥
`±n,M (x, 0, 0) that

P (x) ≤ ε2

β

√
π exp

{

− 1

2β
x2

}

for x >
√

2βL (5.6)

P (x) ≤ 100

β

√
π exp

{

− 1

β
x2

}

for |x| <
√

2βL (5.6′)

P (x) ≤ C2
√
π

β
for all x ∈ R1. (5.6′′)

These estimates together with (5.4) and (5.5) imply that for x ≥ 2L
√
β

Q̄n,Mf(x) ≤ 2

∫ x
√

2
−L

√
β

0

ε2
√
π

β
exp

{

−x2

2β
− u2

β

}

du

+ 2

∫ x
√

2
+L

√
β

x
√

2
−L

√
β

10ε

β

√
π exp

{

− (x−
√

2u)2

β
− (x+

√
2u)2

2β

}

du

+ 2

∫ ∞

x
√

2
+L

√
β

Cε

β

√
π exp

{

− (x+
√

2u)2

2β

}

du ≤ ε3/2

√
β

exp

{

− 1

2β
x2

}

if L = L(ε) is sufficiently large. Lemma 2 is proved.

Let us apply Lemma 2 with f(x) = fn(x), β = 2β̂n and M = Mn. Since fn+1(x) =
Qn,Mnfn(x) ≤ C1Q̄n,Mnfn(x+mn) with some C1 > 0 hence in order to carry out our
inductive procedure it is enough to show that

C1

√
ε exp

{

− 1

4β̂n

(x+mn)2
}

≤ exp

{

− 1

4β̂n+1

}

.

This can be deduced from the inequality

β̂n+1(x+mn)2 +Kβ̂nβ̂n+1 ≥ β̂nx
2 (5.7)

with sufficiently large K > 0 if ε > 0 is chosen sufficiently small. Since |mn| < CM−1
n

for n ≤ N , |mn| < 1
2M + C12

−n/2 for n > N and β̂n > 10 one gets formula (5.7) with
the help of simple calculation from (4.13) and (4.13′).

The proof of formulas (2.7) and (2.7′) is based on the following
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Lemma 3. Let the function f(x) satisfy the conditions of Lemma 2. Let some numbers
r > 0, β > 0 and α > 0 be given in such a way that r > β > 10, β < 9

10Mn and
1

100 < α < 1−ε1/8. Let us assume that the function f(x) satisfies, beside the conditions
of Lemma 2, the estimates

f(x) ≤ ε√
β

exp

{

− 1

2β
x2

}

for − r < x < −L
√

β (5.8)

f(x) ≤ ε√
β

exp

{

− 1

2β
r2 − α2(n−1)/2

[

(

M − 2−n/2r
)2

−
(

M + 2−n/2x
)2
]}

for − 2−n/2M < x < −r (5.8′)

Put ᾱ = min
(

(1 + ε)α, 1 − ε1/8
)

, ¯̄α = (1 + ε1/8)ᾱ and

r̄ =

√
2¯̄αβM

1 + ¯̄αβ2−n/2
. (5.8′′)

If r̄ <
√

2r then

Q̄n,Mf(x) ≤ ε3/2

√
β

exp

{

− 1

2β
x2

}

for − r̄ < x < −2L
√

β (5.9)

Q̄n,Mf(x) ≤ ε3/2

√
β

exp

{

− 1

2β
r̄2 − ᾱ2n/2

[

(

M − 2−(n+1)/2r̄
)2

−
(

M + 2−(n+1)/2x
)2
]}

for − 2(n+1)/2M < x < −r̄ . (5.9′)

The proof of Lemma 3 is similar to that of Lemma 2. The main difference is that
in Lemma 2, i.e. when x > 0, the main contribution to the integral Q̄n,Mf(x) is
given in a small neighbourhood of the point (u, v) = (0, 0). For x < 0 this state-
ment remains valid only for x > −r̄. For x < −r̄ the main contribution to this in-
tegral is given in a small neighbourhood of the points (u, v) = (0,±v∗) with v∗2 =
2n/2

{

(M − 2−(n+1)/2r̄)2 − (M + 2−(n+1)x)2
}

.

Proof of Lemma 3. Define the function

K(x) =































10√
β

exp
{

− 1
βx

2
}

for |x| < −
√

2βL

ε√
β

exp
{

− 1
2βx

2
}

for x > L
√
β or − r < x < −

√
2βL

ε√
β

exp
{

− 1
2β r

2 − α2(n−1)/2
[

(

M − 2−n/2r
)2 −

(

M + 2−n/2x
)2
]}

for − 2n/2M < x < −r.

Some calculation shows that for fixed x the function

K̄(x, v) = exp{− ¯̄αv2}K2(`±n,M (x, 0, v))

takes its maximum in the point v = 0 for x > − r̄√
2

and in the points ±v∗ satisfying

the equation `±n,M (x, 0, v∗) = − r̄√
2

for x < − r̄√
2
. (At this point we need the condition
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r̄ <
√

2r which guarantees that the estimate (5.8) holds in the point r̄√
2
.) The function

P (x) defined in formula (5.3) can be estimated in the following way:

P (x) ≤
∫

exp
{

−ε1/8v2
}

K̄(x, v) dv ≤ ε−1/4
√
π sup

v
K̄(x, v).

Hence we obtain that

P (x) ≤ ε7/4
√
π

β
exp

{

− 1

2β
x2

}

for − r̄ < x < −
√

2βL (5.10)

P (x) ≤ ε7/4π

β
exp

{

− 1

2β
r̄2 − ¯̄α2n/2

[

(

M − 2−(n+1)/2r̄
)2

−
(

M + 2−(n+1)/2x
)2
]}

for − 2(n+1)/2M < x < −r̄ . (5.10′)

We estimate the integral in (5.4) with the help of (5.5), (5.6), (5.6′), (5.10) and (5.10′).
Let us first consider the case −2(n+1)/2M < x < −r̄ and integrate in the domain
{u > 0, x+

√
2u < −r̄}. This integral can be estimated in the following way:

∫

{u>0,x+
√

2u<−r̄}
P (x, u) du

≤ ε7/4
√
π

β
exp

{

− 1

2β
r̄2 − ¯̄α2n/2

[

(

M − 2−(n+1)/2r̄
)2

−
(

M + 2−(n+1)/2x
)2
]}

∫

{u>0,x+
√

2u<−r̄}
exp

{

−2−n/2(1 − ¯̄α)u2
}

du . (5.11)

We give an upper bound on the right-hand side of (5.11) by replacing ¯̄α with ᾱ in it
and multiplying the expression by exp{−(¯̄α− ᾱ)|r̄+x|}. The integral in this expression
can be estimated by the rather rough bound |r̄ + x|. These estimates show that the
right-hand side of (5.11) is much less than the expression at the right-hand side of (5.9′).
To estimate the integral

∫

P (x, u) du in the case −2(n+1)/2M < x < −r̄ in the domain

{x+
√

2u > −r̄} observe that some calculation yields that

exp

{

− 1

2β
x2

}

= exp

{

− 1

2β
r̄2 − ¯̄α2n/2

[

(

M − 2−(n+1)/2r̄
)2

−
(

M + 2−(n+1)/2x
)2
]}

exp

{

−
(

1

2β
+ 2−(n+2)/2 ¯̄α

)

(x+ r̄)2
}

, (5.12)

because of the definition of r̄.

Because of this identity the estimates (5.10) and (5.10′) enable us to estimate the
integral

∫

P (x, u) du in this case similarly to the estimation of (5.11), only in this case
the last term in (5.12) helps us to bound the pre-exponential term. Similar calculations
enable us to bound the integral (5.4) for x > −r̄ and to deduce the estimates (5.9) and
(5.9′). Lemma 3 is proved.

Formulas (5.8) and (5.8′) hold for f(x) = f0(x) with β = 2β̂0 = 20, α = 1
100 ,

M = M0 and r =
√

2αβM . If the conditions of Lemma 3 are satisfied for fn(x) with
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M = Mn, β = 2β̂n and some αn and rn then Lemma 3 gives an estimate on Q̄n,Mnfn(x).
An argument similar to that given after Lemma 2 gives an estimate when the operator
Q̄n,Mn is replaced by Qn,Mn . In such a way we get by induction the estimates (5.8) and

(5.8′) for fn(x) with β = 2β̂n, an increasing sequence αn which tends to 1− ε1/8 and a

number rn which is a small perturbation of the expression given in (5.8′′). Since β̂n

n has
a positive limit as n→ ∞, the number r = rn which appears in the estimates (5.8) and
(5.8′) for fn(x) during this induction has the order n. By rewriting these estimates for
q̄n(x) with the help of (3.1) we obtain the estimates (2.7) and (2.7′) (with ε1/8 instead
of ε).

6. The proof of Theorem B

The proof of Proposition B is the same as that of Lemma 1 in Part II of [2], hence we
omit it. The proof of Theorem B is also very similar to the method of Part II in [2],

only the number c must be replaced by
√

2 and M by the constant M̄ defined in (1.9)
everywhere. The main difference is that now we have a weaker control about the tail
behaviour of the density function of the average spin pn(x). As a consequence, we can
prove some estimates only in a weaker form. Nevertheless, they are sufficient for our
purposes.

Let us discuss this question in more detail. Introduce the functions p̄n(x) and
gn(x), x ∈ R1 as

p̄n(x) = Kn exp

{

a0

2a1
2n/2M2

}

pn(x̃), x̃ = (x, 0) ∈ R2, (6.1)

gn(x) = 2−n/2p̄n

(

M̄ + 2−n/2x
)

, (6.2)

where pn(x) is defined after formula (1.6), the number M̄ in (1.9), and Kn is the same
norming constant as in (1.7). By formula (1.7)

gn(x) = 2−n/2 exp
{

− a0

2T
x
(

2M̄ + 2−n/2x
)}

q̄n

(

M + 2−n/2

√

a1

T
x

)

,

hence Theorem A yields that

gn(x) =
1√
n

exp
{

− a0

2T
x
(

M̄ + 2−n/2x
)}

[√
2M√
π

exp

{

−2M̄2

n
x2

}

+Rn(x)

]

(6.3)

with

|Rn(x)| ≤ K√
n
. (6.3′)

On the other hand, we get by rewriting Proposition A for gn(x) that there are some
numbers B > 0, D > 0 and Rn, −C1n < Rn < −C2n with some C1 > C2 > 0 such
that

gn(x) ≤ K√
n

exp

{

− a0

2T
x
(

2M̄ + 2−n/2x
)

− B

n
x2

}

for x > Rn (6.4)
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and

gn(x) ≤ K√
n

exp

{

− a0

2T
Rn

(

2M̄ + 2−n/2Rn

)

− B

n
R2

n

−D(Rn − x)
(

2M̄ + 2−n/2(Rn + x)
)

}

for − 2−n/2M̄ < x < Rn.

(6.4′)

(We have to choose B = βa1

T , Rn = 2n/2
√

T
a1

(rn −M) and D =
(

1 − ε− a0

2a1

)

a1

T in

Proposition A. We may assume that D > 0 by choosing ε in (2.7) sufficiently small.)

The estimates (6.4) and (6.4′) are the natural counterparts of the estimates (4.11′)
and (4.11′′) in Part II of [2]. The function fn(x) defined by formula (4.11) of that work
is the analogue of our function gn(x).

The bound given on gn(x) decreases at infinity slower than its counterpart in [2]
because of the multiplying term 1/n in formula (6.4). Another, and even more important
difference between the two cases is that in the points x ∼ −const. n relations (6.4) and
(6.4′) give no better bound on the function gn(x) than exp{Cn} with some positive
C > 0. As a consequence, in several estimates we have to multiply the upper bound by
an exponential term instead of a constant, as it is the case in [2]. But this estimates
suffice for us, because in the final estimates we have a double exponential term which
compensates this effect.

Applying the same argument as in [2] we get that Theorem B follows from an analogue

of Proposition 1′ in Part II of [2] which is obtained if c is replaced by
√

2 and M by
M̄ in this result. For the sake of convinience we also make the following modification.

From now on we shall work with the function Kn exp
{

a0

2a1
2n/2M2

}

pn(x) instead of the

original function pn(x) and we denote it in the same way. This modification influences
only the norming constant Ln in the Radon–Nikodym derivative.

The proof of this modified version of Proposition 1′ of [2] is very similar to the original
one. We have to estimate certain integral expressions in the domains Ωi

n, i = 1 2, 3,
defined in (2.14)–(2.14′′). We rewrite these integrals in polar coordinate system and
first estimate the integrals on a circle of fixed radius r. This can be done in the same
way as in [2]. Then the integrals with respect to r can be estimated with the help of
formulas (6.4) and (6.4′) instead of formulas (4.11′) and (4.11′′) in [2]. We get in such
a way slightly weaker estimates than those in [2], but they suffice for our purposes.
Lemmas 2 and 3 of Part II of [2] remain valid after the replacement of c and M by√

2 and M̄ in the following weaker form: In Lemma 3 the multiplying term K and in
Part a) of Lemma 2 the multiplying term cn before the exponent must be replaced by
Kn, where K is some appropriate constant depending on t and T . Also the estimates
of Section 5 of Part II of [2] remain valid. The only place where the argument of the
proof must be slightly changed is Part a) where S1

nf(x) is estimated for x ∈ Ω1
n. The

argument of [2] works if we show that the expressions Jn,ε̄(x1) defined by the formula

Jn,ε̄(x
(1)) =

∫

|t|<ε̄20.3n

exp

{

tx(1)

T
+

√
2
ḡn+1

2
t

}

gn(t) dt (6.5)

with some sufficiently small ε̄ > 0 satisfy the following relations:

Jn,ε̄(x
(1)) =

(

1 +O(2−0.1n)
)

Jn,ε̄(M) if x ∈ Ω1
n , (6.6)
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and

Jn,ε̄(M̄) > K1 > 0. (6.7)

Relation (6.7) simply follows from (6.3) if we restrict the domain of integration in (6.5)
to the domain |t| < 1

3M

√
n log n. (The corresponding estimate (5.11) in Part II of [2]

also contained an upper bound on Jn,ε̄(M̄), but we do not need this bound.) Then
relation (6.5) follows from the following observations: The ratio of the integrands in
the expressions Jn,ε̄(x

(1)) and Jn,ε̄(M̄) are closer to 1 than const.2−0.05n if |t| < 20.05n

and x(1) ∈ Ω1
n and therefore |x(1) − M̄ | < 2−0.2n, and the contribution of the domain

|t| > 20.05n to these integrals is less than exp{−const.20.05n}. The remaining part of
the proof works with some natural modification of the proof given in [2], hence we omit
it.

7. The proof of Theorems 1 and 2

To prove Theorem 1 first we show that for all q, 2−0.1 < q < 1 there are some thresholds
n0 and N0(n, q) such that if n ≥ n0 and N ≥ N0(n, q) then

dµhN

n,N

dµn
(x1, . . . , x2n) = fhN

n,N

(

2−n
2n
∑

j=1

xj

)

(7.1)

with

fhN

n,N (x) = Ln exp
{

ḡ2n/2(x(1) − M̄) + Ā2n/2x(2)2 + εn(x)
}

for x ∈ Ω1
n , (7.2)

where

sup
x∈Ω1

n

|εn(x)| ≤ qn , (7.2′)

fhN

n,N (x) ≤ Ln exp

{

ḡ2n/2(|x| − M̄) −
(

ḡ

2M̄
− Ā

)

20.1n + qn

}

for x ∈ Ω2
n (7.3)

fhN

n,N (x) ≤ Ln exp

{

ḡ2n/2

M̄
(|x|2 − M̄2)

}

if x > M̄ + 2−0.2n (7.4)

fhN

n,N (x) ≤ Ln exp

{

ḡ2n/2

2M̄
(|x|2 − M̄2)

}

if 0 < x < M̄ − 2−0.2n (7.4′)

with the numbers ḡ and Ā appearing in Proposition B and some appropriate norming
constant Ln which satisfies the relation

C1 < 2−n/4L̄n < C2 with some 0 < C1 < C2 <∞ , (7.5)

where L̄n = LnKn exp
{

a0

2T 2n/2M̄2
}

with the same norming constant Kn as in (1.9).

In the proof of this statement we argue just as in Section 6 of Part II of [2]. Because
of Theorem B and Proposition B the constants gn and An can be replaced by ḡ2n/2

and Ā2n/2 in (2.15)–(2.17) by slightly changing the error terms. To show that Ln =
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Ln(N,hN ) can be chosen independently of N and hN we observe that a calculation
analogous to that in Section 6 of [2] yields that

µhN

n,N

(

Ω2
n ∪ Ω3

n

)

≤ Ln(N,hN ) exp
{

−K20.3n
}

(7.6)

and for

Tn =

∫

Ω1
n

exp
{

ḡ2n/2(x(1) − M̄) + Ā2n/2x(2)2
}

pn(x) dx . (7.7)

the relation

µhn

n,N (Ωn
1 ) = Ln(N,hN )Tn (1 +O(qn)) , 2−0.1 < q < 1, (7.8)

holds. The estimate

C12
−n/4 < Kn exp

{ a0

2T
2n/2M̄2

}

Tn < C22
−n/4 with some 0 < C1 < C2 <∞ . (7.9)

also holds true.

The proof of (7.9) is similar to that of (6.9) in [2], only one has to observe that ḡ equals
a0M̄

T , i.e. −1 times the coefficient of x in (6.3)–6.4′), and this causes some cancellation if

we express pn(x) through gn(x) in the integral (7.7). Since µhn

n.N (R2) = 1, relations (7.6)
and (7.8) imply that Ln can be chosen as T−1

n , and then (7.9) implies (7.5). Theorem
1 can be proved with the help of this information in the following way:

Fix some integer k ≥ 0, and define for all n ≥ k and measurable sets A ⊂ (R2)2
k

the

cylindrical set A(n) = A× (R2)2
n−2k ⊂ (R2)2

n

. Put

µ̃n(A) = Ln

∫

Ã(n)

exp







ḡ2−n/2
2n
∑

j=1

(x
(1)
j − M̄) + Ā2−3n/2

( 2n
∑

j=1

x
(2)
j

)2






2n
∏

j=1

p(xj) dxj

with Ã(n) = A(n) ∩ {(x1, . . . , x2n), 2−n
∑2n

j=1 xj ∈ Ω1
n}. We prove similarly to [2] that

if n > n0 and N > N0(n, q) then

∣

∣

∣µ̃n(A(n)) − µhN

n,N (A(n))
∣

∣

∣ ≤ Kqn

with some K > 0 independent of the set A.

Theorem 1 can be proved with the help of the above relation similarly to [2]. More-
over, this argument also yields the following

Corollary of Theorem 1. Let µ̄n denote the projection of of the measure µ̄ constructed
in Theorem 1 to (R2)2

n

. There is some function f̄n(x) such that

dµ̄n

dµn
(x1, . . . , x2n) = f̄n



2−n
2n
∑

j=1

xj



 .
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Let n > n0 with some threshold n0 > 0. Then relations (7.1)—(7.5) remain valid if

fhN

n,N is replaced by f̄n(x) in them.

Now we turn to the proof of Theorem 2. Let us introduce the Hamiltonian Hk in the

volume (R2)2
k

by the formula

Hk(x1, . . . , x2k) = −
2k−1
∑

i=1

2k
∑

j=i+1

d(i, j)−3/2xixj .

Let σ = {σ(j) = (σ1(j), σ2(j)), j ∈ Z} be a µ̄ distributed vector and consider the
random vector {

(

Rnσ
(1)(j), Rnσ

(2)(j)
)

, 1 ≤ j ≤ 2k} defined by formulas (1.3)–(1.5)

with An = 2n/2
√
n and Bn = 23n/4. The argument at the beginning of Section 7 in

Part II of [2] also shows that the density function hn,k(x1, . . . , x2k) of this vector can
be expressed in the following way:

hn,k(x1, . . . , x2k)

= Ln,kf̄n+k

(

2−k
2k
∑

j=1

x̃j

)

exp

{

− 1

T
Hk

(

2n/4x̃1, . . . , 2
n/4x̃2k

)} 2k
∏

j=1

pn(x̃j)

(7.10)

with

x̃ = x̃(x) =
(

M̄ + 2−n/2
√
nx(1), 2−n/4x(2)

)

for x =
(

x(1), x(2)
)

. (7.10′)

Let us define the sets Wn ⊂ R2 and W̄n ⊂ R2 by the formulas

W̄n =

{

(x(1), x(2)), M̄ −
√
T

8M̄
2−n/2

√

n log n < |x| < M̄ +

√
T

8M̄
2−n/2

√

n log n,

|x(2)| < 2−n/4n1/5, x(1) > 0

}

Wn =
{

(x(1), x(2)), x̃(x) ∈ W̄
}

,

We claim that for all j = 1, 2, . . . , 2k

P
(

(

Rnσ
(1)(j), Rnσ

(2)(j)
)

/∈Wn

)

≤ n−1/100 if n ≥ n0. (7.11)

and

hn,k(x1, . . . , x2k) = hk(x1, . . . , x2k)
(

1 +O(n−1/9)
)

if xj ∈Wn for all j = 1, 2, . . . , 2k, (7.12)

where hk(x1, . . . , x2k) is the function defined in (1.11) (with s = 2).
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Relations (7.11) and (7.12) together imply Theorem 2. Relation (7.12) can be proved
with the help of the following estimates:

pn(x) = Kn

[

exp

{

−2n+1M2a1

nT

(

|x| − M̄
)2
}

+O

(

1√
n

)]

exp
{

− a0

2T
2n/2x2

}

= Kn exp

{

−2n+1M2a1

nT

(

|x| − M̄
)2 − a0

2T
2n/2

(

x(1)2 + x(2)2
)

+O
(

n−1/9
)

}

= K̄n exp

{

−2n+1M2a1

nT

(

x(1) − M̄
)2

− a0

2T
2n/2

(

2M̄(x(1) − M̄) + x(2)2
)

+O
(

n−1/9
)

}

if x ∈ W̄n, (7.13)

since in this case we can put the O(·) term into the exponent by appropriately decreasig
the power of n in it,

2n

n
(|x| − M̄)2 =

2n

n

(

x(1) − M̄
)2

+O
(

n−3/10
√

log n
)

for x ∈ W̄n , (7.14)

and

2n/2x(1)2 = 2n/2M̄2 + 2 · 2n/2M̄(x(1) − M̄) +O
(

2−n/2n log n
)

for x ∈ W̄n. (7.15)

We also have

Hk(2n/4x1, . . . , 2
n/4x2k) = Ck,n − 2n/2

[2k−1
∑

i=1

2k
∑

j=i+1

d(i, j)−3/2x
(2)
i x

(2)
j

+ a0M̄
2k
∑

i=1

(

1 − 2−k/2
)

(x
(1)
i − M̄)

]

+O
(

2−n/2n log n
)

if xi ∈ W̄n, j = 1, . . . , 2k, (7.16)

since
∑2k

j=1 d(i, j)
−3/2 = a0(1−2−k/2) for all 1 ≤ i ≤ 2k, and 2n/2(x

(1)
i −M̄)(x

(1)
j −M̄) =

O(2−n/2n log n) in this case.

Because of the Corollary of Theorem 1 and the relation ḡ = a0M̄
T

f̄n+k



2−k
2k
∑

j=1

xj



 = Cn,k exp

{

2n/2

(

a0M̄

T
2−k/2

2k
∑

j=1

(x(1) − M̄)

+ Ā2−3k/2

( 2k
∑

j=1

x
(2)
j

)2)

+O(qn)

}

if xj ∈ W̄n, j = 1, . . . , 2k. (7.17)

Relation (7.12) follows from (7.10), (7.13), (7.16) and (7.17). Relation (7.11) can be
proved in the same way as it is done in Section 7 of Part II of [2], only the relations
∣

∣|x|−M
∣

∣ < c−0.4n and |x(2)| < c−0.45n must be replaced by
∣

∣|x|−M̄
∣

∣ <
√

T
8M̄

2−n/2
√
n log n

and |x(2)| < 2−n/4n1/5 in the definition of the set Ω̃1
n. We get a weaker bound in (7.11)

than the corresponding estimate in [2], but it is sufficient for our purposes. Theorem 2
is proved.
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