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Abstract: Let us consider a triangular array of random vectors (X
(n)
j , Y

(n)
j ),

n = 1, 2, . . . , 1 ≤ j ≤ kn, such that the first coordinates X
(n)
j take their values

in a non-compact Lie group and the second coordinates Y
(n)
j in a compact

group. Let the random vectors (X
(n)
j , Y

(n)
j ) be independent for fixed n, but we

do not assume any (independence type) condition about the relation between
the components of these vectors. We show under fairly general conditions

that if both random products Sn =
kn
∏

j=1

X
(n)
j and Tn =

kn
∏

j=1

Y
(n)
j have a limit

distribution, then also the random vectors (Sn, Tn) converge in distribution as
n → ∞. Moreover, the non-compact and compact coordinates of a random
vector with this limit distribution are independent.

1. Motivations for the investigation of the problem.

The problem investigated in this work appeared as a by-product of the investigation
in paper [3]. In that paper the limit behaviour of the appropriate normalizations of k-

order symmetric polynomials S
(k)
n =

∑

1≤j1<j2<···<jk≤n

ξj1 · · · ξjk
of i.i.d. random variables

ξ1, . . . , ξn with a fixed distribution function F was considered as n → ∞ in the case when
the order k = k(n) of the symmetric polynomials strongly depends on the number n.

Namely, it was assumed that the fractions α(n) =
k(n)

n
satisfy the relation lim

n→∞
α(n) =

α with some number 0 < α < 1.

The investigation in paper [3] was based on the proof of a relation which shows that

the description of the limit behaviour of the random variables S
(k)
n can be reduced to

the investigation of a non-linear functional of a random vector (S(n, α(n)), T (n, α(n))),

where S(n, α(n)) =
1√
n

n
∑

j=1

ξj(α(n)) and T (n, α(n)) =
n
∑

j=1

ηj(α(n)) mod 2π with a se-

quence (ξj(α(n)), ηj(α(n))), Eξj(α(n)) = 0, j = 1, . . . , n, of independent and identically
distributed random vectors. The distribution of the random vector (ξ1(α(n)), η1(α(n)))
could be given explicitly, and it depended only on the distribution function F of the
random variables ξj , j = 1, . . . , n, appearing in the definition of the symmetrical poly-

nomials S
(k)
n and the fraction α(n) =

k(n)

n
. Beside this, the distribution of this random

vector depended continuously on the parameter α, 0 ≤ α ≤ 1.
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To solve the problem investigated in paper [3] a limit theorem had to be proved for
the distribution of the random vectors (S(n, α(n)), T (n, α(n))) as n → ∞. The usual
central limit theorem describes the limit distribution of the random variables S(n, α(n)),
the (known) limit theorems for products of independent and identically distributed ran-
dom variables on the unit circle describe the limit behaviour of the random variables
T (n, α(n)) as n → ∞. (The additive group modulo 2π is isomorph to the group on the
unit circle with the usual multiplication.) But in the investigations of paper [3] also a
limit theorem for the joint distribution of the random vectors (S(n, α(n)), T (n, α(n)))
was needed. It was shown in that work that these random vectors have a limit dis-
tribution, and the components of the limit are independent. This independence of the
components in the limit distribution appeared not because of some uncorrelatedness
property of the coordinates. It had a structural reason.

The proof of the limit theorem in paper [3] was based on the characteristic function
technique, and it exploited the fact that the characters of the additive group of the real
line are the functions et(x) = eitx where t ∈ R1, and the characters of the additive
group with addition modulo 2π on the interval [0, 2π] are the functions em(x) = eimx

where the parameter m takes integer values. This means that the character group of the
groups we have considered is a continuous group in the first case and a discrete group in
the second case. The independence of the coordinates of the limit distribution was the
consequence of these facts. It is natural to expect similar results in a more general case
when the (appropriately normalized) products of random vectors are considered with
first coordinates in a non-compact and with second coordinates in a compact group. But
we have found only one work in the literature where such results were proved. It was
the paper of A. Raugi [6]. Raugi’s results were not sufficiently general for our purposes,
because they do not cover the case needed in paper [3]. So our main goal was to prove
an appropriate generalization of Raugi’s results.

Let us explain what kind of generalization of Raugi’s results we need. The main
point is that for a fixed n the distribution of the random vectors (ξj(α(n)), ηj(α(n))),
j = 1, . . . , n, we have considered depends on a parameter α(n) which may be different
for different n. We only know that the parameters α(n) are convergent as n → ∞. This
means that we need a triangular array type generalization of limit theorems for prod-
ucts of independent vectors. This dependence of the distribution of the terms in the
random product have a deep consequence in particular if the compact group coordinate
is considered. Indeed, let us consider the following simple example: Let the group G be
the interval [0, 2π], with addition modulo 2π as the group multiplication. If the product
of such independent and identically distributed random variables are considered on this
group which take only values 2kπ

3 , k = 1, 2, 3, then the limit distribution of the random

products is the uniform distribution on the values 2kπ
3 , k = 1, 2, 3. But even a very

small perturbation of the distributions may radically change the limit behaviour of the
random product. Typically the products of the random variables with the perturbed
distribution converge to the uniform distribution on the interval [0, 2π]. On the other
hand, we shall show that such counter examples do not appear if the limit distribu-
tion of the product of the unperturbed random variables is the Haar measure of the
whole group. Our goal is to show that under very general conditions the (appropriately
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normalized) products of independent and identically distributed random vectors with
the first coordinate in a non-compact and the second coordinate in a compact group
have a limit distribution, and the compact and non-compact coordinates of a random
vector with the limit distribution are independent. Beside this, we want to show that a
similar result holds after a small perturbation of the distribution of the random vectors
if the projection of the limit distribution (of the random products whose terms have the
unperturbed distribution) to the compact group coordinate is the Haar measure of this
group.

This paper consists of 4 sections. In Section 2 we prove independence type results
which enable us to reduce the problem of limit theorems for products of independent
random vectors with a non-compact and a compact group valued component to the
separate investigation of these components. In Section 3 we prove with the help of
some classical theorems the results we need about products of random variables on a
compact group. Here we formulate and prove the main result of this paper Theorem 3.2.
This theorem can be considered as a definite formulation of the heuristic statements
formulated in this Section. In Section 4 we recall some limit theorems on product of Lie
group valued random variables which are useful for us and also formulate some open
problems.

To avoid some unpleasant measure theoretical problems we restrict our attention in
this paper to the case when the groups we handle are complete separable metric spaces.

2. Independence type results.

In this section we prove two results. The first result, Proposition 2.1, gives a condition
for the convergence of a sequence of probability measures on a product space to a
product measure on this product space which is simpler and can be better checked than
the original definition. The second result, Proposition 2.2, gives a sufficient condition
for the asymptotic independence of a product of independent random vectors whose first
coordinates are in a non-compact and the second coordinates in a compact group. This
asymptotic independence of the compact and non-compact component of the product
may also appear if no independence like relation holds between the compact and non-
compact terms taking part in the product. These results enable us to reduce the proof
of limit theorems for the distribution of these random vectors under some not too
restrictive conditions to the investigation of the limit theorems for the products of the
non-compact and compact components of these vectors separately.

Proposition 2.1. Let (X,A) and (Y,B) be two complete separable metric spaces, and
let Pn, n = 1, 2, . . . , be a sequence of probability measures on the product space (X ×
Y,A× B) such that there exist some probability measures µ on the space (X,A) and ν
on the space (Y,B) which satisfy the relations

lim
n→∞

∫

f(u)g(v)Pn( du, dv) =

∫

f(u)g(v)µ( du)ν( dv) (2.1)

for all continuous and bounded functions f(·) on the space (X,A) and continuous and
bounded functions g(·) on the space (Y,B). Then the measures Pn converge weakly to
the product measure µ × ν.
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Proof of Proposition 2.1. Proposition 2.1 can be proved as a relatively simple conse-
quence of Theorem 3.1 in Chapter 1 of Billingsley’s book [1]. By this result it is enough
to show that if relation (2.1) holds, then for all such A ∈ A and B ∈ B for which
the boundaries ∂A and ∂B of the sets A and B satisfy the relation µ(∂A) = 0 and
ν(∂B) = 0 lim

n→∞
Pn(A × B) = µ(A)ν(B).

Instead of this relation it is enough to prove the statements that lim sup
n→∞

Pn(A×B) ≤
µ(A)ν(B) if the sets A and B are closed and lim inf

n→∞
Pn(A×B) ≥ µ(A)ν(B) if the sets A

and B are open. Indeed, by replacing the sets A and B by their closure and interior the
above statements imply the desired relation. To prove the first statement let us choose
for all ε > 0 two open sets G ⊃ A∪∂A and H ⊃ B∪∂B such that µ(G) < µ(A)+ε and
ν(H) < ν(B) + ε. Then there exist two continuous functions f(·) on the space (X,A)
and g(·) on the space (Y,B) such that 0 ≤ f(u) ≤ 1 for all u ∈ X, 0 ≤ g(v) ≤ 1 for all
v ∈ Y , f(u) = 1 if u ∈ A, f(u) = 0 if u /∈ G, and g(v) = 1 if v ∈ B, g(v) = 0 if v /∈ H.
Then

lim sup
n→∞

Pn(A × B) ≤ lim
n→∞

∫

f(u)g(v)Pn( du, dv) ≤ µ(G)ν(H) ≤ (µ(A) + ε)(ν(B) + ε).

Since the above relation holds for all ε > 0 it implies the first statement. The proof of
the second statement is similar. Only in this case we have to exploit that the measure of
an open set can be approximated arbitrary well by the measure of a closed set contained
in this open set.

Proposition 2.2, which together with Proposition 2.1 helps to prove results of the
type indicated in Section 1 is a generalization of Lemma 1.5 in Raugi’s paper [6]. The
proof heavily exploits Raugi’s ideas. Before the formulation of this result we recall
some facts and notations from the theory of group representations on compact groups.
The theory of group representations appears in a natural way if we want to apply the
characteristic function technique in the case of general compact groups.

Let K be a compact group. A representation of the group K is a continuous ho-
momorphism of the group K to the group of unitary transformations U(H) of a Hilbert
space H. We call a representation D : K → U(H) irreducible if there is no non-trivial
closed subspace of the Hilbert space H invariant with respect to all unitary transfor-
mations D(g), g ∈ K. Two representations D1 and D2 are called unitarily equivalent if
there is a unitary transformation U of the Hilbert space H such that UD1(g)U∗ = D2(g)
for all g ∈ K. It follows from the general theory of group representations that all ir-
reducible representations of a compact group K are finite dimensional, that is they
map the group to the unitary matrices of a finite dimensional Euclidean space. Let
Irr (K) denote the class of all irreducible not unitarily equivalent representations of the
group K.

Given a D ∈ Irr (K) of dimension d = d(D), let D(i, j)(g), g ∈ G, 1 ≤ i, j ≤ d(D)
denote the elements of the matrix we get if the transformations D(g) are written in
the form of a matrix with a fixed orthonormal basis of the d-dimensional space. By a
most important result of the group representations, the Peter–Weyl theorem, the set
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of functions
1

d(D)
D(i, j)(·), 1 ≤ i, j ≤ d(D), D ∈ Irr (K), is a complete orthonormal

basis in the space L2(K,K, µ), where K denotes the Borel σ-algebra of the group K

and µ is the Haar measure in this space. Beside this, the finite linear combinations of
the functions D(i, j)(·) constitute an everywhere dense set in the space of continuous
functions on the compact group K with respect to the supremum norm.

If X is a random variable taking values in a compact group K then let us define
its Fourier transform FX = FX(D), D ∈ IrrK, as

FX(D) = ED(X(·)), that is 〈FX(D)(u), v〉 = E〈D(X(·))(u), v〉, D ∈ IrrK

if u, v ∈ H(D), where H(D) denotes the (finite dimensional) Hilbert space where the
group representation D is acting. The Fourier transform of a compact group K valued
random variable is the natural analog of the characteristic function of real valued random
variables. In particular, the Fourier transform of the product of independent random
variables on the group K equals the product of the Fourier transforms of these random
variables.

Let us also recall that given a random variable X with probability distribution µ
on a separable metric space M , there exists a smallest closed subset F ⊂ M such that
µ(F ) = 1. We shall call this set the support of the random variable X and denote it by
supp (X).

The above facts help us to prove Proposition 2.2 formulated below. Before the
proof we shall discuss the content of the conditions imposed in this result.

Proposition 2.2. Let N be a locally compact and K a compact group. Let G = N×K

denote their direct product. For each n = 1, 2, . . . let (X
(n)
j , Y

(n)
j ), j = 1, 2, . . . , kn,

kn → ∞ if n → ∞, be a sequence of independent random variables on G. Let us define
the random products

Un =

kn
∏

j=1

X
(n)
j , Vn =

kn
∏

j=1

Y
(n)
j , n = 1, 2, . . . ,

for all n = 1, 2, . . . . Let us assume that the random variables X
(n)
j satisfy the following

condition (i):

(i) The relation

lim
n→∞

E

∣

∣

∣

∣

∣

∣

f





kn
∏

j=1

X
(n)
j



− f





kn−p
∏

j=1

X
(n)
j





∣

∣

∣

∣

∣

∣

= 0 (2.2)

holds for all p = 1, 2, . . . and continuous and bounded functions f(·) on the locally
compact group N.

Let K′ be a closed subgroup of K such that supp (Y
(n)
j ) lies in one of its two–sided

cosets, aK′ = K′a with some a ∈ K for all n = 1, 2, . . . and j = 1, 2, . . . , kn, and fix
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some y ∈ aK′. Suppose that the random variables Y
(n)
j and their Fourier transforms

satisfy the following condition (ii):

(ii) If V is a random variable in K with uniform distribution on the subgroup K′, then

lim
p→∞

sup
kn≥p

∥

∥

∥

∥

∥

∥

∥

∥

F
vy−p

kn
∏

j=kn−p+1

Y
(n)

j

(D) −FV (D)

∥

∥

∥

∥

∥

∥

∥

∥

= 0 (2.3)

with the element y ∈ aK′ we have fixed for all irreducible representations D ∈
Irr (K) and all v ∈ K′.

Then the sequences Un, n = 1, 2, . . . and y−knVn, n = 1, 2, . . . , are asymptoti-
cally independent, i.e. for all continuous and bounded functions f on the group N and
continuous and bounded functions g on the group K

lim
n→∞

(

E[f(Un) g(y−knVn)] − E[f(Un)]E[g(y−knVn)]
)

= 0 (2.4)

with the element y ∈ aK′ we have fixed.

If the conditions of Propositions 2.1 and 2.2 are satisfied then to prove a limit
theorem for the random vectors (Un, y−knVn), n = 1, 2, . . . , it is enough to prove a
limit theorem for the random variables Un and y−knVn separately. Then also the joint
distributions of these random variables converge in distribution, and the components of
the limit distributions are independent.

The condition (i) in Proposition 2.2 expresses the non-compact character of the
group N. Its heuristic content is that by omitting finitely many terms from the end of
the product Un we make a very small modification of this product. We shall return to
the discussion of this property in the next Section in the formulation of Theorem 3.2.

Condition (ii) is slightly more general than the condition we need in the sequel. It
also helps to consider the case when the random variables y−knVn converge in distribu-
tion to the Haar measure of a proper subgroup of the group K with some appropriate
“shift” y−kn . But we shall be interested mainly in the case when the products Vn con-
verge to the Haar measure of the whole group K, and the “shift” factors y−kn do not
appear. In this case the factor y−kn does not appear in formula (2.3), i.e. y has to be
chosen as the unit element of the group K in this formula. As we shall see in the next
section condition (ii) of Proposition 2.1 holds in a very general case. Let us also remark
that condition (2.3) is equivalent to the following formally weaker statement:

lim
p→∞

sup
kn≥p

∥

∥

∥

∥

∥

∥

∥

∥

F
y−p

kn
∏

j=kn−p+1

Y
(n)

j

(D) −FV (D)

∥

∥

∥

∥

∥

∥

∥

∥

= 0 (2.3′)

with an element y ∈ aK′ for all irreducible representations D ∈ Irr (K), i.e. v ∈ K′ can
be replaced by the identity of the group K. Indeed, if v ∈ K then vV has the same
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distribution as V , FV (D) = FvV (D),

F
vy−p

kn
∏

j=kn−p+1

Y
(n)

j

(D) −FV (D) = D(v)









F
y−p

kn
∏

j=kn−p+1

Y
(n)

j

(D) −FV (D)









,

D(v) is a unitary matrix, hence relation (2.3′) implies relation (2.3). We formulated our
condition in the form (2.3) because this formula can be better applied in the proof.

Before the proof of Proposition 2.2 we briefly explain its main ideas. Because of the
Peter–Weil theorem we can reduce the statement to be proved to a relation formulated
in relation (2.5). Then we exploit Conditions (i) and (ii) of Proposition 2.2. In an
informal way the content of Condition (i) is that a negligibly small error is committed if
finitely many terms are omitted from the end of the products Un on the locally compact
group N. Condition (ii) says that the behaviour of the random product Vn on the
compact group K shows a different character. Here the product of sufficiently many
terms at the end of the product Vn determines the distribution of the random variable
Vn with a very good accuracy. To get a good approximation of this distribution we have
to make sufficiently many terms but their number does not depend on the parameter n.
Condition (ii) expresses this property in a rather hidden way. It says in the language
of Fourier transforms that the product of finitely many terms at the end of the product
Un is close to the Haar measure of a subgroup of the group K or to some of its shift.
Then by multiplying it with the independent product from the left we have to multiply
with to get the product Vn we do not deteriorate this property.

The formal proof exploits these observations. First we show with the help of Prop-
erty (i) that by omitting finitely many terms from the end of Vn a negligible error is
committed and the proof of Propositon 2.2 can be reduced to a good bound on the
expression γ(n, p) introduced in formula (2.8). To exploit the available independence
we make a conditioning of γ(n, p) with respect to the condition Un,p = u, Vn,p = v
where Un,p and Vn,p are defined in formula (2.6). The conditional expectation we have
to handle can be bounded well with the help of Condition (ii). In the exact proof we
need uniform bounds on the conditional expectation we have to handle with respect to
the conditions. They can be proved with the help of usual compactness arguments.

Proof of Proposition 2.2. Because of the Peter–Weyl theorem it is enough to prove
instead of formula (2.4) that

lim
n→∞

(E[f(Un)D(y−nVn)] − E[f(Un)]E[D(y−knVn)]) = 0 (2.5)

for all bounded and continuous functions f on N and irreducible representations D ∈
Irr (K). (Here D(y−knVn) is understood as a random matrix, and formula (2.5) means
that all coordinates of a matrix satisfies the corresponding relation.)

Let us define for all p = 1, 2, . . . and n such that kn ≥ p the random products

Un,p =

kn−p
∏

j=1

X
(n)
j and Vn,p =

kn−p
∏

j=1

Y
(n)
j . (2.6)
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Then we have

‖E[f(Un)D(y−knVn)] − E[f(Un)]E[D(y−knVn)]‖ ≤ α(n, p) + β(n, p) + γ(n, p), (2.7)

where

α(n, p) = ‖E[(f(Un) − f(Un,p))D(y−knVn)]‖ ≤ E|f(Un) − f(Un,p)|,
β(n, p) = ‖E[f(Un) − f(Un,p)]E[D(y−knVn)]‖ ≤ E|f(Un) − f(Un,p)|,

and

γ(n, p) = ‖E[f(Un,p)D(y−knVn)] − E[f(Un,p)]E[D(y−knVn)]‖, (2.8)

since ‖D(x)‖ = 1 for all x ∈ K.

Condition (i) implies that

lim
n→∞

α(n, p) = 0, lim
n→∞

β(n, p) = 0 (2.9)

for all p = 1, 2, . . . . On the other hand,

γ(n, p) = ‖E[f(Un,p){D(y−knVn) − ED(y−knVn)}]‖
= ‖E(E

[

f(Un,p){D(y−knVn) − ED(y−knVn)} | Un,p, Vn,p

]

)‖

=

∥

∥

∥

∥

∫

Hn,p(u, v)µn,p( du, dv)

∥

∥

∥

∥

≤ ‖f‖∞
∫

∥

∥

∥

∥

∥

∥

E



D



y−knv

kn
∏

j=kn−p+1

Y
(n)
j



− ED(y−knVn)





∥

∥

∥

∥

∥

∥

νn,p( dv),

where µn,p(·, ·) denotes the distribution of the vector (Un,p, Vn,p), νn,p(·) the distribution
of the random variable Vn,p, and

Hn,p(u, v) = E
[

f(Un,p){D(y−knVn) − ED(y−knVn)} | Un,p = u, Vn,p = v
]

= f(u)E











D



y−knv

kn
∏

j=kn−p+1

Y
(n)
j



− ED(y−knVn)











because of our independence properties and the identity Vn = Vn,p

kn
∏

j=kn−p+1

Y
(n)
j .

The relations supp (Y
(n)
j ) ⊂ aK′ = K′a for all 1 ≤ j ≤ kn and y ∈ aK′ = K′a

imply that supp (Vn,p) = supp

(

kn−p
∏

j=1

Y
(n)
j

)

⊂ akn−pK′ and y−kn ∈ a−knK′. Hence if

v = Vn,p ∈ suppVn,p then y−knv ∈ y−pK′ = K′y−p, and

γ(n, p) ≤ ‖f‖∞ sup
v∈K′

∥

∥

∥

∥

∥

∥

ED



vy−p
kn
∏

j=kn−p+1

Y
(n)
j



− ED(y−knVn)

∥

∥

∥

∥

∥

∥

= ‖f‖∞ sup
v∈K′

∥

∥

∥
Fvy−pV −1

n,pVn
(D) −Fy−nVn

(D)
∥

∥

∥
.
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Let us take a random variable V with uniform distribution on the subgroup K′. The
last relation implies that

γ(n, p) ≤ ‖f‖∞ sup
v∈K′

∥

∥

∥Fvy−pV −1
n,pVn

(D) −FV (D)
∥

∥

∥+‖f‖∞‖FV (D)−Fy−nVn
(D)‖. (2.10)

For all p = 1, 2, . . . and v ∈ K′ put

gp(v) = sup
n : kn≥p

∥

∥

∥
Fvy−pV −1

n,pVn
(D) −FV (D)

∥

∥

∥
.

We claim that gp(·) is a continuous function on the space K′. Indeed, if v, v′ ∈ K′ then
∥

∥

∥Fvy−pV −1
n,pVn

(D) −FV (D)
∥

∥

∥ ≤
∥

∥

∥Fvy−pV −1
n,pVn

(D) −Fv′y−pV −1
n−p

Vn
(D)

∥

∥

∥

+
∥

∥

∥
Fv′y−pV −1

n,pVn
(D) −FV (D)

∥

∥

∥

≤ sup
x∈K

‖D(vx) − D(v′x)‖ + gp(v
′)

for all p ≤ kn, hence

gp(v) ≤ gp(v
′) + sup

x∈K

‖D(vx) − D(v′x)‖.

Then because of the symmetric role of v and v′

|gp(v) − gp(v
′)| ≤ sup

x∈K

‖D(vx) − D(v′x)‖,

and the function gp(·) is continuous on the group K′ because of the uniform continuity
of the group representations D ∈ IrrK.

Because of property (ii) lim
p→∞

gp(v) = 0 for all v ∈ K′. Hence

∞
⋃

p=1

{v ∈ K ′ : gp(v) < ε} = K′

for all ε > 0, and the compactness of the group K′ implies that there exists an index
p(ε) such that

p(ε)
⋃

p=1

{v ∈ K′ : gp(v) < ε} = K′,

that is
lim

p→∞
sup
n≥p

sup
v∈K′

∥

∥

∥Fvy−pV −1
n,pVn

(D) −FV (D)
∥

∥

∥ = 0.

Let us also observe that by taking only p = kn instead of sup
kn≥p

in Condition (ii) we get

with the choice v = e, the unit element of the group that lim
n→∞

‖FV (D)−Fy−knVn
(D)‖ =

0. Hence the last relation together with formula (2.10) imply that

lim
p→∞

sup
n≥p

γ(n, p) = 0. (2.11)

Relations (2.7), (2.9) and (2.11) imply formula (2.5), hence Proposition 2.2.
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3. Limit theorems on compact groups.

The results about limit theorems on compact groups are fairly well understood. In this
Section we show that a result of the paper of Stromberg [7] formulated in Theorem 3.3.5
which he called in his paper the Main Theorem has some interesting consequences. We
formulate Stromberg’s result in a slightly different form.

Proposition 3.1. (Stromberg) Let Y1, Y2, . . . be a sequence of independent, identically
distributed random variables on a compact group K. Let us assume that the support
of the distribution of the random variable Y1, supp (Y1) is not contained in any proper

closed subgroup of the group K. Then the random products Vn =
n
∏

j=1

Yj converge in

distribution as n → ∞ if and only if the support supp (Y1) of Y1 is not contained in any
coset of any proper closed normal subgroup of K. If the limit distribution exists, then it
is the Haar measure µK of the group K.

A necessary and sufficient condition of the convergence in distribution of the ran-
dom products Vn to the Haar measure µK of the group K can be expressed with the help of
the Fourier transform of the random variable Y1 in the following way: This convergence
holds if and only if for all irreducible group representations D ∈ IrrK such that D 6= D0,
where D0 denotes the identity group representation (i.e. D0(g) = 1 for all g ∈ K), the
absolute values of all eigenvalues of the Fourier transform FY1(D) = ED(Y1) are strictly
less than 1.

Stromberg formulated his result in the language of probability measures instead of
random variables. Beside this, he formulated a slightly more general result, because he
also discussed the case when the smallest closed subgroup K0 containing the support of
the random variable Y1 may be a proper subgroup of the group K. But it is not hard
to reduce this general case to the case described in Proposition 3.1, and actually this is
done in Stromberg’s paper. Stromberg did not formulate explicitly the statement of the
second paragraph in Proposition 3.1, but he proved it. Actually the core of the proof of
the sufficiency part of the convergence in distribution in Proposition 3.1 consists of the
verification of this statement. We formulated this statement explicitly, because it plays
an important role in our subsequent discussion.

Let us remark that a sequence of random variables Vn on a compact group K

converges in distribution to the Haar measure µK of this group if and only if for all
irreducible group representations D ∈ IrrK, D 6= D0, where D0 is the identity group
representation, lim

n→∞
FVn

(D) = 0. By Proposition 3.1, if these random variables are of

the form Vn =
n
∏

j=1

Yj , where Yj , j = 1, 2, . . . , are independent, identically distributed

random variables, then this relation can hold only if the Fourier transform of Y1 satisfies
the property formulated in Proposition 3.1. This fact has deep consequences. Such
consequences will be formulated in the following Corollary of Proposition 3.1

Corollary of Proposition 3.1. Let Y1, Y2, . . . , be a sequence of independent, identi-
cally distributed random variables on a compact group K such that the support supp (Y1)
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of the random variable Y1 is not contained in any proper closed subgroup or any coset of

any proper closed normal subgroup of K. Then the random products Vn =
n
∏

j=1

Yj con-

verge in distribution to the Haar measure µK of the group K, and the random variables

Yj also satisfy property (ii) formulated in Proposition (2.2) with kn = n, Y
(n)
j = Yj,

j = 1, . . . , n, K = K′ and y = e, where e is the unit element the group K. Also the
following generalization of the above statement holds.

For all n = 1, 2, . . . , let Y
(n)
j , j = 1, . . . , n, be a sequence of independent, identically

distributed random variables on a compact group K such that the distributions of the

random variables Y
(n)
1 , distY

(n)
1 converge weakly to the distribution of a random variable

Y whose support supp (Y ) is not contained in any proper closed subgroup or any coset

of any closed normal subgroup of K. Then these random variables Y
(n)
j also satisfy

property (ii) of Proposition 2.2 with kn = n, K′ = K and y = e, and the random

products Vn =
n
∏

j=1

Y
(n)
j converge weakly to the Haar measure µK of the group K as

n → ∞. These statements also hold if we do not assume that the independent random

variables Y
(n)
j are identically distributed, we only assume that if ρ is such a metric on

the space of probability measures µ on the group K which metrizes weak convergence of
probability distributions on K (such a metric on the space of probability measures on K

exists if K is a separable metric space), then lim
n→∞

sup
1≤j≤n

ρ (distY
(n)
j ,dist Y ) = 0.

This corollary states that if the products of independent and identically distributed
random variables converge to the Haar measure of the group, then they also satisfy
property (ii) of Proposition 2.2. Moreover, the same relation also holds for their small
perturbations.

Proof of the Corollary of Proposition 3.1. It is enough to prove formula (2.3) with kn = n
in the case D ∈ IrrG, D 6= D0, where D0 is the identity group representation of K.
Then in the case investigated in this corollary FV (D) = 0, and F

vy−p

n
∏

j=n−p+1

Y
(n)

j

(D) =

D(v)
n
∏

j=n−p+1

ED
(

Y
(n)
j

)

, and we have to show that

lim
p→∞

sup
n≥p

∥

∥

∥

∥

∥

∥

D(v)
n
∏

j=n−p+1

ED
(

Y
(n)
j

)

∥

∥

∥

∥

∥

∥

= 0.

If Yj = Y
(n)
j , j = 1, 2, . . . , n, are independent, identically distributed random vari-

ables satisfying the conditions of the first paragraph of this Corollary, then because of
Proposition 3.1 there exists an index m = m(D) such that

∥

∥

∥

∥

∥

∥

l+m
∏

j=l

ED
(

Y
(n)
j

)

∥

∥

∥

∥

∥

∥

≤ 1

2
if 1 ≤ l ≤ l + m ≤ n. (3.1)
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Since ‖D(v)‖ = 1,
∥

∥

∥ED
(

Y
(n)
j

)∥

∥

∥ ≤ 1 relation (3.1) implies that

∥

∥

∥

∥

∥

∥

D(v)
n
∏

j=n−p+1

ED
(

Y
(n)
j

)

∥

∥

∥

∥

∥

∥

≤
(

1

2

)p/m−1

≤ ε if p ≥ p0 = p0(D, ε)

for all n ≥ p with an appropriate number p0. Since this relation holds for all ε > 0 it
implies condition (ii) of Proposition 2.2 if the conditions in the first paragraph of this
Corollary holds.

If the conditions of the second paragraph hold, then a slight modification of this
argument yields the proof of formula (ii). Indeed, let Yj , j = 1, . . . , n, be a sequence
of independent, identically random variables with the same distribution as the random
variable Y . Then there exists an index n0 = n0(m,D) such that

∥

∥

∥

∥

∥

∥

l+m
∏

j=l

ED
(

Y
(n)
j

)

−
l+m
∏

j=l

ED (Yj)

∥

∥

∥

∥

∥

∥

≤ 1

6
for all 1 ≤ l ≤ l + m ≤ n

if n ≥ n0. This implies that a slight modification of formula (3.1), where the upper
bound 1

2 is replaced by 2
3 holds in this case. This fact implies the validity of formula

(2.3) also in this case. Finally, formula (2.3) with the choice v = e and n = p instead of
sup
n≥p

implies that lim
n→∞

ED(Vn) = 0 if D 6= D0. Hence the distributions of the random

variables Vn converge to the Haar measure µK.

The following Theorem 3.2 can be obtained as a consequence of the already proved
results.

Theorem 3.2. Let N be a locally compact and K a compact group. Let G = N × K

denote their direct product. Let us consider the triangular array (X
(n)
j , Y

(n)
j ) of random

variables on the group G, n = 1, 2, . . . , 1 ≤ j ≤ kn, kn → ∞ if n → ∞ which are
independent for a fixed n for all indices 1 ≤ j ≤ kn. Let us define the random products

Un =

kn
∏

j=1

X
(n)
j , Vn =

kn
∏

j=1

Y
(n)
j , n = 1, 2, . . . .

Let us assume that Corollary 3.1 can be applied for the independent K valued random

variables Y
(n)
j , j = 1, 2, . . . , kn, i.e. lim

n→∞
sup

1≤j≤kn

ρ (distY
(n)
j ,distY ) = 0 with a random

variable Y on the group K which is not contained in any proper closed subgroup or any
coset of a closed proper normal subgroup of K.

Let us also assume that the distributions of the random variables Un converge weakly

to a probability measure ν on the group N, and the random variables X
(n)
j , 1 ≤ j ≤ nk,

satisfy the following smallness property: For all fixed positive integers j X
(n)
kn−j ⇒ e as
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n → ∞, where ⇒ denotes stochastic convergence, and e is the unit element of the group
N.

Then the distributions of the random vectors (Un, Vn), n = 1, 2, . . . , converge weakly
to the direct product ν × µK on the group G as n → ∞, where µK denotes the Haar
measure on the group K.

Remark: In classical limit theorems for the products of independent random variables
on a Lie group we also assume that the random variables whose normalized products

converge in distribution satisfy the uniform smallness condition sup
1≤j≤kn

X
(n)
j ⇒ e, and

this is an essentially stronger condition than the condition imposed in Theorem 3.2.

Proof of Theorem 3.2. Let us first observe that to prove Theorem 3.2 it is enough

to show that under its conditions the random variables X
(n)
j satisfy condition (i) of

Proposition 2.2. Indeed, this relation together with the Corollary of Proposition 3.1
imply that Proposition 2.2 can be applied, hence formula (2.4) holds with y = e, where
e is the unit element of the group of K. This relation together with the weak convergence
of the random products Un and Vn imply the validity of formula (2.1) with the choice
X = N, Y = K if Pn is the distribution of the random vector (Un, Vn), and the pair
of measures (µ, ν) is replaced by the pair of measures (ν, µK). Hence Proposition 2.1
yields the desired statement.

To prove condition (i) of Proposition 2.2 observe that because of the smallness

condition imposed on the random variables X
(n)
j in Theorem 3.2 and the continuity of

multiplication and inverse U
(n)
p =

kn
∏

j=kn−p+1

Xn
j ⇒ e and also its inverse satisfies the

relation
(

U
(n)
p

)−1

⇒ e as n → ∞ for all fixed positive integers p. Beside this, as the

random variables Un are weakly convergent, they are also tight, i.e. for all ε > 0 there
is a compact set K = K(ε) ⊂ N such that P (Un ∈ K) > 1 − ε for all n ≥ n0(ε,K).

Since
kn−p
∏

j=1

X
(n)
j = Un

(

kn
∏

j=kn−p+1

Xn
j

)−1

, the above relations together with the uniform

continuity of the product on a compact subset of N × N imply that

ρ





kn
∏

j=1

X
(n)
j ,

kn−p
∏

j=1

X
(n)
j



⇒ 0 (3.2)

for all fixed p as n → ∞. Relation (3.2) follows from the above facts and the observation
that for all ε > 0 and compact sets K there is a number δ = δ(ε,K) > 0 such that
ρ(x, xy−1) ≤ ε if x ∈ K and ρ(y, e) < δ.

Since the products
kn−p
∏

j=1

X
(n)
j have a limit distribution (actually we only need that
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these random variables are tight) relation (3.2) also implies that

f





kn
∏

j=1

X
(n)
j



− f





kn−p
∏

j=1

X
(n)
j



⇒ 0

for all continuous and bounded functions f on N. Hence relation (2.2) holds. Theo-
rem 3.2 is proved.

4. On limit theorems on Lie groups. Some open problems.

To apply Theorem 3.2 we still need some limit theorems for the products of the (in-
dependent) elements of a row in a triangular array of independent random variables
taking values in a Lie group. In certain applications limit theorems for normalized ran-
dom products of independent random variables are useful. Normalization of random

products
n
∏

j=1

Xj of independent random variables Xj , j = 1, 2, . . . , taking values in a

Lie group means the application of a sequence of homomorphisms τn, n = 1, 2, . . . , of

the Lie group that is the definition of the expressions τn

(

n
∏

j=1

Xj

)

=
n
∏

j=1

τn(Xj). If we

study such normalized products it is natural to restrict our attention to some special Lie
groups to the so-called stratified groups where the homomorphisms τn can be defined
in a natural way.

Fortunately, several non-trivial and useful central and other kind of limit theorems
are known both for the products of the elements in a row of a triangular array and for
the normalized products of independent random variables which take their values in a

Lie group. Wehn [8] considered a triangular array of random variables X
(n)
j , 1 ≤ j ≤ kn,

kn → ∞ if n → ∞, taking values in a Lie group such that the elements of the random
variables in the same row are not only independent, but also exchangeable in the sense

that X
(n)
j X

(n)
k and X

(n)
k X

(n)
j have the same distribution, and gave sufficient conditions

(including uniform smallness) for the convergence of the distribution of the products

Un =
kn
∏

j=1

X
(n)
j towards a Gaussian measure. (Pap [5] proved that these conditions are

also necessary under some extra assumption.) Pap has also proved in [4] the Lindeberg
theorem for a triangular array of random variables in a stratified Lie group such that
the elements of the random variables in the same row are exchangeable, and the limit
distribution is a Gaussian measure which is stable with respect to the natural dilations.
Moreover, [4] contains a Lindeberg theorem for the normalized products of independent,
exchangeable random variables in the Heisenberg group such that the limit distribution
is the standard Gaussian measure. (It is not known whether this theorem can be
generalized for all stratified Lie groups.) There are some further results about functional
limit theorems on Lie groups. But since such problems do not appear in our context we
only refer to the paper Heyer and Pap [2] and the reference list therein.
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The behaviour of the simplest and best understood case the behaviour of sums
of independent real valued random variables suggests some natural conjectures and
problems whose solution seems to be hard. We formulate some of them.

Let Xj , j = 1, 2, . . . , be a sequence of independent (stratified) Lie-group valued
random variables, τn a sequence of homomorphisms of the Lie group such that the
random variables τn(Xj) satisfy the uniform smallness condition, i.e.

lim
n→∞

sup
1≤j≤n

P (τn(Xj) /∈ G) = 0

for all open neighbourhoods G of the unit element of the group, and the sequences

τn

(

n
∏

j=1

Xj

)

have a limit distribution for n → ∞. We are interested when we can

state that the normalized products of a small perturbation of these random variables
also satisfy a limit theorem. More explicitly, we formulate the following problem. Let
X̄j , j = 1, 2, . . . , be a new sequence of independent random variables on the same
Lie-group which is a small perturbation of the original sequence Xj , i.e. the sequence
X̄jX

−1
j converges stochastically to the unit element of the Lie group as j → ∞. When

can we state that also the products τn

(

n
∏

j=1

X̄j

)

or their appropriate normalizations

τn

(

n
∏

j=1

¯̄Xj

)

have a limit distribution where ¯̄Xj = X̄jxj with an appropriate element xj

of the Lie group? What can be said if the random variables Xj are not only independent
but also identically distributed?

If real valued random variables are considered then the answer to the above ques-
tions is fairly well understood. Let us consider the most important special case when
the partial sums of the independent random variables Xj , j = 1, 2, . . . , divided by the
square root of the number of summands satisfy the central limit theorem. If the new ran-
dom variables X̄j satisfy the relation lim

j→∞
E(X̄j −Xj)

2 = 0 then the normalized partial

sums of the random variables X̄j may not converge in distribution but the normalized

partial sums of their appropriate scaling ¯̄Xj = X̄j −EX̄j satisfy the same central limit
theorem as the normalized partial sums of the original random variables Xj . This is
the reason why we asked in the case of general Lie groups not only about the possible
limit distribution of the normalization of the products of the random variables X̄j but
also about the limit distribution of the normalized products of their appropriate shift
¯̄Xj = X̄jxj .

We are interested in the question how the above statement can be generalized to
the case of general Lie group valued random variables. We can prove only some similar
results in this direction if the Lie group is special, it is a stratified Lie group, and the
homomorphisms are also special, they are the natural dilations of the group. A similar
question can be asked also in the case of other limit theorems when the limit distribution
may be a non normal law. But we cannot handle this problem in the general case. The
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main cause of the difficulty in this problem is that the notion of expected value and
variance of a Lie group valued random variable cannot be defined in the case of general
Lie groups.

Let us consider a triangular array of random variables X
(n)
j , 1 ≤ j ≤ kn, kn → ∞

if n → ∞, taking values in a Lie group such that the elements of the random variables
in the same row are not only independent, but also identically distributed, and the

products Un =
kn
∏

j=1

X
(n)
j have a non-degenerated limit distribution. We are interested

in the question when we can state that this convergence of the products in distribution

implies that the random variables X
(n)
j satisfy the uniform smallness condition, i.e. when

the random variables X
(n)
1 converge stochastically to the unit element of the group. It

is known that if the Lie group is the real line then this property holds. The question
arises for which Lie groups this result can be generalized. It is natural to expect such a
result for such Lie groups which have no compact subgroup beside the trivial subgroup
consisting of the unit element of the group. But the classical proof of this result on the
real line exploits the special properties of the trigonometrical functions, hence the proof
of such a result demands new ideas.

A natural generalization of the problem investigated in this paper is the study the

condition under which the products

(

An

kn
∏

j=1

X
(n)
j , Bn

kn
∏

j=1

Y
(n)
j

)

have a limit distribu-

tion, where X
(n)
j , 1 ≤ j ≤ kn, is a triangular array of random variables in a non-compact

Lie group N, Y
(n)
j , 1 ≤ j ≤ kn, is a triangular array of random variables taking values

in a compact group K, the random variables X
(n)
j , 1 ≤ j ≤ kn, are independent for

a fixed n, the same relation holds for the random variables Y
(n)
j , and finally An ∈ N

and Bn ∈ K are appropriate norming constants in the groups N and K respectively.
Formally this question can be reduced to the original question studied in this paper,
since we can get rid of the norming constants An and Bn by replacing the random

variables X
(n)
n by X̄

(n)
n = AnX

(n)
n , X

(n)
k by X̄

(n)
k = AnX

(n)
k A−1

n for 1 ≤ k ≤ n − 1,

Y
(n)
n by Ȳ

(n)
n = BnY

(n)
n and Y

(n)
k by Ȳ

(n)
k = BnY

(n)
k B−1

n for 1 ≤ k ≤ n − 1. However,
this observation in itself is not enough to handle the more general problem, since the

conditions are formulated for the original random variables X
(n)
k and Y

(k)
n and not for

their transforms X̄
(n)
k and Ȳ

(n)
k . We know very little about this problem.
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