
PHASE-TRANSITION IN STATISTICAL PHYSICAL MODELS

WITH DISCRETE AND CONTINUOUS SYMMETRIES

P. M. BLEHER1 and P. MAJOR2

1Tel Aviv University,
2Mathematical Institute of the Hungarian Academy of Sciences

Abstract. We discuss the problem of existence or non-existence of phase-transition
in statistical physical models. The main technical difficulties connected with this

problem are formulated. We point out the difference between models with discrete and
continouous symmetry. A particular model, Dyson’s hierarchical model is considered
in some more detail.

1. Introduction. In statistical physics the investigation of the existence and
uniqueness of a random field, called equilibrium state, plays a most important role.
This random field takes its values on the configurations σ(j), j ∈ Z, where the
so-called spin-variables σ(·) are in some metric space S, generally S is a subset of
the Euclidean space R1 or Rs with some s ≥ 2, Z is a parameter set, generally
the integer lattice Zp in the p-dimensional Euclidean space with some p ≥ 1. We
have to define a probability measure on the space SZ. This measure depends on a
Hamiltonian function, a physical parameter, the temperature, and a so-called free
measure. For the sake of simpler notations we restrict ourselves to the case when
the model contains only pair-interaction. In this case the Hamiltonian function is
a formal series,

(1) H(σ) =
∑

j∈Z

∑

k∈Z

Uj,k({σ(j), σ(k)}), σ = {σ(j); j ∈ Z},

and

(1′)
∑

k∈Z

Uj,k({σ(j), σ(k)}) < ∞, for all j ∈ Z

where Uj,k(·, ·) are measurable functions on S × S.

Let us fix some measure ν on S which is called the free measure in the literature.
Given some finite set V ⊂ Z and a configuration σ̄ = {σ̄(k); k ∈ Z \ V } and a
parameter T > 0, the temperature, we define the conditional Gibbs distribution
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µV with some density fV (σ(j); j ∈ V |σ̄) with respect to the product measure
∏

j∈V dν(σ(j)) by the formula

(2)

dµV (σ(j); j ∈ V |σ̄)
∏

j∈V dν(σ(j))
= fV (σ(j); j ∈ V ), T |σ̄)

=
1

Z
exp







−
1

T

∑

j∈V,k∈Z\V

Uj,k({σ(j), σ̄(k)})







,

where the norming factor Z is defined as

(2′) Z = Z(V, σ̄) =

∫

exp







−
1

T

∑

j∈V,k∈Z\V

Uj.k({σ(j), σ̄(k)})







∏

j∈V

dν(σ(j)),

if formula (2) is meaningful.

We call a probability measure µ on SZ an equilibrium state with a Hamiltonian
H defined in (1) and free measure ν at temperature T , if for any finite set V the
conditional distribution of µ({σ(j); j ∈ V }) with respect to the configurations σ̄ in
Z \ V , or more precisely an appropriate version of it, is defined by the formula

(3) µ({σ(j); j ∈ V } ∈ A|σ̄) =

∫

A

fV ({σ(j); j ∈ V }), T |σ̄)
∏

j∈V

dν(σ(j))

for all measurable A ⊂ SV , where the function fV is given by formula (2).

The first question to be clarified is whether such a measure µ exists and whether
it is unique. The classical results of probability theory cannot be applied directly
to answer this question. If there are several equilibrium states µ with the same
Hamiltonian and free measure at the same temperature, then one speaks in the
literature about phase-transition. A natural way to construct equilibrium states
is to carry out the following procedure: Choose a sequence of finite sets Vn ⊂ Z

such that limn→∞ Vn = Z and configurations σ̄n = {σ̄(j); j ∈ Z \ Vn} on their
complementary sets. Define the measures µVn

on the sets Vn with some boundary
condition σ̄n by formulas (2) and (2′). It is natural to expect that they are good
approximations of the equilibrium states we are looking for. Hence, we try to prove
that the sequence of measures µVn

has a convergent subsequence, i.e. the sequence
µVn

is compact, and the limit of its convergent subsequences is an equilibrium state.
The compactness of the sequence µVn

holds automatically, if S is a compact set.
In more general cases, when S can be e.g. the Euclidean space Rs, the proof of
compactness may be a really hard problem. It is true under very general conditions
that the limit of a subsequence of µVn

is an equilibrium state. Moreover, it is
true that all equilibrium states are in the closure of the convex linear combination
of measures obtained in such a way, if the boundary conditions σ̄n can be chosen
arbitrarily. Hence, the really hard problem is the problem of uniqueness. This is
connected to the following question: Let us fix some j ∈ Z together with a large
neighbourhood of V of j, and let us fix some configuration σ̄ = {σ̄(k); k ∈ Z \ V }
on Z \ V . Take the measure µV (·|σ̄) on the set V . Does the distribution of σ(j)
with respect to this measure “feel strongly” the boundary condition σ̄, i.e. can it
have different limits for different boundary conditions? The investigation of this
question requires a more refined analysis.
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2. On translation invariant models. In this section we discuss some basic
results about the uniqueness and non-uniqueness of models on the integer lattice
Zp of the Euclidean space Rp and such that Uj,k(x, y) = U0,k−j(x, y) for all j, k ∈ Z

and x, y ∈ S. Such models are called translation invariant.

Let us remark that the multiplying term 1
T

in the exponent of formula (2) plays

an important role. Let us compare the density fV (·|σ̄) of two configurations σ(1) =
{σ(1)(j); j ∈ V } and σ(2) = {σ(2)(j); j ∈ V } in the volume V with respect to
the measure µV (·|σ̄). If one of them has less energy with respect to the boundary
condition σ̄, then its density is much greater for small T , but these configurations
have almost the same density for large T . Hence, it is natural to expect that, since
at high temperatures the µV probability of a configuration in a volume V weakly
depends on the boundary condition σ̄ on Z \ V , there is a unique equilibrium state
µV = µV (T ) at high temperatures. More precisely, at the temperature T = ∞ the
spins σ(j) are independent random variables with distribution ν with respect to
the µ = µ(∞) measure. This measure is stable in the following sense: For large T
the (unique) measure µ(T ) is a small perturbation of the measure µ(∞) under very
general conditions. (See e.g. [5] or [8] Chapter 1.)

On the other hand, the situation at low temperatures is more complex. We
shall call a configuration σ̄ = {σ(k); k ∈ Z} a configuration with (locally) minimal
energy if for all configurations σ̄′ = {σ′(k); k ∈ Z} such that the configurations σ̄
and σ̄′ differ only at finitely many places k ∈ Z the conditional energy

H(σ̄′|σ̄) =
∑

j∈Z

∑

k∈Z

[Uj,k({σ′(j), σ′(k)}) − Uj,k({σ(j), σ(k)})] ≥ 0

is non-negative. (The sum in the last expression is finite because of (1′).)

The previous argument would suggest that for small T > 0 and a configura-
tion σ̄ with minimal energy there is an equilibrium state µ(T ) which is essentially
concentrated on configurations that are small perturbations of σ̄. Namely, if we
take a sequence of volumes Vn such that limn→∞ Vn = Z and take the measures
µVn

defined by formula (2) in Vn with the boundary condition σ̄ onZ \ Vn then
the limit of these measures should be such an equilibrium state. This would mean
in particular, that if there exist several configurations with minimal energy, then
there are several equilibrium states at low temperatures. Nevertheless, this is not
always the case. Let us call a configuration with minimal energy stable if for small
T > 0 there is some equilibrium state µ(T ) which is essentially concentrated on
configurations that are close to it. Whether a configurations with minimal energy
is stable or not that depends on how big is the conditional energy of a configu-
ration differing of it on a large finite set with respect to this configuration. We
can expect that a configuration with minimal energy is stable if this conditional
energy is large, otherwise we expect that it is not stable. However, it is very hard
to decide when this conditional energy is sufficiently large to ensure stability, and
only partial results are available about this problem. An important result in this
direction is the Pirogov-Sinai theorem, (see e.g. [8], Chapter 2). Here the situation
is considered when the potential U has a finite range of interaction, i.e. U(j, k) = 0
if |j − k| ≤ r with some r > 0, and the set S where the spins σ(·) take their values
is finite. The question whether a periodic configuration with minimal energy is
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stable is investigated. The situation is rather complex even in this particular case.
Pirogov and Sinai gave a satisfactory sufficient condition for the stability of such
configurations. We omit the exact formulation of their result, because it requires
the introduction of some new notions, and the questions we are interested in in this
paper are only loosely connected with this result. We only remark that the most
important conditions they require are that the dimension of the parameter space
Z = Zp must be at least p ≥ 2 and the model must satisfy the so-called Peierls’s
condition, which says the following: The conditonal energy of a configuration that
differs from a periodic configuration with minimal energy on a finite set B has a
conditional energy with respect to this periodic configuration which is greater than
ρ times the cardinality of the set B, where ρ > 0 is an appropriate fixed number.
Peierls’s condition should guarantee that the conditional energy of a configuration
differing on a finite set from a periodic configuration with minimal energy must be
sufficiently large.

The case when the state-space S is a connected set is much less known. The main
problem is that in interesting cases there is no natural candidate for the analogue
of the Peierls’s condition. In this case only partial results are available, but there
are some results which indicate that the situation in more general state space can
be essentially different. Let us discuss some such models.

We consider models with the Hamiltonian function

H(σ) = −
∑

j∈Z

∑

k∈Z

Uj,kσ(j)σ(k), σ = {σ(j); j ∈ Z},

where the numbers Uj,k ≥ 0 is such that Uj,k = U(j−k). First we want to compare
the following two models.

1.a) Z = Zp with some p ≥ 2, U(j − k) = 1 if j and k are neighbours in Zp,
S = {−1, 1}, and the measure ν is defined as ν{−1} = ν{1} = 1/2.

1.b) Z = Zp with some p ≥ 2, U(j − k) = 1 if j and k are neighbours in Zp, S is
the unit-sphere in the Euclidean space Rs with some s ≥ 2. Here σ(j)σ(k)
denotes scalar product, and ν is the Lebesgue measure on the unit sphere.

Let us compare the following two models too:

2.a) The same as model 1.a), only Z = Z1, and U(n) = n−α, with some α > 1.

2.b) The same as model 1.b), only Z = Z1, and U(n) = n−α, with some α > 1.

Models 1.a) and 2.a) have the following symmetry property: If we multiply all
σ(j) by −1 then both the Hamiltonian H(σ) and the free measure ν remain the same.
Hence, we say that these models are invariant with respect to the multiplication
group {−1, 1}. In the same way models 1.b) and 2.b) are invariant with respect
to the group of rotations U(s) of the s-dimensional space. The first invariance is
called a discrete and the second one a continuous symmetry.

In models 1.a) and 2.a) the configurations σ(j) = 1 for all j ∈ Z or σ(j) = −1 for
all j ∈ Z are configurations with minimal energies. It is proved that in model 1.a)
for small T > 0 at any dimension p ≥ 2 there is a translation invariant equilibrium
state µ+ = µ+(T ) such that µ+{σ(j) = 1} > 1

2 for all j ∈ Z. Similarly, there is an

equilibrium state µ− such that µ−{σ(j) = −1} > 1
2 for all j ∈ Z. This means a

phase transition which is connected to a break-down of symmetry, i.e. to the fact
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that the measures µ+ and µ− do not preserve the symmetry the Hamiltonian H
and free measure ν have. They are in the vicinity of a configuration with minimal
energy instead. In model 2.a) the same result holds if α ≤ 2. On the other hand,
the equilibrium state is unique for α > 2 at any temperature T . In these results
we should emphasize the phase-transition in the case α = 2. This is a very delicate
boundary case, and model 2.a) with this parameter has certain peculiar properties.
(See [1].)

In models 1.b) and 2.b) the configurations σ(j) = e; ∀j ∈ Z with some e ∈ S are
configurations with minimal energies. One is interested in which of these models
have a phase-transition at low temperatures and which have not. In model 1.b)
there is a phase-transition at low temperatures if the dimension of the lattice Zp

is p ≥ 3, (see [7]) and there is no phase-transition for p = 2. More precisely, the
result for p = 2 is proved completely only in the case when the state space S is
the unit circle, (see [4]). In the general case only the weaker result is proven that
any equilibrium state is invariant with respect to rotations [6]. This excludes the
possibility of such equilibrium states, where the configurations are in the vicinity of
a configuration with minimal energy with probability almost one, and it is believed
that there is no phase-transition, if this result holds. In model 2.b) there is a phase-
transition for α < 2, and there is no phase-transition for α ≥ 2. Models 1.a) and
2.a) behave differently in the case p = 2, and the difference between the behaviour
of models 1.b) and 2.b) appears in the case α = 2.

The above examples show that models with continuous and discrete symmetries
behave differently. The heuristic explanation of this difference is clear. Let us
fix a configuration with minimal energy in a neighbourhood of infinity, and let
us look at how much energy is needed to change this configuration radically in a
neighbourhood of zero. It may happen that in models with continuous symmetry we
can achieve this change at the expense of less energy by rotating the configuration in
such a way that the relative rotation between neighbour points is small. In models
with discrete symmetry this cannot be done. However, this heuristic argument is
not strong enough to give an orientation about what to expect in the general case.
Hence, it may be interesting a model where these questions can be solved completely.
We discuss a one-dimensional model, Dyson’s hierarchical model in detail. This is
a version of models 1.b) and 2.b). The main difference is that the number U(i, j)
appearing in the Hamiltonian of this model depends not on the usual distance |i−j|,
but some different distance on Z. Hence this model is not translation invariant, but
it has some other symmetries which makes it simpler to handle.

3. Dyson’s hierarchical model. Dyson’s hierarchical model is a model on the
positive integers Z = {1, 2, . . . } with Hamiltonian function

(4) H(σ) = −
∑

i∈Z

∑

j∈Z

j>i

ϕ(d(i, j))σ(i)σ(j) ,

where the so-called hierarchical distance d(·, ·) is defined by the formula d(i, j) =
2n(i,j)−1, and

n(i, j) = min n, ∃ some k such that (k − 1)2n < i, j ≤ k2n,
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ϕ(·) is a real function, and the free measure ν has the density function p0(x)

(5) p0(x) =
dν

dx
(x) = C(t) exp

{

−
x2

2
−

t

4
|x|4
}

,

where t > 0 is some small number. We consider both the scalar case when the spins
σ(·) take values on the real line R1 and the vector case when they take values in
Rs with some s ≥ 2. In the latter case, the product σ(j)σ(k) in formula (4) means
scalar product. We are interested in the question for which functions ϕ(·) the model
has a phase transition at low temperatures and for which one it has not.

The hierarchical distance d(·, ·) appearing in this model is a version of the usual
distance. It is not translation invariant, but it has some other symmetries wich
makes the model simpler. The density function p0(x) is a small perturbation of
the normal density, and the condition t > 0 guarantees that all integrals we need
are convergent. The scalar case is a version of problem 2.a) and the vector case of
problem 2.b) of the previous section. The crucial step in solving the problem about
phase transition consists of investigating the following question:

Put Vn = {1, 2, . . . , 2n}, and

HVn
(x1, . . . , x2n) = −

∑

i∈Vn

∑

j∈Vn

j>i

ϕ(d(i, j))xixj .

Define the probability measure µn = µn,T on RVn (on (Rs)Vn if we have a model
with s-dimensional spins) with the density function pn(x1, . . . , x2n) by the following
formula:

pn(x1, . . . , x2n) =
dµn(x1, . . . , x2n)

dx1 . . . dx2n

= Cn exp

{

−
1

T
HVn

(x1, . . . , x2n)

} 2n

∏

j=1

p(xj).

Let (σ(1), σ(2), . . . , σ(2n)) be a µn distributed random vector, and let pn(x) denote

the density function of the average 2−n
∑2n

i=1 σ(i). Give a good asymptotic formula
for pn(x).

This function pn(x) has the symmetry property pn(−x) = pn(x) in the scalar
case, and it is rotation invariant in the vector case. As some further analysis shows,
there are two possibilities. Either the function pn(·) is essentially concentrated in
a small neighbourhood of the origin for large n or it is concentrated around some
points ±M , M > 0 in the scalar case and around the sphere |R| = M in the
vector case. In the second case there is a phase transition, and in the first case
there is not. The last statement is far from trivial, it requires the investigation of
the approximating measures µn with some boundary condition discussed in the first
section of this paper. The main technical difficulty is to have a control on the finite
dimensional projections (its dimension is independent of n) of these measures µn.
This problem can be translated to a purely analytical question, where the formulas
contain explicitly the above defined functions pn(·). As a deeper analysis shows the
existence or non-existence of phase transition depends on the behaviour of these
functions. This question is discussed for instance in our paper [3], and here we omit
the details.
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The investigation of the function pn(x) also leads to a purely analytic question:
Observe that

HVn
(x1, . . . , x2n+1) = HVn

(x1, . . . , x2n) + HVn
(x2n+1, . . . , x2n+1)

− ϕ (2n)





2n

∑

j=1

xj









2n+1

∑

j=2n+1

xj



 .

This relation leads to the following recursive formula:

(6) pn+1(x) = Cn

∫

exp

{

4nϕ(2n)

T
(x2 − u2)

}

pn(x − u)pn(x + u) du,

where Cn is an appropriate norming constant, turning pn+1(x) into a density func-
tion. So we have to study the asymptotic behaviour of the functions pn(x) defined
by the recursion formula (6). To complete the formulation of the problem we have
to remark that the starting function p0(x) is defined in (5). The problem can be
slightly simplified by introducing the following transformation of pn(x).

Put

An = 1 +
∞
∑

j=n+1

2j ϕ(2n+j)

ϕ(2n)
,

and

qn(x) = exp

{

An

2(1 + An)
4nϕ(2n)x2

}

pn

(

√

T

1 + An

x

)

.

Some calculation shows that the above defined functions qn(x) satisfy the relation

(7)

qn+1(x, T ) = C̄n(T )

∫

exp
{

−4nϕ(2n)u2
}

qn

(
√

1 + An

1 + An+1
x − u, T

)

qn

(
√

1 + An

1 + An+1
x + u, T

)

du,

and the starting function q0(x) is

(7′) q0(x) = q0(x, T ) = C0(T ) exp

{

A0 − T

1 + A0

x2

2
−

tT 2

(1 + A0)2
|x|4

4

}

.

We can study the functions qn(x) defined by formulas (7) and (7′) instead of the
functions pn(x). Observe that the recursive relation (7) does not contain the param-
eter T , it appears only in the starting function q0(x). In formula (7′) the coefficient
of |x|4 is always negative and the coefficient of x2 is negative for T > A0, and it
is positive for T < A0. As a consequence, the function q0(x) has its minimum at

zero in the first case and at M0 =
√

A0−T
tT 2 (1 + A0) in the second case. The integral

operator in (7) is very similar to the convolution, the main difference between them
is the appereance of the kernel exp

{

−4nϕ(2n)u2
}

in our case. The appereance of
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this kernel has far reaching consequences. It causes some localization in the follow-
ing sense: The main contribution to the integral in (7) is given for small u. As a
consequence, the original form of the starting function may be preserved, and this
is the reason why the function qn(x) may have different behaviour for large and
small T . For large T the starting function q0(x) is essentially concentrated in a
small neighbourhood of the origin, and the integral (7) can be well approximated
by convolution. For small T the situation is different, and actually we are interested
in the following question: If the maximum M0 > 0 around which point the function
q0(|x|) is concentrated is very large, will this property be preserved for large n too?
The answer depends on how large the coefficient 4nϕ(2n) in the kernel is. Let us
also remark that in the vector valued case formulas (7) and (7′) imply that the func-
tion qn(x) is in the space of rotation invariant functions for all n. This constraint
implies a different behaviour in scalar and vector valued cases. We explain how to
investigate these models at low temperatures.

In the scalar valued case at small T the function q0(x) is concentrated around
some point ±M , M > 0, and we are interested in whether this property will be
preserved for all n. For this reason we make an appropriate rescaling. We try
to define some new function gn(x) = Anqn(Mn + Anx), where Mn is the place of
maximum of the function qn(x), and the number An is chosen in such a way that the
relation gn+1(x) = Tgn(x) hold with some operator T not depending on n. Then
the stability properties of this operator T must be investigated, and if it is stable
enough, then the relation limn→∞ gn(x) = g∗(x) holds, where g∗(x) is the solution
of the fixed-point equation g∗(x) = Tg∗(x). During these calculations we also get
a recursive relation for the numerical sequence Mn, and the question whether there
is a phase transition or not depends on whether limn→∞ Mn > 0 or not. It is
relatively simple to carry out this program if 4nϕ(n) > αn with some α > 1. In
this case there is a phase-transition. The question is much harder in the case when
although 4nϕ(n) → ∞, but it does not increase exponentially fast. Actually, this is
the case we are first of all interested in.

In this case the kernel in the integral of (7) has a smaller effect, and to carry out
the above sketched program one needs to study the behaviour of the function qn(x)
in the interval [−Mn,Mn] more carefully. In this interval the localization property of
the integral (7) behaves differently. In the point zero the main contribution is given
by u = ±Mn, in the point M/2 by u = ±Mn/2, etc. If the kernel in the integral in
(7) tends to infinity slowly, then these contributions can be very essential. It may
happen that new peaks appear in this interval which may be the new maximum.
The above sketched program can be carried out, but it is much more sophisticated
because of the intricate behaviour of the function qn(x) in the interval [−Mn,Mn].
We cannot explain the main ideas of this argument in this short note, we only
give the recursive formula for Mn this procedure gives. (For some more discussion
see [2].) It is:

(8) Mn+1 ∼ Mn

[

1 − exp

{

−
1

T
4nϕ(2n)M2

n

}]

.

Formula (8) shows that in the case 4nϕ(2n) > const. log n and T > 0 is small,
(hence M0 > 0 is large) limn→∞ Mn > 0, therefore there is a phase-transition. On
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the other hand, if 4nϕ(2n)/ log n → 0 then Mn → 0, and there is no phase transition.
Moreover, the special case 4nϕ(2n) = const. log n has the following remarkable

property: If
M2

k

T
< 1 for some k, then Mn+1 < (1 − n−α)Mn for all n ≥ k with

some α < 1, hence limn→∞ Mn = 0. Define the function M(T ) = limn→∞ Mn(T ),
which is called in the literature the spontaneous magnetization. Since there is some
T0 > 0 such that M(T ) = 0 for T > T0, the above property implies that either
M2(T ) > T0 or M(T ) = 0, i.e. the spontaneous magnetization as a function of the
temperature has a discontinuity. This is called the Thouless effect in the literature.
Model 2.a) of the previous section has a similar property in the special case α = 2.
(See [1].)

In the vector valued case the situations when 4nϕ(2n) increases exponentially
fast and when it increases slower can be similarly investigated. Since the func-
tion qn(x) is rotation invariant, it is useful to introduce the scalar valued function
Qn(x) = qn(x, 0, . . . , 0), where x ∈ R1 and (x, 0, . . . , 0) ∈ Rs and to study this
function. For the sake of simpler notations let us assume that s = 2. The func-
tion Qn(x) is essentially concentrated in a small neighbourhood of the points ±Mn,
where Mn is defined as

Mn =

∫ ∞

0

xQn(x) dx.

We want to give a good asymptotic of the function Qn(x) in these neighbour-
hoods, together with a recursive formula on the sequence Mn. The main tech-
nical difficulty is that when rewriting formula (7) for the function Qn(x) the ar-

guments
√

1+An

1+An+1
x ± u turn into the upleasant expressions

√

(Bnx ± u1)2 + u2
2,

with Bn = 1+An

1+An+1
. Since we are interested in a good asymptotic only in the

case x ∼ Mn, and the main contribution to the integral expressing Qn(x) for
such x is given when u1 and u2 are small, we commit a small error by replac-

ing this argument by the expression Bnx ± u1 +
u2

2

2B2
n

M2
n

. Then we can continue

our argument similarly to the scalar valued case. Let us introduce the functions
fn(x) = 4−nϕ(2n)−1Qn(Mn + 4−nϕ(2n)−1x). We cannot express fn+1(x) as an
operator of fn(x) not depending on n, but the following weaker statement holds:
We can write fn+1(x) = Tfn(x) + εn(x), where εn(x) is a small error term. The
operator T is written down explicitly in [3], and its stability is also studied there.
Here we omit the details. What is important for us is that this investigation gives
us the relation

Mn+1 ∼ Mn −
1

Mn4nϕ(2n)
,

or because of the relation Mn ∼ Mn+1 we commit negligible error by rewriting the
last formula as

M2
n+1 − M2

n ∼
2

4nϕ(2n)
.

This relation shows that in Dyson’s vector valued model there is a phase-transition
at low temperatures if the sum

∞
∑

n=1

1

4nϕ(2n)

is convergent, and there is no phase-transition if this sum is divergent.
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