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On the Asymptotic Behavior
of Some Self-Similar Random Fields

R. L. Dobrushin* and P. MajorT

We consider some classes of self-similar non-Gaussian generalized fields over the
v-dimensional space, which were constructed in [1] as functionals over Gaussian
fields. The definition of these fields is then only meaningful if their self-similarity
parameter « is bigger than »/2, which is the self-similarity parameter of the white
noise field. In this paper we show that if k tends to »/2, then these self-similar fields
tend, after an appropriate normalization, to the white noise field. A discrete version
of this result will also be proved.

1. Introduction

In [1] a new class of self-similar fields was constructed by means of multiple
Wiener-Itd integrals with respect to the random spectral measure of a
Gaussian self-similar field. This construction is meaningful only if an
integrability condition is satisfied. Now we are interested in the case when a
sequence of well-defined self-similar fields is given, but their formal limit is
meaningless. We show for a large class of such fields that their limit exists
and that this limit is the white noise field. In terms of the topological
structure of self-similar fields, which has been worked out by Sinai [9] at
the level of a formal asymptotic expansion, this means that in the space of
self-similar fields the self-similar fields considered above constitute a
branch starting from the Gaussian branch at the point corresponding to the
white noise field.

In order to formulate the above results more precisely we have to recall
some well-known results and definitions from the literature (see, e.g., [1],
[5), [2D. Let & = §(R”) denote the Schwartz space of the infinitely differ-
entiable rapidly decreasing functions over the »-dimensional Euclidean
space R”. A general random field over § is a set of random variables X (),
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¢ €S, such that

X(c1@1 + c9)) = ¢, X (@) + X (9,) (2)
with probability 1 for all ¢ €$ and real numbers ¢, ¢, and
X(9n) > X(9) (b)

in probability, if ¢, — ¢ in the topology of S. A generalized random field is
called a stationary Gaussian random field with zero mean if X (p) is a
Gaussian random variable with expectation EX(¢) = 0 for all QES, and
EX(p)X(¥) = EX(¢)X (') for all ¢, Y €S and ¢ € R”, where @'(x)
= @(x + 1) and Y'(x) = ¢(x + 1) (see [5]). The finite dimensional distribu-
tions of such a field are determined by its correlation function R(p,¢)
= EX(@)X(¥), 9,y €S, or by its spectral measure G given by the formula

U ¥) = [ 7()F (x)G (). (1)

Here and in the following ¢ denotes the Fourier transform of the function
@. The measure G is even, i.e., G(4) = G(— A) for all Borel sets 4 C R”. If
G(A)= [, g(x)dx for all bounded Borel sets A, where g is a measurable
function, then g is called the spectral density function of the spectral
measure G. The stationary Gaussian field with spectral density gx)=1is
called the white noise field. The random spectral measure of a stationary
Gaussian field can be defined (see, e.g., [1] or [5] for the definition). If the
spectral measure is nonatomic, ie., G({x})=0 for all x € R”, then the
n-fold Wiener-It6 integral'

()= o [ fxis %) Za(dx)) - . Zo(dxy)

can be defined. This integral is defined for the class of functions f € HZ. A
complex-valued function f= f(x,, ..., x,) of n variables (the variables X;
are points of R”) belongs to the class HZ if the following conditions are
satisfied:

a) fis a symmetrical function; i.e., it is invariant under all permuta-
tions of its variables.

b) f(xl,...,x,,)=f(—x1,...,—xn).
©) Jroo JrelfCxps o, x)PG(dx)) . .. G(dx,) < oo.

If the spectral measure G is absolutely continuous with respect to the
spectral measure G|y(x)|* = (dG/dG)(x)y(— x) = y(x), then

12 21(F), (12)

wheref(xl, e X)) = flxy, ..o, x,)7(x)) . .. ¥(x,). Here & denotes equal-
ity in distribution.

'In the physics literature similar objects are called Wick polynomials.
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An important class of generalized random fields is the class of self-
similar fields. A generalized field is called a self-similar field with self-
similarity parameter k (see [2]) if the distributions of the random variables
X (¢) and X (¢,) agree for all p €S and A > 0, where g,(x) = AN x).
It is known (see [1]) that a Gaussian stationary field is self-similar with
self-similarity parameter k > 0 if and only if its spectral measure G is such
that G({0}) =0, and there exists a finite measure p defined on the Borel
o-algebra %"~ ' of the unit sphere S~ ! in the »-dimensional Euclidean
space such that G(B) = G(— B) for all B € %", and

G(B,)=r"u(B) (1.3)
for B, = {x € R{0 < |x| < r(x/|x|) € B}, where r >0, and B € %"~ . In

particular, the white noise field whose correlation function is given by the
formula

Sg.) = [ ()0 (x)dx= [ p((x)dx

is a Gaussian self-similar field with self-similarity parameter k = »/2.

In the case when the spectral measure G of the Gaussian field with
self-similarity parameter k has a spectral density g, condition (1.3) is
equivalent to the relation

g(x)=|x|—“a(|x7|), x #0, (1.4)

where a = » — 2k and a(v), v € S~ ! is an even integrable function with
respect to the Lebesgue measure over S*~ ! If, moreover, 0 < a < », and
the function a has » — 1 — [«] derivatives ([ ] here and in the following
denotes the integral part) then the correlation function of the self-similar
field can be written in the form

Wpw) = [ [ oewls- z|;j( = )dsdt (1.5)

with an appropriate even real function b,(v), v € §"~ !, and the function b,
can be expressed by means of an integral transformation of the function a
(see Remark 1, Section 2).

Much less is known about non-Gaussian self-similar fields. In [1]
(Theorem 6.2), the following class of self-similar fields is constructed. For
p=12,..., the field

P 1 .
X@)=3 L o0+ x)h(xi w2 () - Zo(d)

(1.6)
is self-similar with self-similarity parameter k, if the spectral measure
G satisfies condition (1.3) and the function A,(x;,...,x,) is a sym-

metric even function A,(—x,,..., — X,) =h,(x,,...,x,) that satisfies
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the condition

h(Axy, oo, Ax,) = AT R (X, L, )
for all A >0 and
o1 3 2
21 mfRM|h,,(x1, o x)Ple(x, + -+ x,)PG(dxy) - .. G(dx,) < oo
forallp €5. .

We shall consider the self-similar fields H, , given by the formula

1 (-~
Hyo(9)= 77 [B(xi+ - +x)Zg, (dx) - Zg, dx,

where k > 2 is an integer, 0 < e < », ¢ € §, the spectral measure G, , has
a spectral density
—a(k,e X
gk,s,a(x) = |X| ¢ )a( x| )’

|x|
a(k,e) = v(l — %)+ % ,

and a(v), v € §*~, is an even function having continuous derivatives up to
order Jv/k[—1, where Ju[ is the smallest integer which is not smaller than
u. We assume that a is not identically zero. We shall write H, _ instead of
H, ., and g ., G, instead of g, _ ., G, ., where it causes no ambiguity. The
field H, . exists if for all p €S the variance

D(H, (9)) =kay|¢(x1 ¥ wox 4 Yo (00g) 5s v Gl dry - o .l

(1.8)

The integral (1.8) converges for 0 < € < », and diverges for € > » or € < 0.
This can be proved by applying the well-known power counting theorem of
statistical physics (see, e.g., [1]). We shall, however, prove some more
general facts in this paper (see Remark 2, Section 2) that imply the
convergence of the integral (1.8). Formula (1.2), the formula “for change of
variables,” shows that a large class of fields given by a formula of the form
(1.6) with h, =0, n # k, has the same distribution as H, .

We are interested in the case €—>0. In this case a(k,e)—>a,=
v(1 — 1/k), and (see Remark 2, Section 2) the variance satisfies the relation

(1.7)

D (Hy(9))~€"'B [ lo(x)Pdx, (1.9)
where
2a7)""
B, = %Lu_l(bao(o))kdv, (1.10)

and b, is the function whose substitution into formula (1.5) defines the
self-similar Gaussian field with spectral density g; ,. Here we shall investi-
gate the limiting behavior of the normalized fields (e/B,)'/’H, () as
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€—>0. We say that the generalized fields X, tend in distribution to a
generalized field X as e >0 if X_(¢) tends to X(gp) in distribution for all
pES as e—>0.

Our main result is the following:

Theorem 1. For all k = 2,3, ... the generalized fields
F(9) =€ He(9), 9 ES, (L11)

tend in distribution to the white noise field as € — 0.

The self-similar fields H, ., defined below are the natural discrete field
counterparts of the fields H, .. Set

J— 1 & 5
Heealn) = 735 f(pn(xl + o+ x)Z (dX)) ... Zg (dx), nEZ

(1.12)

where Z” denotes the r-dimensional integer lattice, i.e., the set of points
with integer coordinates from R”, G, is as defined in (1.7), and g, is the
indicator function of the rectangle

Xy [, 0D + 1),

where n = (n", ..., n). These random fields are again self-similar (see
[1], [9]). The discrete analogue of the »-dimensional white noise field is the
set of independent standard normal random variables X,, n € Z”. The next
result is the discrete counterpart of Theorem 1.

Theorem 1. Forall k = 2,3, ... the finite-dimensional joint distributions of
the random fields €'/°B,~'/*H, .(n) tend to the joint distributions of a set of
independent standard normal random variables indexed by Z".

Theorem 1’ can be interpreted in the language of the theory of formal
power series expansions worked out in Sinai’s paper [9]. Informally, we can
say that for all k = 2,3, ... and functions g, the random fields constitute a
continuous branch in the space of self-similar fields with discrete parame-
ters, which is parametrized by the self-similarity parameter »/2 — €/2 and
starts at € = 0 from the Gaussian branch at the discrete white noise field.

It may be interesting to investigate a more general class of self-similar
fields defined by (1.6). We shall consider the class of self-similar fields of
the form

A

A P
He,al ..... A5 Gy [ = kEZCk k, e (113)

‘»

B(@)= 75 [#(a+ - + 5[ Brea(®) - - grea (0]
X W(dx))...W(dx), (1.14)

where W denotes the random spectral measure of the white noise field, the
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function 8kea is as defined by formula (1.7), @, Kk =1, . . ., p, are nonneg-
ative integrable even functions over the sphere S* ' and ¢y, ..., ¢, are
certain constants. With continuous derivatives up to order |»/k[—1, the
“formula for change of variables” (1.2) shows that the kth term in (1.13)
has the same distribution as the field H, , defined before.

We say that the generalized fields X (", . .., X(?) defined on the same
probability space are independent if the random variables XV (g,),
o ,X”’)(qu) are independent for all ¢, ..., ¢, €5. A sequence of p-
tuples (XD, ..., XP) of generalized fields tends to a p-tuple of general-
ized fields (X, ..., X‘?) in distribution as e >0, if the random vectors

(X (1) - X2 ()
tend to the random vector (XV(g)),..., X" (p,)) as e>0 for all
q),,...,(pp€5.

Theorem 2. Let the functions a, . . ., a, be such that for all j,k=1,...,p

the functions d(v) = [aj(u)ak(v)]'/ ? have continuous derivatives up to order
1(v/2)(1/k + 1/))[— 1. Then the p-tuples of generalized random fields

FR (@)= (B,) % PH, (9), k=1,...,p (1.15)

tend to p independent white noise fields. Hence, in particular, the random

fields

P 1/2
gc(q)) = ( 2 ClgBk) El/zHe,al ..... a,,,c,....,c;,,(q)) (116)

tend to the white noise field as € — 0.

Theorem 1’ has a similar generalization.

We remark that it was not important in the above results that g, ., is the
spectral density of a self-similar field. If g, , is replaced by a spectral
density g#, , which for small € is near the function g, ., in a natural sense,
then Theorems | and 2 remain valid, with a possibly different normaliza-
tion.

We shall present two essentially different proofs of the above results.
The first is based on a direct estimation of the moments of the random
variables under investigation. It depends on the diagram formula for the
moments of products of Wiener-Ité integrals. The crucial point of this
proof is to show that the contribution of most diagrams is negligible. This
method is quite frequently encountered in the physics literature, but in
probability theory it is not so well known. It may also be useful in other
problems; hence it may be interesting for probabilists. The second method
is the method of “cutting off” introduced by Bernstein, which relates our
problem to the central limit theorem for independent random variables.
This method is well known in the theory of limit theorems for weakly
dependent random variables, but has not been used in statistical physics.
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This “cutting off” is carried out in the space of the spectral measure, and
not in the time space as is typically done in probability theory. The authors
think it useful to present both methods by proving Theorems 1 and 2 in
both ways.

Section 2 contains some lemmas necessary for both proofs. In Section 3,
Theorems 1, 1, and 2 are proved by the method of moments. In Section 4,
Theorems 3 and 4 are proved by the method of “cutting off.” Theorem 1’
could also be proved by this method, but it would demand some more
complicated estimates; hence we have omitted it.

2. Some preparatory lemmas

We shall use the Fourier method for estimating some integrals which
appear in the formulas expressing the moments of the random variables we
are interested in.

Let us consider the function

fa(X)=IX|‘“a(ﬁ), x € R" — (0}, (2.1)

where a(v) is an integrable real function on the unit sphere S* ' in R”, and
let 0 < a < ». The function f, can also be interpreted as a generalized
function in ', i.e., as a continuous linear functional over & = §(R"), by
defining

f(@) = [ #(f()dx, 9 ES(R").

Lemma 1. Let the real even function a(v) have continuous derivatives up to
order I(1=0,1,...,v—=1).Ifv — I — 1 < a < v, then the Fourier transform
of the generalized function f, (@) is given by the formula

fu(®) =ffa(u)<p(u)du, ¢ ES, (22)
where f;(u) is given by the relation

fuw) =, ). W R = (0}, (23)
with an appropriate real even function b,(v), v € S”~ which is continuous in
both variables v and « on the set S*~'x(v — 1 — I,»).
Let
4 |x[*
) = fuxexp) = Z5 | A€ (0,00) (24)
The Fourier transform faA(x) of fA(x) has the following properties: The
relation

Jim {2 (u) = fo(u) (2.5)
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holds for arbitrary u € R — {0}, and there is a constant C, such that
| )] = CJul. (2.6)
The main result of the lemma is a consequence of some well-known
results in the theory of homogeneous generalized functions (see [4]), and is
due to Géarding [3]. For the sake of completeness, and since [3] is hard to

read, we present another proof using some simple facts and ideas from [4].
This proof also provides explicit formulas for b, .

Proof. First we restrict ourselves to the case v — 1 < a < ».
Set

Fur (%) = fu(x)e™ M, 7> 0.

By calculating in polar coordinates we see that %)

JarW) = [ fur(x)e ™ dx
=fsﬂdsa(s)qu,y—nﬂ,exp{-Tr+ i(u,5))

=iep(iZ (= 1= )e-af a@)[(ws)+ )" d

(In the last line we applied a result of [4], Chapter 2, Section 2.3.) Now
taking the limit 7 — 0 and exploiting the continuity of the Fourier transfor-
mation in &', we get that

fw)= 1iAr)%f:”(u) = iexp{i%(v ~1- a)}r(u — a)lul*~’
X SMa(s) ds(( |—Z|— ,s) + iO)a_

(see [4], Chapter 1, Section 3.6).
Exploiting the evenness of the function a(v), we find that relation (2.3)
holds with

b,(v)y= —-T(» — a) sin( % (r—a— 1))Lyildsa(s)|(v,s)|“"’, ve S L
Q2.7

Fix v € §”~'. To prove relation (2.3) for all 0 < a < », we first show that
the function

G(a) =fa(s)|(v,s)|"_”ds, yr—1<Rea<v

has an analytic continuation to the region » > Rea > » — [ — 1 with poles
only at the points » — I,y —3,...,»—=2[(/—1)/2]+ 1, and that these

2Here we consider integrals with respect to the nonnormalized Lebesgue measure over
7=,
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poles have order 1. Put

g(1) = a(s)ds,

{se8" !, (0.9)=1)

where ds denotes the Lebesgue measure on S*~' N {(v,s) = ¢}. Then g(?) is
an /-times differentiable function, and

Gy = [ g0l s

-1

= [ e 808 = - - gy 8O |a

[¢-n/2] g(zf)(O) 2

= @) a—v+2j+1°

-+

vy—1<Rea<y, veE S (2.8)

Formula (2.8) implies that G(a) has an analytic continuation with the
desired properties. Let us consider b,(v) as a function of a. By comparing
formula (2.7) with the definition of G(a), and by exploiting the analyticity
property of G(«), we see that b, (v) can be extended to an analytic function
in the whole region » > Rea > » — / — 1, since sin((7/2)(» — a — 1)) van-
ishes at the poles of G(«a). The function f;(u) defined by formulas (2.3) and
(2.7) is an analytic function of a in the same region as b,. Relations (2.8)
and (2.7) imply that for all € >0 the function b, (v) is bounded and
continuous in both variables on the set

[V —I-1+ e,v]xS”_l.
Hence for all ¢ €S the function

Ju(@) = [ $O0(x)dx

is analytic for » > a >» — [ — 1. The same statement holds for f,(¢).
Relations (2.2) and (2.3) show that

fa((p) == fa(&)
We already know this for » — 1 < a < ». Since both sides of this identity
are analytic functions the same relation holds forv — 1 — I/ < a < ».

To obtain formulas (2.5) and (2.6), it is enough to remark that, as is well
known—see, e.g., [7], Theorem IX.4—the Fourier transform of a product of
a generalized function in 5'(R") with a test function in §(R"”) can be given
by a convolution formula. In our case

74 (u) =fﬁ,(t)(2w)"”/2AVexp{— ——A2|"2_ i }dt.

This relation implies (2.5) immediately. By making the substitution ¢ =
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A~ 'w in the last integral, one can see that

v—al| £ —» v—a a—v W_Auz
= 0] = B @)= [ expl - L2k

with B = max,c .1 b,(v). The right side in the last formula is a continuous
function of Au for Au € R” — {0}. It tends to zero as Au— 0, and its upper
limit is bounded as Au — oo. These relations imply (2.6).

Remark 1. Relation (1.1) means that
U ¥) = G(o*¥),
where G is the Fourier transform of G, considering it as an element from

S'(R"), @+ 4/ is the convolution of ¢, and /(¢) = ¢(— ¢). Hence formula
(1.5) follows immediately from Lemma 1.

Lemma 2. Let a function ¢ €S be given. For all a such that v > a > a,
= ((k — 1)/ k)v and for all k > 2, consider the integral

K(p, ) =ka”|q3(x1 +o AP fu(x) - fu(r)dxy L dx, (29)

where f, is as defined in (2.1) and the function a has the same properties as in
Lemma 1. Then the integral K(¢, ) is convergent, and

Jlim (a = ag)K (g, 0) = k(zlw)” fSM[b%(o)]kdvaJ(p(u)qu. (2.10)

If the function a is nonnegative and is not identically zero, then the inequality
f [bo(v)]“do> 0 (2.11)
gr—1 0
holds.

Proof. Let y/(u) be the inverse Fourier transform of |§(¢)|*. Then

|G(1)) = (zi)pfexp[i(u,t)]\p(u)du.

By using this relation together with the definition (2.4), we get that
L,‘J'ﬁ(xl + oo k)P S - fA () dx - dxg

B RkaRV(zw)_VexP{i(xl + T + Xk,u)}

Xop(u) (%)) .. fA(x)dx, . .. dx du
- (277)—VLV¢(u)[ﬁXA(u)]kdu.

Taking the limit 4 — co we get, using relation (2.5), that

K(p,a) = (ZW)—”Lpr(u)[f;(u)]kdu. (2.12)
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This limiting procedure is legitimate because of (2.6), the convergence of
the integral

[l du (213)

and the dominated convergence theorem. From the convergence of the
integral (2.13) the convergence of the integrals (2.12) and (2.9) follows.
Exploiting formula (2.3) we find that for any y —> 0 and a — «,

AN doe= [T oy Ra— =1 oW dr do
f{lx\<y)4/( )(fa( )) o LLFI\P( ) (ba( )) drd

~¢(0)Lpil(ba(v))kdvj;yrk(“"’)”_1dr. (2.14)

The analogous integral in the domain {|x| > v} is uniformly bounded in «
as a—> a, and since ¥(0) = [ |F(7)[* dt, these relations imply (2.10). The
simplest way to prove inequality (2.11) is to estimate (2.9) directly. It
follows from relation (2.10) that it is enough to show that

liminf (a — ag) ™ 'K(p,a) >0 (2.15)
a—>ag

with an appropriately chosen ¢ €5. We may assume that ¢(x)>1 for
|x| < 1. Because of the continuity of the function a, a(x)> n >0 with some
n>0 on an open subset of S”~'. Because of spherical symmetry, we may
assume that this set is

A={x=(x(1),...,x(”))ER”,|x|=1,|x(l)|<e,l=2,...,k}.
Let us consider the sets
Dn={x=(x1,...,xk)ERk",—n—%<x§l)<—n;
L Ml i k-1
2k<)€, <%J 2, , ;

n—(x§‘>+---+x,§‘jl)<x,£‘)<(n+%>—(x§”+---+x,£91);
D] <« € x| j= . .
|xj |<4k2|xj Lj=1,...,k=1,1=2,...»;
€
—5—(x§1)+---+x,§121)<x,§’)

<§—(x§’)+--- +x,£[_)1),l=2,...,v}

n=12,....

The sets D, are pairwise disjoint, since D,C {—n—1 < x{" < —n}. The
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Lebesgue measure of the set D, satisfies the inequality A(D,) > Cn"*~D~!
with a C >0 which is independent of n. To verify this inequality it
is enough to remark that if (x;,...,x,_,) € R**~" is such that the
intersection of D, with the hyperplane consisting of the points (x,, ...,
Xi_1>»), ¥y € R” is non-empty, then this intersection has Lebesgue measure
at least 1e”~', and we have to calculate the Lebesgue measure of the set of

such points (x,, ..., x,_,). Assuming that e < »~!, it is not difficult to
check, for all x = (x,, ..., x,) € D, the relations
[x, 4+ -+ x| <1, x| <2n, j=1,...,k
and x;/|x;| € A4,j=1,..., k. Hence
x X
G(x;+ -+ x)Px 7YX "“a(—l)...a(—f—)>c’n“k°‘
Iq’( 1 k)l‘ 1| | kl |x1| ‘xkl

(2.16)
with a constant C’ > 0 independent of n, and

o0
K(p,a) > 2 f |¢n(x1 R xk)|2
n=1vD,
_ - X Xy
X|xy| % . x| %l — | ...a| — )dx, ...dx
N R S I £ R

> G 3 p— e~ (2.17)

n=1

Relation (2.15) follows from these estimates.

Remark 2. Comparing relations (1.8) and (2.9), we see that the variance

D(Hyea(9)) = 27 K(9:(K;)). (218)

Hence it follows from Lemma 2 that the integral (1.8) is convergent and the
asymptotic formulas (1.9) and (1.10) for the variance are valid.

Lemma 3. Let there be given points x, . . ., x;, k > 2, in R” and a function
@ €E5. For all numbers a, ..., o, satisfying the relations o; > 8 >0, i
=1,...,k, Ej;laj < B, and B — 8 < v there exists some constant C(g,

B — 08) depending only on ¢, the difference 8 — 8, and the dimension v, such
that the relation

U;Jxl = T s | = ul*"‘k(p(u)du‘
=Sk2C(p, B—8) X Ix—x|° (2.19)
Jl=1.., k
is true.

Proof. Let us remark that
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for arbitrary u € R”. Let the index iy(u) be chosen in such a way that

|Xiyy — 4| = ,_max |x;— ul.

.....

Then

=

|, — u| ™% < lxio(u) - “|—(s H |6, — u| =
1 i=ig(u)

I

i

5 -8 - 2 Q;
<2 (max|xi — xj|) min |x;— u| #ow
i#] iy

< 28( S |x, - xj|—6)(é1 Ix, — u|'(35>).

iy

Multiplying both sides of this inequality by ¢(u) and integrating with
respect to u, we get the estimate (2.19) with

Clp, B—8)= mgxfmlx— u|~ B¢ (u)| du.

3. Proof of the theorems by the method of moments

To prove Theorem 1 it is enough to show that the moments of the random
variable ¥, (p) tend to the moments of the normal random variable with
mean zero and variance [ |p(x)[>dx. We shall apply the so-called diagram
formula (see, e.g., [1], Proposition 4.1) to express the moments of Wiener-
It6 integrals. Unfortunately there is no uniform terminology for these
notions in the mathematical literature; hence we formulate it in detail. We
follow the terminology of [1].

Let some positive integers n, . . . , n,,, m > 2, be given. We shall use the
term diagram for an undirected graph of N = n, + - - - + n,, vertices such
that its vertices are indexed by the pairs of integers (j,/), j=1,..., n;
I=1,...,m, such that exactly one branch enters each vertex and such
that branches can connect only pairs of vertices (j;,/,), (j,,/,) for which
[, # 1,. The set of all vertices with second index / will be called the /th row
of the diagram, and the number n, the length of this row. The set of all
diagrams of order (n,, ..., n) will be denoted by I'(n, ..., n,). In the
case n;= ... =n, =k we shall also write I'(n, ..., n,)=T,(m). We
shall consider only the case when N is even because I'(n,, . . ., n,) is empty
for odd N.

Let there be given a set of functions h, € H}', ..., h, € H (see
Section 1). We introduce the function A of N variables x;; € R” corre-
sponding to the vertices of the diagram by the formula

hA(xj,,; I=1,....,mj=1,.. .,n,)=[H1h,(xj,,;j= L...,m). (3.1

Fixing the diagram y €I'(n,,...,n,) we label the branches of this
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diagram with the numbers 1,..., N/2 in an arbitrary way; the vertices
connected by the pth branch (and also the variables corresponding to them)
will be indexed by p and p + N /2. Put

hy=fy...fuhA(xl,...,xN/z,—xl,..., = Xns)G(dxy) ... G(dxy ).

(3.1
It is not difficult to see by exploiting the definition of the class H and the
evenness of the spectral measure G that the number h,, does not depend on
the enumeration of the branches and vertices.
The following result holds true: All integrals in (3.1’) are absolutely
convergent and

. , PR
E(IE(hy) . .. 1§ (h,,)) = {"1- tr Pt 2 yern. .. n iy i N is even,
0 if N is odd.
(32)
For an even number m we call a diagram I'(n,, . . ., n,) paired if its rows

can be put into pairs in such a way that branches connect only vertices of
those rows which are paired. The set of all paired diagrams of I'(n,,
...,n,) will be denoted by T°(n,, ..., n,), and that of the nonpaired
diagrams by T(n,, ..., n,). The notation I'%(m), T9(m) will be intro-
duced analogously.

As is well known, the mth moment of a standard normal random
variable equals (m — 1)(m — 3) . . . 1 for an even number m and zero for an
odd m. Hence to prove Theorem 1 it is enough to show that

li m/2 B -—m/2 m
lime™/%(B,)~"*E(H, (9)")

= (L,W’(")’zd")wz(m —)(m—3)...1if miseven (3.3)

0 if m is odd
forallp €5.
We can apply the diagram formula (3.2) with n,=--- =n, =k,
N=mk, fi(x;,....,x)="=f(x,....,x)=¢(x; -+ +x), G

= G, . for computing the moments of E (H; (@)™). (For m = 2 the relation
(3.3) has already been proved: see (1.9) and Remark 1 in Section 2).

The relation f. € H} follows from inequality (1.8) (see Remark 2 in
Section 2). Hence

E(Hk’z((p)'") = { (k! )_'"Eyerk(m) h,(e, @) if N is even, (3.4)
0if N is odd,
where A (e, @) is as defined by formula (3.1") and

h(ypj=1...,kl=1,.. .,m)=1U1¢5(x1,,+ coHxy) (35)
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Let us define (for a fixed diagram y with a prescribed enumeration of
their branches and vertices) k(q) = /; and A(g) = [, if the gth branch of the
diagram connects vertices from the /;th and /,th row and 1</, < N/2,
N/2+ 1< 1, <N, ie, if the vertex labelled by g had an original index
(j»1,) and the vertex labelled by ¢ + N /2 had the index (j,7,) with some j
and j. Set

1 ifk(g)=1,
a(g)=1-1 ifA(g)=—1,
0 otherwise.
Then
' m [ NJ2
h, (& @) =LV c LVIIqu"S(qgl a,(q)xq)qkyé(xq)dx1 coodxg. (3.6)

Comparing relations (3.6) and (1.8) we can see that for a paired diagram
y ETR(m),

hy(e,9) = (k!)"*(D(H, (9))"*. 3.7)

The number of paired diagrams is (k!)”"(m — 1) ... 1 if m is even, and zero
if m is odd. Hence the asymptotic formula (1.9) implies that

z hY(E,(P)Em/sz_m/z

yELY(m)

m/2
B _‘ 5 e
_J(m—=1)(m=3)... I[LV|(p(x)| dx] if m is even, (3.8)
0 if m is odd.
A comparison of formulas (3.3) and (3.4) shows that to prove Theorem 1 it
is enough to verify that

lim Z hY(e,q))=0.

0 eTYm)

As the number of nonpaired diagrams does not depend on ¢, it is enough to
show that for all y € T)(m)

lime™/%h_ (e, ¢) = 0. 3.9
lim e™"h, (€, ) (3-9)
Further transformations are introduced to prove this relation.

We shall rewrite the integral (3.6) by means of the Fourier transform.
Let us observe that

N/2 N/2
‘_P( Zlm(q)xq) =fR,,exp[i(uz, > oz(q)xq)}qo(u/)du/-

q= g=1
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Therefore, introducing the function
A _ _ |x|2
8ie(X) = gk,e(X)CXP( 5:13)
(see formula (2.4)), we can write

N/2 )N/2

ff H(pf 20,(q)xq Hgk’f((xq)abcl...dx,v/2
R "I=1 g=1 g=1

=fRV oy Ly(p(ul) g qa(um)llinll exp[i(u,,%/:zo,(q)xq)}

g=1
N/2
X H g,fi(xq)dx1 oo dxyyduy .. duy,
g=1

N/2
=[RV - chp(u,) c qp(i,tm)qI;Il g,f((ux(q) = Ung) duy . . . du,.

(3.10)

Taking the limit 4 > oo in this relation, we get, by applying formulas
(1.7), (2.5) and (2.3), the identity

h (e, =ff uy) ...o(u,
Y( q)) - R"(p( 1) (P( )
N/2 Uy — U
o g ~ Mg
X T 1ty = rey| " E)/kba(—(q_——)dul e
qI;Il (9) A(q) |uK(q) - uk(q>|
(3.11)

The limiting procedure taken under the integral sign in formula (3.10) is
legitimate, as follows from formula (2.6), the dominated convergence theo-
rem, and the finiteness of the integral

i (e, ) =er o Lp|<p(ul)| ()]
N/2
X Hl|u,<(q)—uMq)|*(”—€)/1"dul 5 5 % WMy 5 (3.12)
ke

to be proved later. This finiteness will be proved for all diagrams y €
I'(n,,...,n,) such that n, < k, ..., n, < k. The set of all such diagrams
will be denoted by I'_,(m), and the subsets of paired and nonpaired
diagrams from I'_, (m) will be denoted by I’ng(m) and I—“ng(m).

First we show that for all paired diagrams y € I‘°<k(m) the integral (3.12)
1s convergent, and moreover

h(e,9)=0(e "/?  for e>0, yeT%(m). (3.13)

Indeed, for n < k we can make, with constants C,, C,, C;, depending only
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on ¢, the estimate

L,,f ,,lul_ u2|‘n(u—E)/kl(p(ul)qu(uz)ldulduz
g»&"l(p(uZ)l(»f“ulAuzlg1C1|u1 - u2|*n(l/‘€)/kdul)du2
+ du.d
ff|ul~u2|>1|q’(”1)||q’(u2)l u, du,

< cz(v—%(v-e))“+ C, < CZ-%+C3. (3.14)

For all diagrams y € T%,(m) the integral (3.12) is a product of m such
integrals, which were estimated in (3.14). Hence formula (3.14) implies
(3.13). We shall prove by induction for m > 2 that

h(e@)=0( " V/%)  forall y€&TLy(m). (3.15)

Relation (3.15) obviously holds for m = 2, since all diagrams are paired for
m = 2. Let us assume that (3.15) holds for all m’ < m. Fixing a nonpaired
diagram y € T2 , (m) we denote by r(j), j=1,..., m — 1, the number of
vertices in the jth row of this diagram connected to a vertex from the mth
row by a branch. Let R(y) denote the set of indices j, j=1,...,m—1,
such that r(j)# 0. We may assume without loss of generality that R(y)
contains at least two points, since this always can be achieved in the case of
a nonpaired diagram by renumbering the rows of the diagrams, if it is
necessary. Let us rewrite the integral (3.12) as

l;y(e,(p) =J;V . Ly|(p(ul)| el 11 |t — u}\(q)|'(vfe)/q

q:xk(q)Fm
AMg)#m
X(f|(p(um)| T %= uml_’(j)("*‘)/"ahtm)du1 codu, .
JER(Y)

(3.16)

We can estimate the inner integral of (3.16) with the help of formula (2.19)
in Lemma 3 by choosing § = » and 8 = (v — €)/k > v/2k, since

> r(j)<k and €<%.
JER(Y)
We get that the inequality
h(ep)<C 2 hn(e9) (3.17)
SIER(®)
j#l

holds true with a constant C independent of € where the diagram y(j,/) is
defined as follows: We delete from y the mth row together with the vertices
connected with the vertices of the mth row. Then a new vertex is attached
to the jth and kth rows, which are connected by a new branch. Obviously
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Y(j,1) €T _(m’) with some m’ < m — 1. Hence
hy (€ @) = O(e” "D/, (3.18)

If v(j,hHe Fik(m), m' < m—1, then (3.18) follows from (3.7), and if
v(j,!) € I‘O<k(m’), then it follows from the induction hypothesis. Since
h,(e,@) < max, ¢ g1 b4 o, (0)h, (€, ) relation (3.15) implies (3.9). Theorem
1 is proved.

The proof of Theorem 1’ is analogous to that of Theorem 1. Since to
prove weak convergence of random vectors it is enough to show that all the
linear combinations of their components converge weakly, it is enough to
show that for all positive integers M, real numbers ¢, . . ., ¢,,, and points
ny, ..., n, from the lattice Z”, the random variables

M
B3 G ()= € B [ x4 )

- ZG/\'_((dxl) L ZGk_((dxk)a (319)

where
M

AORIPIRANC)
e
tends weakly to a normal random variable with expectation zero and
variance Zcf. Let us observe that all the estimates of Section 2 and those
of this section remain valid if the functions ¢ € S are replaced by ¢*. The
reason for this is that the only property of the function ¢ exploited during
these proofs was that ¢(x) (in the proof of Lemma 2 also ¢(x)* ¢(— x),
which is the inverse Fourier transform of |@(x)|?) is bounded and integra-

ble, and the function ¢* also has these properties. One also has to remark
that

M
LV‘(p*(x)|2dx= ng cj.z.

Let us now turn to the proof of Theorem 2. It is also analogous to the
proof of Theorem 1, and we work out only those parts of the proof where
some modification is needed. When using the method of moments it is
enough to show that for all positive integers m,, . . ., m, and functions
q)l,...,(ppES,wehave,withm=ml+ st omy,

lim E"Y(Hy (9)™ ... H,(9,)")

P

= Hz(Bjml(m/ = D(m;=3) ... 1[f|q>j(x)|2dx]mj/z) if m is even,

e
0 if m is odd,

(3.20)
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since the right side of these expressions agrees with the corresponding joint
moment of the independent limiting normal random variables. To calculate
these moments we apply again the diagram formula for the random
variables ﬁk,é(q)), defined in (1.14). We denote by I'[m,, .. ., m,] the set of
all diagrams whose first m, rows contain two vertices, the following 2, rows
three vertices . . ., the last m, rows p vertices. The number of rows in such
a diagram is m = m, + - - - + m,. We say that a row containing g vertices
in Im,, ..., m] has order g. Let [[m,, ..., m,] and T[m,, ..., m,]
denote the subsets of paired and nonpaired diagrams in Iim,, ..., m,].
The moment that concerns us equals the sum of the integrals h, (e, @,,
.»@,), defined by formulas (3.1) and (3.1") with

; . 1/2
h(x,j=1,...,m)= P (Xg+ 2= xn[)[ 8 e(%1) - - .gnl’e(xnl)} p

(3:21)

where n, = s if the /th row has order s and the summation is taken over all

yEIlmy, ..., m,]. The sum of the integrals h, for paired diagrams is

estimated in the same way as in Theorem 1. The main problem again is to
prove that A —0 for all nonpaired diagrams. It can be reduced to the
statement that

hy(6 @ @) = O(e" "), (3:22)
where
_ m
h(&92 g =[ oo [ Tl
! R"j=1
N/2
% Hl lu:c(q) _ u}\(q)’—(l/2)[u(x(q)s )+ p\(g), ©)] du, ...du,,
gm=
(3.23)
with
v —¢€
u(l, €)= ;
(ho="

This reduction is based on the same construction as in the previous case,
but in order to avoid some additional smoothness conditions on a., we have
to make some modifications. We introduce the quantity h (e, Y-y @Y),
defined by formulas (3.1), (3.1'), and (3.21), except that 8k.(x) is replaced
by gi.(x) = (max, a,(s))|x| ** and ¢, by a g, €S with the property
F(x) > |§,(x)| for all x € R". (Actually we could also choose ¢ as
¢ = + [t])~2" with sufficiently large positive integers r and C, al-
though in this case @) & 5. Then A (e, ¢,, . . ., @,) < R (&), ..., @), as
can be seen by rewriting both sides of this inequality like formulas (3.10)
and (3.11); Theorem 2 can then be deduced from formula (3.23), except
that ¢, must be replaced by ¢?.
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To prove relation (3.23) we introduce a larger class of diagrams
L lm,, . .., mp], which contains all those diagrams whose rows have at
most as many vertices as are in the corresponding row in I'[m,, ..., m].
The order of a row in ' _[m,, .. ., m,] will be defined as the order of the
corresponding row in I'[m,, . . ., m,]. Let

l“og[mz, .. .,mp] andfl[mz, . ,mp]

denote the set of paired and nonpaired diagrams, respectively. The same
argument as before shows that relation (3.13) remains valid for vy
eT%m,,..., m,]. Now we show by induction on m that relation (3.15)
holds for y €T% [m,, . . ., m,]. There are two cases. In the first case the
branches of the diagram y connect only vertices from rows of the same

order. In this case

il;(e,(pz, ce, q)p) = }772(5, Q) .- }Typ(e, (pp),

where v, € f‘og «(m) is obtained by deleting all rows with an order different
from k from the diagram y. One of the diagrams vy, is nonpaired; therefore
the estimate (3.15) for such diagrams can be verified by applying relations
(3.13) and (3.15) for the case already proved. In the second case there are
rows with vertices which are connected to vertices of rows of different
order. Let us pick out one of these rows with minimal order. Let it be the
jth row. Let r(i) denote the number of branches connecting vertices from
the jth and ith rows. We rewrite the integral (3.23) in the form

h (€, .. "(pp)=f»"'fm, I[_L.|(pnl(u)|
i)

—(1/2) L €)+ n(A(g), €)]
X H |ux(q) _ u}\(q)| (1/2)lp(k(g), €) + p(A(g). €)
q :k(q)#/ Mq)#]

f%(uj)A I | — |~ /2L nre=0/nld gy
itisEj
Xduy ...du_ydu,, ... du,. (3.24)

X

Now we apply, to estimate the inner integral in (3.24), Lemma 3 with § = 0
and B = (v/2)[(1/n) + 3,. . r(i)/n]. The condition B < » — c is satisfied
with c=v/(p—1)—»/p, since 3 ,;r(i)=n;, n > n if r(i)#0, and
there is some i with r(i) # 0 and n, > n;. Hence the inner integral in (3.24)

is bounded by a constant C independent of €, and

Ey(e,%, o @) S Ch(€93s o5 @),

where v’ is the diagram obtained from y by deleting from y the jth row and
all vertices connected with vertices of the jth row, together with the con-
necting branches. As y’ has less than m rows, we obtain (3.15) by ap-
plying the induction hypothesis if y’ is a nonpaired and (3.13) if y" is a
paired diagram.
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4. The proof of the theorems using the method
of “cutting off”

We begin this section by proving Theorem 2, which is more general than
Theorem 1. As the convergence of random vectors in distribution follows
from the convergence of all linear combinations of their components, it
suffices to show that the random variables

P A
§(e) = 51/2;23{ Y2 H, (i)

tend in distribution, as e —> 0, to a normal random variable with expectation
zero and variance

g> = é:z fq)k(x)z dx

for arbitrary ¢, . .., @, ES.

It follows from relation (1.9) and the orthogonality of Wiener-It6 inte-
grals of different multiplicity that the variance of the random variables £(¢)
tends to 6% as € > 0.

Let us introduce the measures i, . @ €5 on the Borel o-algebra R** of
R", by means of the formula

Breo(d) = [1B(r1+ -+ + )P Gro(d) - - Gio(d).

We shall construct a sequence of real numbers u, = ay(€), a, = a,(e), . . . ;

2

0=ay,<a, < ..., which has some nice properties. By means of the
sequence we define the sets
D,=Dye), DfCR*  j=12,..., k=2...,p

in the following way.

Dj={xER",aj_l<|x|<aj}, j=12,...

Djk={x=(x1,...,xk)ER”k;x,EDj,l=1,...,k}.
Set
Ik k| i
D* = R™J D}.
j=1
We claim that the sequence agy(e), a,(¢€), . . . can be constructed in such a
way that
. K\ _ _
!13(1) € Sljp Meeo(Df)=0, k=2,...,p 4.1)
and

lim €ty co(D*)=0. (4.2)
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First we show that the existence of sequences a;(¢) satisfying (4.1) and (4.2)
implies Theorem 2. Indeed, let us define the random variables

k
£(e) =€/ 223,;‘/2(k!)“f¢(x1 e )T (X, - %)
=

k 1/2
X ( Hl gkvé(xj)) W (dx)) ... W(dx)
j=
and

P
1’](6) = €1/2k22Bk_1/2(k!)_1f(5(x1 P I xk)Il_)"'(xh e, xk)

k 1/2
X Hl gkye(xj)} W(dx,) ... W(dx),
j=

where /, denotes the indicator set of 4.

§(e) = 21 §(e) + m(e) (4.3)
=

because of definition (1.14).

By the definition of Wiener-It6 integrals (see, e.g., [1]) and the indepen-
dence of the random spectral measure W on the disjoint sets D, the random
variables Sj(e), j=12,... are independent.’ Their expectations are E ‘Sj(e)
=0,j=1,2,... . Condition (4.1) means that suij(gj(e)z)—>0 as e—>0. It
follows from Nelson’s hypercontractive estimate (see, e.g., [8]) that there
exists some constant C depending only on p, such that for all random
variables that can be represented as sums of Wiener—Itd integrals with
multiplicity not exceeding p, E¢* < (E¢?)’C,. Hence for all € >0 and
j=12,...,

E(£(e)") < GE(§(e)%)"
Hence the central limit theorem can be applied for the sum of the variables
§;(€) (see, e.g., [6], Section 49). Finally, relation (4.2) shows that En(e)’—>0
as € > 0. Therefore £(¢€) is asymptotically normal.
Now we turn to the construction of the sequences a;(e) satisfying (4.1)
and (4.2). To carry out these constructions we need to show the following
inequalities: For all

0<e<Z, x=(x;,....,x)ER™ i=1,...,kk>2 A>0
2 1 k

(4.4)
€ = . « e -1
Il(A)—,uk,e’q)(x.|x1+ + x| > A)< Clde .
31t may be interesting to remark that there seems to be no natural way to formulate this
argument in terms of functional analytic concepts of Wick polynomials. Hence in such
situations it seems to be inevitable to apply Wiener—Ito integrals, which are their probabilistic
counterparts.
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Furthermore for all 4 >0, 0 < B, < B,,
IS(A, By, By) = peo(x tx, + -+ + x| < A4, B, < |x| < By)
CA’e”'[(B,—A) "= (By+A4) °]if34 < By,
<€A {max[0,e7'(24) = (By+ A) )|+ 47} (45)
if 34 > B,.
Finally forall 4 > 1, M > 5,
LAM) = peo(x 2 x + -+ x| <A, |x)| > 4, x| > M|x,|)
< CA'™M "R (4.6)

Here and in the following the same letter C may denote different constants

which do not depend on €, 4, B,, B,, and M, but may depend on k, ¢

and ».

To prove these inequalities we make the following remarks. Put
F¥(A)= x| 7% o x| T %Xy L dxy. (4.7)
{Ixi+ - +x]<4)

We can see, by making the substitution x; = 4x/, that F¥(4) is a homoge-

neous function of the parameter 4 with order k(» — «). If the function F*

is finite for all 4 > 0 (or what is equivalent, for one 4 > 0), then because of

the homogeneity property of FX there exists a constant C¥ > 0 such that

for all measurable nonnegative functions y(u), u € [0, ),

J;M|x1|"’ el T F e ) . dxg

= CH ot (4.8)

Let us apply Lemma 2 with a(v)=1 and ¢(x) > 1 for |x| < 1. Then
FX(1) < k(g,a), hence Lemma 2 implies that (4.8) holds true for » > a
> ((k—1)/k)v, and

=
Cak<Ck(a—k_1v) 5 V>a>k—;1v, (4.9)
where C, < 0.

Let K, < oo be such that |¢(x)|*< K |x|"*x €R”, and a =

max, g1 a(v). Then it follows from (4.8) that

I§(A) < K«p‘_’kf e, |70k |-tk
{Ixi+ -+ +x>4)
X l‘xl + te + xk|72’,dxl ooe e dxk
< Kwakcﬂk’e)quk(”*a(kﬁ))*21’*1du< CkA Vefl’ (410)

which implies (4.4).
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72 ~ 2 7 v
Now let K, < oo be such that [¢(x)]* < K, x € R".
Then

I3(4.B,,B,) < 5k1?¢f|x2|““(k") g i |00 |~ HUEE

% k) gy N dx, ... dx, 4.11
[f@(xﬁ”.Jer)li 1| 4Xx2 Xk ( )

where
@x)={x, ER", B; <|x| < By, |x; + x| < A4}.

Let us first consider the case B, > 34. Let us observe that the set @(x) is
empty if |x|< B, — A4 or |x|>24. Moreover @(x)C c{x, € R", |x,|
> |x|/2} if |x| >2A, which is always satisfied if |x| > B, — 4. Hence
relations (4.8) and (4.9) imply that

Iz‘(A,Bl,Bz) <f |x2|*a(k,s) o |xk|—a(k,e)

{(Bil—A<|x3+ -+ x| <By+A4)

X CA”|xy+ -+ - + x| “*9dx, .. .dx,

. By+ A (- _ _
< CC:(k,L)A Vf 2+ lul(k D(r—a(ke) —a(ke) =1 g,
B, —A

< CemAY[(By—A) "= (By+4) 7] (4.12)

Now we turn to the case B; < 34. Since @(x) C {x, € R”,|x,| < 34} for
|%] = 24,

|x2|4a(k'€) cee |xk|-a(k’€)

j;ix2+ s <24)

X {f B s dxl]dx2 o dxy,
Qxa+ - +x0)

< CAr~ROFkI 104y = CAR kD) = g7,

This integral can be estimated in the region {|x,+ -+ + x| > 24} in
the same way as in (4.12), only B, — A must be replaced by 24. These
relations imply (4.5).

For k > 2 we have

I;(A,M) < El?qu . |x3|—ﬂ(k’€) o |xkl~a(k,c)
R = v

X f |x,] 7259 |x,| =4k gx dix, | dxs . . . dx,,
B(x3+ + xi)

(4.13)

where

B(x) = {(*1, %) € R¥,|x)| > 4, |x5] > M|x)], |, + x, + x| < 4}
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Put
B, (x)={x € R",(x1,%;) €E B(x)}.

Since [x, + x,| > [x,] = x| > (M — 1)|x,| for [x,| > M|x,|, the set B (x)
is empty for |x| <(M —2)4. If |x|>(M —2)4, and x, € B, (x) with
some x,, then M|x|| <|x,| < A4+ |x,| + |x] <|x| + 1+ (1/(M —2))|x]|.
This means that B, (x) is empty if |x,| > (1/(M — 2))|x|. Finally, since
M >5 and [x,| > [x; + x,| — |x,|, we have min, cq | |%s| > |x| -4 —
[x,| > |x]/3if |x| > (M — 2)A4 and |x| > (M — 2)|x,|. The volume of the set
B, (x) is less then CA". These facts together imply that

f |x1|7a(k"€> llefu(k'g) dx, dx,
B(x)

|X| —a(ke)
<(—) f |xl|“"(k“)[f dxz}dx,
3 (il <m-2)~1]x]) B, (x2)

v — a(k,e)

< C|x|7n(k,e)A V(M7l|x|) = CA M *(V*C)/k|x|ll42a(k()'

Substituting this estimate into (4.13) and exploiting relations (4.8) and (4.9),
we get that

I(4,M) < CAM =/ [ BRI PARLCS
{|x34 - - + x| >(M-2)4)}
X X34 - 4 x| 2% dxy L dx,

& CckZZAVM—~(V-c)/kf°° uk(v—a(k,e))—v—ldu
atke (M—2)4

< CA'M = 9/K(M —2)4) ‘¢

This inequality proves relation (4.6) for k > 2. The case k = 2 is trivial,
since in this case the set {x = (x,,X,) € R, |x, + x,| < A4, |x,| > A4, |x,| >
M|x,|} is empty.
Let us now define the sequences a, =0, a, = a;(€) = exp{ je " '/?} j =1,
2, ... . By applying estimates (4.4) and (4.5) with 4 = ¢ (/%) we get for
sufficiently small € > 0, the estimate
e o( D)) < €[ IT(A) + I5(A, a0, ) ]

SC[A+ A (= A) "= (a,,+4)7)]

< clam A ((exp{(= e ) = (e + e )

< C(€l/4+e‘”“exp{—(j—%)el/z}[l _exp{_zel/z}])_)()

— € — €

uniformly for all j =1,2, ... . The case j = 0 is simpler. One has only to
remark that 4 <> 1, and 24) “— (4 + a,) < 1—af= 0O(e'/?. The
estimate (4.1) is proved.




290 DOBRUSHIN AND MAJOR

Let us observe that for allj=0,1,2,...
D* {a <|x|| < g}

k

CIL_JZ[{GJ <l <ailx) < a}u {g<Ix||<ay|x|> @1} ]
k

CIU [{Ix,l <M x|} U g > x| > M~ a}

(S}

U {|x] > Mx|} U {a_/+l < x| < Maj+1}]‘

Hence, exploiting the invariance with respect to the permutations of the
indices j =1, ..., k-we get

p‘k,(,(p(b-k) < 2(k - l)ﬂk,e,q;{’le > Mlxll}

(e o)
F il o (x| < a) + knuk,e,q)( U1 {M‘laj <|x| < Maj})
7=

S 2(k = DI5(A, M) + 2(k — 1)I5(4,0,4) + I3(4,0,a,)
+H[2k = 1)+ k+ 1]I5(4) + k zllg(A,M*‘aj,Maj).
f=

Put A = ¢~ /*, and M = exp{e~'/5). It is not difficult to sce by exploiting
relations (4.4), (4.5), and (4.6) that all terms on the right side of (4.14) have
order o(e™ ') as e >0. We prove this estimate only for the last summand.

o0
El I5(4,M ~'a;, Ma)) <,§1 c4 ”e*l[(M*‘aj)“(Maj)“]

o0
— CAu€~I(MeM7€) 2 ajfe
Jj=1
0
< C€*1/6€¥1€5/6 2 exp(—jel/z)
j=1
< Ce 'e¥Pe"1/2 = o(e‘l).

We have proved the estimate (4.2), and therefore the proof of Theorem 2 is
complete.
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