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Abstract

Here I prove non-central limit theorems for non-linear functionals of vector
valued stationary random fields under appropriate conditions. They are the
multivariate versions of the results in paper [6]. Previously A. M. Arcones
formulated such a result in Theorem 6 of his paper [1]. But there are serious
problems with his result. Even its formulation must be corrected. I explain
the problems related to Arcones’ paper in the main text. In this paper I
present the right formulation of the multivariate version of the non-central
limit theorem in paper [6] together with its correct proof. To do this first
the theory of the Gaussian stationary random fields described in the work [9]
had to be generalized to the case of vector valued random fields. This was
done in my work published in two subsequent papers [10] and [11]. Here I
prove the multivariate version of the result about non-central limit theorems
in paper [6] with their help.
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Let us have a d-dimensional vector valued Gaussian stationary random
field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , where Zν denotes the lattice points
with integer coordinates in the ν-dimensional Euclidean space Rν and a func-
tion H(x1, . . . , xd) of d variables with arguments xs ∈ Rν , 1 ≤ s ≤ d. We
define with their help the random variables Y (p) = H(X1(p), . . . , Xd(p)) for
all p ∈ Zν . Let us introduce for all N = 1, 2, . . . the normalized sum

SN = A−1
N

∑

p∈BN

Y (p)

with an appropriate norming constant AN > 0, where

BN = {p = (p1, . . . , pν) ∈ Zν : 0 < pk ≤ N for all 1 ≤ k ≤ ν}. (1.1)

In this paper a non-Gaussian limit theorem is proved for these nor-
malized sums SN with an appropriate norming constant AN if this vector
valued Gaussian stationary random field X(p), p ∈ Zν , and the function
H(x1, . . . , xd) satisfy certain conditions. Paper [6] contains such limit theo-
rems for non-linear functionals of scalar valued stationary Gaussian random
fields, and here their natural multivariate generalizations are presented.

A. M. Arcones formulated such a result in Theorem 6 of paper [1], but I
found his discussion unsatisfactory. Here I explain the main problems related
to his proof.

In the proof of the limit theorem in Theorem 6 of [1] the spectral rep-
resentation of the covariance function of a vector valued stationary random
process is needed. This representation is presented in formula (3.2) of [1].
But the properties of the measures (actually complex measures) of G(p,q) are
not discussed. The same can be told about the random spectral measures
ZG(p,p) in the next formula (3.3). These objects were defined in the scalar
valued case, and their basic properties were also proved. But the general-
ization of these definitions to the vector valued case and the proof of their
properties are far from trivial.

The same can be said about the statements of paper [1] in formulas (3.5),
(3.6) and (3.7). Here first the statements must be corrected. In formula (3.5)
the arguments Ai, 1 ≤ i ≤ d, must be replaced by Ai

n
. Then it must be ex-

plained what kind of limit is taken in this formula. Finally, it must also be
explained what kind of limit (Z

G
(1,1)
0

, . . . , Z
G

(d,d)
0

) random spectral measures

appear here as the limit. It is not a random spectral measure in the clas-
sical sense, it can be interpreted only as the random spectral measure of a
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generalized random field. The necessary definitions and proofs are missing
again.

Formulas (3.6) and (3.7) in [1] contain a limit theorem which is actu-
ally a special case of Theorem 6. The main step in Arcones’ proof consists
in the reduction of the result in Theorem 6 to this special case. But the
proof of the result formulated in (3.6) and (3.7) is missing. This is a limit
theorem for a sequence of random vectors. The convergence of the single co-
ordinates of these vectors follows from the already proved result in [6] which
deals with the one-dimensional version of this problem. (More precisely, this
one-dimensional convergence would follow from this already proved result if
formula (3.7) were written in the correct form. The random integrals defined
in it should be taken on Rτ instead of [−π, π]τ .) But I do not see how the
results proven in the one-dimensional case could help in the proof the conver-
gence of the random vectors, i.e. how the result formulated in (3.6) and (3.7)
could be proved by the methods of [1]. I have the impression that the proof
of these formulas is not simpler than a direct proof of Theorem 6 in [1].

An appropriate proof of the non-central limit theorem should start with a
good and complete description of the spectral representation of the covariance
function of vector valued stationary processes. This is done e.g. in paper [5]
of Cramer or in paper [13] of Rozanov. This result is missing from Arcones’
paper.

In the present paper I recall the multivariate version of this result where
a stationary random field is considered with elements indexed by the lattice
points p ∈ Zν . I do this in an overview about the results in [10] and [11].
In this overview I also speak about the random spectral measure of a vector
valued Gaussian stationary random field which yields a spectral representa-
tion of the (vector valued) elements of these random fields. This is a natural
vector valued counterpart of the result about the spectral representation of
scalar valued Gaussian stationary random fields.

There are also some other notions and results related to vector valued
Gaussian stationary random fields whose discussion is needed in the proof
of the non-central limit theorem for non-linear functionals of such random
fields. Such notions are the generalized vector valued Gaussian random fields,
their spectral and random spectral measures, and the multiple Wiener–Itô
integral with respect to the coordinates of a vector valued random spectral
measure. They are introduced, and their most important properties are
proved in papers [10] and [11]. The goal of this paper is to give a correct
proof of the multivariate generalization of the results in [6] with their help.
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In short, in my opinion the proof about the multivariate generalization
of the result in [6] must be started from the very beginning. First the basic
results about the behavior of vector valued stationary random fields must be
worked out. This is missing from Arcones’ paper. Moreover, it seems to me
that a direct proof of Theorem 6 in [1] would be not more difficult than the
proof of its reduced version presented in formulas (3.6) and (3.7) of [1].

Let me remark that although Arcones’ proof of the non-central limit the-
orem for non-linear functionals of vector valued Gaussian random fields was
problematic, the proof of its counterpart about the central limit theorem for
such linear functionals under appropriate conditions was correct. Moreover,
in the study of this result he proved such an estimate in Lemma 1 of his
paper which was applied also in this work.

This paper consists of five sections and two appendices. In Section 2
the basic notions and results of papers [10] and [11] are recalled. Section 3
contains the main results of this paper. In Section 4 the preparatory lemmas
needed in the proof of the basic theorems are presented. Section 5 contains
the proof of these theorems. In Appendix A the background of the limit
theorems of this paper is discussed. In Appendix B I prove that not only
the finite dimensional distributions of the stochastic processes considered in
Theorem 3.4 converge, but these processes also weakly converge to their limit.

Remark: It was professor Herold Dehling who asked me to clarify the proof
of Theorem 6 in Arcones’ paper [1]. The goal of this work together with the
preliminary papers [10] and [11] was to answer Dehling’s question. It turned
out that to settle this problem first the theory of vector valued stationary
Gaussian random fields has to be worked out. This theory is similar to the
theory of scalar valued Gaussian random fields, but there are also some essen-
tial differences between them. Hence the theory of vector valued stationary
Gaussian random fields cannot be considered as a simple generalization of
the theory in the scalar valued case. I am grateful to professor Dehling for
calling my attention to this problem.

2. On some properties of vector valued Gaussian stationary ran-

dom fields.

In this section I present the most important results of [10] and [11] needed
in this paper. At this point I do not give their detailed formulation. I shall
present them in a more detailed form when they appear in our investigation.
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We are working with a d-dimensional vector valued Gaussian station-
ary random fields X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , where Zν denotes
the lattice points with integer coordinates in the ν-dimensional Euclidean
space Rν with expectation EXj(0) = 0 for all 1 ≤ j ≤ d. The dis-
tribution of such random fields is determined by their covariance function
rj,j′(p) = EXj(0)Xj′(p) = EXj(m)Xj′(m+ p), 1 ≤ j, j′ ≤ d, m, p ∈ Zν .

In a result of [10] it was shown that this covariance function rj,j′(p), 1 ≤
j, j′ ≤ d, can be presented in the following way. For all 1 ≤ j, j′ ≤ d there is
a complex measure Gj,j′ on the torus [−π, π)ν with finite total variation such
that rj,j′(p) =

∫
ei(p,x)Gj,j′( dx) for all p ∈ Zν , and G = (Gj,j′), 1 ≤ j, j′ ≤ d,

is an even, positive semidefinite matrix valued measure on the torus [−π, π)ν .
G is called the spectral measure of the random field X(p), p ∈ Zν . (A d-
dimensional matrix valued measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, is called even

if Gj,j′(−A) = Gj,j′(A) for all 1 ≤ j, j′ ≤ d and measurable sets A.) For a
more detailed discussion see Section 2 in [10].

In Section 3 of [10] I also defined a d-dimensional vector valued random
spectral measure ZG = (ZG,1, . . . , ZG,d) corresponding to a d-dimensional
matrix valued spectral measure G together with a random integral with re-
spect to it in such a way that the random integrals Xj(p) =

∫
ei(p,x)ZG,j( dx),

p ∈ Zν , 1 ≤ j ≤ d, define a d-dimensional Gaussian stationary random field
with matrix valued spectral measure G. Besides, I gave the basic properties
of a random spectral measure ZG corresponding to a spectral measure G.
These properties determine the distribution of the random spectral measure
as a function of the spectral measure to which it corresponds.

Once, these results are proved it is not difficult to generalize them to
the case of vector valued Gaussian stationary random fields defined on the
lattice 1

K
Zν with some K > 0. We define the covariance function rj,j′(p) =

EXj((0)Xj′(p) = EXj(m)Xj′(p +m), 1 ≤ j, j′ ≤ d, p,m ∈ 1
K
Zν also in this

case. There exists a spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, defined on
the torus [−Kπ,Kπ)ν which is a d-dimensional matrix valued even measure,
and satisfies the identity rj,j′(p) =

∫
ei(p,x)Gj,j′( dx) for all p ∈ 1

K
Zν and

1 ≤ j, j′ ≤ d. There is also a vector valued random spectral measure ZG =
(ZG,1, . . . , ZG.d) corresponding to this spectral measure G such that Xj(p) =∫
ei(p,x)ZG,j( dx), 1 ≤ j ≤ d, p ∈ 1

K
Zν , is a vector valued Gausssian stationary

random field on 1
K
Zν with expectation zero and spectral measure G.

It is useful also to consider vector valued Gaussian stationary random
fields defined in the space Rν . It turned out that it is even more useful to
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work with vector valued generalized Gaussian stationary random fields which
can be considered as their generalization. They are random fields

X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)) with parameter set ϕ ∈ S

(instead of Zν or Rν), where S denotes the class of real valued functions in
the ν-dimensional Schwartz space. The definitions applied in the theory of
generalized random fields were explained in Section 4 of [10] together with
the notions needed to understand them.

In paper [10] generalized vector valued Gaussian stationary random fields
were also constructed, and their properties were explained. Results similar
to those of Sections 2 and 3 in [9] about ordinary vector valued Gaussian
stationary random fields were proved for them. Generalized vector valued
stationary Gaussian random fields were constructed with the help of their
spectral measure which were also defined.

The spectral measure of a generalized vector valued stationary random
field X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S, has properties similar to that
of an ordinary vector valued stationary random field, but there are some
important differences between them. It is a d × d even, positive definite
matrix valued function G(A) = (Gj.j′(A)), 1 ≤ j, j′ ≤ d, A ⊂ Rν , defined on
the bounded, measurable subsets of the ν-dimensional Euclidean space Rν

whose restriction to the measurable subsets of any finite cube [−K,K]ν is
a matrix valued measure with coordinates that are complex measures with
finite total variation. On the other hand, sup

A
|Gj,j(A)|, where supremum is

taken for all bounded, measurable sets A need not be finite. Only the weaker
condition
∫
(1 + |x|)−rGj,j( dx) <∞ for all 1 ≤ j ≤ d with some number r > 0,

(2.1)
is imposed. This property is called moderate increase at infinity.

The definition and construction of spectral measures of vector valued
generalized Gaussian stationary random fields was done in the following way.

Let us consider an even, positive definite matrix valued function G(A) =
(Gj.j′(A)), 1 ≤ j, j′ ≤ d, defined on the bounded and measurable sets A ⊂ Rν

with moderate increase at infinity, and such that the restriction of its co-
ordinates to a finite cube [−K,K]ν is a complex measure with finite total
variation. If there exists a generalized vector valued Gaussian stationary ran-
dom field X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S, with the additional property
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EXj(ϕ) = 0, 1 ≤ j ≤ d, for all ϕ ∈ S such that the identity

EXj(ϕ)Xj′(ψ) =

∫
ϕ̃(x)ψ̃(x)Gj.j′( dx), 1 ≤ j, j′ ≤ d, for all ϕ, ψ ∈ S

holds, where ˜ denotes Fourier transform, and overline means complex conju-
gate, then this set of matrix valued functionsG(A) = (Gj.j′(A)), 1 ≤ j, j′ ≤ d,
is called the spectral measure of this generalized random field X(ϕ), ϕ ∈ S.

For any set of matrix valued functions G(A) = (Gj,j′(A)), 1 ≤ j, j′ ≤ d,
with the above properties there exists a generalized vector valued Gaussian
stationary random field X(ϕ), ϕ ∈ S, with expectation zero whose covari-
ance function EXj(ϕ)Xj′(ψ), ϕ, ψ ∈ S, satisfies the above conditions. This
means that a matrix valued function with the above properties is the spec-
tral measure of a generalized, vector valued Gaussian stationary random field.
Moreover, the distribution of this random field is determined by its spectral
measure.

Given the spectral measure G = (Gj,j′(·)) of a generalized random field,
such a vector valued random spectral measure ZG = (ZG,1, . . . , ZG,d) can be
constructed for which Xj(ϕ) =

∫
ϕ̃(x)ZG,j( dx), 1 ≤ j ≤ d, ϕ ∈ S, is a

generalized Gaussian stationary random field with spectral measure G and
EXj(ϕ) = 0 for all 1 ≤ j ≤ d and ϕ ∈ S. We say that such a random
spectral measure is adapted to the generalized spectral measure G. The
basic properties of the random spectral measures adapted to a generalized
spectral measure also were proved. Their distribution is determined by the
spectral measure to which they are adapted.

The introduction of the random spectral measures corresponding to the
spectral measures of generalized Gaussian stationary random fields turned
out to be useful for us. This class of random spectral measures is much larger
than the class of random spectral measures corresponding to the spectral
measure of a classical vector valued Gaussian random field. The limit in the
limit theorems of this paper could be expressed by means of a sum of multiple
Wiener–Itô integrals with respect to such a random spectral measure.

In the subsequent part of the works [10] and [11] my goal was to give
a good representation of those random variables with finite second moment
which are measurable with respect to the σ-algebra generated by the random
variables of the underlying vector valued random field and to present a useful
formula for their shift transforms. Such results turned out to be very useful
in the study of the limit theorems I was interested in. A good representation
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can be given with the help of multiple Wiener–Itô integrals with respect to
vector valued random spectral measures introduced in Section 5 of [10].

To define multiple Wiener-Itô integrals I considered the matrix valued
spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, of a d-dimensional Gaussian sta-
tionary random field, (ordinary or generalized one), and took a random spec-
tral measure ZG = (ZG,1, . . . , ZG,d) corresponding to it. In Section 5 of [10]
I defined for all n ≥ 1 and sequences of integers j1, . . . , jn with the property
1 ≤ js ≤ d for all 1 ≤ s ≤ n a set Kn,j1,...,jn = Kn,j1,...,jn(Gj1,j1 , . . . , Gjn,jn)
of complex number valued functions with arguments in Rnν . (In the ter-
minology of this paper Kn,j1,...,jn is a subset of the class of complex valued
functions f(x1, . . . , xn) of n variables with arguments xs ∈ Rν , 1 ≤ s ≤ n). I
defined the n-fold Wiener–Itô integral

In(f |j1, . . . , jn) =

∫
f(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn)

for the functions f ∈ Kn,j1,...,jn . (The definition of the set of functions
Kn,j1,...,jn is recalled in Section 4 of this paper before the formulation of
Proposition 4A.) Then I proved the most important properties of these ran-
dom integrals.

In Section 6 of paper [10] I proved a technical result, called the diagram
formula about the expression of the product of two multiple Wiener–Itô in-
tegrals as a sum of multiple Wiener–Itô integrals.

These results were exploited in paper [11]. Here I recalled the notion of
Wick polynomials which turned out to be a useful tool in our investigations.
Wick polynomials are natural multivariate generalizations of Hermite poly-
nomials. Their definition together with their most important properties was
recalled from [9] in Section 2 of [11]. Section 2 of [11] also contains an impor-
tant formula about the expression of Wick polynomials by means of multiple
Wiener–Itô integrals and another important formula about the calculation of
the shift transforms of a random variable presented in the form of a sum of
multiple Wiener–Itô integrals. This made possible to reformulate our limit
problems to limit problems about sums of multiple Wiener–Itô integrals. A
result in Section 3 of [11] was proved in order to investigate such problems.
It plays an important role in the investigation of this paper, hence I recalled
it in Proposition 4A of this paper.
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3. Formulation of the main results.

In this section I present the main results of this paper. I shall compare
both the formulation of the conditions and the proof of the results with those
appearing in the study of the analogous results in the scalar valued case. But
I shall refer to [9] instead of [6] in this comparison, because in that work the
proofs are worked out in more detail.

I shall work with such random fields for which EXj(p) = 0 for all 1 ≤ j ≤
d and p ∈ Zν . Besides this property I shall impose two kinds of conditions
in this paper. The first of them deals with the covariance function rj,j′(p) =
EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν , of the vector valued Gaussian stationary
random field X(p) = (X1(p), . . . , Xd(p)), considered in this paper, the second
one with the function H(x1, . . . , xd) which appears in the definition of the
random sums whose limit behavior is investigated.

The following condition is imposed about the covariance function
rj,j′(p) = EXj(0)Xj′(p).

lim
T→∞

sup
p : p∈Zν , |p|≥T

∣∣∣rj,j′(p)− aj,j′(
p
|p|
)|p|−αL(|p|)

∣∣∣
|p|−αL(|p|)

= 0 (3.1)

for all 1 ≤ j, j′ ≤ d, where 0 < α < ν, L(t), t ≥ 1, is slowly varying at
infinity, bounded in all finite intervals, and aj,j′(t) is a real valued continuous
function on the unit sphere Sν−1 = {x : x ∈ Rν , |x| = 1}, which satisfies the
identity aj,j′(x) = aj′,j(−x) for all x ∈ Sν−1 and 1 ≤ j, j′ ≤ d.

I construct a vector valued Gaussian stationary random field which satis-
fies relation (3.1). This example indicates that the covariance functions which
satisfy (3.1) have some additional properties, too. These properties will be
discussed in Appendix A, because they may help in a better understanding
of the picture about the limit theorems of this paper.

Example for a stationary random field with a covariance function that satis-
fies relation (3.1). I shall construct a stationary random field whose covari-
ance function satisfies (3.1). I will do this by defining the spectral measure
of such a random field. To do this I recall some results about the Fourier
transform of generalized functions from the literature.

In the ν-dimensional space Rν the Fourier transform of the homogeneous
function |x|λ (as the Fourier transform of a generalized function) equals
C|p|−λ−ν with some coefficient C = C(λ, ν) > 0. (See the list of Fourier
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transforms at the end of the book [7].) The value of this coefficient C(λ, ν)
is known, but it has no importance for us.

On the other hand, if u(x), x ∈ Rν , is a sufficiently smooth function,
concentrated in a compact domain, and u(0) = 1, then the Fourier transform
of |x|λu(x) equals

∫
ei(x,p)|x|λu(x) dx = C(λ, ν)|p|−λ−ν(1 + o(1)).

In the following construction the above property of the Fourier transform
of |x|λu(x) will be exploited. Define some functions gj.j′(x), 1 ≤ j, j′ ≤ d,
x ∈ [−π, π)ν , in the following way. Take a non-negative, smooth function
u(x) concentrated in the cube [−π, π]ν such that u(−x) = u(x), and u(0) = 1.
Put gj,j(x) = |x|α−νu(x), for 1 ≤ j ≤ d, and gj,j′(x) = εj,j′|x|

α−νu(x) for
1 ≤ j, j′ ≤ d if j 6= j′ with a sufficiently small real valued coefficient εj,j′ such
that εj,j′ = εj′,j. (One could choose a complex valued coefficient εj,j′ too, but
this would demand a more complicated argument.) I claim that (gj,j′(x)),
1 ≤ j, j′ ≤ d, x ∈ [π, π)ν , with the above defined functions gj,j′(·) is a spectral
density function, and the covariance function rj,j′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν ,
of a stationary random field with this spectral density satisfies relation (3.1)

with |p|−α, L(p) = 1, aj,j

(
p
|p|

)
= C(α−ν, ν), and aj,j′

(
p
|p|

)
= εj,j′C(α−ν, ν)

for j 6= j′.
Indeed, relation (3.1) holds with such a choice, because rj,j′(p) is the

Fourier transform of gj,j′(x). We still have to check that (gj,j′(x)), 1 ≤ j, j′ ≤
d, is a spectral density matrix. The main point is to show that this matrix
is positive definite. This property holds, since this matrix has the form
|x|α−νu(x)(I +D(ε)) with a small matrix D(ε), where I denotes the identity
matrix.

Observe that the function aj,j′
(

p
|p|

)
|p|−αL(|p|) = aj,j′

(
p
|p|

)
|p|−α appear-

ing in formula (3.1) with the functions defined in the above example is the

Fourier transform of g
(0)
j,j (x) = |x|α−λ if the indices j and j′ of the above func-

tion agree, and g
(0)
j,j′(x) = εj,j′ |x|

α−λ if j 6= j′. Besides, the matrix (g
(0)
j,j′(x)),

1 ≤ j, j′ ≤ d, is the spectral density of a vector valued, stationary, gen-
eralized random field. This spectral density has the homogeneity property
(g

(0)
j,j′(tx)) = tα−ν(g

(0)
j,j′(x)), 1 ≤ j, j′ ≤ d, for all t > 0. The spectral den-

sity (gj.j′(x)), 1 ≤ j, j′ ≤ d, is in some sense close to this spectral density

(g
(0)
j,j′(x)). In Appendix A I show that the spectral measure of a vector valued

stationary random field whose covariance matrix satisfies relation (3.1) has a
similar behavior. It is close in some sense to such a spectral measure which
has some homogeneity property. (This spectral measure belongs to a gener-
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alized random field.) This homogeneity property has deep consequences in
the theory of the limit theorems we are interested in.

Remark: There is a natural generalization of the results of the present paper.
One may consider such vector valued stationary Gaussian random fields,
where the partial sums of different coordinates have a limit with different
normalization. They satisfy limit theorems similar to those of the present
paper, but the different behavior of the different coordinates must be taken
into consideration in the choice of the normalization.

Such more general models were considered in the paper [14] of Sanchez
de Naranjo, who considered models whose covariance matrices satisfy a gen-
eralized version of relation (3.1). Namely, they satisfy the relation

rj,j′(p) ∼ |p|αj,j′aj,j′

(
p

|p|

)
Lj,j′(|p|)

with such an exponent αj,j′ and slowly varying function Lj,j′(·) which may
depend on the indices j and j′. With a good choice of these quantities an
interesting generalization of the results of the present paper can be obtained.
Such results can be proved by means of a natural generalization of the argu-
ments of the present paper, but since this would demand a lot of space and
the introduction of many new quantities I omit their discussion here.

Next I explain the condition imposed on the function H(x1, . . . , xd) that
appears in the limit theorems of this paper. In scalar valued models first
the special case H(x) = Hk(x) was considered, where Hk(x) denotes the k-
th Hermite polynomial with leading coefficient 1. Then it was shown that
our limit problem with a function H(x) whose expansion by the Hermite
polynomials has the form H(x) =

∑∞
l=k clHl(x) with starting index k in the

summation can be simply reduced to the special case when H(x) = ckHk(x).
Similar results will be proved in the multivariate case. In this case Wick
polynomials take the role of the Hermite polynomials. But Wick polynomials
appear in this work only in an implicit way. In the models studied in this
paper the Wick polynomials can be simply calculated. Such vector valued
Gaussian stationary random fields X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , are
considered whose covariance functions satisfy besides condition (3.1) also the
relation

EX2
j (0) = 1 for all 1 ≤ j ≤ d, and EXj(0)Xj′(0) = 0

if j 6= j′, 1 ≤ j, j′ ≤ d. (3.2)

11



First I show that this new condition does not mean a real restriction of our
problem.

Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , be a vector valued Gaussian
stationary random field with expectation EXj(p) = 0, p ∈ Zν , 1 ≤ j ≤ d,
and take the random variablesX1(0), . . . , Xd(0) in it. An appropriate number
1 ≤ d′ ≤ d can be chosen, and d′ random variables X ′

j(0) =
∑d

l=1 cj,lXl(0),
1 ≤ j ≤ d′, can be defined with appropriate coefficients cj,l, 1 ≤ j ≤ d′,
1 ≤ l ≤ d, with the following properties. EX ′

j(0)X
′
j′(0) = δj,j′ , 1 ≤ j, j′ ≤ d′,

where δj,j′ = 0 if j 6= j′, and δj,j = 1, and the random variables Xj(0),
1 ≤ j ≤ d, can be expressed as the linear combinations of the random
variables X ′

l(0), 1 ≤ l ≤ d′, i.e. Xj(0) =
∑d′

l=1 dj,lX
′
l(0) for all 1 ≤ j ≤ d

with appropriate coefficients dj,l.
Let us define the vector valued random field X ′(p) = (X ′

1(p), . . . , X
′
d′(p))

as X ′
j(p) =

∑d
l=1 cj,lXl(p), 1 ≤ j ≤ d′, with the same coefficients cj,l as in the

definition of X ′
j(0) for all p ∈ Zν . Then it is not difficult to see that X ′(p),

p ∈ Zν , is a d′-dimensional Gaussian stationary random field whose elements
have expectation zero, and it satisfies relation (3.2) (with parameter d′ in-
stead of d.) Moreover, if the covariance function of the original random field
X(p) satisfied relation (3.1), then the covariance function of this new ran-
dom field also satisfies this condition with appropriate new functions a′j,j′(

p
|p|
).

Besides, it is not difficult to find such a function H ′(x1, . . . , xd′) for which
H ′(X ′

1(p), . . . , X
′
d′(p)) = H(X1(p), . . . , Xd(p)) for all p ∈ Zν . This means that

with the introduction of this new random field X ′(p) = (X ′
1(p) . . . , X

′
d′(p))

our problem can be reformulated in such a way that our vector valued sta-
tionary Gaussian random field satisfies both relations (3.1) and (3.2). We
shall work with such a new d′-dimensional random field X ′(p) and function
H ′(x1, . . . , xd′), only the sign prime will be omitted everywhere.

First we consider the case when we fix a positive integer k, and the
function H(x1, . . . , xd) has the form

H(x1, . . . , xd) = H(0)(x1, . . . , xd) (3.3)

=
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kdHk1(x1) · · ·Hkd(xd)

with the previously fixed number k, the coefficients ck1,...,kd are real numbers,
and Hkj(·) denotes the Hermite polynomial of order kj with leading coeffi-
cient 1. The function H ′(x1, . . . , xd′) preserves this property of the function
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H(x1, ,̇xd) when the previously mentioned transformation is applied, only
different coefficients c′k1,...,kd appear in its expansion.

Remark: Although I shall not apply the observation of this remark, it may
be worth mentioning that if (X1, . . . , Xd) is a d-dimensional random vec-
tor with standard normal distribution then H(X1, . . . , Xd) with a function
H(x1, . . . , xd) having the form (3.3) is a Wick polynomial of order k of the
random vector (X1, . . . , Xd). (See e.g. Corollary 2C in [11] or Corollary 2.3
in [9].) In general, one can say that Hermite polynomials play an important
role in limit theorems for non-linear functionals of scalar valued Gaussian
random fields. In the case of non-linear functionals of vector valued Gaus-
sian random fields Wick polynomials take their role.

In scalar valued models, i.e. in the case d = 1 a non-central limit theorem
was proved if H(x) = Hk(x), k ≥ 2, and the covariance function r(n) =
EX0Xn satisfies condition (3.1) (with d = 1) with 0 < α < ν

k
. This result

was formulated in Theorem 8.2 of [9]. In this result the limit was described
by means of a k-fold Wiener–Itô integral with respect to an appropriate
random spectral measure. This random spectral measure corresponds to the
spectral measure that appeared in Lemma 8.1 of [9] as the limit of a sequence
of appropriately normalized versions of the spectral measure of a stationary
random fieldX(p), p ∈ Zν , whose covariance function satisfies condition (3.1)
with d = 1. Here I prove a multivariate version of Theorem 8.2 of [9] with
the help of a multivariate version of Lemma 8.1 in [9] formulated below.

This generalization of Lemma 8.1 in [9] is a limit theorem for a sequence of
appropriately rescaled versions of the coordinates Gj.j′ of a spectral measure
G = (Gj.j′), 1 ≤ j, j′ ≤ d, with some nice properties. In this limit theorem the
vague convergence of complex measures is considered. Before the formulation
of this result I recall the definition of this convergence from Section 3 of [11].
In this definition the notion of complex measures with locally finite total
variation appears. I explain its meaning in a remark after the definition.

Definition of vague convergence of complex measures on Rν with

locally finite total variation. Let G(N), N = 1, 2, . . . , be a sequence of
complex measures on Rν with locally finite total variation. We say that this
sequence G(N) vaguely converges to a complex measure G(0) on Rν with locally
finite total variation if

lim
N→∞

∫
f(x)G(N)( dx) =

∫
f(x)G(0)( dx)
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for all continuous functions f on Rν with a bounded support.

Remark: In the above definition the notion of complex measures with lo-
cally finite total variation appeared. This notion was introduced in Section 4
of [10] together with the notion of vector valued Gaussian stationary gener-
alized random fields and their matrix valued spectral measures. A complex
measure with locally finite total variation is such a complex valued function
on the bounded measurable subsets of Rν whose restriction to the measurable
subsets of a cube [−T, T ]ν is a complex measure with finite total variation
for all T > 0.

The above definition of vague convergence slightly differs from the clas-
sical one presented e.g. in Section 8 of [9] (before Lemma 8.1 of this paper),
where the vague convergence of locally finite (non-negative) measures is con-
sidered. The locally finite measures were defined on all measurable subsets of
Rν . Here we deal with complex measures, because we also want to study the
non-diagonal elements Gj,j′ , j 6= j′, of a matrix valued spectral measure, and
they are complex (i.e. not necessary real valued) measures. A non-negative
locally finite measure always can be extended to a measure on all measurable
subsets of Rν , while there are locally finite complex measures which do not
have this property. This fact was taken into account in the introduction of
the above definition.

The next Proposition 3.1 contains the multivariate version of Lemma 8.1
in [9].

Proposition 3.1. Let G = (Gj,j′) be the matrix valued spectral measure
of a d-dimensional vector valued stationary random field whose covariance
function rj,j′(p) satisfies relation (3.1) with some parameter 0 < α < ν and
slowly varying function L(·). Let us define the following rescaled versions of
the coordinates Gj,j′, 1 ≤ j, j′ ≤ d, of this matrix valued spectral measure:

G
(N)
j,j′ (A) =

Nα

L(N)
Gj,j′

(
A

N

)
, A ∈ Bν , 1 ≤ j, j′ ≤ d, (3.4)

for all N = 1, 2, . . . ,where Bν denotes the σ-algebra of the Borel measur-
able sets on Rν. Then G

(N)
j,j′ is a complex measure with finite total variation

concentrated in [−Nπ,Nπ)ν.

For all pairs 1 ≤ j, j′ ≤ d the sequence of complex measures G
(N)
j,j′ defined

in (3.4) tends vaguely to a complex measure G
(0)
j,j′ on Rν with locally finite total
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variation. These complex measures G
(0)
j,j′, 1 ≤ j, j′ ≤ d, have the homogeneity

property

G
(0)
j,j′(A) = t−αG

(0)
j,j′(tA) for all bounded sets A ∈ Bν ,

1 ≤ j, j′ ≤ d, and t > 0. (3.5)

The complex measure G
(0)
j,j′ is determined by the number 0 < α < ν and

functions aj,j(·), aj,j′(·), aj′,j(·) and aj′,j′(·) defined in formula (3.1) on the
unit sphere Sν−1. This implies that for all spectral measures G that satisfy
relation (3.1) with the same parameter α and functions aj,j′(·), 1 ≤ j, j′ ≤ d

the vague limit of the complex measures G
(N)
j.j′ is the same for all 1 ≤ j, j′ ≤ d.

Finally, there exists a vector valued generalized Gaussian stationary ran-
dom field on Rν whose matrix valued spectral measure is G(0) = (G

(0)
j,j′),

1 ≤ j, j′ ≤ d, with the complex measures G
(0)
j,j′, 1 ≤ j, j′ ≤ d, defined in

this Proposition.

In the following Theorem 3.2 I formulate the multivariate version of The-
orem 8.2 in [9]. In its formulation the result of Proposition 3.1 is applied

where a matrix valued spectral measure G(0) = (G
(0)
j.j′), 1 ≤ j, j′ ≤ d, is

constructed under some conditions which are imposed also in Theorem 3.2.
Theorem 3.2 is a limit theorem where the limit is defined by means of a
sum of multiple Wiener–Itô integrals with respect to a vector valued random
spectral measure that corresponds to the matrix valued spectral measure G(0)

constructed in Proposition 3.1. Let me remark that I formulated this result
also in paper [10]. But in that work it was not proved. That work contained
only a heuristic argument which indicated why it is natural to expect such a
result. Its goal was to indicate the usefulness of the theory worked out in [10]
and [11].

Theorem 3.2. Fix an integer k ≥ 1, and let X(p) = (X1(p), . . . , Xd(p)),
p ∈ Zν, be a vector valued Gaussian stationary random field whose covari-
ance matrix rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν, satisfies both re-
lation (3.1) with some number α such that 0 < α < ν

k
and relation (3.2). Let

H(x1, . . . , xd) be a function of the form given in (3.3) also with the previously
fixed number k. Define the random variables Y (p) = H(X1(p), . . . , Xd(p)) for
all p ∈ Zν together with their normalized partial sums

SN =
1

N ν−kα/2L(N)k/2

∑

p∈BN

Y (p),
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where the set BN was defined in (1.1). These random variables SN , N =
1, 2, . . . , satisfy the following limit theorem.

Let ZG(0) = (ZG(0),1, . . . , ZG(0),d) be a vector valued random spectral mea-

sure which corresponds to the matrix valued spectral measure G(0) = (G
(0)
j,j′),

1 ≤ j, j′ ≤ d, defined in Proposition 3.1 with the help of the matrix valued
spectral measure G = (Gj,j′) of a vector valued Gaussian stationary random
field with covariance function rj,j′(s), 1 ≤ j, j′ ≤ d, s ∈ Rν, satisfying rela-
tion (3.1). Then the sum of multiple Wiener–Itô integrals with the coefficients
ck1,...,kd appearing in (3.3)

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫ ν∏

l=1

ei(x
(l)
1 +···+x

(l)
k ) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

(3.6)

ZG(0),j(1|k1,...,kd)
( dx1) . . . ZG(0),j(k|k1,...,kd)

( dxk)

exists, where the notation xp = (x
(1)
p , . . . , x

(ν)
p ) ∈ Rν, p = 1, . . . , k, is applied,

and the indices j(s|k1, . . . , kd), 1 ≤ s ≤ k, are defined as j(s|k1, . . . , kd) = r if∑r−1
u=1 ku < s ≤

∑r
u=1 ku, 1 ≤ s ≤ k, 1 ≤ r ≤ d. (For r−1 = 0 the convention∑0

u=1 ku = 0 is applied in this definition.) The normalized sums SN converge
in distribution to the random variable S0 defined in (3.6) as N → ∞.

The indexation of the terms ZG(0),j(s|k1,...,kd)
( dxs) in formula (3.6) can

be described in a simpler form. In the first k1 arguments x1, . . . , xk1 , i.e.
for 1 ≤ s ≤ k1 ZG(0),1( dxs), is written, in the next k2 arguments, i.e. for
k1 + 1 ≤ s ≤ k1 + k2 ZG(0),2( dxs) is written, and so on. In the last kd
arguments, i.e, when k1 + · · · + kd−1 + 1 ≤ s ≤ k, (k = k1 + · · · + kd),
ZG(0),d( dxs) is written.

In Theorem 3.2 the limit of A−1
N

∑
p∈BN

H(X1(p), . . . , Xd(p)) is described
if the expansion of the function H(x1, . . . , xd) is a linear combination of prod-
ucts of Hermite polynomials with different arguments, and all these products
are polynomials of order k. The next Theorem 3.3 which is the multivariate
version of Theorem 8.2′ in [9] states that a similar result holds if the function
H(x1, . . . , xd) is the linear combination of products of Hermite polynomials,
but some of these products may be polynomials of order higher than k.

Theorem 3.3. Let us consider a vector valued Gaussian stationary random
field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν, that satisfies the conditions of
Theorem 3.2 and a function of the form H(x1, . . . , xd) = H(0)(x1, . . . , xd) +
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H(1)(x1, . . . , xd), where H
(0)(x1, . . . , xd) was defined in (3.3), and

H(1)(x1, . . . , xd) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd≥k+1

ck1,...,kdHk1(x1) · · ·Hkd(xd) (3.7)

with real valued coefficients ck1,...,kd such that

∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd≥k+1

c2k1,...,kd
k1! · · · kd!

<∞. (3.8)

Define the random variables Y (p) = H(X1(p), . . . , Xd(p)) for all p ∈ Zν and
their normalized partial sums

SN =
1

N ν−kα/2L(N)k/2

∑

p∈BN

Y (p), N = 1, 2, . . . ,

with this function H(x1, . . . , xd). The random variables SN converge in dis-
tribution to the random variable S0 defined in formula (3.6) as N → ∞.

Actually condition (3.8) in Theorem 3.3 means that

E
[
H(1)(X1(0), . . . , Xd(0))

2
]
<∞.

Finally I mention that Arcones formulated a more general result. To present
it, more precisely to present its generalization to the case when we are working
with stationary random fields parametrized by the lattice points of Zν with
some ν ≥ 1 let us define the following parameter sets for all N = 1, 2, . . .
and t = (t1, . . . , tν), 0 ≤ tl ≤ 1, for all 1 ≤ l ≤ ν.

BN(t) = BN(t1, . . . , tν) (3.9)

= {p = (p1, . . . , pν) ∈ Zν : 0 < pl ≤ Ntl for all 1 ≤ l ≤ ν}.

With this notation the following result holds.

Theorem 3.4. Let us consider the same vector valued Gaussian stationary
random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν, and function H(x1, . . . , xd)
as in Theorem 3.3. Define the random variables Y (p) = H(X1(p), . . . , Xd(p))
for all p ∈ Zν together with the random fields

SN(t) =
1

N ν−kα/2L(N)k/2

∑

p∈BN (t)

Y (p) (3.10)
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with parameter set t = (t1, . . . , tν), 0 ≤ tl ≤ 1, 1 ≤ l ≤ ν, for all N =
1, 2, . . . , where the set BN(t) was defined in (3.9). The finite dimensional
distributions of the random fields SN(t) converge to that of the random field
S0(t), t = (t1, . . . , tν), 0 ≤ tl ≤ 1, 1 ≤ l ≤ ν, defined by the formula

S0(t) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫ ν∏

l=1

eitl(x
(l)
1 +···+x

(l)
k ) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

(3.11)

ZG(0),j(1|k1,...,kd)
( dx1) . . . ZG(0),j(k|k1,...,kd)

( dxk)

if the limit N → ∞ is taken. Similarly to Theorem 3.2 the notation xp =

(x
(1)
p , . . . , x

(ν)
p ), p = 1, . . . , k, is applied, and the indices j(s|k1, . . . , kd), 1 ≤

s ≤ k, are defined in the same way as in formula (3.6).

A referee proposed to show that also a strengthened form of Theorem 3.4
formulated in the next Corollary holds. I shall present the proof of this result
in Appendix B. I shall omit some technical details of the proof, and in the
case ν > 1 I shall apply a result whose formulation I did not find in the
literature. I chose such an approach, because a detailed proof would demand
the elaboration of many complicated technical details which are not related
to the subject of this paper.

Corollary of Theorem 3.4. Under the conditions of Theorem 3.4 not
only the finite dimensional distributions of the random fields SN(t), t =
(t1, . . . , tν), 0 ≤ tl ≤ 1, 1 ≤ l ≤ ν, introduced in (3.10) converge to those
of the random field S0(t) defined in (3.11), but even the distribution of the
random fields SN(·), converge weakly to the distribution of S0(·) in the Sko-
rochod space on [0, 1]ν as N → ∞. Moreover, the trajectories of S0(·) are
continuous functions on [0, 1]ν.

Let us observe that the kernel functions in the Wiener–Itô integrals ap-
pearing in the sum which defines S0(t) in (3.11) equal ϕt(x1 + · · · + xk),
where ϕt(u), u ∈ Rν , is the Fourier transform of the Lebesgue measure on
the rectangle [0, t1]×· · ·× [0, tν ]. The integral in (3.11) is taken on the whole
space.

Theorem 3.4 was formulated in that form as Arcones did, but it could have
been formulated in a slightly more general form. The sets BN(t) in (3.9),
the random variables SN(t), N = 1, 2, . . . , in (3.10) and S0(t) in (3.11)
could have been defined for all t = (t1, . . . , tν) ∈ [0,∞)ν and not only for
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t = (t1, . . . , tν) ∈ [0, 1]ν . After the introduction of these objects it could have
been proved, similarly to the proof of Theorem 3.4, that the finite dimensional
distributions of the random fields SN(t) converge to the finite dimensional
distributions of the random field S0(t) as N → ∞ also in this more general
case. This more general form of the result is useful, because it makes possible
to formulate an important property of the limit field S0(t), called the self-
similarity property. The limit random field S0(t), t ∈ [0,∞)ν , is self-similar

with parameter ν − kα/2, which means that S0(ut)
∆
= uν−kα/2S0(t) for all

u > 0, where
∆
= means that the finite dimensional distributions of the two

random fields agree.
The self-similarity property of the random field S0(t), t ∈ [0,∞)ν , can

be proved by exploiting that by formula (3.5) in Proposition 3.1 G(0)(uA) =
uαG(0)(A) for the spectral measure G(0) for all u > 0 and measurable sets
A ⊂ Rν . This implies that

(ZG(0),1(uA1), . . . , ZG(0),d(uAd))
∆
= (uα/2ZG(0),1(A1), . . . , u

α/2ZG(0),d(Ad))

for all u > 0 and measurable sets A1 ∈ Rν , . . . , Ad ∈ Rν . We still have to
exploit that the kernel functions

ft(x1, . . . , xk) =
ν∏

l=1

eitl(x
(l)
1 +···+x

(l)
k ) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

in the Wiener–Itô integrals in (1.13) (with the notation t = (t1, . . . , tν)) have
the property

fut(x1, . . . , xk) = uνft(ux1, . . . , uxk)

for all u > 0, t ∈ [0,∞)ν , xj ∈ Rν , 1 ≤ j ≤ d. The self-similarity property of
the random field S0(t), t ∈ [0,∞)ν , can be proved with the help of the above
observations.

4. Preparatory results for the proof of the main theorems.

This section contains the proof of Proposition 3.1 and the elaboration of a
method that helps in proving the theorems of this paper. In the application of
this method the normalized random sums SN appearing in the formulation
of Theorem 3.2 are rewritten in the form of a sum of multiple Wiener-Itô
integrals with respect to a vector valued random spectral measure. Then
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Proposition 3.1 of paper [11] is recalled, and it is shown how the sums of
Wiener–Itô integrals expressing the random sums SN can be investigated
with its help.

First I prove Proposition 3.1.

Proof of Proposition 3.1. Proposition 3.1 is proved by means of an adaptation
of the proof of Lemma 8.1 in [9]. The same argument works, only some steps
of the proof must be modified in a natural way. I do not work out all details,
I only briefly remark what kind of modifications are needed.

The diagonal elements Gj,j, 1 ≤ j ≤ d, of the matrix valued spectral
measure G are spectral measures. Hence Lemma 8.1 of [9] implies that for

any 1 ≤ j ≤ d the measures G
(N)
j,j converge vaguely to a locally finite measure

G
(0)
j,j determined by the function aj,j(·) and the number α which appears in

relation (3.5).
For the non-diagonal elements Gj,j′ , j 6= j′, this argument cannot be

applied, because Gj,j′ is a complex measure with finite total variation which
may be not a (positive) measure. In this case it can be exploited that G is a
positive semidefinite matrix valued measure. Hence the 2× 2 matrix

G(A|j, j′) =

(
Gj,j(A), Gj,j′(A)
Gj′,j(A), Gj′,j′(A)

)

is positive semidefinite for all pairs 1 ≤ j, j′ ≤ d, j 6= j′, and measurable sets
A ⊂ Rν . This implies that the quadratic forms

(1, 1)G(A|j, j′)(1, 1)∗ = Gj,j(A) +Gj′,j′(A) +Gj,j′(A) +Gj′,j(A)

and

(1, i)G(A|j, j′)(1,−i)∗ = Gj,j(A) +Gj′,j′(A)− i[Gj,j′(A)−Gj′,j(A)]

are non-negative numbers for all measurable sets A ⊂ Rν . Therefore the
set-functions Rj,j′(·) and Sj,j′(·) defined as Rj,j′(A) = Gj,j(A) + Gj′,j′(A) +
Gj,j′(A) +Gj′,j(A) and Sj,j′(A) = Gj,j(A) +Gj′,j′(A)− i[Gj,j′(A)−Gj′,j(A)]
for all measurable sets A ∈ [−π, π)ν are finite measures. Their Fourier trans-

forms equal r
(1)
j,j′(p) =

∫
ei(p,x)Rj,j′( dx) = rj,j(p) + rj′,j′(p) + rj.j′(p) + rj′,j(p)

and r
(2)
j,j′(p) =

∫
ei(p,x)Sj,j′( dx) = rj,j(p) + rj′,j′(p) + i[rj.j′(p) − rj′,j(p)], p ∈

Zν . These Fourier transforms satisfy the following relation, similar to for-
mula (3.1).

lim
T→∞

sup
p : p∈Zν , |p|≥T

∣∣∣r(s)j,j′(p)− a
(s)
j,j′(

p
|p|
)|p|−αL(|p|)

∣∣∣
|p|−αL(|p|)

= 0 (4.1)
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both for s = 1 and s = 2 with some functions a
(s)
j,j′(·) which can be expressed

by means of the functions aj,j(·), aj.j′(·), aj′,j(·) and aj′,j′(·). The only differ-

ence from formula (3.1) is that the continuous function, a
(2)
j,j′(·) may be com-

plex valued. (I also remark that the symmetry property aj,j′(u) = aj′,j(−u)

yields that a
(2)
j,j′(−u) = a

(2)
j′,j(u). On the other hand, a

(1)
j,j′(·) is a real valued

function, for which a
(1)
j,j′(−u) = a

(1)
j,j (u). These relations correspond to the

fact that r
(s)
j,j′(p), s = 1, 2 are Fourier transforms of real valued measures.)

A natural adaptation of the proof of Lemma 8.1 in [9] shows that the
measures Rj.j′(·) and Sj,j′(·) have properties similar to Gj,j(·), only the func-

tion aj,j(·) must be replaced by a
(1)
j,j′(·) and a

(2)
j,j′(·) in them. Moreover, the

proof of Lemma 8.1 in [9] can be applied to show this. To understand this
let us remark that Rj,j′(·) and Sj,j′(·) are measures on the torus [−π.π)ν , and
their Fourier transforms satisfy relation (4.1). The spectral measure G(·)
investigated in Lemma 8.1 of [9] has similar properties, and the proof was
based on them.

More explicitly, define the measures R
(N)
j,j′ (·), and S

(N)
j,j′ (·) as

R
(N)
j,j′ (A) =

Nα

L(N)
Rj,j′

(
A

N

)
, S

(N)
j,j′ (A) =

Nα

L(N)
Sj,j′

(
A

N

)

for all measurable sets A ⊂ [−Nπ,Nπ)ν and N = 1, 2, . . . . I claim that these

measures converge vaguely to some locally finite measures R
(0)
j.j′(·) and S

(0)
j,j′(·)

with some homogeneity property on Rν .
To prove this homogeneity property let us introduce, similarly to the

proof of Lemma 8.1 in [9] the measures µ
(1)
N and µ

(2)
N , N = 1, 2, . . . as

µ
(1)
N (A) =

∫

A

|KN(x)|
2R

(N)
j,j′ ( dx), A ∈ Bν , N = 1, 2, . . .

and

µ
(2)
N (A) =

∫

A

|KN(x)|
2 S

(N)
j,j′ ( dx), A ∈ Bν , N = 1, 2, . . .

with the function KN(·) defined as

KN(x) =
1

N

∑

p∈BN

ei(p,x/N) =
ν∏

j=1

eix
(j)

− 1

N(eix(j)/N − 1)
, N = 1, 2, . . . .
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I claim that both for s = 1 and s = 2 the sequence of measures µ
(s)
N converge

weakly to a measure µ
(s)
0 as N → ∞ whose Fourier transform depends on

the function a
(s)
j,j′(·) and parameter α appearing in formula (4.1).

This can be proved by calculating the Fourier transforms of the measures
µ
(s)
N and by showing that they have a limit which is a continuous function.

More precisely, Lemma 8.4 in [9] must be applied, which yields a modified
version of this method. The reason for this modification is that we can
calculate the Fourier transforms of the measures µ

(s)
N , s = 1, 2, only in the

points p
N
, p ∈ Zν . On the other hand, the measures µ

(s)
N are concentrated

in the cube [−Nπ,Nπ)ν . Lemma 8.4 in [9] provides such a version of the
characteristic function method which works in such cases.

The calculations needed to prove the above properties of the measures
µ
(s)
N , s = 1, 2, are carried out in the proof of Theorem 8.2 in [9]. Actually, a

more general result is proved there. I omit the details.

Let us define the continuous function K0(x) =
∏ν

j=1
eix

(j)
−1

ix(j) on Rν . In
all compact subsets of Rν the functions KN(x) converge to K0(x) in the
supremum norm as N → ∞. The proof of Lemma 8.1 in [9] shows on the

basis of this property that the limit measures µ
(s)
0 , s = 1, 2, have the follow-

ing representation. There are measures H
(0)
j,j′ and K

(0)
j,j′ such that µ

(1)
0 (A) =∫

A
|K0(x)|

2H
(0)
j,j′( dx), and µ

(2)
0 (A) =

∫
A
|K0(x)|

2K
(0)
j,j′( dx) for all measurable

sets A ⊂ Rν . Moreover, H
(0)
j,j′ and K

(0)
j,j′ are locally finite measures, and they

are the vague limits of the sequences of measures R
(N)
j,j′ and S

(N)
j,j′ respectively.

The measures H
(0)
j,j′ and K

(0)
j,j′ are determined by the limit measures µ

(1)
0 and

µ
(2)
0 , hence also by the parameter α and functions a

(1)
j,j′(·) and a

(2)
j,j′(·) in(4.1).

The argument of the proof in Lemma 8.1 of [9] enables us to show that (3.5)

holds if the complex measure G
(0)
j,j is replaced by the measure H

(0)
j,j′ or K

(0)
j,j′

in it.
Since the complex measure Gj,j′ can be expressed as a linear combination

of the measuresGj,j, Gj′,j′ , Rj,j′ and Sj,j′ the properties proved for them imply
the statements formulated about the behavior of Gj,j′ in Proposition 3.1.

We still have to show that (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is the spectral measure of a

generalized vector valued stationary Gaussian random field. By Theorem 4.1
of [10] (G

(0)
j,j′), 1 ≤ j, j′ ≤ d, is the spectral measure of a vector valued

generalized Gaussian stationary random field if it is a positive definite matrix
valued even measure on Rν whose distribution is moderately increasing at
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infinity, i.e it satisfies relation (2.1). It follows from Lemma 3.2 in [11] and
the already proved part of Proposition 3.1 that this system is a positive
semidefinite matrix valued even measure on Rν . The validity of relation (2.1)

follows from the fact that G
(0)
j,j has locally finite total variation, and it satisfies

relation (3.5).

Now I turn to the representation of the normalized random sums in the
form of a sum of multiple Wiener–itô integrals. To do this let us first consider
the random variable Y (0) = H(X1(0), . . . , Xd(0)) defined with the help of the
function H(x1, . . . , xd) = H(0)(x1, . . . , xd) introduced in (3.3) and a vector
valued Gaussian stationary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν ,
with covariance function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν ,
which satisfies relation (3.1) with some parameter 0 < α < ν

k
together with

its shifts Y (p) = H(X1(p), . . . , Xd(p)), p ∈ Zν , and express them as a sum of
Wiener–Itô integrals.

This will be done with the help of the results in [10] and [11].
Let G = (Gj,j′), 1 ≤ j, j′ ≤ d, be the matrix valued spectral measure of

the stationary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , and let us
consider that vector valued random spectral measure ZG = (ZG,1, . . . , ZG,d)
corresponding to this spectral measure for which Xj(p) =

∫
ei(p,x)ZG,j( dx)

for all p ∈ Zν and 1 ≤ j ≤ d. By the results of [10] there exists such a vector
valued random spectral measure.

The random variable Y (0) = H(X1(0), . . . , Xd(0)) will be rewritten in the
form of a sum of Wiener–Itô integrals with the help of the multiple version
of Itô’s formula presented in Theorem 2.2 of [11], more precisely by the
corollary of this result. As Y (0) is a Wick polynomial of the (independent)
random variables Xj(0) with standard Gaussian distribution, and Xj(0) =∫
ZG,j( dy), 1 ≤ j ≤ d, this formula yields the desired expression for Y (0).

Let me remark that by Lemma 8B of [9] condition (3.1) implies that the
diagonal elements Gj,j, 1 ≤ j ≤ d, of the matrix valued spectral measure
G = (Gj,j′), 1 ≤ j, j′ ≤ d, are non-atomic. Hence the multiple Wiener–Itô
integrals with respect to the coordinates of the vector valued random spectral
measure ZG = (ZG,1, . . . , ZG,d) whose sum expresses Y (0) in the next formula
are meaningful.
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The above results yield the identity

Y (0) = H(X1(0), . . . , Xd(0)) = H(0)(X1(0), . . . , Xd(0))

=
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

: ck1,...,kdX1(0)
k1 · · ·Xd(0)

kd :

=
∑

(k1,...,kd), kj≥0 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫ d∏

j=1




k1+···+kj∏

s=k1+···+kj−1+1

ZG,j( dys)


 ,

where for j = 1 we define
k1+···+kj∏

s=k1+···+kj−1+1

ZG,j( dys) =
k1∏
s=1

ZG,1( dys), and if kj =

0 for some 1 ≤ j ≤ d, then we drop the term
k1+···+kj∏

s=k1+···+kj−1+1

ZG,j( dys) from

this expression. (Here :P (X1(0), . . . , Xd(0)) : denotes the Wick polynomial
corresponding to P (X1(0), . . . , Xd(0)), where P (x1, . . . , xd) is a homogeneous
polynomial.)

Since Y (p) = TpY (0) with the shift transformation Tp for all p ∈ Zν , the
previous identity and Proposition 2.4 in [11] yield the formula

Y (p) = TpY (0)

=
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫
ei(p,y1+···+yk)

d∏

j=1




k1+···+kj∏

s=k1+···+kj−1+1

ZG,j( dys)




for all p ∈ Zν . By summing up this formula for all p ∈ BN we get that

SN =
1

N ν−kα/2L(N)k/2

∑

(k1,...,kd), kj≥0, 1≤j≤d
k1+···+kd=k

ck1,...,kd

∫ ν∏

l=1

ei(N(y
(l)
1 +···+y

(l)
k ) − 1

ei((y
(l)
1 +···+y

(l)
k ) − 1

d∏

j=1




k1+···+kj∏

s=k1+···+kj−1+1

ZG,j( dys)


 ,

where we write y = (y(1), . . . , y(ν)) for all y ∈ [−π, π)ν .
The above sum of Wiener–Itô integrals can be rewritten with the change
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of variables xs = Nys, 1 ≤ s ≤ k, in the form

SN =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫
ck1,...,kdf

N(x1 + · · ·+ xk)

d∏

j=1




k1+···+kj∏

s=k1+···+kj−1+1

ZG(N),j( dxs)


 , (4.2)

where

fN(x) =
ν∏

l=1

eix
(l)
− 1

N(eix(l)/N − 1)
(4.3)

is a function on [−Nπ,Nπ)ν , and ZG(N),j(A) =
Nα/2

L(N)1/2
ZG,j(

A
N
) for all mea-

surable sets A ⊂ [−Nπ,Nπ)ν and j = 1, . . . , d. In formula (4.3) the no-
tation x = (x(1), . . . , x(ν)) is applied for all x ∈ Rν . Let us observe that
(ZG(N),1, . . . , ZG(N),d) is a vector valued random spectral measure on the
torus [−Nπ,Nπ)ν which corresponds to the matrix valued spectral mea-

sure G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus [−Nπ,Nπ)ν), defined by the

formula G
(N)
j,j′ (A) =

Nα

L(N)
Gj,j′(

A
N
), 1 ≤ j, j′ ≤ d, on the sets A ⊂ [−Nπ,Nπ)ν ,

where G = (Gj,j′), 1 ≤ j, j′ ≤ d, is the matrix valued spectral measure of the
original vector valued stationary random field X(p) = (X1(p), . . . , Xd(p)),
p ∈ Zν .

In formulas (4.2) and (4.3) the normalized random sum SN investigated
in Theorem 3.2 is written in the form of a sum of k-fold multiple Wiener–Itô
integrals. Let us observe that the kernel functions ck1,...,kdf

N(x1 + · · · + xk)
of these Wiener–Itô integrals satisfy the relation

lim
N→∞

ck1,...,kdf
N(x1 + · · ·+ xk) = ck1,...,kdf

0(x1 + · · ·+ xk) (4.4)

for all indices k1, . . . , kd such that kj ≥ 0, 1 ≤ j ≤ d, and k1 + · · · + kd = k
with the function

f 0(x) =
ν∏

l=1

eix
(l)
− 1

ix(l)
(4.5)

defined on Rν , and this convergence is uniform in all bounded subsets of Rkν .
On the other hand, Proposition 3.1 states that the elements of the matrix

valued spectral measures G(N) = (G
(N)
j,j′ ) vaguely converge to the elements of
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a matrix valued spectral measure G(0) = (G
(0)
j,j′) on Rν . In (4.2) we integrate

with respect to a vector valued random spectral measure corresponding to
the matrix valued spectral measure (G

(N)
j,j′ ), 1 ≤ j, j′ ≤ N of a generalized

vector valued Gaussian stationary random field. Hence it is natural to expect
that the random variables SN converge in distribution to the random variable

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫
ck1,...,kdf

0(x1 + · · ·+ xk)

d∏

j=1




k1+···+kj∏

s=k1+···+kj−1+1

ZG(0),j( dxs)


 , (4.6)

where (ZG(0),1, . . . , ZG(0),d) is a vector valued random spectral measure on

Rν corresponding to the matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤

d. This is actually the statement of Theorem 3.2 with a slightly different
notation.

I shall formulate such a result in the following Proposition 4A which helps
to justify the above heuristic argument. It states that this argument yields
a correct result if some additional conditions are also satisfied. Theorem 3.2
will be proved with the help of this Proposition 4A which is a reformulation
of Proposition 3.1 in [11].

Before the presentation of Proposition 4A I recall from Section 5 of [10]
the definition of that class of functions which can be chosen for the kernel
function of a multiple Wiener–Itô integral with respect to a vector valued
random spectral measure. This class of functions appears in the formulation
of Proposition 4A.

Let us consider the matrix valued spectral measure G = (Gj,j′), 1 ≤
j, j′ ≤ d, with non-atomic measures Gj,j, 1 ≤ j ≤ d, of a vector valued
Gaussian stationary random field. (We can consider the spectral measure
both of an ordinary or of a generalized random field.) In [10] I have defined
a real Hilbert space Kk,j1,...,jk = Kk,j1,...,jk(Gj1,j1 , . . . , Gjk,jk) depending on the
diagonal elements G1,1, . . . , Gd,d of the spectral measure G and on a sequence
of integers (j1, . . . , jk) of length k such that 1 ≤ js ≤ d for all 1 ≤ s ≤ k.
This Hilbert space has the property that the k-fold Wiener–Itô integral

∫
f(x1, . . . , xk)ZG,j1( dx1) . . . ZG,jk( dxk)
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with respect to a vector valued random spectral measure

ZG = (ZG,1, . . . , ZG,d)

corresponding to the matrix valued spectral measure G is defined for the
kernel functions

f(x1, . . . , xk) ∈ Kk,j1,...,jk(Gj1,j1 , . . . , Gjk,jk).

(In papers [10] and [11] I worked with Wiener–Itô integrals of order n, while
here I work with Wiener–Itô integrals of order k. Hence I use here a slightly
different notation.)

We have f ∈ Kk,j1,...,jk(Gj1,j1 , . . . , Gjk,jk) for a complex number valued
function f(x1, . . . , xk) with arguments xs ∈ Rν , 1 ≤ s ≤ k, if it satisfies the
following conditions (a) and (b):

(a) f(−x1, . . . ,−xk) = f(x1, . . . , xk) for all (x1, . . . , xk) ∈ Rkν ,

(b) ‖f‖2 =
∫
|f(x1, . . . , xk)|

2Gj1,j1( dx1) . . . Gjk,jk( dxn) <∞.

The scalar product in Kk,j1,...,jk(Gj1,j1 , . . . , Gjk,jk) is defined in the usual way.
If f, g ∈ Kk,j1,...,jk(Gj1,j1 , . . . , Gjk,jk), then

〈f, g〉 =

∫
f(x1, . . . , xk)g(x1, . . . , xk)Gj1,j1( dx1) . . . Gjk,jk( dxk).

In the formulation of Proposition 4A we take for all N = 1, 2, . . . a
matrix valued non-atomic spectral measure G(N) = (G

(N)
j,j′ ), 1 ≤ j, j′ ≤ d,

on the torus [−ANπ,ANπ)
ν with a parameter AN such that AN → ∞ as

N → ∞. We also take some functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

)

on the torus [−ANπ,ANπ)
ν for all sets of indices (j1, . . . , jk) such that 1 ≤

js ≤ d, 1 ≤ s ≤ k, and N = 1, 2, . . . . Besides, we fix for all N = 1, 2, . . . a
vector valued random spectral measure ZG(N) = (ZG(N),1, . . . , ZG(N),d) on the
torus [−ANπ,ANπ)

ν corresponding to the matrix valued spectral measure
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G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, and we define with the help of these quantities

the sums of k-fold Wiener–Itô integrals

SN =
∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫
hNj1,...,jk(x1, . . . , xk)ZG(N),j1( dx1) . . . ZG(N),jk

( dxk),

(4.7)
N = 1, 2, . . . . We want to find some good conditions under which these ran-
dom variables SN converge in distribution to a random variable S0, expressed
similarly as a sum of k-fold multiple Wiener–Itô integrals.

This will be done with the help of the following Proposition 4A which
agrees with Proposition 3.1 in paper [11].

Proposition 4A. Let us consider for all N = 1, 2, . . . the sum of k-fold
Wiener–Itô integrals SN defined in formula (4.7) with the help of a vector
valued random spectral measure ZG(N) = (ZG(N),1, . . . , ZG(N),d) corresponding

to some non-atomic matrix valued spectral measure G(N) = (G
(N)
j,j′ ), 1 ≤

j, j′ ≤ d, defined on a torus [−AN , AN)
ν such that AN → ∞ as N → ∞ and

functions
hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk(G

(N)
j1,j1

, . . . , G
(N)
jk,jk

).

Let the coordinates G
(N)
j,j′ , 1 ≤ j, j′ ≤ d, of the matrix valued spectral measures

G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, converge vaguely to the coordinates G

(0)
j,j′ of a

non-atomic matrix valued spectral measure G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, on

Rν for all 1 ≤ j, j′ ≤ d as N → ∞, and let ZG(0) = (ZG(0),1, . . . , ZG(0),d) be
a vector valued random spectral measure on Rν corresponding to the matrix
valued spectral measure G(0) = (G

(0)
j,j′), 1 ≤ j, j′ ≤ d. Let us also have some

functions h0j1,...,jk(x1, . . . , xk) on Rkν for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, such
that these functions and matrix valued spectral measures satisfy the following
conditions (a) and (b).

(a) The functions h0j1,...,jk(x1, . . . , xk) are continuous on Rkν for all 1 ≤ js ≤
d, 1 ≤ s ≤ k, and for all T > 0 and indices 1 ≤ js ≤ d, 1 ≤ s ≤
k, the functions hNj1,...,jk(x1, . . . , xk) converge uniformly to the function
h0j1,...,jk(x1, . . . , xk) on the cube [−T, T ]kν as N → ∞.

(b) For all ε > 0 there is some T0 = T0(ε) > 0 such that
∫

Rkν\[−T,T ]kν
|hNj1,...,jk(x1, . . . , xk)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

(dxk) < ε2 (4.8)
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for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N = 1, 2 . . . if T > T0.

Then

h0j1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(0)
j1,j1

, . . . G
(0)
jk,jk

),

inequality (4.8) holds also for N = 0, the sum of random integrals

S0 =
∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫
h0j1,...,jk(x1, . . . , xk)ZG(0),j1( dx1) . . . ZG(0),jk

( dxk)

(4.9)
exists, and the random variables SN defined in (4.7) converge to S0 in dis-
tribution as N → ∞.

(In the formulation of Proposition 4A I took the natural identification
of the torus [−AN , AN)

ν with the cube [−AN , AN)
ν in the space Rν . Thus,

I considered the functions hj1,...,jk(·) as functions on Rkν which disappear

outside [−AN , An)
kν , and the complex measures G

(N)
j,j′ as complex measures

on Rν , concentrated on [−AN , AN )
ν . In such a way the vague convergence

mentioned in the formulation of Proposition 4A is meaningful.)

In the proof of Theorem 3.2 we want to show with the help of Propo-
sition 4A that the sequence of random variables SN , N = 1, 2, . . . , defined
in (4.2) converge to the random variable S0 defined in (4.6) as N → ∞. To
do this we rewrite these formulas with a different indexation in such a way
that the indices in the definition of the random variables SN and S0 fit to
the indices in the definition of the random variable of the random variables
SN and S0 appearing in the formulation of Proposition 4A. These random
variables were defined in formulas (4.7) and (4.9).

In formulas (4.2) and (4.6) summation is taken for terms with indices
(k1, . . . , kd) such that ks ≥ 0, 1 ≤ s ≤ d and k1 + · · · + kd = k, while in the
corresponding expressions in formulas (4.7) and (4.9) in Proposition 4A it is
taken for terms with indices (j1, . . . , jk) such that 1 ≤ js ≤ d, 1 ≤ s ≤ k.

An important difference between the indexation in the two cases is that
in (4.2) and (4.6) only a special subset of the indices in formulas (4.7)
and (4.9) appear. Namely, if s < s′, and we compare the indices j and
j′ in the terms ZG(N),j( dxs) and ZG(N),j′( dxs′) belonging to these indices s
and s′ in formula (4.2) or (4.6), then we find that j ≤ j′. Hence such a
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reindexation of the indices in (4.2) and (4.6) will be made, where the set
J of the new indices is only a subset of the indices (j1, . . . , jk) appearing
in formulas (4.7) and (4.9). Summation will be taken only for the elements
of J in these formulas.

More explicitly, the terms in the sums in (4.2) and (4.6) will be reindexed
with such indices (j1, . . . , jk) for which the relation 1 ≤ j1 ≤ j2 ≤ · · · ≤
jk ≤ d holds. This is a subset of the set of indices (j1, . . . , jk) appearing in
formulas (4.7) and (4.9). To carry out the desired reindexation a one to one
map will be defined between the sets

J = {(j1, . . . , jk) : 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ d}

and

K = {(k1, . . . , kd) : ks ≥ 0 for all 1 ≤ s ≤ d, k1 + · · ·+ kd = k}.

Put

for all (j1, . . . , jk) ∈ J ks(j1, . . . jk) = the number of such elements jp

for which jp = s, for all 1 ≤ s ≤ d. (4.10)

This is a one to one map from J to K whose inverse is

for all (k1, . . . , kd) ∈ K js(k1, . . . , kd) = min p : k1 + · · ·+ kp ≥ s,

for all 1 ≤ s ≤ k. (4.11)

We shall apply these maps.
With the help of this correspondence between the sets J and K the

random sums SN in (4.2) can be rewritten in a form where summation is taken
for the sequences (j1, . . . , jk) ∈ J instead of the sequences (k1, . . . , kd) ∈ K,
and ks(j1, . . . , jk) is written instead of ks, 1 ≤ s ≤ d.

The expression SN defined in (4.2) can be rewritten as

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫
ck1(j1,...,jk),...,kd(j1,...,jk)f

N(x1 + · · ·+ xk)
k∏

s=1

ZG(N),js( dxs)

(4.12)
for all N = 1, 2, . . . with the functions fN(x) defined in (4.3) and the indices
ks(j1, . . . , jk), 1 ≤ s ≤ d defined in (4.10).
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To show why formula (4.12) holds let us rewrite formula (4.2) (with the
help of the one to one map we defined between the sets K and J ) in the form

SN =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫
ck1,...,kdf

N(x1 + · · ·+ xk)
k∏

s=1

ZG(N),js(k1,...,kd)
( dxs).

(4.13)
To understand why formula (4.13) holds we have to show that in (4.13)
the term ZG(N),u( dxs) with u = js(k1, . . . , kd) had to be chosen. It can
be seen from (4.2) that this number u must be chosen in such a way that
k1 + · · ·+ ku−1 + 1 ≤ s ≤ k1 + · · ·+ ku. Then a comparison of this condition
with the definition of the mapping from K to J in (4.11) shows that u =
js(k1 . . . , kd).

Then if we rewrite the formula at the right-hand side of (4.12) by replacing
the arguments (k1, . . . .kd) ∈ K by the arguments (j1, . . . , jk) ∈ J with the
help of the transformation we defined from J to K, and then we exploit that
the transformation we defined from K to J is its inverse transformation, we
get that formula (4.13) implies (4.12).

Relation (4.12) can be rewritten in the form

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫
hNj1,...,jk(x1, . . . , xk)ZG(N),j1( dx1) . . . ZG(N),jk

( dxk)

(4.14)
with

hNj1,...,jk(x1, . . . , xk) = ck1(j1,...,jk),...,kd(j1,...,jk)f
N(x1 + · · ·+ xk), (4.15)

where the indices ks(j1, . . . , jk), 1 ≤ s ≤ d, are defined in (4.10). Similarly,
the random sum S0 in (4.6) can be rewritten in the form

S0 =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫
ck1(j1,...,jk),...,kd(j1,...,jk)f

0(x1 + · · ·+ xk)
k∏

s=1

ZG(0),js( dxs)

with the function f 0(x) defined in (4.5) or in the following equivalent form.

S0 =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫
h0j1,...,jk(x1, . . . , xk)ZG(0),j1( dx1) . . . ZG(0),jk

( dxk) (4.16)
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with

h0j1,...,jk(x1, . . . , xk) = ck1(j1,...,jk),...,kd(j1,...,jk)f
0(x1 + · · ·+ xk). (4.17)

5. Proof of the main theorems.

Theorem 3.2 will be proved by means of the application of Proposition 4A
for the sequences SN defined in (4.14), (4.3), (4.15) and (4.10) for N =
1, 2, . . . , and in (4.16), (4.5), (4.17) and (4.10) for N = 0. To do this we
have to show that under the conditions of Theorem 3.2 the conditions of
Proposition 4A are also satisfied with such a choice. Then the application
of Proposition 4A implies Theorem 3.2. (I would remark that the random
variable S0 defined in formula (3.6) as the limit in Theorem 3.2 agrees with
the random variable S0 defined in (4.6), which is the same as the limit we
get in the application of Proposition 2A with the above written choice. Only
it is written there in a different form.)

To check the conditions of Proposition 4A let us first observe that it fol-
lows from Proposition 3.1 that the (non-atomic) elements G

(N)
j,j′ of the spectral

measures G(N) vaguely converge to the (non-atomic) complex measures G
(0)
j,j′

of a spectral measure G(0) as N → ∞ for all 1 ≤ j, j′ ≤ d. It is also
clear that the functions hNj1,...,jk(x1, . . . , xk) defined in (4.15) for all 1 ≤ j1 ≤
· · · ≤ jk ≤ d and N = 1, 2, . . . satisfy the condition hNj1,...,jk(x1, . . . , xk) ∈

Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

).
It follows from (4.4), (4.15) and (4.17) that condition (a) of Proposi-

tion 4A holds with the functions and measures chosen in the proof of The-
orem 3.2. We still have to prove relation (4.8) in condition (b) of Propo-
sition 4A. This will be done with the help of the following Proposition 5.1.
(Actually in Proposition 5.1 we prove a result slightly sharper than we need.)

Proposition 5.1. Let us fix an integer k ≥ 1, and let G = (Gj,j′), 1 ≤ j, j′ ≤
d, be the matrix valued spectral measure of a vector valued stationary random
field X(p) = (X1(p), . . . , Xp(d)), p ∈ Zν, defined on the torus [−π, π)ν with
such correlation function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν, that
satisfies relation (3.1) with some 0 < α < ν

k
. For all N = 1, 2, . . . let us

consider the measures G
(N)
j,j , 1 ≤ j ≤ d, defined in formula (3.4) together

with the measures µ
(N)
j1,...,jk

defined for all sets of indices j1, . . . , jk such that
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1 ≤ js ≤ d, 1 ≤ s ≤ k, on Rkν by the formula

µ
(N)
j1,...,jk

(A) =

∫

A

|hN(x1, . . . , xk)|
2G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk), A ∈ Bkν ,

(5.1)
with

hN(x1, . . . , xk) = fN(x1 + · · ·+ xk) =
ν∏

l=1

ei((x
(l)
1 +···+x

(l)
k ) − 1

N(ei((x
(l)
1 +···+x

(l)
k )/N − 1)

, (5.2)

where we use the notation x = (x(1), . . . , x(ν)) for a vector x ∈ Rν. These

measures µ
(N)
j1,...,jk

converge weakly to a finite measure µ
(0)
j1,...,jk

on Rkν.

Proof of Theorem 3.2 with the help of Proposition 5.1. As we have seen to
prove Theorem 3.2 it is enough to check that the measures G(N) = (G

(N)
j,j′ ),

1 ≤ j, j′ ≤ d, and functions hNj1,...,jk defined before satisfy the conditions
of Proposition 4A, since this enables us to apply this result. Moreover, we
have proved the validity of all of these conditions except formula (4.8) in
condition (b) of Proposition 4A. But the validity of this condition follows

from Proposition 5.1, since this result implies that the measures µ
(N)
j1,...,jk

, N =
1, 2, . . . , defined in (5.1) and (5.2) are uniformly tight. This fact together with

the definition of the measures µ
(N)
j1,...,jk

and the identity hNj1,...,jk(x1, . . . , xk) =
ck1(j1,...,jk),...,kd(j1,...,jk)hN(x1, . . . , xk) imply that relation (4.8) holds.

It remained to prove Proposition 5.1.

Proof of Proposition 5.1. Most calculations needed in the proof of Proposi-
tion 5.1 were actually carried out in the proof of Theorem 8.2 of [9]. Only
some slight modifications are needed in the proof. In some steps I shall refer
to the corresponding part in the proof of Theorem 8.2 in [9] and omit the
details of the calculation.

I compute for all N = 1, 2, . . . the Fourier transform

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =

∫
ei((t1,x1)+···+(tk,xk))µ

(N)
j1,...,jk

( dx1, . . . , dxk)

of the measures µ
(N)
j1,...,jk

defined in (5.1) and give a good asymptotic formula
for it. More precisely I do this only for such coordinates (t1, . . . , tk) of the

function ϕ
(N)
j1,...,jd

(t1, . . . , tk) which have the form tl =
pl
N

with some pl ∈ Zν ,
l = 1, . . . , k. But as it is explained at the end of this proof, even such
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a result is sufficient for us. In the calculation of the formula expressing
ϕ
(N)
j1,...,jd

(t1, . . . , tk) I exploit that the function hN(x1, . . . , xk) defined in (5.2)
can be written in the form

hN(x1, . . . , xk) =
1

N ν

∑

u∈BN

exp

{
i
1

N
(u, x1 + · · ·+ xk)

}
.

Hence, and because of the definition of the spectral measures G
(N)
j,j (·) in (3.4)

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =
1

N2ν

∫
exp

{
i
1

N
((p1, x1) + · · ·+ (pk, xk))

}

∑

u∈BN

∑

v∈BN

exp

{
i

(
u− v

N
, x1 + · · ·+ xk

)}
G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

=
1

N2ν

∑

u∈BN

∑

v∈BN

(
k∏

s=1

∫
exp

{
i

(
u− v + ps

N
, xs

)}
G

(N)
js,js

( dxs)

)

=
1

N2ν−kαL(N)k

∑

u∈BN

∑

v∈BN

rj1,j1(u− v + p1) · · · rjk,jk(u− v + pk)

if tl =
pl
N

with some pl ∈ Zν , 1 ≤ l ≤ k. This identity can be rewritten by
taking the summation at the right-hand side of the last formula first for such
pairs (u, v) for which u − v = y with a fixed point y ∈ Zν and then for the
lattice points y ∈ Zν . By working with x = y

N
instead of y we get that

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =

∫

[−1,1]ν
f
(N)
j1,...,jk

(t1, . . . , tk, x)λN( dx)

with

f
(N)
j1,...,jk

(t1, . . . , tk, x)

=

(
1−

|x(1)N |

N

)
· · ·

(
1−

|x(ν)N |

N

)
rj1,j1(N(x+ t1))

N−αL(N)
· · ·

rjk,jk(N(x+ tk))

N−αL(N)
,

where λN is the measure concentrated in the points of the form x = p
N

with such points p = (p1, . . . , pν) ∈ Zν for which −N < pl < N for all
1 ≤ l ≤ ν, and λN(x) = N−ν for each point x with this property. (Here such
a calculation is applied which is similar to that in the proof of Theorem 8.2
of [9] when formula (8.20) of that work was rewritten in another form.)
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Let us extend the definition of ϕ
(N)
j1,...,jd

(t1, . . . , tk) to all (t1, . . . , tk) ∈ Rkν

by defining it as

ϕ
(N)
j1,...,jd

(t1, . . . , tk) = ϕ
(N)
j1,...,jd

(p1
N
, . . . ,

pk
N

)
, tl ∈ Rν for all 1 ≤ l ≤ k,

where pl = pl(tl) is defined as the integer part [tlN ] of tlN , 1 ≤ l ≤ k, i.e.

pl ∈ Zν , and p
(s)
l ≤ t

(s)
l N < p

(s)
l + 1 if t

(s)
l > 0, and p

(s)
l − 1 < t

(s)
l N ≤ p

(s)
l if

t
(s)
l ≤ 0, 1 ≤ s ≤ ν.

Let us also extend the definition of the function f
(N)
j1,...,jk

(t1, . . . , tk, x) to

(t1, . . . , tk, x) ∈ Rkν × [−1, 1]ν by means of the formula

f
(N)
j1,...,jk

(t1, . . . , tk, x)

=

(
1−

|q(1)|

N

)
· · ·

(
1−

|q(ν)|

N

)
rj1,j1(q + p1)

N−αL(N)
· · ·

rjk,jk(q + pk)

N−αL(N)

for tl ∈ Rν , 1 ≤ l ≤ k, and x ∈ [−1, 1]ν , where pl = pl(t) is defined as
before, and q = q(x) is defined as q = (q(1), . . . , q(ν)) ∈ Zν with ql ∈ Zν , and

q(s) ≤ x
(s)
l < q(s) + 1.

We have

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =

∫

[−1,1]ν
f
(N)
j1,...,jk

(t1, . . . , tk, x) dx (5.3)

for the functions ϕ(N)(·) and f (N)(·) with this extended domain of definition,
where dx denotes integration with respect to the Lebesgue measure.

It follows from relation (3.1) and the fact that q
N

is very close to x, and
pl
N

is very close to tl, for all 1 ≤ l ≤ k if N is large that for all parameters
t1, . . . , tk and ε > 0

f
(N)
j1,...,jk

(t1, . . . , tk, x) → f
(0)
j1,...,jk

(t1, . . . , tk, x)

holds uniformly with the limit function

f
(0)
j1,...,jk

(t1, . . . , tk, x)

= (1− |x(1)|) . . . (1− |x(ν)|)
aj1,j1

(
x+t1
|x+t1|

)

|x+ t1|α
. . .

ajk,jk

(
x+tk
|x+tk|

)

|x+ tk|α

on the set x ∈ [−1, 1]ν \
k⋃

l=1

{x : |x+ tl| < ε}.
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Some additional calculation shows that for small ε > 0 integration on the
domain

[−1, 1]ν \

(
[−1, 1]ν \

k⋃

l=1

{x : |x+ tl| < ε}

)

= [−1, 1]ν ∩

(
k⋃

l=1

{x : |x+ tl| < ε}

)

gives a negligible contribution to the integral in formula (5.3) (with param-
eters j1, . . . , jk and t1, . . . , tl), or to the integral that we get if the kernel

function f
(N)
j1,...,jk

is replaced by f
(0)
j1,...,jk

in the integral in (5.3). Hence the
relation

ϕ
(N)
j1,...,jk

(t1, . . . , tk) → ϕ
(0)
j1,...,jk

(t1, . . . , tk) =

∫

[−1,1]ν
f
(0)
j1,...,jk

(t1, . . . , tk, x) dx

(5.4)

holds for all (t1, . . . , tk) ∈ Rkν as N → ∞, and ϕ
(0)
j1,...,jk

(t1, . . . , tk) is a contin-
uous function. This calculation was carried out in that part of the proof of
Theorem 8.2 in [9] which followed the discussion of Lemma 8.4. Hence here
I omit it.

By a classical result of probability theory if the Fourier transforms of a
sequence of finite measures on Rkν converge to a function continuous at the
origin, then the limit function is also the Fourier transform of a finite measure
on Rkν , and the sequence of probability measures whose Fourier transforms
were taken converge to this measure. In the proof of Proposition 5.1 this
result cannot be applied, because we have a control on the Fourier transform
of µ

(N)
j1,...,jk

only in points of the form (t1, . . . , tk) with tl =
pl
N

and pl ∈ Zν ,

1 ≤ l ≤ k. But the measures µ
(N)
j1,...,jk

have the additional property that they

are concentrated in the cube [−Nπ,Nπ)kν . Lemma 8.4 of [9] can be applied,
and it shows that relation (5.4) and the continuity of the limit function

ϕ
(0)
j1,...,jk

(t1, . . . , tk) together with the above mentioned concentration property

of the measures µ
(N)
j1,...,jk

imply the weak convergence of the measures µ
(N)
j1,...,jk

to a finite measure µ
(0)
j1,...,jk

. This result also implies that this finite measure

µ
(0)
j1,...,jk

has the Fourier transform ϕ
(0)
j1,...,jk

(t1, . . . , tk).

To prove Theorem 3.3 with the help of Theorem 3.2 it is enough to show
that if a function H(1)(·) satisfies (3.7) and (3.8), and the Gaussian stationary
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random field X(p) = (X1(p), . . . , Xd(p)) satisfies (3.1) and (3.2), then

1

N ν−kα/2L(N)k/2

∑

p∈BN

H(1)(X1(p), . . . , Xd(p)) ⇒ 0 as N → ∞, (5.5)

where ⇒ denotes convergence in probability. I shall prove that even the
second moments of the normalized sums in (5.5) tend to zero as N → ∞.
The following Lemma 5A which agrees with Lemma 1 of [1] (only with a
slightly different notation) helps in the proof of this statement.

Lemma 5A. Let X = (X1, . . . , Xd) and Y = (Y1, . . . Yd) be two Gaussian
random vectors with expectation zero such that EXjXj′ = EYjYj′ = δj,j′,
1 ≤ j, j′ ≤ d, and let rj,j′ = EXjYj′, 1 ≤ j, j′ ≤ d. Take a number k ≥ 1 and
a function H(1)(x1, . . . , xd) that satisfies relations (3.7) and (3.8). Assume
that

ψ = max

((
sup

1≤j≤d

d∑

j′=1

|rj,j′ |

)
,

(
sup

1≤j′≤d

d∑

j=1

|rj,j′ |

))
≤ 1.

Then

|EH(1)(X1, . . . , Xd)H
(1)(Y1, . . . , Yd)| ≤ ψk+1E

[
H(1)(X1, . . . , Xd)

]2
.

Proof of Theorem 3.3. It follows from relations (3.1), (3.2) and Lemma 5A

together with the inequality E
[
H(1)(X1(0), . . . , Xd(0))

]2
< ∞ which holds

because of (3.8) that for two elementsX(p) = (X1(p), . . . , Xd(p)) andX(q) =
(X1(q), . . . , Xd(q)), p, q ∈ Zν , of our vector valued Gaussian stationary ran-
dom field there exists some threshold index n0 ≥ 1 and constant 0 < C <∞
such that

|EH(1)(X1(p), . . . Xd(p))H
(1)(X1(q), . . . , Xd(q))|

≤ C|p− q|−(k+1)αL(|p− q|)k+1

if |p− q| ≥ n0. On the other hand,

|EH(1)(X1(p), . . . Xd(p))H
(1)(X1(q), . . . , Xd(q))|

≤ EH(1)2(X1(0), . . . Xd(0)) ≤ C1

for all p, q ∈ Zν with some C1 < ∞ by the Schwarz inequality and rela-
tion (3.8). Hence we get by summing up the above two inequalities for all
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q ∈ BN with a fixed p ∈ BN , and applying the first inequality if |p− q| > n0

and the second one if |p− q| ≤ n0 that

∣∣∣∣∣EH
(1)(X1(p), . . . , Xd(p))

(
∑

q∈BN

H(1)(X1(q), . . . , Xd(q)

)∣∣∣∣∣

≤ C2(1 +N ν+ε−(k+1)α)

for all p ∈ BN and ε > 0 with an appropriate C2 = C2(ε) > 0. Since
ν − kα > 0 we get by summing up the last inequality for all p ∈ BN that

1

N2ν−kαL(N)k
E

[
∑

p∈BN

H(1)(X1(p), . . . , Xd(p))

]2
→ 0 as N → ∞.

Indeed, it can be seen that for all ε > 0 the expression in the last formula
can be bounded from above by C(ε)N−δ+ε with δ = min(ν − kα, α) > 0
and a constant C(ε) > 0 depending only on ε. This implies formula (5.5).
Formula (5.5) together Theorem 3.2 yield Theorem 3.3.

Proof of Theorem 3.4. The proof of Theorem 3.4 is very similar to that
of Theorems 3.2 and 3.3. Hence I only briefly explain it.

It is enough to show that for any positive integerK, parameters t1, . . . , tK ,
tp ∈ [0, 1]ν , 1 ≤ p ≤ K and real constants C1, . . . , CK the linear combina-

tions
∑K

p=1CpSN(tp) converge to
∑K

p=1CpS0(tp) in distribution as N → ∞,
since this implies that the random vectors (SN(t1), . . . , SN(tK)) converge in
distribution to the random vector (S0(t1), . . . , S0(tK)) as N → ∞. Moreover,
similarly to the proof of Theorem 3.3 the proof of Theorem 3.4 can be reduced
to the case H(x1, . . . , xd) = H(0)(x1, . . . , xd) with a function H(0)(x1, . . . , xd)
which satisfies relation (3.3).

In the first step of the proof the linear combinations
∑K

p=1CpSN(tp), N =
0, 1, 2, . . . , are written in the form of a sum of k-fold Wiener-Itô integrals with
respect to the coordinates of an appropriate vector valued random spectral
measure. This can be done, first by writing the random variables SN(t) for
all t ∈ [0, 1]ν in the desired form. The random variables S0(t) are written in
such a form in (3.11). In the case N = 1, 2, . . . the right expression of SN(t)
in the form of a sum of Wiener–Itô integrals can be found similarly to the
method applied in the proof of Theorem 3.2. We can write, similarly to the
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proof of formulas (4.2) and (4.3)

SN(t) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫
ck1,...,kdf

N(t, x1 + · · ·+ xk)

d∏

j=1




k1+···+kj∏

l=k1+···+kj−1+1

ZG(N),j( dxl)




with

fN(t, x) =
ν∏

l=1

exp
{
i ]t

(l)N [
N

(x(l))
}
− 1

N
(
exp

{
i 1
N
(x(l))

}
− 1
) ,

where t = (t(1), . . . , t(ν)), the number ]t(l)N [ in the definition of the function
fN(t, x1, . . . , xk)) is the smallest integer which is not smaller than t(l)N , and
ZG(N),j agrees with the spectral measure that appeared in formula (4.2).

It is not difficult to see that, similarly to relations (4.4) and (4.5)

lim
N→∞

fN(t, x1 + · · ·+ xk) = f 0(t, x1 + · · ·+ xk)

with the function

f 0(t, x) =
ν∏

l=1

eit
(l)(x(l)) − 1

i(x(l))

for all (x1, . . . , xk) ∈ Rkν , and for a fixed parameter t this convergence is
uniform in all bounded subsets of Rkν .

With the help of the above considerations the proof of Theorem 3.4 can
be reduced, similarly to the proof of Theorem 3.2 to the following statement.

Fix some number K, real constants C1, . . . , CK and points t1, . . . tK with
tp ∈ [0, 1]ν , 1 ≤ p ≤ K together with some constants ck1,...,kd with parameters
kj ≥ 0, 1 ≤ j ≤ d, and k1 + · · ·+ kd = k which agree with the coefficients in
the sum (3.3). Let us define with their help the random sums

SN =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫ ( K∑

p=1

Cpck1,...,kdf
N(tp, x1 + · · ·+ xk)

)

d∏

j=1




k1+···+kj∏

l=k1+···+kj−1+1

ZG(N),j( dxl)


 (5.6)
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with the above defined functions f (N)(t, x1, . . . , xk) for all N = 1, 2, . . . , and

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫ ( K∑

p=1

Cpck1,...,kdf
0(tp, x1 + · · ·+ xk)

)

d∏

j=1




k1+···+kj∏

l=k1+···+kj−1+1

ZG(0),j( dxl)


 (5.7)

with the previously defined function f 0(t, x1, . . . , xk). The sequence of ran-
dom variables SN defined in (5.6) converge in distribution to S0 defined
in (5.7) as N → ∞.

This statement can be proved, similarly to Theorem 3.2 with the help of
Proposition 4A. First the random variables SN , N = 1, 2, . . . , and S0 must
be rewritten in a form in which Proposition 4A can be applied. They can be
rewritten in the form of a sum of multiple Wiener–Itô integrals indexed by
sequences of integers j1, . . . , jk such that 1 ≤ j1 ≤ · · · ≤ jk ≤ d. This can be
done similarly to the rewriting of formulas (4.2) and (4.6) in formulas (4.14),
(4.15) and (4.16), (4.17) with the help of the expressions ks(j1 . . . , jk) defined
in (4.10). The random variable SN in (5.6) can be rewritten as

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫ ( K∑

p=1

Cpck1(j1,...,jk),...,kd(j1,...,jk)f
N(tp, x1 + · · ·+ xk)

)

ZG(N),j1( dx1) . . . ZG(N),jk
( dxk) (5.8)

for all N = 1, 2, . . . , and the random variable in (5.7) as

S0 =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫ ( K∑

p=1

Cpck1(j1,...,jk),...,kd(j,...,jk)f
0(tp, x1 + · · ·+ xk)

)

ZG(0),j1( dx1) . . . ZG(0),jk
( dxk), (5.9)

where the indices ks(j1, . . . , jk), 1 ≤ s ≤ d, are defined in (4.10).
The random integrals in formulas (5.8) and (5.9) have kernel functions of

the form

hNj1,...,jk(x1, . . . , xk) = hNj1...,jk,t1,...,tK (x1, . . . , xk) (5.10)

=
K∑

p=1

Cpck1(j1,...,jk),...,kd(j1,...,jk)f
N(tp, x1 + · · ·+ xk)
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for all N = 0, 1, 2, . . . . Let us define for all N = 0, 1, 2, . . . the measures
µN,j1,...,jk as

µ
(N)
j1,...,jk

(A) = µ
(N)
j1,...,jk,t1,...,tK

(A) (5.11)

=

∫

A

|hNj1,...,jk,t1,...,tK (x1, . . . , xk)|
2G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

where integral is taken for all measurable sets A ∈ Bkν .
We want to show with the help of Proposition 4A that the distributions

of the random variables SN , N = 1, 2, . . . , defined in (5.8) converge weakly
to the distribution of the random variable S0 defined in (5.9). This implies
Theorem 3.4.

To prove this convergence we have to show that the functions hNj1,...,jk ,

N = 0, 1, 2, . . . , defined in (5.10) and the measures G
(N)
j,j , 1 ≤ j ≤ d, N =

0, 1, 2, . . . , satisfy the conditions of Proposition 4A. The main point is to
prove relation (4.8) in condition (b) of Proposition 4A. To prove this we

show that the measures µ
(N)
j1,...,jk

, N = 1, 2, . . . , defined in (5.11) are tight, i.e.
for all ε > 0 there exists a T = T (ε, j1, . . . , jk, t1, . . . , tK) such that

µN
j1,...,jk,t1,...,tK

(Rkν \ [−T, T ]kν) < ε for all N = 1, 2, . . . .

Because of the Schwarz inequality and the definition of the functions
hNj1...,jk,t1,...,tK (x1, . . . , xk) the proof of this tightness property can be reduced
to the justification of the following inequality.

Let us define for all t = (t1, . . . , tν) ∈ [0, 1]ν , andN = 1, 2, . . . the measure
µN,t on Rkν by the formula

µN,t(A) =

∫

A

|fN(t, x1 + · · ·+ xk)|
2G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

=

∫

A

∣∣∣∣∣∣

ν∏

l=1

exp
{
i ]t

(l)N [
N

(x
(l)
1 + · · ·+ x

(l)
k )
}
− 1

N
(
exp

{
i 1
N
(x

(l)
1 + · · ·+ x

(l)
k )
}
− 1
)

∣∣∣∣∣∣

2

G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

for all A ∈ Bkν . The inequality

µN,t(R
kν \ [−T, T ]kν) < ε
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holds for all N = 1, 2, . . . , if T ≥ T0(ε, t) with an appropriate threshold index
T0(ε, t) > 0.

I claim that the measures µN,t converge weakly to a measure µ0,t on Rkν

as N → ∞. This convergence implies the above inequality. This convergence
can be proved similarly to Proposition 5.1. Namely, we can write

ν∏

l=1

exp
{
i ]t

(l)N [
N

(x
(l)
1 + · · ·+ x

(l)
k )
}
− 1

N
(
exp

{
i 1
N
(x

(l)
1 + · · ·+ x

(l)
k )
}
− 1
)

=
1

N ν

∑

u∈BN (t)

exp

{
i
1

N
(u, x1 + · · ·+ xk)

}
,

where the set BN(t) was defined in (3.9). With the help of this formula the
Fourier transform of the measure µN,t can be calculated in all points of the
form u = (u1, . . . , uk), us = ps

N
, ps ∈ Zν , 1 ≤ s ≤ k, This can be done

similarly to the corresponding calculation in Proposition 5.1. Then a good
asymptotic formula can be proved for this Fourier transform with the help of
relation (3.1), and this implies the above mentioned convergence. Here again
the method of proof in Proposition 5.1 is applied. I omit the details.

This implies that condition (b) of Proposition 4A holds in our model.
The proof of the remaining conditions is much simpler. Similarly to the proof
of Theorem 3.2 it can be shown with the help of Proposition 3.1 that the
spectral measures G

(N)
j,j′ satisfy the required convergence property. Finally,

it is not difficult to check that the functions hNj1,...,jk defined in (5.10) satisfy
condition (a) of Proposition 4A.

Let me finally remark that a simple and natural modification in the proof
of Theorem 3.4 shows that this result also holds if the random variables S0(t)
in it are defined for all t ∈ [0,∞)ν , (in the way as it is explained at the end
of Section 3) and not only for t ∈ [0, 1]ν .

Appendix A. On the background of the limit theorems of this

paper.

In the example after formula (3.1) I constructed a vector valued stationary
random field with a spectral density function in such a way that its covariance
function satisfies relation (3.1) with some appropriately defined functions

aj,j′
(

p
|p|

)
and L(p). The spectral density of this random field is close in

42



some sense to the spectral density of a vector valued generalized stationary
random field. Moreover, the spectral density of this generalized random field
has some homogeneity property.

I would like to point out that the spectral measures of all stationary
Gaussian random fields whose covariance function satisfy (3.1) show a similar
behavior. Indeed, take the spectral measure (Gj,j′(·)), 1 ≤ j, j′ ≤ d, of such a
random field whose covariance function rj,j′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν satisfies
relation (3.1). Let us recall the results of Proposition 3.1 about the properties
of this spectral measure.

The elements, G
(N)
j,j′ (·), defined as G

(N)
j,j′ (A) =

Nα

L(N)
Gj,j′

(
A
N

)
, 1 ≤ j, j′ ≤ d,

N = 1, 2, . . . , A ⊂ Rν , of the rescaled versions of the spectral measure
G = (Gj,j′(·)), 1 ≤ j, j′ ≤ d, of a random field, whose covariance matrix

satisfies (3.1) have a vague limit G
(0)
j,j′(·), when N → ∞. These vague limits

have the homogeneity property G
(0)
j,j′(tA) = tαG

(0)
j,j′(A), 1 ≤ j, j′ ≤ d, for all

t > 0 and measurable, bounded sets A ⊂ Rν . Moreover, (G
(0)
j,j′(·)), 1 ≤ j, j′ ≤

d, is the spectral measure of a generalized, stationary random field.
The above mentioned homogeneity property of the measures G

(0)
j,j′ is im-

portant for us, because it enables us to construct self-similar random fields,
and in our limit theorems self-similar random fields appear as the limit. Here
I recall the definition of self-similarity in a slightly more general situation than
in the main text. In this definition vector valued random fields are consid-
ered. A vector valued random field S(t) = (S1(t), . . . , Sm(t)), t ∈ [0,∞)ν , of

dimension m is called self-similar with parameter β, β > 0, if S(ut)
∆
= uβS(t)

for all u > 0, where
∆
= means that the finite dimensional distributions of the

two random fields agree.
To understand how a vector valued self-similar random field can be con-

structed with the help of the spectral measure (Gj,j′(·)) of a vector valued
stationary generalized random field whose elements have the homogeneity
property Gj,j′(tA) = tαGj,j′(A) with some α > 0 let us first recall that the
set of functions ϕ for which the random variable ZG(ϕ) of a generalized, vec-
tor valued Gaussian random field with spectral measure G is defined can be
enlarged. Indeed, let ZG = (ZG,1, . . . , ZG,d) be a random spectral measure
corresponding to the spectral measure (Gj,j′(·)). In the original definition
the elements of the vector valued, generalized Gaussian stationary random
field corresponding to this random spectral measure are the random vectors
(ZG,1(ϕ), · · · , ZG,d(ϕ)), with ZG,j(ϕ) =

∫
ϕ̃(x)ZG,j( dx), 1 ≤ j ≤ d, where
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the function ϕ(·) is an element of the Schwartz space S, and ϕ̃ denotes its
Fourier transform. These random integrals ZG,j(ϕ) can be defined for a larger
class of functions. They can be defined for those real valued functions ϕ(x),
for which

∫
|ϕ̃(x)|2Gj,j( dx) <∞ for all 1 ≤ j ≤ d.

The spectral measure (Gj,j′(·)), 1 ≤ j, j′ ≤ d, of those generalized random
fields are important for us for which the domain of arguments of the random
variables ZG,j(ϕ), 1 ≤ j ≤ d, can be extended with the indicator functions

of the rectangles [0, t] =
ν∏

s=1

[0, ts] for all t = (t1, . . . , tν ] ∈ Rν , i.e.

∫
|Ĩ[0,t](x)|

2Gj,j( dx) =

∫ ( ν∏

s=1

2(1− cos(tsxs))

x2s

)
Gj,j( dx) <∞

for all 1 ≤ j ≤ d. This inequality holds if Gj,j(tA) = tαGj,j(A) with some
0 < α < 2ν for all t > 0 and 1 ≤ j ≤ d.

Let us consider a spectral measure (Gj,j′(·)), 1 ≤ j, j′ ≤ d, such that

Gj,j′(tA) = tαGj,j′(A) with some 0 < α < 2ν

for all t > 0 and 1 ≤ j, j′ ≤ d, and let (Zα
G,1, . . . , Z

α
G.d) be a random spectral

corresponding to this spectral measure. (Here I put the homogeneity parame-
ter α of the spectral measure in the upper index of the elements of the random
spectral measure.) Consider for all pairs of vectors t(1) = (t

(1)
1 , . . . , t

(1)
ν ) ∈ Rν

and t(2) = (t
(2)
1 , . . . , t

(2)
ν ) ∈ Rν such that t

(1)
s < t

(2)
s for all 1 ≤ s ≤ ν the

rectangle [t(1), t(2)] =
ν∏

s=1

[t
(1)
s , t

(2)
s ], and define the random vectors

Zα
G([t

(1), t(2)]) = (Zα
G,1([t

(1), t(2)]), . . . , Zα
G.d([t

(1), t(2)]))

with coordinates

Zα
G,j([t

(1), t(2)]) =

∫
˜I[t(1),t(2)](x)Z

α
G,j( dx)

=

∫ ( ν∏

s=1

ei(t
(2)
s xs − eit

(1)
s )xs

ixs

)
Zα

G,j( dx), 1 ≤ j ≤ d,

for all these rectangles.
Introduce the vectors S0(t) = Zα

G([0, t]) for all t ∈ Rν with positive coor-
dinates, where 0 denotes the origin in Rν , and X0(p) = Zα([p− 1, p]) for all
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p ∈ Zν , where p−1 = (p1−1, . . . , pν−1) for p = (p1, . . . , pν). Then S0(·) is a
vector valued self-similar random field with self-similarity parameter ν − α

2
,

X0(p), p ∈ Zν , is a vector valued stationary, Gaussian random field, and for
a fixed vector p = (p1, . . . pν) ∈ Zν and all N = 1, 2, . . .

1

N ν−α/2

∑

j=(j1,...,jν)
1≤js≤Nps for all 1≤s≤ν

X0(j) =
1

N ν−α/2
S0(Np)

∆
= S0(p).

A similar relation holds also for the linear combinations of the coordinates
of the vector valued random field X0(p), p ∈ Zν . This means that these
random fields satisfy the limit theorems of Theorems 3.2—3.4 for k = 1. Let
me remark that the covariance function rj,j′(p) = EX0(0)X0(p)), p ∈ Zν ,
satisfies relation (3.1). Indeed, it can be proved that

rj,j′(p) =

∫
Ĩ[0,1](x)Ĩ[p,p+1](x)Gj,j′( dx)

=

∫
ei(p,x)

(
ν∏

s=1

2(1− cosxs)

x2s

)
Gj,j′( dx)

= Cj,j′

(
p

|p|

)
|p|−α(1 + o(1))

with some function Cj,j′

(
p
|p|

)
because of the homogeneity property of Gj,j′(·).

Theorems 1.2—1.4 in the case k = 1 state that the corresponding limit
theorems also hold for models which satisfy Condition (3.1) with 0 < α < ν.
The restriction of the value of α to 0 < α < ν instead of 0 < α < 2ν in these
results has a good reason. The partial sums which were normalized in these
theorems have variances of order N2ν−αL(N). In the case α > ν this means
an exponent smaller than ν. So in the case α > ν we can get a limit theorem
(for k = 1) only in such models where both positive and negative covariances
appear, and their effects compensate each other in a very special way.

In the case k > 1 a similar picture arises. Here again, we take random
spectral measures corresponding to such spectral measures which have ho-
mogeneity property. We define the self-similar random fields we are working
with in this case by means of k-fold Wiener–Itô integrals with respect to
random spectral measures corresponding to them.

Given an integer k ≥ 2 let us take the spectral measure (Gj,j′(·)) of a
generalized random field which has the homogeneity property Gj,j′(tA) =
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tαGj,j′(A) for all measurable sets with finite diameter, t > 0, 1 ≤ j, j′ ≤ d,
and a number α > 0 whose possible value will be given later. Let us con-
sider a random spectral measure ZG = (ZG,1, . . . , ZG,d) corresponding to this
spectral measure, and define with its help a random vector ZG([t

(1), t(2)]) for
all rectangles [t(1), t(2)] introduced in the previous construction with coordi-
nates ZG,j1,...,jk([t

(1), t(2)]), where (j1, . . . , jk) is a sequence with the property
1 ≤ js ≤ d for all 1 ≤ s ≤ k. These random variables are defined as k-fold
Wiener–Itô integrals by the following formula.

ZG,j1,...,jk([t
(1), t(2)]) =

∫
˜I[t(1),t(2)](x

(1) + · · ·+ x(k))

ZG,j1( dx
(1)) . . . ZG,jk( dx

(k))

=

∫ 


ν∏

s=1

eit
(2)
s (x

(1)
s +···+x

(k)
s ) − eit

(1)
s (x

(1)
s +···+x

(k)
s )

i
(
x
(1)
s + · · ·+ x

(k)
s

)




ZG,j1( dx
(1)) . . . ZG,jk( dx

(k)).

(Actually, the value of this random integral depends only on the multiplicity
of the numbers 1, 2, . . . , d in the sequence (j1, . . . , jk). The order of these
numbers in the sequence j1, . . . , jk does not count.)

With the help of the above defined Wiener–Itô integrals let us define,
similarly to the case k = 1, the random vector

ZG([t1, t2]) = {ZG,j1,...,jk([t
(1), t(2)]) : 1 ≤ js ≤ d for all 1 ≤ s ≤ l}.

Naturally, we have to choose the spectral measure (Gj,j′(·) in such a way
that the above k-fold Wiener–itô integral be meaningful. There is an integral
which must be finite for the existence of these random integrals. In the case
of k-fold Wiener–Itô this relation holds if the homogeneity parameter α of
the underlying spectral measure satisfies the inequality 0 < α < ν

k
. The

next calculation is an estimation which implies the existence of the above
Wiener–itô integrals with such a choice of α. I omit the explanation why
this calculation is correct, although this is not self-evident. Actually the
existence of the random integrals I am considering here also follows from the
results of the main text.
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In the case α < ν
k

∫



ν∏

s=1

1− cos(t
(2)
s − t

(1)
s )(x

(1)
s + · · ·+ x

(k)
s )

(
x
(1)
s + · · ·+ x

(k)
s

)2




Gj1,j1( dx
(1)) . . . Gjk,jk( dx

(k))

≤ C

∫



ν∏

s=1

1(
1 +

(
x
(1)
s + · · ·+ x

(k)
s

)2)




|x(1)|α−ν · · · |x(k)|α−ν dx(1) . . . dx(k)

≤ C ′

ν∏

s=1



∫

|x
(1)|
s |−1+α/ν · · · |x

(k)
s |−1+α/ν

(
1 +

(
x
(1)
s + · · ·+ x

(k)
s

)2) dx(1)s . . . dx(k)s


 <∞.

Similarly to the case k = 1 such a special limit theorem can be presented
which shows some similarity to the results of Theorems 3.2—3.4. Define, with
similar notation as in the case k = 1, the random vectors S0(t) = ZG([0, t]) for
all t ∈ Rν with positive coordinates, and X0(p) = Zα([p−1, p]) for all p ∈ Zν .
Then S0(·) is a vector valued self-similar random field with self-similarity
parameter ν − kα

2
, X0(p), p ∈ Zν , is a vector valued stationary, Gaussian

random field, and for a fixed vector p = (p1, . . . pν) ∈ Zν , ps > 0,≤ ν, and all
N = 1, 2, . . .

1

N ν−kα/2

∑

j=(j1,...,jν)
1≤js≤Nps for all 1≤s≤ν

X0(j) =
1

N ν−kα/2
S0(Np)

∆
= S0(p).

This is a limit theorem, where the limit is the above constructed self-
similar random field S0(·). Theorems 3.2–3.4 are limit theorems with the
same limit. They hold for such vector valued Gausian stationary random
fields whose covariance matrices are similar to the covariance matrix of a
random field with that spectral measure (Gj,j′(·), 1 ≤ j, j′ ≤ d, which was
applied in the definition of the self-similar random field S0(·).

The goal of this Appendix was to explain the background of the results
in this paper. Here I concentrated on the explanation of the definition of the
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self-similar random fields which appear as the limit in our limit theorems.
Their construction was based on the theory of multiple Wiener–Itô integrals
for several dimensional stationary Gaussian random fields, in particular on
the properties of the random spectral measures of generalized Gaussian ran-
dom fields.

The proof of the results consisted of two steps. In the first step the random
sums we wanted to study were rewritten as a sum of Wiener–Itô integrals.
This could be done with the help of the multivariate version of Itô’s formula
formulated in Theorem 2.2 of [11]. Then limit theorems for sequences of
sums of Wiener–Itô integrals had to be proved. This could be done with
the help of Proposition 4A. Naturally, the Wiener–Itô integrals which define
the limit random variables in Theorems 3.2–3.4 must exist. The condition
0 < α < ν

k
in these theorems appear because of this condition. They are to

guarantee the existence of the k-fold Wiener–Itô integrals which define the
limit random variables in these results.

If the conditions of Theorems 3.2–3.4 hold, but with a parameter α ≥ ν
k
,

then the random integrals defining the limit in these theorems do not exist.
In such cases the central limit theorem holds with the classical normalization.
This follows from the result of [3] in the scalar valued and from its multi-
variate generalization in Theorem 4 of [1] in the vector valued case. This
problem is discussed in Appendix B of [11].

In this paper limit theorems were proved for non-linear functionals of
stationary Gaussian random fields. I try to give a short overview about
papers which deal with similar problems. The scalar valued version of the
results in this paper was proved in [6]. M. S. Taqqu proved in paper [16]
similar results. Both papers contain non-central limit theorems for sequences
of non-linear functionals of (scalar valued) stationary Gaussian random fields.
Taqqu’s result has no multivariate version, and I do not know how such a
result can be proved.

Paper [2] contains a result which tells when the classical central limit
theorem holds for sequences of non-linear functionals of stationary Gaussian
random fields similar to those considered in [6]. The book [12] generalizes
the result of this paper. A. M. Arcones wanted to generalize both the central
limit theorem of [2] and the non-central limit theorem of [6] for non-linear
functionals of vector valued Gaussian random fields. He proved the central
limit theorem part of these results in Theorem 4 of his paper [1]. He claimed
to have also proved the multivariate version of the non-central limit theorem
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in [6] in Theorem 6 of his paper. But I found the proof (and also the formu-
lation) of this result problematic. Sanchez de Naranjo dealt also with this
problem in his paper [14]. But his discussion contains some serious gaps.
Hence I cannot consider his result a valid proof. The goal of the present
paper was to formulate and prove the right multivariate version of the result
in [6].

Let me also remark that H. C. Ho and T. C. Sun proved an interesting
result in [8]. They proved a result which can be considered as an inter-
esting mixture of the central and non-central limit theorem for non-linear
functionals of stationary Gaussian random fields. They considered a two-
dimensional vector valued stationary Gaussian random process (Xm, Ym),
m ∈ Z, together with two non-linear functionals which are of such type as
the non-linear functionals applied in [6]. They applied the first functionals
for the process Xm, and the second functional for the process Ym. In The-
orem 1 of their paper they investigated the case when the sequence of the
linear functionals defined with the help of the elements in the first coordinate
satisfy a non-central, and the corresponding sequence defined with the help
of the elements in the second coordinate satisfy the central limit theorem.
They proved under some additional conditions that the joint distributions
of these sequences also have a limit, and the two coordinates of this limit
are independent. (The processes Xm and Ym are not independent.) Let me
remark that the usual proofs of the central and non-central limit theorem
apply different methods. This indicates that the proof of this result in [8]
demanded new ideas.

Donatas Surgailis proved results about similar problems, and they are
also worth mentioning. He proved, together with some coauthors such results
which can be considered as a generalization of the central and non-central
limit theorems proved for non-linear functionals of stationary Gaussian ran-
dom fields. He proved limit theorems for non-linear functionals of a new
class of stationary stochastic processes which contains non-Gaussian pro-
cesses, too. He worked with scalar valued random processes, but probably
these results can be generalized also to vector valued random processes.

Surgailis has several articles about this subject. I would mention his
paper [16], where he investigated non-linear functionals of moving average
processes which may be non-Gaussian. He proved limit theorems for non-
linear functionals of such processes. These results are very similar to those
proved for Gaussian processes. The main point in the proofs of this paper
is that Surgailis considered the Appel polynomials related to the moving
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average process he was working with, and showed that the arguments applied
in the Gaussian case can be adapted to the problems investigated by him
if the Hermite polynomials are replaced by these Appel polynomials. (In
the case of Gaussian moving averages the Appel polynomials are Hermite
polynomials.)

Finally I briefly mention a field of research where similar limit theorems
are proved with the help of essentially different arguments. This research de-
serves special attention because of its importance. This is the theory about
the KPZ (Kardar–Parisi–Zhang) universality classes and the problems re-
lated to them. Many important problems can be studied with their help.
On the other hand, the application of this theory demands hard analysis.
An overview about it can be found in paper [4] together with a long list of
literature.

Appendix B. Proof of the corollary of Theorem 3.4.

Proof of the corollary of Theorem 3.4. We want to show that for all pairs
ε > 0 and η > 0 there exists some δ = δ(ε, η) > 0 and threshold index
N0 = N0(ε, η) such that for all N ≥ N0 the inequality

P


 sup

(s,t) : s,t∈[0,1]ν

|t−s|<δ

|SN(t)− SN(s)| > ε


 < η (B.1)

holds for the random field SN(t), t ∈ [0, 1]ν , defined in (3.9) and (3.10).
Inequality (B.1) means that the random fields SN(t), t ∈ [0, 1]ν , intro-

duced in Theorem 3.4 satisfy besides the limit theorem formulated in Theo-
rem 3.4 also the tightness condition for probability measures in the space of
continuous functions C([0, 1]ν , C). It can be seen that these two properties
together imply the desired functional limit theorem.

First I show that relation (B.1) can be replaced with the following set of
simpler inequalities.

Define for all 1 ≤ j ≤ ν and δ > 0 the following set V (j, δ) consisting of
pairs of vectors (s, t), s ∈ [0, 1]ν and t ∈ [0, 1]ν .

V (j, δ) = {(s, t) : s = (s1, . . . , sν), t = (s1, . . . , sj−1, tj, sj+1, . . . , sν) :

0 ≤ sl ≤ 1 for all 1 ≤ l ≤ ν, and sj ≤ tj ≤ min(1, sj + δ)}.
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Then

P

(
sup

(s,t)∈V (j,δ)

|SN(t)− SN(s)| > ε

)
< η for all 1 ≤ j ≤ ν (B.2)

if δ ≤ δ(ε, η) and N ≥ N0(ε, η) with some δ(ε, η) > 0 and N0(ε, η).

To see the possibility of such a reduction let us first observe that inequal-
ity (B.1) follows from its following formally weaker version.

For all ε > 0 and η > 0 there exists some δ = δ(ε, η) > 0 and N0 =
N0(ε, η) such that

P


 sup

(s,t) : 0≤sj<tj≤1,
for all 1≤j≤ν, |t−s|<δ

|SN(t)− SN(s)| > ε


 < η (B.3)

if N ≥ N0.
Indeed, for a pair of vectors (s, t), s ∈ [0, 1]ν , t ∈ [0, 1]ν , define the vector

s∗ = s∗(s, t) = (min(s1, t1), . . . ,min(sν , tν)),

and consider the pairs (s∗, s) and (s∗, t). Let us apply relation (B.3) with
parameters δ and N0 corresponding to the parameters ε

2
and η

2
. If the pair

(s, t) satisfies the conditions appearing in the supremum of (B.1) with these
parameters, then the pairs (s∗, s) and (s∗, t) satisfy the conditions in the
supremum of (B.3) with the same parameter δ. Also the relation |SN(t) −
SN(s)| ≤ |SN(s)− SN(s

∗)|+ |SN(t)− SN(s
∗)| holds. Hence inequality (B.3)

with the above chosen δ and N0 implies that

sup
(s,t) : s,t∈[0,1]ν

|t−s|<δ

|SN(t)− SN(s)| ≤ sup
(s∗,s) : 0≤s∗j<sj≤1,

for all 1≤j≤ν, |s−s∗|<δ

|SN(s)− SN(s
∗)|

+ sup
(s∗,t) : 0≤s∗j<tj≤1,

for all 1≤j≤ν, |t−s∗|<δ

|SN(t)− SN(s
∗)| ≤ ε

with probability more than 1− η if N > N0. This means that relation (B.3)
implies relation (B.1).

Relation (B.2) can be reduced to reation (B.3) in a similar way. To
do this let us first define for a pair of vectors s = (s1, . . . , sν) ∈ [0, 1]ν ,
t = (t1, . . . , tν) ∈ [0, 1]ν and number 1 ≤ j ≤ ν the vector s(j) = s(j, s, t) =
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(t1, . . . , tj−1, sj, . . . , sν) (for j = 1 s(1) = (s1, . . . , sν) = s), and consider the
pairs of vectors (s(j), s(j + 1)), 1 ≤ j ≤ ν − 1. Observe that (s(j), s(j +
1)) = (s(j, s, t), s(j + 1, s, t)) ∈ V (j, δ) if the pair (s, t) satisfies the relations
|t− s| < δ and 0 ≤ sj < tj ≤ 1 for all 1 ≤ j ≤ ν. Let us choose a δ > 0 and
N0 in such a way that inequality (B.2) holds with parameters ε

ν
and η

ν
with

this number δ and N ≥ N0. Let us take those pairs of vectors (s, t) which
satisfy the conditions imposed in the supremum of formula (B.3) with this
number δ. We have seen that

{(s(j, s, t), s(j + 1, s, t)) : 0 ≤ sl < tl ≤ 1,

for all 0 ≤ l ≤ ν, |t− s| ≤ δ} ⊂ V (j, δ).

The identity SN(t)−SN(s) =
ν−1∑
j=1

[SN(s(j+1, s, t))−SN(s(j, s, t))] also holds.

These relations imply that with our choice of δ

sup
(s,t) : 0≤sj<tj≤1,
for all 1≤j≤ν, |t−s|<δ

|SN(t)− SN(s)| ≤
ν−1∑

j=1

sup
(s,t)∈V (j,δ)

|SN(t)− Sn(s)| ≤ ε

with probability more than 1− η if N > N0. This means that (B.2) implies
(B.3).

Next I present an inequality with the help of the random variables
H(X1(p), . . . , Xd(p)) instead of SN(t) which implies inequality (B.2). For
this goal I introduce the following notations.

Let us define the rectangle DN(r, s) for all pairs of vectors r = (r1, . . . , rν)
and s = (s1, . . . , sν) with integer coordinates such that 0 ≤ rj < sj ≤ N for
all 1 ≤ j ≤ ν by the formula

DN(r, s) = {p = (p1, . . . , pν) : p ∈ Zν , rj < pj ≤ sj for all 1 ≤ j ≤ ν},

and introduce for all δ > 0 and 1 ≤ j ≤ ν a set DN(δ, j) consisting of the
above defined rectangles DN(r, s) with some additional properties. We define

DN(δ, j) = {DN(r, s) : rl = 0 for l 6= j, 0 ≤ rj ≤ N,

0 < sl ≤ N for all 1 ≤ l ≤ ν, and 0 < sj − rj ≤ δN}.
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Inequality (B.2) follows from the relation

P


 sup

DN (r,s)∈DN (δ,j)

∣∣∣∣∣∣∣

∑
p∈DN (r,s)

H(X1(p), . . . , Xd(p))

N ν−kα/2L(N)k/2

∣∣∣∣∣∣∣
> ε


 ≤ η

for all 1 ≤ j ≤ ν (B.4)

if δ ≤ δ(ε, η) with some δ(ε, η) > 0. Here, and also in the remaining part of
the proof H(x1, . . . , xd) is a sum of the form

H(x1, . . . , xd) = H(0)(x1, . . . , xd) +H(1)(x1, . . . , xd),

with functions H(0)(·) and H(1)(·) defined in formulas (3.3) and (3.8).
In formulas (B.4) and (B.2) very similar expressions are estimated. The

main difference between them is that in (B.2) random variables of the form
|SN(t) − SN(s)| are considered with arguments s, t ∈ [0, 1]ν , while in (B.4)
random variables of the form

∣∣SN

(
s
N

)
− SN

(
r
N

)∣∣ with arguments s
N

and r
N
,

where s and r are vectors with integer coordinates with values between 0
and N . This is a sort of discretization, and in the reduction of (B.4) to (B.2)
it has to be shown that this discretization has a negligible effect in the case
of a large sample size N .

This can be seen with the help of the following observation. If N is large,
then because of the definition of the random field SN(·) for all t ∈ [0, 1]ν

there exists a vector r = (r1, . . . , rν) with integer coordinates rj, 0 ≤ rj ≤ N ,
such that SN(t) = SN

(
r
N

)
, and t and r

N
are very close to each other.

Inequality (B.4) will be proved by means of a good estimate on the tail
distribution of the random variables

∑
p∈DN (r,s)

H(X1(p), . . . , Xd(p)) for the

rectangles DN(r, s). These expressions will be estimated by means of an
argument similar to the proof of Theorem 3.3. To do this let us first re-
mark that Lemma 1 of [1] implies the following result, too. The inequality
in Lemma 5A holds also in the case when the function H(1)(x1, . . . , xd) is
replaced in it by H(x1, . . . , xd), and the coefficient ψk+1 in the upper bound
is replaced by ψk.

This modified version of Lemma 5A yields that there exists a threshold
index n0 and some constant C > 0 such that if the parameters p and q of
two elements X(p) = (X1(p), . . . , Xd(p)) and X(q) = (X1(q), . . . , Xd(q)) of
our random field satisfy the inequality |p− q| ≥ n0, then

|EH(X1(p), . . . Xd(p))H(X1(q), . . . , Xd(q))| ≤ C|p− q|−kαL(|p− q|)k.
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Let us observe that for such pairs p and q also the inequality

|p− q|−kαL(|p− q|)k ≤ C
∏

j : 1≤j≤ν
pj−qj 6=0

|pj − qj|
−kα/ν(L(|pj − qj|)

k/ν + I{|pj−qj |<D})

holds with some C > 0 and D > 0, where I{x<D} denotes the indicator
function of the set {x : x < D}. Hence the previous estimate has the
consequence

|EH(X1(p), . . . Xd(p))H(X1(q), . . . , Xd(q))|

≤ C
∏

j : 1≤j≤ν
pj−qj 6=0

|pj − qj|
−kα/ν(L(|pj − qj|)

k/ν + I{|pj−qj |≤D})

if |p− q| ≥ n0. This inequality is more appropriate for us than the previous
one.

On the other hand, the inequality

|EH(X1(p), . . . , Xd(p))H(X1(q), . . . , Xd(q))|

≤ EH2(X1(0), . . . Xd(0)) ≤ C1

also holds for all p, q ∈ Zν with some C1 < ∞ because of the Schwarz
inequality and relation (3.8).

The last two inequalities imply that for any rectangular DN(r, s) ⊂ BN

and p ∈ DN(r, s)
∣∣∣∣∣∣
EH(X1(p), . . . , Xd(p))


 ∑

q∈DN (r,s)

H(X1(q), . . . , Xd(q))



∣∣∣∣∣∣

(B.5)

≤ C2

ν∏

j=1

(
1 + (sj − rj)

1−kα/νL(sj − rj)
k/ν
)

with an appropriate constant C2. Indeed, these inequalities imply that
∣∣∣∣∣∣
EH(X1(p), . . . , Xd(p))


 ∑

q∈DN (r,s)

H(X1(q), . . . , Xd(q))



∣∣∣∣∣∣

≤ C

ν∏

j=1


1 + 2

sj−rj∑

qj=1

q
−kα/ν
j (L(qj)

k/ν + I{qj≤D})



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and
sj−rj∑
qj=1

q
−kα/ν
j (L(qj)

k/ν + I{qj<≤D}) ≤ C ′(1 + (sj − rj)
1−kα/νL(sj − rj)

k/ν)

with some C ′ > 0, since kα/ν < 1 by the conditions of Theorem 3.4. These
relations imply (B.5).

By summing up inequality (B.5) for all p ∈ DN(r, s), and applying an
appropriate normalization we get that

1

N2ν−kαL(N)k
E


 ∑

p∈DN (r,s)

H(X1(p), . . . , Xd(p)



2

(B.6)

≤ C2

ν∏

j=1

(
(sj − rj) + (sj − rj)

2−kα/νL(sj − rj)
k/ν

N2−kα/νL(N)k/ν

)
.

I claim that if 1 ≤ sj − rj ≤ N for some 1 ≤ j ≤ ν and η > 0 chosen so
small that β = kα

ν
+ η < 1, then

(sj − rj) + (sj − rj)
2−kα/νL(sj − rj)

k/ν

N2−kα/νL(N)k/ν
≤ C

(
sj − rj
N

)2−kα/ν−η

(B.7)

with some C = C(η) > 0.
Indeed,

(sj − rj)

N2−kα/νL(N)k/ν
=

(
sj − rj
N

)2−kα/ν−η

(sj − rj)
kα/ν+η−1 N−η

L(N)k/ν

≤ C

(
sj − rj
N

)2−kα/ν−η

if η > 0 is chosen so small that kα
ν
+ η < 1, and

(sj − rj)
2−kα/νL(sj − rj)

k/ν

N2−kα/νL(N)k/ν
=

(
sj − rj
N

)2−kα/ν−η

(
sj − rj
N

)η (
L(sj − rj)

L(N)

)k/ν

≤ C

(
sj − rj
N

)2−kα/ν−η

.

These two inequalities imply (B.7).
Let us choose a sufficiently large number D > 0 (whose value does not

depend onN and δ), and introduce the quantity dN(p) =
D
N
for all 1 ≤ p ≤ N .
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With such a notation we can get the following inequality with the help of
relations (B.6) and (B.7).

Take some rectangle DN(r, s) ⊂ BN . Then we have for any λ > 0

P




∣∣∣∣∣
∑

p∈DN (r,s)

H(X1(p), . . . , Xd(p))

∣∣∣∣∣
N ν−kα/2L(N)k/2

> λ




(B.8)

≤
1

λ2

E

[
∑

p∈DN (r,s)

H(X1(p), . . . , Xd(p))

]2

N2ν−kαL(N)k

≤
C3

λ2

ν∏

j=1

(
sj − rj
N

)2−kα/ν−η

≤
1

λ2

ν∏

j=1




sj∑

pj=rj+1

dN(pj)




2−β

with β = kα
ν
+ η < 1.

With the help of formula (B.8) one can get such a maximum-type in-
equality which implies formula (B.4).

In the case ν = 1 Theorem 10.2 of Billingsley’s book [2] can be applied.
In this case this result together with formula (B.8) imply that

P


 sup

(u,v) : r<u<v≤s

∣∣∣∣∣∣

∑
u<p≤v

H(X1(p), . . . , Xd(p))

N ν−kα/2L(N)k/2

∣∣∣∣∣∣
> λ




≤
K

λ2

(
∑

r<p≤s

dN(p)

)2−β

=
D2−βKn

λ2

(
s− r

N

)2−β

for any pairs 0 ≤ r < s ≤ N with some K > 0. In particular,

P


 sup

(u,v) : r<u<v≤r+δ

∣∣∣∣∣∣∣

∑
u< p

N
≤v

H(X1(p), . . . , Xd(p))

N ν−kα/2L(N)k/2

∣∣∣∣∣∣∣
> λ


 ≤

K ′

λ2
δ2−β

for any interval [r, r + δ] ⊂ [0, 1] with δ > 0,
Since the exponent of δ in the last inequality equals 2 − β > 1 it is not

difficult to see that this relation implies inequality (B.4) in the case ν = 1.
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Indeed, we get (B.4) by applying this inequality with the choice λ = ε for
the intervals [kδ, (k + 2)δ] for all 0 ≤ k < 1

δ
with a sufficiently small δ > 0.

Then inequality (B.4) implies inequality (B.1), too.

There is a multivariate version of the inequality cited from Billingsley’s
book [2] also in the case ν > 1 which, together with formula (B.8) imply
inequality (B.4) in the general case. This inequality implies for any ν ≥ 1
that if inequality (B.8) holds for all rectangles DN(r, s), then

P


 sup

DN (u,v) :
DN (u,v)⊂DN (r,s)

∣∣∣∣∣∣∣

∑
p∈DN (u,v)

H(X1(p), . . . , Xd(p))

N ν−kα/2L(N)k/2

∣∣∣∣∣∣∣
> λ


 (B.9)

≤
K

λ2

ν∏

j=1


 ∑

rj<pj≤sj

dN(pj)




2−β

=
D(2−β)νK

λ2

ν∏

j=1

(
sj − rj
N

)2−β

with some K > 0, D > 0 and β = kα
ν
+ η < 1. (Here we are working with

the previously defined dN(p) =
D
N
.)

Indeed, although I did not find this result in the literature there is such
a generalized version of the inequality quoted from Billingsley’s book which
states that if inequality (B.8) holds, then it implies inequality (B.9), too.
This can be proved for instance by means of induction with respect to the
dimension ν by exploiting that this result holds for ν = 1. In the proof we
have to exploit that the upper bound in (B.8) has a special product form.

Let us fix some parameter 1 ≤ j ≤ ν, a number 0 < δ ≤ 1 an integer
0 ≤ r ≤ N , and define with their help, similarly to the definition of DN(δ, j)
the set of of rectangles

DN(δ, j, r) = {DN(u, v) : ul = 0, and 0 < vl ≤ N for l 6= j,

and r ≤ uj < vj ≤ r +Nδ}.

The following inequality is a special case of (B.9).

P


 sup

D(u,v)∈DN (δ,j,r)

∣∣∣∣∣∣∣

∑
p∈DN (u,v)

H(X1(p), . . . , Xd(p))

N ν−kα/2L(N)k/2

∣∣∣∣∣∣∣
> λ




≤
K ′

λ2

(
sj − rj
N

)2−β

.
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Inequality (B.4), hence inequality (B.1) can be proved with the help of
the last inequality in the same way as it was done for ν = 1. Actually, in that
proof a special case of this inequality was applied. Since, as it was mentioned
at the start of the proof relation (B.1) together with Theorem 3.4 imply the
desired weak convergence the corollary is proved.

Acknowledgements. The author got support from the Hungarian Foundation
NKFI–EPR No. K-125569.

References

[1] Arcones, A. M. (1994) Limit theorems for nonlinear functionals of a
stationary Gaussian sequence of vectors. Annals of Probability 22, 2242–
2274

[2] Billingsley P. (1999) Convergence of Probability Measures, Second Edi-
tion. Wiley Series in Probability and Statistics, John Wiley & Sons,
Inc.

[3] Breuer, P. and Major, P. (1983) Central limit theorems for non-linear
functionals of Gaussian fields. Journal of Multivariate Analysis 13, 425–
441

[4] Corwin, I. (2012) The Kardar–Parisi–Zhang equation and university
class. Random Matrices: Theory and Applications 1, No. 1

[5] Cramer, H. (1940) On the theory of stationary random processes. Ann.
Math. 91, 215–230

[6] Dobrushin, R. L. and Major, P. (1979) Non-central limit theorems for
non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 50, 27–52.

[7] Gelfand I. M. and Shilov G. E. (1964) Generalized Functions, Volume 1.
Properties and Operations. Academic Press, New York and London

[8] Ho, H. C. and Sun, T. C. (1990) Limit distributions of non-linear vector
functions of stationary Gaussian processes. Annals of Probability 18,
1159–1173

58



[9] Major, P. (2014) Multiple Wiener–Itô Integrals. Lecture Notes in Math-
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