
A NOTE ON NONPARAMETRIC ESTIMATIONS
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Abstract: We give an informal explanation with the help of a Taylor expansion
about the most important properties of the maximum likelihood estimate in the
parametric case. Then an analogous estimate in two nonparametric models,
in the estimate of the empirical distribution function from censored data and
in the Cox model is investigated. It is shown that an argument very similar to
the proof in the parametric case yields analogous properties of the estimates
in these cases too. There is an important non-trivial step in the proofs which
is discussed in more detail. A double stochastic integral with respect to a
standardized empirical process has to be estimated. This corresponds to the
estimate of the second term of the Taylor expansion in the parametric case.
We think that the method explained in this paper is applicable in several other
models.

1. Some general remarks

An important problem of statistics is to estimate an unknown parameter or distribu-
tion by means of a sample of size n, i.e. by a sequence of independent and identically
distributed random variables ξ1, . . . , ξn with some unknown distribution F . If this un-
known distribution F belongs to a class of distribution functions F (x, ϑ), where ϑ is
a real number or more generally the element of a finite dimensional vector space, and
we are interested in the value ϑ or a function g(ϑ) of it, then we speak of parametric
estimation. In the other case when the set of possible distributions where the sample
can come from is an “infinite dimensional space” we speak of nonparametric estimation.

The case of parametric estimation is considerably simpler. In this case there is a
powerful technique, the maximum likelihood method which has the following two nice
properties:

i.) It supplies a method for a large class of problems.

ii.) Under general conditions it is asymptotically optimal.

In case of nonparametric estimation problems no such good and general method is
available. Nevertheless, there are some special cases where such a good estimate can be
given as in the parametric case. The investigation of both question, i.e.
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i.) to find a general principle which enables us to give a good estimate in the nonpara-
metric case

ii.) to show that the estimate is as good as the estimate in the parametric case

are challenging problems. There exists a large literature on nonparametric maximum
likelihood estimation (see e.g. [bhhw], [gil1], [gil2], [lc]). Some special nonparametric
models will be considered, and we prove that the estimates proposed in these cases are
as good as the maximum likelihood estimate in parametric models. The structure of the
proof is similar to that in the parametric case, but some additional technical problems
appear. These problems and their solutions deserve special attention. To explain them
first we present a short informal explanation about the limit behaviour of the maximum
likelihood method in the parametric case. Here we assume that the distributions satisfy
some natural smoothness conditions which we do not formulate explicitly.

Let us consider the simplest parametric problem when a parameter ϑ0 ∈ R1 has
to be estimated from a class of distribution functions F (x, ϑ), ϑ ∈ R1, by means of a
sequence of independent random variables ξ1(ω), . . . , ξn(ω) with distribution F (x, ϑ0).

We also assume that the distribution functions F (x, ϑ) have a density function
f(x, ϑ) with respect to a measure µ on the real line. The maximum likelihood method

suggests to choose the estimate ϑ̂n = ϑ̂n(ξ1, . . . , ξn) of the parameter ϑ0 as the number
where the density function of the random vector (ξ1, . . . , ξn) (with respect to the product
measure µ × · · · × µ

︸ ︷︷ ︸

n times

), i.e. the product

n∏

k=1

f(ξk, ϑ) = exp

{
n∑

k=1

log f(ξk, ϑ)

}

takes its maximum. This point can be found as the solution of the equation

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ) = 0 . (1.1)

We are interested in the asymptotic behaviour of the random variable ϑ̂n − ϑ0, where
ϑ̂n is the (appropriate) solution of the equation (1.1). Let us take Taylor expansion of
the expression at the left hand side of (1.1) around the point ϑ0. We get

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ̂n) =

n∑

k=1

∂
∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)

+ (ϑ̂n − ϑ0)

(
n∑

k=1

(
∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

))

+ O
(

n(ϑ̂n − ϑ0)
2
)

=
n∑

k=1

(

ηk + ζk(ϑ̂n − ϑ0)
)

+ O
(

n(ϑ̂n − ϑ0)
2
)

,

(1.2)

2



where

ηk =
∂

∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)
and ζk =

∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

for k = 1, . . . , n. We want to understand the asymptotic behaviour of the (random)
expression on the right-hand side of (1.2). The relation

Eηk =

∫ ∂
∂ϑf(x, ϑ0)

f(x, ϑ0)
f(x, ϑ0) dµ(x) =

∂

∂ϑ

∫

f(x, ϑ0) dµ(x) = 0

holds, since
∫

f(x, ϑ) dµ(x) = 1 for all ϑ, and differentiating this relation we get the last

identity. Similarly, Eη2
k = −Eζk =

∫ ( ∂
∂ϑ

f(x,ϑ0))
2

f(x,ϑ0)
dµ(x) > 0, k = 1, . . . , n. Hence by

the central limit theorem

χn =
1√
n

n∑

k=1

ηk

is asymptotically normal with expectation zero and variance

I2 =

∫ (
∂

∂ϑf(x, ϑ0)
)2

f(x, ϑ0)
dµ(x) > 0 .

In the statistics literature this number I is called the Fisher information. By the laws

of large numbers 1
n

n∑

k=1

ζk ∼ −I2. Hence it follows from relation (1.2) that

1√
n

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ̂n) = χn −√

n(ϑ̂n − ϑ0) I2 + negligible error. (1.3)

Formulas (1.1) and (1.3) imply that

√
n(ϑ̂n − ϑ0) = I−2 χn + negligible error, (1.4)

which is asymptotically a normal random variable with expectation zero and vari-
ance I−2. Another result of the mathematical statistics, the so-called Cramer–Rao
inequality states that this result is asymptotically optimal, since under general con-
ditions all unbiased estimates (such estimates whose expectation equals the estimated
parameter) have a variance which multiplied by

√
n cannot be smaller than I−2.

We are also interested in the magnitude of the “negligible error” term in formula
(1.4) and want to compare it with the error term appearing in the analogous formulas
proved for the nonparametric estimates discussed in Sections 2 and 3. We shall show
that the (normalized) error can be approximated by (normalized) sums of independent
random variables in the parametric and by a linear functional of the standardized em-
pirical distribution function in the nonparametric case. We give an informal explanation
that the error of this approximation is of order O(n−1/2) in both cases.
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In this section we discuss the parametric case. Put

εn =
√

n
(√

n(ϑ̂n − ϑ0) − I−2χn

)

and

ωn = n−1/2
n∑

k=1

(ζk + I2) ,

and express
√

n(ϑ̂n − ϑ0) and
n∑

k=1

ζk through εn and ωn. Then relations (1.1) and (1.2)

imply that

√
nχn + (n−1/2εn + I−2χn)(ωn −√

nI2) + O
(

(n−1/2εn + I−2χn)2
)

= 0 ,

or equivalently

ωnχnI−2 − I2εn + n−1/2ωnεn + O
(

(n−1/2εn + I−2χn)2
)

= 0 .

Since the random variables χn and ωn are stochastically bounded, the last relation

implies that εn =
√

n
(√

n(ϑ̂n − ϑ0) − I−2χn

)

is stochastically bounded. This is equiv-

alent to saying that the normalized error
√

n(ϑ̂n − ϑ0) of the maximum likelihood esti-
mate can be approximated by an appropriate normalized sum of independent random
variables (by I−2χn) with a (random) error of order n−1/2. A longer Taylor expansion
in formula (1.2) and an Edgeworth expansion for sums of independent random variables
yields a better approximation, an Edgeworth type expansion for

√
n(ϑ − ϑ0).

We are interested in what can be preserved from the methods and results of the
parametric estimates when nonparametric estimation problems are considered. Since
in nonparametric models typically the set of all probability measures in the model
cannot have a density function with respect to a fixed measure, the maximum likelihood
principle cannot be applied. Nevertheless, in several interesting models a good estimate
can be found by an appropriate modification of the maximum likelihood argument. We
shall consider such models and show that these estimates are good.

The simplest nonparametric estimation problem is the estimation of an unknown
distribution function F (x) by means of a sequence of independent F distributed random
variables ξ1, . . . , ξn. Define the empirical distribution function

Fn(x) =
1

n
#{k : ξk ≤ x} .

By a classical result of probability theory the processes
√

n(Fn(x) − F (x)) converge
weakly to a Gaussian process Z(x), −∞ < x < ∞, with expectation zero an covariance
function EZ(x)Z(y) = min{F (x), F (y)}−F (x)F (y). We want to show that a similar
limit theorem holds for

√
n × (the estimate − the real value) for a good estimate

in other estimation problems. Moreover, we want to investigate the distance of this
expression for fixed n from the limit process. In the parametric case this expression
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can be approximated by the normalized sum of independent random variables, or what
is equivalent to this, by a normal random variable with an accuracy of order n−1/2.
Actually, it would demand a more detailed explanation of how we measure the accuracy
of approximation in the last statement. But we shall not do this, we only explain the
content of this statement in the nonparametric models discussed in the sequel.

We shall discuss two models, the so-called random censorship and the Cox model
and write down an estimate in both models and show that they are good. The difference
of the estimate and the real distribution multiplied by

√
n converges to a Gaussian

process. Moreover, this difference can be approximated by a linear functional of a
normalized empirical process with an error of order n−1/2. More explicitly, the error is
a random process, and if it is multiplied by

√
n then the probability that the supremum

of this process is larger than some x > 0 is smaller than C1e
−λx with some constants C

and λ independent of n and x.

The linear functional of a standardized empirical function is the natural infinite
dimensional counterpart of sums of independent random variables which appears in the
parametric case. In the nonparametric estimates considered in this paper the main
contribution to the error (multiplied by

√
n) of the estimate is expressed in such a form.

It converges to a Gaussian process as the sample size n → ∞. The difference of the
estimate and the real distribution multiplied by

√
n can also be approximated by an

appropriate Gaussian process. This appears as the limit of the linear functionals of the
empirical processes that yield the main contribution to the (normalized) error of the
estimate. The goodness of this Gaussian approximation can be determined with the help
of the bound on the linear functional approximation of the error and a result of Komlós,
Major and Tusnády [kmt] (see in [csr] for more details) about the approximation of the
empirical process by a Brownian bridge.

The proof of these results is based on an expansion which can be considered as an
adaptation of the investigation of the maximum likelihood estimate in the parametric
case. One point of the proof deserves special attention. If we want to adapt the method
of the parametric case, then an expression analogous to formula (1.2) has to be studied.

A term which corresponds to the error term O
(

n(ϑ̂n − ϑ)2
)

of the Taylor expansion

in (1.2) has to be well estimated. In the nonparametric case this problem can be solved
if the distribution of certain non-linear functionals of the empirical distribution function
of the sample (ξ1, . . . , ξn) is well bounded.

Hence the following problem has to be studied. Let us consider the normalized
empirical distribution of a sample, the s-fold direct product of their (random) measure
with itself, and let us estimate the integral of a bounded function of s variables with
respect to this product measure. If s ≥ 2, then this integral is a non-linear functional of
the empirical distribution. We are mainly interested in the special case s = 2, but the
results will be formulated for general s. The proof of these results can be found in [mp],
[mr], and [mrsi]. First we formulate the result in a slightly restrictive form, when the
random variables whose empirical distribution is considered are uniformly distributed
in the interval [0, 1]. This result is sufficient for instance in the investigation of the
random censorship model.

Theorem A. Let ξ1(ω), . . . , ξn(ω) be independent uniformly distributed random vari-
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ables on [0, 1], Fn(u) = Fn(u, ω) = 1
n#{k : 1 ≤ k ≤ n, ξk ≤ u}, 0 ≤ u ≤ 1,

their empirical distribution function and µn(u) =
√

n(Fn(u)− u) the standardization of
this empirical distribution function. Let f(u1, . . . , us) be a function on [0, 1]s such that

sup
u1,...,us

|f(u1, . . . , us)| ≤ 1, and f(u1, . . . , us) = 0 if uj = uk with some 1 ≤ j < k ≤ s.

There exist some universal constants Cs and αs depending only on the dimension s in
such a way that

P

(

sup
0≤t≤1

∣
∣
∣
∣

∫ t

0

∫ 1

0

· · ·
∫ 1

0

f(u1, . . . , us)dµn(u1) . . . dµn(us)

∣
∣
∣
∣
≥ x

)

≤ Cs exp
{

−αsx
2/s
}

for all x > 0, and function f with the above properties.

In other cases, like in the Cox model, the integral with respect to the product
measure of an empirical distribution in a higher dimensional Euclidean space is needed.
The proof of such results (actually the reduction of such results to the case described
in Theorem A) is not harder in the case of general separable metric spaces, hence we
formulate the result in such a form. To do this we introduce some notations.

Let a probability space (Ω,A, P ) and a separable metric space (X,X ) be given. Let
ξ : Ω → X be an X valued random variable on (Ω,A, P ). Let µ denote the distribution
of the random variable ξ, i.e. let

µ(B) = P (ξ ∈ B) = P (ξ−1(B)) ∀ B ∈ X .

Suppose that ξ1, ξ2, . . . , ξn are independent, identically distributed random variables
on (Ω,A, P ) with values on the space (X,X ) and distribution µ. We introduce the
empirical measure

µ̄n(B) =
1

n

n∑

i=1

I(ξi ∈ B) ∀ B ∈ X ,

and its standardization

µn(B) =
√

n (µ̄n(B) − µ(B)) ∀ B ∈ X .

Let Xt, 0 ≤ t ≤ 1 be a system of sets in X with the following property:

Property (i) Xs ⊆ Xt for all s ≤ t, X0 = ∅, X1 = X, µ(Xt) = t.

Let us consider the product space X × · · · × X
︸ ︷︷ ︸

s times

= Xs with product measure µ(s)(·)

and the diagonal set A ∈ Xs is defined as

A = {(x1, . . . xs) : xi = xj for some i 6= j}

Let F denote the set of the real valued measurable functions f(u1, . . . , us) defined on
the space Xs whose absolute value is less than 1, and which disappear on the diagonal
set A, i.e. let

F = {f(u1, . . . , us) : |f | ≤ 1, f(u1, . . . , us) = 0 ∀ (u1, . . . , us) ∈ A} .
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Then

Theorem B. There exist some universal constants Cs and αs depending only on the
dimension s in such a way that

P

(

sup
0≤t≤1

∣
∣
∣
∣

∫

Xt

∫

X

· · ·
∫

X

f(u1, . . . , us)dµn(u1) . . . dµn(us)

∣
∣
∣
∣
≥ x

)

≤ Cs exp
{

−αsx
2/s
}

for all f ∈ F and x > 0, where the sets Xt, 0 ≤ t ≤ 1 satisfy Property (i).

Theorem B shows certain analogy with respect to multiple stochastic integrals with
respect to a Gaussian process. Here the underlying process, the empirical distribution
function is not Gaussian, but it is almost Gaussian. In both cases the diagonal is
cut from the domain of integration. The (random) measures of disjoint intervals are
almost independent. In Theorem B actually we investigate how strong cancellation is
caused by this almost independence. The upper bound C exp

{
−λx2/s

}
given for the tail

distribution of an s-fold integral is sharp. It expresses the fact that the tail behaviour
of an s-fold stochastic integral is similar to the tail behaviour of the distribution of the
s-th power of a Gaussian random variable.

In the statistical problems we discuss below, we first write up the statistics under
investigation as a multiple integral with respect to an empirical measure plus some
possible additional terms we can handle. Then we have to handle an expression of the
form

Zn(t) =

∫

Xt

∫

X

g(u1, u2) dµ̄n(u1) dµ̄n(u2) , (1.5)

where µ̄n denotes the empirical distribution (without normalization). With the help of
simple algebra we get that

dµ̄n(u1) dµ̄n(u2) = dµ(u1) dµ(u2) +
1√
n

dµ(u1)dµn(u2)

+
1√
n

dµ(u1)dµn(u2) +
1

n
dµn(u1) dµn(u2) ,

where µn(·) =
√

n(µ̄n(·) − µ(·)). Then we can write

Zn(t) = D(t) + n−1/2Un(t) + n−1Vn(t) , (1.6)

where

D(t) =

∫

Xt

∫

X

g(u1, u2) dµ(u1) dµ(u2)

is a deterministic function,

Un(t) =

∫

Xt

H1(u) dµn(u) +

∫

X

H2(u) dµn(u)

with H1(u) =
∫

X
g(u, u2) dµ(u2) and H2(u) =

∫

Xt
g(u1, u)dµ(u1) is a linear functional

of the empirical distribution µn and the term Vn(t) is a non-linear function of the
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measure µn. Because of Theorem B we have a good bound on the distribution of
sup

0≤t≤1
|Vn(t)|. Hence we can handle the expression

√
n(Zn(t) − D(t)) = Un(t) +

1√
n

Vn(t) .

In the following examples we shall see why this observation is useful in the study of
certain nonparametric estimates.

2. The Kaplan-Meier product limit estimator

In this section the following problem is considered. Let (Xi, Ci), i = 1, . . . , n, be a se-
quence of independent, identically distributed random vectors such that the components
Xi and Ci are also independent with distribution functions F (x) and G(x). We want to
estimate the distribution function F of the random variables Xi, but we cannot observe
the variables Xi, only the random variables Yi = min(Xi, Ci) and δi = I(Xi ≤ Ci). For
the sake of simplicity we assume that both distributions F and G have no atom. In
other words, we want to solve the following problem. There are certain objects whose
lifetime Xi are independent and F distributed. But we cannot observe this lifetime Xi,
because after a time Ci the observation must be stopped. We also know whether the
real lifetime Xi or the censoring variable Ci was observed. We make n independent
experiments and want to estimate with their help the distribution function F .

It is not easy to find the right estimate of the distribution function F on the basis
of the above observations. Kaplan and Meier in [km] proposed the so-called product
limit estimator to estimate the unknown survival function S = 1−F on the basis of the
above observations. They proposed the following estimator Sn:

1 − Fn(u) = Sn(u) =







n∏

i=1

(
N(Yi)

N(Yi) + 1

)I(Yi≤u,δi=1)

if u ≤ max(Y1, . . . , Yn)

0 if u ≥ max(Y1, . . . , Yn), δn = 1,

undefined if u ≥ max(Y1, . . . , Yn), δn = 0,
(2.1)

where

N(t) = #{Yi, Yi > t, 1 ≤ i ≤ n} =
n∑

i=1

I(Yi > t) .

One would like to understand how to find the estimate (2.1) and why it is good.
We do not discuss the first question, we only refer to some papers where the answer
to this question is explained. The estimator (2.1) is a generalized maximum likelihood
estimator (GMLE) of the unknown distribution function. The meaning of GMLE needs
an explanation because in the nonparametric case we are searching for a measure in
a non-dominated family of probability measures. Kiefer and Wolfowitz [kw] gave a
definition for GMLE (see [rt] in this volume), and Johansen [joh] proved that the product
limit estimator is GMLE in this sense.
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We want to show that the estimate (2.1) is really good. This expression in its origi-
nal form is rather complicated and hard to study. But it can be rewritten in a form more
appropriate for our purposes. We briefly explain how this can be done. Our calculation
leading to a better representation of the expression (2.1) closely follows the paper [mr]
where the details are worked out. We give an expansion of the random variable Sn

defined in (2.1). The leading term of this expansion is 1−F (u), the quantity we wanted
to estimate. The second term is n−1/2 times a linear functional of a standardized empir-
ical distribution function, and the remaining error term can be bounded by n−1 times
a random variable with finite moment generating function. In such a way a result can
be proved which shows that the Kaplan–Meier estimate behaves very similarly to the
maximum likelihood estimate in the parametric case. The method of the proof deserves
special attention since it is also applicable in case of other nonparametric GMLE-s.

In the calculations, similarly to the study of the maximum likelihood estimate,
appropriate Taylor expansions can be made, and the error term of these expansions
can be well bounded. Most steps are routine, but there is a step which deserves spe-
cial attention. During our calculations we have to estimate a quadratic functional of a
standardized empirical distribution function, and this estimate is non-trivial. This cor-
responds to the estimate of the second term of the Taylor expansion in the maximum
likelihood estimate in the parametric case, and such an expression can be well bounded
by the result formulated in Theorem B of this paper.

First we introduce some notations. Put

H(u) = P (Yi ≤ u) = 1 − H̄(u),

H̃(u) = P (Yi ≤ u, δi = 1), ˜̃
H(u) = P (Yi ≤ u, δi = 0),

(2.2)

and

Hn(u) =
1

n

n∑

i=1

I(Yi ≤ u),

H̃n(u) =
1

n

n∑

i=1

I(Yi ≤ u, δi = 1), ˜̃
Hn(u) =

1

n

n∑

i=1

I(Yi ≤ u, δi = 0) .

(2.3)

Clearly H(u) = H̃(u)+ ˜̃
H(u) and Hn(u) = H̃n(u)+ ˜̃

Hn(u) . We consider Fn(u)−F (u)
on an interval (−∞, T ], where

1 − H(T ) > δ with some fixed δ > 0 . (2.4)

We introduce the so-called cumulative hazard function and its empirical version

Λ(u) = − log(1 − F (u)), Λn(u) = − log(1 − Fn(u)) . (2.5)

From (2.1) it is obvious that

Λn(u) = −
n∑

i=1

I(Yi ≤ u, δi = 1) log

(

1 − 1

1 + N(Yi)

)

.
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Since Fn(u)−F (u) = exp(−Λ(u)) (1 − exp(Λ(u) − Λn(u))) a simple Taylor expan-
sion yields

Fn(u) − F (u) = (1 − F (u)) (Λn(u) − Λ(u)) + R1(u) , (2.6)

and it is easy to see that R1(u) = O
(
Λ(u) − Λn(u))2

)
.

It follows from the subsequent estimations that sup
u≤T

√
n|Λ(u) − Λn(u)| has expo-

nential tail, thus the same is true for sup
u≤T

n|R1(u)|. Hence it is enough to investigate

the term Λn(u) − Λ(u).

We approximate Λn(u) with the help of the relation − log(1 − x) = x + O(x2) for
small x. We get

Λn(u) =
n∑

i=1

I(Yi ≤ u, δi = 1)

N(Yi)
+ R2(u) = Λ̃n(u) + R2(u) , (2.7)

and the error term nR2(u) has also exponential tail (e.g. [mr] for the details).

The expression Λ̃n(u) is still not appropriate for our purposes. Since the denomi-

nators N(Yi) =
n∑

j=1

I(Yj > Yi) are dependent on different i’s, we cannot see directly the

limiting behaviour of Λ̃n(u).

By exploiting the fact that the conditional distribution of N(Yi) given Yi is a
binomial distribution with parameters n − 1 and 1 − H(Yi), we can rewrite Λ̃n(u) in a
more appropriate form. We shall approximate it by an expression which can be handled
better. By writing

N(Yi) =
n∑

j=1

I(Yj > Yi) = nH̄(Yi)







1 +

n∑

j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)







,

and applying the inequality

∣
∣
∣
∣

1

1 + z
− 1 + z

∣
∣
∣
∣

< 2z2, for |z| <
1

2
, with the choice z =

n∑

j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)
, we obtain

Λ̃n(u) =

n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)







1 −

n∑

j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)







+ R3(u)

= 2A(u) − B(u) + R3(u),

(2.8)

where

A(u) = A(n, u) =

n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)
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and

B(u) = B(n, u) =

n∑

i=1

n∑

j=1

I(Yi ≤ u, δi = 1)I(Yj > Yi)

n2H̄2(Yi)
.

Again the reader is referred to [mr] for the tail behaviour of nR3(u). Thus (2.7) and (2.8)
together yield

Λn(u) = 2A(u) − B(u) + negligible error, (2.9)

and the sums A and B can be rewritten as stochastic integrals in the same way as in
[mr]. Finally one obtains

√
n (Λn(u) − Λ(u)) =

√
n
(

H̃n(u) − H̃(u)
)

1 − H(u)
−
∫ u

−∞

√
n(H̃n(y) − H̃(y))

(1 − H(y))
2 dH(y)

+

∫ u

−∞

√
n (Hn(y) − H(y))

(1 − H(y))
2 dH̃(y)

−√
nB1(u) + negligible error,

(2.10)

where

B1(u) =
1

n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 d
(√

n (Hn(x) − H(x))
)

d
(√

n(H̃n(y) − H̃(y))
)

.

This formula is the analogous one of (1.6). To prove this we still have to show
that the term B1(u) is also small. Theorem A suggests such an estimate. However, this
result cannot be applied directly in the present case, since in the integral defining B1,
one has to integrate with respect to two different processes in the variables x and y. In
the paper [mr] we could overcome this difficulty by rewriting B1 as a double integral of
an appropriate kernel function with respect to a standardized empirical process which
contains all information on Hn(·) and H̃n(·). Here we choose a different argument. We
deduce the needed estimate directly from Theorem B. The advantage of this argument
is that it is more flexible and applicable in other cases too. Instead of using H, Hn and
H̃, H̃n, we use the two dimensional measure µ(x1, x2) = F (x1)G(x2) and the empirical
measure

µ̄n(x1, x2) =
1

n
#{i : 1 ≤ i ≤ n, Xi ≤ x1, Ci ≤ x2}

on R2. Since they contain all information, the expression B1(u) can be rewritten as a
double stochastic integral with respect to the measure µn =

√
n(µ̄n − µ). To see this

observe that

H̃([a, b]) = µ (A([a, b])) , H̃n([a, b]) = µ̄n (A([a, b])) ,

˜̃
H([a, b]) = µ (B([a, b])) ,

˜̃
Hn([a, b]) = µ̄n (B([a, b])) ,

where
A([a, b]) = {(x1, x2) : a ≤ x1 ≤ b, x1 ≤ x2},
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and

B([a, b]) = {(x1, x2) : a ≤ x2 ≤ b, x2 ≤ x1} .

Then applying the decompositions H = H̃ + ˜̃
H and Hn = H̃n + ˜̃

Hn, we obtains

B1(u) =
1

n

∫

y1<u

∫

R2

I(x1 > y1, x1 ≤ x2, y1 ≤ y2)

(1 − H(y1))
2 dµn(x1, x2) dµn(y1, y2)

+
1

n

∫

y1<u

∫

R2

I(x1 > y1, x2 ≤ x1, y1 ≤ y2)

(1 − H(y1))
2 dµn(x1, x2) dµn(y1, y2) .

Then Theorem B makes possible to estimate sup
u≤T

|B1(u)| if the number T satisfies (2.4),

since the integrand is bounded in this case. We omit the details and we only formulate
the final result we get in such a way. A detailed proof can be found in [mr].

Theorem 2.1 Let T be such that 1 − H(T ) > δ with some δ > 0. Then the process
Fn(u) − F (u), −∞ < u < T , where 1 − Fn(u) is defined in formula (2.1) can be
represented as

Fn(u) − F (u) = (1 − F (u))(U(n, u) + V (n, u)) + R(n, u) , −∞ < u < T ,

where

√
nU(n, u) =

√
n(H̃n(u) − H̃(u))

(1 − H(u))
−

u∫

−∞

√
n(H̃n(y) − H̃(y))

(1 − H(y))2
dH(y)

√
nV (n, u) =

u∫

−∞

√
n(Hn(y) − H(y))

(1 − H(y))2
dH(y)

are linear functionals of the empirical processes
√

n(Hn(y) − H(y)) and
√

n(H̃n(u) −
H̃(u)), and the error term R(n, u) can be bounded as

P

(

sup
u≤T

n|R(n, u)| > x +
C

δ

)

≤ Ke−λxδ2

for all x > 0, where C > 0, K > 0 and λ > 0 are universal constants.
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3. Baseline function estimation in the Cox model

The previous section dealt with a model where the observed sample is (Yi, δi), i =
1, . . . , n with Yi = min(Xi, Ci) and δi = I(Xi ≤ Ci), Xi, Ci are two independent
identically distributed (iid.) sequences of random variables. In this section such a
model is considered where an additional sequence of positive variables Wi, i = 1, . . . , n,
is given together with the above pairs (Yi, δi). The triplets (Wi, Yi, δi) are iid., the
censoring variable Ci is independent of the pair (Wi, Xi), and we assume the existence
of a conditional survival function SWi

0 (t) for fixed Xi and Wi, that is we consider a
model, where

SWi

0 (t) = P (Xi ≥ t | Wi) ,

and S0(t) is an unknown (deterministic) continuous survival function. We want to
estimate this unknown baseline survival function S0(t) based on a sample of the above
triplets. Notice, that in the special case when Wi = 1, i = 1, . . . , n, this is the censored
sample considered in the previous section.

We call this model “nonparametric Cox model”, because with appropriate param-
etrization it provides the semiparametric Cox model. Introducing Wi = exp(βZi) where
β is an unknown parameter and Zi is the known regressor variable for i = 1, . . . , n we
have the Cox regression model. (See [rt] for more details.)

In paper [rt] the following GMLE type estimator (see previous section) of S0 was
proposed:

1 − Fn(t) = Ŝn(t) =

n∏

i=1

(
N(Yi)

N(Yi) + Wi

) I(Yi≤t,δi=1)

Wi

if t ≤ max(Y1, . . . , Yn) , (3.1)

where

N(t) =

n∑

j=1

Wj I(Yj > t) +

n∑

j=1

WjI(Yj = t, δj = 0) .

The Kaplan–Meier product limit estimator is a special case of (3.1) when all of the Wi-s
equal 1.

The calculations showing that the above nonparametric likelihood estimator is as
good as a parametric likelihood estimator is very similar to that given in the previous
section. We give an expansion of Ŝn(t) defined in (3.1). The leading term of this
expansion is S0(t), the expression we intend to estimate. The second term is n−1/2 times
a linear functional of a standardized empirical distribution function, and the remaining
error term can be bounded by n−1 times a random variable with finite momentum
generating function. In such a way, a result can be proved which shows that the estimate
(3.1) behaves very similarly to the maximum likelihood estimate in the parametric case.
The proof follows the same line as the one in the Kaplan–Meier case.

For the sake of simpler notations we only deal with complete sample, but a similar
representation can be given for censored sample. Thus the given sample is (Xi,Wi),
i = 1, . . . , n, where P (Xi > t | Wi) = SWi

0 (t).
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We introduce some notations. Put P (W ≤ w) = Q(w) and

P (X > t) = Ḡ(t) = 1 − G(t) =

∫ ∞

0

Sw
0 (t) dQ(w),

E (W I(X > t)) = H̄(t) = E(W ) − H(t) =

∫ ∞

0

wSw
0 (t) dQ(w) ,

F (x1, x2) = P (X ≤ x1,W ≤ x2)

(3.2)

Note that

F (x1, x2) = P (W ≤ x2) − P (X > x1,W ≤ x2) = Q(x2) −
∫ x2

0

Sw
0 (x1) dQ(w) , (3.3)

and

1 − G(t) = Ḡ(t) =

∫ ∞

0

exp (w log(S0(t)) dQ(w) = MW (log(S0(t)) , (3.4)

where MW denotes the moment generating function of W . We introduce the empirical
processes

Gn(t) =
1

n

n∑

i=1

I(Xi ≤ t), H̄n(t) =
1

n

n∑

i=1

Wi I(Xi > t) ,

Fn(x1, x2) =
1

n

n∑

i=1

I(Xi ≤ x1,Wi ≤ x2).

(3.5)

We suppose that the following conditions hold:

(i) W is a bounded positive random variable with a positive lower bound δ0, that is
P (K > W > δ0) = 1 with some constant K.

(ii) On the interval (−∞, T ] there exists a fixed positive number κ such that

1 − G(t) > κ, ∀ t ∈ (−∞, T ] .

We consider S0(t) − Ŝn(t) on the interval (−∞, T ]. It follows from conditions (i)
and (ii) that

H̄(T ) > δ with some fixed δ > 0 . (3.6)

Similarly to the case of the product limit estimator we introduce the cumulative
hazard function and its empirical version

Λ(t) = − log (S0(t)) , Λn(t) = − log
(

Ŝn(t)
)

.

Using (3.1) in the case when there is no censoring i.e. when δi = 1 for all i, we get that

Λn(t) = −
n∑

i=1

I(Xi ≤ t)

Wi
log

(

1 − Wi

N(Xi) + Wi

)

.
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Using almost the same expansions as in the last section, we also obtain that

√
n (Λn(t) − Λ(t)) =

√
nB2(t) −

√
nB3(t) −

√
nB4(t) + negligible error, (3.7)

where

B2(t) =
1√
n

∫

y1≤t

∫

R2

x2 I(x1 > y1)

H̄2(y1)
dF (x1, x2) dµn(y1, y2) ,

B3(t) =
1√
n

∫

y1≤t

∫

R2

x2 I(x1 > y1)

H̄2(y1)
dµn(x1, x2) dF (y1, y2) ,

B4(t) =
1

n

∫

y1≤t

∫

R2

x2 I(x1 > y1)

H̄2(y1)
dµn(x1, x2) dµn(y1, y2) ,

and where µn(x1, x2) =
√

n (Fn(x1, x2) − F (x1, x2)).

This formula is also analogous to (1.6). Again it remains to prove that the term
sup
t≤T

B4(t) is also small. Theorem B suggests such an estimate. We have to show that

the conditions of Theorem B hold. This time we have the integral of the function

f((x1, x2), (y1, y2)) =
x2I(x1 > y1)

H̄2(y1)
, and this function equals zero on the diagonal set.

It follows from conditions (i)—(ii) and (3.6) that this function is bounded if y1 ≤ T .
This way, Theorem B is applicable. We omit the details, and formulate the final result.

Theorem 3.1 Let T be such that H̄(T ) > δ with some δ > 0. Then the process
S0(t) − Ŝn(t), −∞ < t < T , where Ŝn(t) is defined in formula (3.1) can be represented
as

S0(t) − Ŝn(t) = S0(t) (U(n, t) − V (n, t)) + R(n, t) , −∞ < t < T ,

where

√
nU(n, t) =

∫

y1≤t

dµn(y1, y2)

H̄(y1)

√
nV (n, t) =

∫

y1≤t

√
n(H̄n(y1) − H̄(y1))

H̄2(y1)
dF (y1, y2)

are linear functionals of the empirical processes µn(y1, y2) =
√

n (Fn(y1, y2)−F (y1, y2)),√
n(H̄n(y1) − H̄(y1)), and the error term R(n, t) can be bounded as

P

(

sup
t≤T

n | R(n, t) |> x +
C

δ

)

≤ Ke−λxδ2

for all x > 0, where C > 0, K > 0 and λ > 0 are universal constants.
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