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Abstract. This work is the continuation of my paper in Moscow Math.
Journal Vol. 20, No. 4 in 2020. In that paper the existence of the
spectral measure of a vector-valued stationary Gaussian random field is
proved and the vector-valued random spectral measure corresponding
to this spectral measure is constructed. The most important properties
of this random spectral measure are formulated, and they enable us to
define multiple Wiener–Itô integrals with respect to it. Then an impor-
tant identity about the products of multiple Wiener–Itô integrals, called
the diagram formula is proved. In this paper an important consequence
of this result, the multivariate version of Itô’s formula is presented. It
shows a relation between multiple Wiener–Itô integrals with respect to
vector-valued random spectral measures and Wick polynomials. Wick
polynomials are the multivariate versions of Hermite polynomials. With
the help of Itô’s formula the shift transforms of a random variable given
in the form of a multiple Wiener–Itô integral can be written in a use-
ful form. This representation of the shift transforms makes possible
to rewrite certain non-linear functionals of a vector-valued stationary
Gaussian random field in such a form which suggests a limiting proce-
dure that leads to new limit theorems. Finally, this paper contains a
result about the problem when this limiting procedure may be carried
out, i.e., when the limit theorems suggested by our representation of the
investigated non-linear functionals are valid.

1. Introduction. The main results of the paper.

This work deals with the properties of vector-valued stationary Gauss-
ian random fields. In particular, one of its subjects is the problem how to
prove non-central limit theorems for certain non-linear functionals of such
random fields. It is the continuation of paper [10]. These two papers deal
with a generalized version of the problems studied in [8]. In Lecture Note [8]
scalar-valued stationary random fields were investigated. It contains a good
representation of non-linear functionals of a stationary Gaussian random
field with the help of multiple Wiener–Itô integrals with respect to the ran-
dom spectral measure of this Gaussian random field. In this work and in
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paper [10] the multivariate version of these integrals is investigated. They
present the natural multivariate version of the results in [8] and provide a
useful representation of non-linear functionals of a vector-valued stationary
Gaussian random field with the help of (vector-valued) multiple Wiener–
Itô integrals with respect to the random spectral measure of the underlying
Gaussian field. In a subsequent paper [11] I will prove the natural multi-
variate version of the non-central limit theorems formulated in [8] with their
help.

In Theorem 6 of his paper [1] Arcones formulated the multivariate version
of the non-central limit theorems proved in [8]. But his proof contains some
gaps. He assumed that the natural multivariate versions of some results
in [8] hold true. But he did not formulate precisely the results he applied,
and even the definitions of the notions needed in the formulation of his
results are missing. We want to present correct formulation and a complete
proof of Arcones’ result. But to do this we need the results of [10] and of
this work.

Next, I briefly describe the content of the present work. To get a better
understanding about it its results will be compared with those of [8] where
the one-dimensional case is considered, and also some results in [10] will be
discussed.

In [8] the behavior of a scalar-valued stationary Gaussian random field
X(p), p ∈ Z

ν , with expectation EX(p) = 0 is investigated on the ν-
dimensional integer lattice of the Euclidean space R

ν . For this goal it is
useful to introduce the Hilbert space H consisting of those random vari-
ables with finite second moment which are measurable with respect to the
σ-algebra generated by the random variables X(p), p ∈ Z

ν , of our random
field. Here the usual scalar product 〈ξ, η〉 = Eξη is applied. The shift trans-
forms in the underlying stationary random field induce a group of unitary
operators in the Hilbert space H in a natural way, and we shall call the
elements of this group shift transforms. We want to get a good description
of this Hilbert space together with the shift transforms on it.

In [8] it is proved that this Hilbert space H has a natural representation as
the direct sum H = H0+H1+H2+ · · · of orthogonal subspaces Hn, 0 ≤ n <

∞, which are invariant subspaces of the shift transforms in the underlying
stationary Gaussian random field, and the subspace Hn consists of those
random that can be written in the form of an n-fold Wiener–Itô integral
with respect to the random spectral measure of the underlying Gaussian
random field. (Actually, [8] gives a more detailed description of the structure
of the space H with the help of the so-called Fock space representation. The
definition of the Fock space is given on page 28 of [8], and it is denoted by
ExpHG there.) The proof of the above representation of the Hilbert spaceH
is based on the so-called Itô formula which shows a relation between Hermite
polynomials and multiple Wiener–Itô integrals. Another important result
in [8], whose proof is also based on Itô’s formula is a useful formula that
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enables us to calculate the shift transforms of a random variable presented
in the form of a multiple Wiener–Itô integral.

The above results help us to understand the most important properties of
one-dimensional stationary Gaussian random fields. Vector-valued station-
ary Gaussian random fields show a similar behaviour, and their description
is the main object of paper [10] and of this work.

In paper [10] the spectral measure and the random spectral measure of
a vector-valued stationary Gaussian random field are defined. A class of
generalized stationary Gaussian fields are also defined together with their
spectral and random spectral measures. These measures play an important
role in the limit theorems we want to study. The natural modifications of
the results about scalar valued stationary Gaussian random fields mentioned
in [8] remain valid in the vector-valued case both for classical and generalized
stationary Gaussian random fields. In particular, the multiple Wiener–Itô
integrals with respect to random spectral measures are defined in [10] also in
the vector-valued case, and some important results are proved about them.
One of these properties is the so-called diagram formula which enables us to
rewrite the product of multiple Wiener–Itô integrals in the form of a sum of
appropriately defined multiple Wiener–Itô integrals.

Now I turn to the discussion of the results of the present paper.
In Section 2 some properties of vector-valued stationary Gaussian random

fields are proved with the help of the results in [10]. First, the formulation
and proof of the multivariate version of Itô’s formula are discussed. In this
result, Wick polynomials, the multivariate generalizations of Hermite poly-
nomials take the role of Hermite polynomials. At the start of Section 2 the
definition and most important properties of Wick polynomials are recalled
from [8]. Then the multivariate version of Itô’s formula is proved by means
of the adaptation of the method in the proof of its one-dimensional version.
I discuss this proof in Appendix A. Here I explain the picture behind the
definition of Wick polynomials, the idea of the proof of the Itô formula in
the multivariate case, and why Wick polynomials appear in its formulation.
Appendix A also contains a discussion about the proof of the remaining
results of Section 2 with the help of Itô’s formula.

In [8] a Hilbert space H was introduced with the help of a scalar valued
stationary Gaussian random field. In Section 2 of this paper its version
is defined when vector-valued stationary Gaussian random fields X(p) =
(X1(p), . . . , Xd(p)), p ∈ Z

ν , with expectation EX(p) = 0, p ∈ Z
ν , are

considered. This Hilbert space H is defined similarly to the case of scalar-
valued random fields. It is the Hilbert space consisting of those random
variables with finite second moment which are measurable with respect to
the σ-algebra generated by the random vectors X(p), p ∈ Z

ν , of our random
field. Similarly to the one-dimensional case, there is a decomposition of
this Hilbert space H to the direct product H = H0 + H1 + H2 + · · · of
orthogonal subspaces, Hn, 0 ≤ n < ∞, which are invariant subspaces of
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the shift transformations in the underlying stationary random field. But in
the case of vector-valued stationary Gaussian random fields we can prove
only a weaker result about the behavior of the subspaces Hn than in the
scalar-valued case. It is proved in Proposition 2.3 that the elements of an
everywhere dense linear subspace of Hn can be presented in the form of
a finite sum of multiple Wiener–Itô integrals of order n. More explicitly,
the Wick polynomials of order n can be written as a finite sum of multiple
Wiener–Itô integrals of order n, and they constitute an everywhere dense
linear subspace of Hn. On the other hand, we cannot represent all elements
of Hn in such a form. But even this weaker result is sufficient for our
purposes.

The last result of Section 2, Proposition 2.4, contains a useful formula
about the calculation of the shift transforms of a random variable given in
the form of a multiple Wiener–Itô integral. This formula is similar to the
analogous result in the case of scalar-valued stationary random fields.

In Section 3 we deal with the question how the previously proved results
can be applied in the investigation of limit theorems for non-linear function-
als of vector-valued stationary Gaussian random fields.

In several interesting cases (and the problem investigated in paper [11]
belongs to them) the limit problem we are interested in can be reformulated
with the help of Itô’s formula and an appropriate rescaling of certain multiple
Wiener–Itô integrals we are working with to the study of a sequence of
random variables presented in a very special form, and in Section 3 we are
investigating limit theorems for such sequences of random variables.

We consider a sequence of random variables ZN , N = 1, 2, . . . , pre-
sented as a finite sum of k-fold Wiener–Itô integrals with respect to a d-
dimensional random spectral measure. We are interested in the behavior
of such a sequence of random variables ZN , N = 1, 2, . . . , whose elements
are defined by formula (3.9) with the help of random spectral measures
ZG(N) = (ZG(N),1, . . . , ZG(N),d) which correspond to some spectral mea-

sures G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, defined on some torus [−AN , AN )ν ,

where AN → ∞ as N → ∞, and we integrate some kernel functions

h
(N)
j1,...,jn

(x1, . . . , xd) with respect to them. Let us remark that the random

variables ZN introduced in (3.9) are sums of finitely many multiple Wiener–
Itô integrals. Each element of this sum is indexed by some vector (j1, . . . , jk),
and the set of these indices does not depend on the parameter N . We expect
that if both the spectral measures G(N) and the kernel functions hN(j1,...,jk)
appearing in the definition of the random variables ZN behave nicely, then
these random variables have a limit as N → ∞. Somewhat more explicitly,
we expect that if the spectral measures G(N) converge to a spectral measure
G(0) of a d-dimensional (generalized) stationary Gaussian random field, and
the kernel functions hN(j1,...,jk)

(x1, . . . , xd) converge to some nice functions

h0(j1,...,jk)
(x1, . . . , xd) as N → ∞, then the random variables ZN converge in
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distribution to the random variable Z0 defined in (3.12) with the help of mul-
tiple Wiener–Itô integrals of the kernel functions h0(j1,...,jk)

(x1, . . . , xd) with

respect to the random spectral measure ZG(0) corresponding to the spectral

measure G(0). Naturally, in the formulation of such a result we have to
clarify what kind of limit should hold for the spectral measures G(N) and
for the kernel functions hN(j1,...,jk)(x1, . . . , xd).

The main result of Section 3 is Proposition 3.1. First the random vari-
ables ZN , N = 0, 1, 2, . . . , mentioned in the above discussion are defined
in formulas (3.9) and (3.12), and then Proposition 3.1 yields a sufficient
condition for the weak convergence of the random variables ZN to Z0 as
N → ∞. This condition consists of two parts. The conditions of the first
part demand that the spectral measuresG(N) should converge to the spectral
measure G(0) and the kernel functions hN(j1,...,jk)(x1, . . . , xd) should converge

to h0(j1,...,jk)
(x1, . . . , xd) as N → ∞ in an appropriate way.

But to satisfy the desired weak convergence still another condition must
be formulated. This is condition (b) of Proposition 3.1 which is a com-
pactness type condition. Heuristically saying it demands the existence of a
compact set in R

kν such that all multiple Wiener–Itô integrals appearing in
the definition of the random variables ZN , N = 1, 2, . . . , are almost com-
pletely concentrated in this compact set. In Appendix B the role of this
condition is explained with the help of some examples.

The condition on the limiting behavior of the functions
hN(j1,...,jk)

(x1, . . . , xd) is formulated in condition (a) of Proposition 3.1. The

condition on the convergence of the spectral measures G(N) is also formu-
lated there, and this deserves special attention.

In the conditions of Proposition 3.1 we demand the existence of a (gen-

eralized) spectral measure G(0) = (G
(0)
j,j′) such that the coordinates G

(N)
j,j′ of

the spectral measures G(N) = (G
(N)
j,j′ ), N = 0, 1, 2, . . . , 1 ≤ j, j′ ≤ d, con-

verge to the corresponding coordinates of G(0) in an appropriate way. We
also demand that G(0) should be the spectral measure of such a stationary
random field which belongs to the class of generalized stationary Gaussian
random fields constructed in Section 4 of [10]. This implies in particular

that the coordinates G
(0)
j,j′ of the spectral measure G(0) are complex mea-

sures on R
ν with locally finite total variation. (This notion was defined in

Section 4 of [10]). In Proposition 3.1 we demand that the coordinates G
(N)
j,j′

of the matrices G(N) should vaguely converge to the coordinate G
(0)
j,j′ of G

(0)

as N → ∞ for all indices 1 ≤ j, j′ ≤ d in the space of complex measures on
R
ν with locally finite total variation. The vague convergence in the space

complex measures with locally finite total variation is defined in Section 3
of this paper.

In Lemma 8.3 of [8], where the scalar-valued version of Proposition 3.1 is
formulated the notion of vague convergence also appears. But in that case
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vague convergence is defined in the space of locally finite (non-negative)
measures. The definitions of vague convergence in these two cases are very
similar. But there is some difference between them that may be useful to
explain.

In the definition of [8] the vague limit is a locally finite measure, which
is a (possibly infinite) measure on the σ-algebra of the measurable sets in
the space R

ν . In the definition of this paper the limit is a complex measure
with locally finite total variation. It may happen that this limit cannot be
extended to a (complex valued) measure on the σ-algebra of the measurable
sets in the space R

ν .
Section 3 contains still another result. This is Lemma 3.2 which may be

useful in the applications of Proposition 3.1. It states that if all coordinates

G
(N)
j,j′ of a sequence of spectral measures G(N) = (G

(N)
j,j′ ), 1 ≤ j, j′ ≤ d, N =

1, 2, . . . , converge vaguely to some complex measures G
(0)
j,j′ with finite total

variation, then also G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is a positive semidefinite

matrix valued even measure on R
ν .

This result is useful, because it helps us to decide when the limit matrix

G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is the spectral measure of a (generalized)

stationary Gaussian random field. (See the remark after the formulation of
Lemma 3.2).

In this paper together with [10] and also in the work [8] a version of the
multiple Wiener–Itô integrals introduced by Itô in his paper [7] is applied.
(Itô called these integrals multiple Wiener integrals in his paper.) Here a
version of this random integral introduced by Dobrushin in [4] is applied
and its generalization for vector-valued stationary Gaussian random fields.
At the end of this introduction I give a short explanation why it was useful
to work with this version of the random integrals introduced by Itô in [7],
and I also briefly mention another example in which a multidimensional
time generalization of Itô’s integral was introduced in order to study some
problems.

Itô considered in his paper [7] a measure space (T,B,m), and a set of
(jointly) Gaussian random variables β(E) indexed by such sets E ∈ B for
which m(E) < ∞, and the joint distribution of these random variables is
determined by the relations Eβ(E) = 0, and Eβ(E)β(E′) = m(E ∩E′). He
also imposed the following continuity property for the measure m. For any
set E ∈ B with m(E) < ∞ and ε > 0 there exists a finite decomposition
E =

∑n
i=1Ei such that m(Ei) < ε for all i = 1, . . . , n. Itô defined the

p-fold Wiener integrals of square integrable functions (with respect to the
product measure mp) with respect to the random measure β(E,ω) for all
p = 0, 1, . . . In the definition of the random measure β(E,ω) the parameter
set consists of those measurable sets E for which m(E) < ∞. He gave a
useful representation of all square integrable random variables measurable
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with respect to the σ-algebra generated by the random variables β(E,ω) as
a sum of multiple Wiener integrals with different multiplicity.

To give such a representation Itô proved some useful results about the
properties of multiple Wiener integrals. In particular, he proved an identity
that was later called Itô’s formula. He showed with its help an important
relation between multiple Wiener integrals and Hermite polynomials.

In paper [4] Dobrushin introduced for the sake of the investigation of
non-linear functionals of stationary Gaussian random fields such a version
of the random integrals in Itô’s paper [7], where he worked in the Euclidean
space (Rν ,B), and he replaced the random measure β(E,ω) by the random
spectral measure of a stationary Gaussian random field. Dobrushin’s results
are described in more detail in [8]. This paper together with [10] yield
a generalization of these results when vector-valued stationary Gaussian
random fields are considered. They show that results similar to those of
the paper [7] hold if we work with random spectral measures instead of the
random measure β(E,ω) applied in [7].

I try to explain the advantage of this approach. By working with random
spectral measures instead of the random measures β(·) applied in [7] some
useful Fourier analysis type results can be proved. Proposition 2.4 of this
paper is an example for it. Here the shift transform Tu of a random variable
given in the form of a multiple Wiener–Itô integral is expressed in a useful
form which shows some similarity to the Fourier transform. Formulas (2.6)
and (2.8) in Theorem 2.4 show how to express the shift transform of a
random variable given in form of a multiple Wiener–Itô integral. This result
together with Itô’s formula which enables us very often to rewrite the random
variables we are working with as sums of multiple Wiener–Itô integrals may
help in the study of limit theorems. The discussion at the beginning of
Section 3 is an example for it.

The application of multiple stochastic integrals turned out to be useful
also in the investigation of some other problems. I briefly mention the con-
tribution of Wong–Zakai–Yor to the theory of multiple stochastic integrals
as an example for it. They discussed the following problem. The study of
Itô integrals is closely related to the study of martingales. For example, any
continuous-time square integrable martingale with continuous trajectories
adapted to a Wiener process has a canonical representation as an Itô inte-
gral with respect to the underlying Wiener process. The above-mentioned
mathematicians were looking for the multidimensional time version of this
result. Naturally, to formulate it first the multidimensional time Wiener
processes and martingales had to be defined. But these objects are defined
in the literature. I would remark that the definition of the multidimensional
time martingales demands special attention.

A multidimensional version of the result about the canonical representa-
tion of square-integrable martingales can be proved. But in that representa-
tion, not only the Itô integrals (integrals with multidimensional time which
also have to be defined) but also multiple Itô integrals appear. The precise
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formulation of this result would demand a long explanation, hence I omit
it. The interested reader can find it in paper [6] and in its list of references.
This work also discusses with the help of this result a statistical problem,
where the main point of the solution is the calculation of a Radon–Nikodym
derivative.

2. Wick polynomials and their relation to multiple

Wiener–Itô integrals

In the case of scalar-valued stationary Gaussian random fields (i.e., if
d = 1) there is a so-called Itô formula (see Theorem 4.3 in [8]) which shows
an important relation between multiple Wiener–Itô integrals and Hermite
polynomials. Here I present its multivariate version, where Wick polyno-
mials take the role of the Hermite polynomials. Wick polynomials are the
natural multi-dimensional generalizations of Hermite polynomials. I shall
also discuss an important consequence of the multivariate version of the Itô
formula. This formula enables us to present a large class of random vari-
ables in the form of a sum of multiple Wiener–Itô integrals. Besides, there
is a useful formula for the calculation of the shift transforms of such ran-
dom variables which are given in the form of a sum of multiple Wiener–Itô
integrals. As we shall see, this formula is very useful in the study of limit
theorems for non-linear functionals of a vector-valued stationary Gaussian
field. I shall explain in the first part of the Appendix the relation between
the proof of Itô’s formula in the scalar and in the vector-valued case. In
that explanation I also write about the definition of the Wick polynomials
and their role in the proof.

First I recall the definition of Wick polynomials and some results about
their most important properties. This explanation is based on the results in
Section 2 of [8].

Let Xt, t ∈ T , be a set of jointly Gaussian random variables indexed by
a parameter set T , and such that EXt = 0 for all t ∈ T . We define the
following real Hilbert spaces H1 and H. A square integrable (real valued)
random variable is in H if and only if it is measurable with respect to the
σ-algebra B = B(Xt, t ∈ T ), and the scalar product in H is defined as
〈ξ, η〉 = Eξη, ξ, η ∈ H. The Hilbert space H1 ⊂ H is the subspace of
H generated by the finite linear combinations

∑
cjXtj , tj ∈ T , with real

coefficients. We consider only such sets of Gaussian random variables Xt

for which H1 is separable. Otherwise Xt, t ∈ T , can be arbitrary, but the
most interesting case for us is when T = Z

ν × {1, . . . , d}, and the original
Gaussian random variables we are working with are the coordinates Xj(p),
j ∈ {1, . . . , d}, p ∈ Z

ν , of a vector-valued stationary Gaussian random field
X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν .
To define theWick polynomials and to get their most important properties

we need the following result formulated in Theorem 2.1 of [8].
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Theorem 2A. Let Y1, Y2, . . . be an orthonormal basis in the Hilbert space
H1 defined above with the help of a set of Gaussian random variables Xt,
t ∈ T . Then the set of all possible finite products Hj1(Yl1) · · ·Hjk(Ylk) is
a complete orthogonal system in the Hilbert space H defined above. (Here,
and in the subsequent discussion Hj(·) denotes the j-th Hermite polynomial
with leading coefficient 1.)

Let H≤n ⊂ H, n = 1, 2, . . . (with the previously introduced Hilbert space
H) denote the linear subspace of the Hilbert space H which is the closure
of the linear space consisting of the elements Pn(Xt1 , . . . , Xtm), where Pn

runs through all polynomials of degree less than or equal to n, and the
integer m and indices t1, . . . , tm ∈ T are arbitrary. Let H0 = H≤0 consist
of the constant functions, and let Hn = H≤n ⊖H≤n−1, n = 1, 2, . . . , where
⊖ denotes orthogonal completion. It is clear that the Hilbert space H1

given in this definition agrees with the previously defined Hilbert space H1.
If ξ1, . . . , ξm ∈ H1, and Pn(x1, . . . , xm) is a polynomial of degree n, then
Pn(ξ1, . . . , ξm) ∈ H≤n. Theorem 2A implies that

H = H0 +H1 +H2 + · · · , (2.1)

where + denotes direct sum. Now I present the definition of Wick polyno-
mials.

Definition of Wick polynomials. Let P (x1, . . . , xm) be a homogeneous
polynomial of degree n, and let a set of (jointly Gaussian) random variables
ξ1, . . . , ξm ∈ H1 be given. The Wick polynomial :P (ξ1, . . . , ξm) : determined
by them is the orthogonal projection of the random variable P (ξ1, . . . , ξm) to
the above-defined subspace Hn of the Hilbert space H. The Wick polynomial
of a homogeneous polynomial of degree n will be called a Wick polynomial of
order n.

In the sequel we shall use the notation : P (ξ1, . . . , ξm) : for the Wick
polynomial corresponding to a homogeneous polynomial P (x1, . . . , xm) with
arguments ξ1, . . . , ξm, ξj ∈ H1 for all 1 ≤ j ≤ m. It may happen that a
random variable ζ can be expressed in two different forms as a homogeneous
polynomial of some random variables from H1, i.e., ζ = P1(ξ1, . . . , ξm), and
ζ = P2(ξ1, . . . , ξm), and P1 6= P2. But in such a case

:P1(ξ1, . . . , ξm) : =:P2(ξ1, . . . , ξm) : ,

i.e., the value of a Wick polynomial : P (ξ1, . . . , ξm) : does not depend on
the representation of the random variable P (ξ1, . . . , ξm).

It is clear that Wick polynomials of different degrees are orthogonal.
Given some ξ1, . . . , ξm ∈ H1 define the subspaces H≤n(ξ1, . . . , ξm) ⊂ H≤n,
n = 1, 2, . . . , as the set of all polynomials of the random variables ξ1, . . . , ξm
with degree less than or equal to n. Let H≤0(ξ1, . . . , ξm) = H0(ξ1, . . . , ξm) =
H0, and Hn(ξ1, . . . , ξm) = H≤n(ξ1, . . . , ξm) ⊖ H≤n−1(ξ1, . . . , ξm). With the
help of this notation I formulate the following result given in Proposition 2.2
of [8].
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Theorem 2B. Let P (x1, . . . , xm) be a homogeneous polynomial of degree n.
Then :P (ξ1, . . . , ξm) : equals the orthogonal projection of P (ξ1, . . . , ξm) to
Hn(ξ1, . . . , ξm).

This result has the following important consequences formulated in Corol-
laries 2.3 and 2.4 in [8].

Corollary 2C. Let ξ1, . . . , ξm be an orthonormal system in H1, and let

P (x1, . . . , xm) =
∑

cj1,...,jmx
j1 · · ·xjmm

be a homogeneous polynomial, i.e., let j1 + · · · + jm = n with some fixed
number n for all sets (j1, . . . , jm) appearing in this summation. Then

:P (ξ1, . . . , ξm) : =
∑

cj1,...,jmHj1(ξ1) · · ·Hjm(ξm).

In particular,

: ξn : = Hn(ξ) if ξ ∈ H1, and Eξ2 = 1.

Corollary 2D. Let ξ1, ξ2, . . . be an orthonormal basis in H1. Then the
random variables Hj1(ξ1) · · ·Hjk(ξk), k = 1, 2, . . . , j1 + · · ·+ jk = n, form a
complete orthogonal basis in Hn.

In the proof of the Itô formula for scalar-valued stationary random fields
we needed, besides the diagram formula, the following important recur-
sive formula for Hermite polynomials which is contained for example in
Lemma 5.2 of [8].

Hn(x) = xHn−1(x)− (n− 1)Hn−2(x) for n = 1, 2, . . . , (2.2)

with the notation H−1(x) ≡ 0 in the case n = 1.
In the next result I formulate a multivariate version of this formula for

Wick polynomials.

Proposition 2.1. Let U1, . . . , Un+1, n ≥ 1, be elements in H1. Then

:U1 · · ·Un : Un+1 (2.3)

=:U1 · · ·UnUn+1 : +

n∑

s=1

:U1 · · ·Us−1Us+1 · · ·Un : EUsUn+1.

In the special case n = 1 this formula is meant as U1U2 =:U1U2 : +EU1U2.

Proof of Proposition 2.1. Formula (2.3) clearly holds if all random variables
Uj , 1 ≤ j ≤ n + 1 agree, and EU2

1 = 1, since in this case the left-hand
side of (2.3) equals U1Hn(U1), while its right-hand side equals Hn+1(U1) +
nHn−1(U1) by Corollary 2C, and these two expressions are equal by formula
(2.2). A somewhat more complicated, but similar argument shows that this
formula also holds if the sequence U1, . . . , Un consists of some independent
random variables V1 . . . , Vk with standard normal distribution, the random
variable Vp is contained in the sequence U1,. . . , Un with multiplicity lp,
1 ≤ p ≤ k, and finally Un+1 is either one of these random variables Vp,
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1 ≤ p ≤ k, or it is a random variable Vk+1 with standard normal distribution
which is independent of all of them.

Indeed, if Un+1 = Vp with some 1 ≤ p ≤ k, then the left-hand side of (2.3)
equals

Hl1(V1) · · ·Hlk(Vk)Vp,

while the right-hand side equals

Hl1(V1) · · ·Hlp−1(Vp−1)Hlp+1(Vp)Hlp+1(Vp+1) · · ·Hlk(Vk)

+lpHl1(V1) · · ·Hlp−1(Vp−1)Hlp−1(Vp)Hlp+1(Vp+1) · · ·Hlk(Vk)

by Corollary 2C. A comparison of these expressions together with rela-
tion (2.2) imply that identity (2.3) holds in this case. If Un+1 = Vk+1,
then the left-hand side of (2.3) equals

Hl1(V1) · · ·Hlk(Vk)Vk+1,

and the right-hand side also equals Hl1(V1) · · ·Hlk(Vk)Vk+1. Hence for-
mula (2.3) holds in this case, too.

In the general case we can choose some independent Gaussian random
variables Z1, . . . , Zm in H1 with variance 1 in such a way that our random
variables U1, . . . , Un+1 can be expressed as their linear combination, i.e.,
Up =

∑m
l=1 cp,lZl with some coefficients cl,m. We have already seen that

formula (2.3) is valid in the special case when all random variables Up equal
one of the random variables Zj , i.e., if Up = Zj(p) with some 1 ≤ j(p) ≤ m

for all 1 ≤ p ≤ n + 1. Since the expressions of both sides of (2.3) are
multi-linear functionals on the n-fold direct product H1 × · · · × H1, this
implies that formula (2.3) also holds for the random variables U1, . . . , Un+1.
Proposition 2.1 is proved. �

We can prove the multivariate version of Itô’s formula with the help of
Proposition 2.1 and the diagram formula for multiple Wiener–Itô integrals
for vector-valued stationary Gaussian random fields formulated in Section 6
of [10].

Before its formulation, I make a remark about the notation in this section.
In the formulation of Itô’s formula the notation K1,j appears. This no-

tion was introduced in Lemma 3.2 of [10]. It is a real Hilbert space, and it
contains those functions u on the torus [−π, π)ν for which we defined the
random integral

∫
u(x)ZG,j( dx) with respect to the j-th coordinate ZG,j of

the random spectral measure ZG = (ZG,1, . . . , ZG,d), and the value of this
integral is a real valued random variable. In Section 4 of [10] this Hilbert
space is defined also in the case of generalized random spectral measure.
Later, at the beginning of Section 5 of [10] its multidimensional general-
ization, the real Hilbert space Kn,j1,...,jn = Kn,j1,...,jn(Gj1,j1 . . . . , Gjn,jn) is
defined for all n = 1, 2, . . . . It consists of those functions f(x1, . . . , xn) for
which the n-fold (real valued) Wiener–Itô integral

In(f |j1, . . . , jn) =

∫

f(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn(d xn)
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is defined. The Hilbert space K1,j is a special case of these Hilbert spaces
with n = 1. Later the Hilbert spaces Kn,j1,...,jn also appear in this work. At

some points I shall also work with the class of simple functions K̂n,j1,...,jn ⊂
Kn,j1,...,jn defined also in Section 5 of [10]. The multiple Wiener–Itô integrals
were first defined for simple functions which are adapted to some regular sys-
tem (defined also in Section 5 of [10]), and the multiple Wiener–Itô integrals
were defined in the general case by means of a good approximation of the
functions f ∈ Kn,j1,...,jn by simple functions f ∈ K̂n,j1,...,jn .

Theorem 2.2. Multivariate version of Itô’s formula. Let us have some
vector-valued stationary Gaussian random field with a vector-valued random
spectral measure ZG = (ZG,1, . . . , ZG,d). Let us consider some functions
ϕp ∈ K1,jp, 1 ≤ p ≤ n, 1 ≤ jp ≤ d, and define with their help the random
variables Up =

∫
ϕp(x)ZG,jp( dx) ∈ H1, 1 ≤ p ≤ n. The identity

:U1 · · ·Un : (2.4)

=

∫

ϕ1(x1)ϕ2(x2) · · ·ϕn(xn)ZG,j1( dx1)ZG,j2( dx2) · · ·ZG,jn( dxn)

holds.

Proof of Theorem 2.2. Relation (2.4) clearly holds for n = 1. We prove by
induction that it holds for n+ 1 if it holds for k ≤ n. In the proof we apply
the Corollary of Theorem 6.1 from [10] (i.e., the corollary of the diagram
formula from that paper) with the choice

h1(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn),

h2(x) = ϕn+1(x),

and the random spectral measure ZG,j′1
is chosen as ZG,j′1

= ZG,jn+1 , where
ZG,jn+1 is the random spectral measure appearing in the definition of Un+1.
We can write with this choice the identity

∫

ϕ1(x1) · · ·ϕn(xn)ZG,j1( dx1) · · ·ZG,jn( dxn)

∫

ϕn+1(x)ZG,jn+1( dx) (2.5)

=

∫

ϕ1(x1) · · ·ϕn(xn)ϕn+1(xn+1)ZG,j1( dx1) · · ·ZG,jn+1( dxn+1)

+
n∑

p=1

EUpUn+1

∫

ϕ1(x1) · · ·ϕp−1(xp−1)ϕp+1(xp) · · ·ϕn(xn−1)

ZG,j1( dx1) · · ·ZG,jp−1( dxp−1)ZG,jp+1( dxp) · · ·ZG,jn( dxn−1),

since formula (6.19) in [10] gives this identity with our choice of h1 and h2.
To see this observe that with these functions h1 and h2 the function hγp in
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the formulation of the corollary of Theorem 6.1 in [10] equals for p 6= 0

hγp(x1, . . . , xn−1) = ϕ1(x1) · · ·ϕp−1(xp−1)ϕp+1(xp) · · ·ϕn(xn−1)
∫

ϕp(xn)ϕn+1(xn)Gjp,jn+1( dxn)

= ϕ1(x1) · · ·ϕp−1(xp−1)ϕp+1(xp) · · ·ϕn(xn−1)EUpUn+1

since Un+1 = Un+1, and by formula (3.7) in [10] which expresses the scalar
product of two one-fold random integrals

EUpUn+1 = EUpUn+1 = E

(∫

ϕp(x)ZG,jp( dx)

∫

ϕn+1(x)ZG,jn+1( dx)

)

=

∫

ϕp(xn)ϕn+1(xn)Gjp,jn+1( dxn),

and for p = 0

hγ0(x1, . . . , xn+1) = ϕ1(x1) · · ·ϕn(xn)ϕn+1(xn+1).

Corollary of Theorem 6.1 in [10] with the above form of the kernel functions
hγp , 0 ≤ p ≤ n, in it imply formula (2.5). Formula (2.5) together with our
induction hypothesis imply that

∫

ϕ1(x1) · · ·ϕn(xn)ϕn+1(xn+1)ZG,j1( dx1) · · ·ZG,jn+1( dxn+1)

=:U1 · · ·Un : Un+1 −
n∑

p=1

:U1 · · ·Up−1Up+1 · · ·Un : EUpUn+1.

In the case n = 1 this formula means that
∫

ϕ1(x1)ϕ2(x2)ZG,j1( dx1)ZG,j2( dx2) = U1U2 − EU1U2.

By comparing the last formula with (2.3) we get that the statement of
Theorem 2.2 holds also for n+ 1. Theorem 2.2 is proved. �

In Theorem 2.2 we rewrote some Wick polynomials of special form as
multiple Wiener–Itô integrals. This enables us to express a sum of such
Wick polynomials as the sum of multiple Wiener–Itô integrals. This implies
that all Wick polynomials of random variables from some H1,j , 1 ≤ j ≤ d,
can be written in the form of a sum of multiple Wiener–Itô integrals. (The
real Hilbert space H1,j , the real part of the Hilbert space Hc

1,j was defined

in Section 3 of [10] together with K1,j .) In the next simple corollary of
Theorem 2.2 I describe this result in a more explicit form.

To formulate this result let us introduce the following notation. Let us
fix some numbers n ≥ 1 (the order of the homogeneous polynomial we
are considering), m ≥ 1 and some functions ϕj,k(x) ∈ K1,j , 1 ≤ j ≤ d,
1 ≤ k ≤ m, and define the random variables

ξj,k =

∫

ϕj,k(x)ZG,j( dx), 1 ≤ j ≤ d, 1 ≤ k ≤ m.
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Then ξj,k ∈ H1,j . (We defined the real Hilbert space H1,j in the formulation
of Lemma 3.2 of [10]. This Lemma 3.2 stated that the elements of H1,j can
be given in the form of the above integral.)

In the next corollary, we consider homogeneous polynomials of these ran-
dom variables ξj,k, and express the Wick polynomials corresponding to them
in the form of a sum of multiple Wiener–Itô integrals.

Corollary of Theorem 2.2. Let us consider a homogeneous polynomial

P (xjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n)

=
∑

1≤js≤d for all 1≤s≤n
1≤ks≤m for all 1≤s≤n

aj1,k1,...jn,knxj1,k1xj2,k2 · · ·xjn,kn

of order n of the variables xjs,ks with indices 1 ≤ js ≤ d and 1 ≤ ks ≤ m for
all 1 ≤ s ≤ n and real coefficients aj1,k1,...,jn,kn.

If we replace the variables xjs,ks with the random variables

ξjs,ks =

∫

ϕjs,ks(x)ZG,js( dx)

in this polynomial (we choose a function ϕj,k ∈ K1,j in the definition of ξj,k),
then we get the following homogeneous polynomial of some jointly Gaussian
random variables.

P (ξjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n)

=
∑

1≤js≤d for all 1≤s≤n
1≤ks≤m for all 1≤s≤n

aj1,k1,...jn,knξj1,k1ξj2,k2 · · · ξjn,kn .

With the help of this expression we can define the Wick polynomial

:P (ξjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n) : .

This Wick polynomial can be expressed as a sum of multiple Wiener–Itô
integrals in the following way.

Let us consider for all sequences of indices {(js, ks) : 1 ≤ s ≤ n} with
1 ≤ js ≤ d, 1 ≤ ks ≤ d for all 1 ≤ s ≤ n the function

fj1,k1,...,jn,kn(x1, . . . , xn) = ϕj1,k1(x1) · · ·ϕjn,kn(xn) ∈ Kn,j1,...,jn

and the multiple Wiener–Itô integral

In(fj1,k1,...,jn,kn |j1, . . . , jn)

=

∫

fj1,k1,...,jn,kn(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn).

The identity

:P (ξjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n) :

=
∑

1≤js≤d for all 1≤s≤n
1≤ks≤m for all 1≤s≤n

aj1,k1,...jn,knIn(fj1,k1,...,jn,kn |j1, . . . , jn)
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holds.

Remark. Theorem 4.7 of [8] contains a version of this result for scalar-valued
stationary Gaussian random fields.

Proof of the Corollary of Theorem 2.2. By Theorem 2.2 we have

aj1,k1,...jn,kn : ξj1,k1ξj2,k2 · · · ξjn,kn : = aj1,k1,...jn,knIn(fj1,k1,...,jn,kn |j1, . . . , jn)

for all sequences of indices (js, ks), 1 ≤ s ≤ n. By summing up these
inequalities for all sequences of indices we get the proof of the corollary. �

With the help of the above corollary, we prove the following result.

Proposition 2.3. For all n ≥ 1 and functions f ∈ Kn,j1,...,jn with some
indices 1 ≤ js ≤ d, 1 ≤ s ≤ n, In(f |j1, . . . , jn) ∈ Hn for the n-fold Wiener–
Itô integral In(f |j1, . . . , jn). Besides, the set of all sums of n-fold Wiener–Itô
integrals i.e., the set of all sums of the form

∑

1≤js≤d for all 1≤s≤n

In(fj1,...,jn |j1, . . . , jn),

where fj1,...,jn ∈ Kn,j1,...,jn constitute an everywhere dense linear subspace of
Hn.

Proof of Proposition 2.3. We shall prove Proposition 2.3 by induction with
respect to n. By Lemma 3.2 of [10] Proposition 2.3 holds for n = 1. Indeed,

by this result every random variable of the form ξ =
∑d

j=1 ξj with some
ξj ∈ H1,j can be written as the sum of one-fold Wiener–Itô integrals, and
the random variables of this form constitute an everywhere dense linear
subspace of H1.

If the statements of Proposition 2.3 hold for all m < n, then we can say
for one part that In(f |j1, . . . , jn) ∈ H≤n, because this relation holds if f is

a simple function, i.e., if f ∈ K̂n,j1,...,jn with the space K̂n,j1,...,jn defined in

Section 5 of [10], and since K̂n,j1,...,jn is dense in Kn,j1,...,jn , and we defined
the multiple Wiener–Itô integral by the extension of a bounded operator
in the general case, the above property remains valid for general functions
f ∈ Kn,j1,...,jn . Moreover, we know that In(f |j1, . . . , jn) is orthogonal to
all multiple Wiener–Itô integrals of the form Im(h|j′1, . . . , j

′
m) with m < n

because of relation (5.5) in [10]. Then In(f |j1, . . . , jn) is also orthogonal to
any linear combination of such integrals. But these linear combinations con-
stitute an everywhere dense set in Hm by our inductive hypothesis. Hence
In(f |j1, . . . , jn) is orthogonal to the whole space Hm for all 0 ≤ m ≤ n− 1,
and this implies that it is contained in the Hilbert subspace Hn (and not
only in H≤n). It follows from the corollary of Theorem 2.2 that the sums of
multiple Wiener–Itô integrals considered in Proposition 2.3 are dense in Hn,
and they constitute a linear subspace. Indeed, this corollary implies that
a large class of Wick polynomials of order n can be expressed as a sum of
such integrals, and the class of these Wick polynomials of order n is dense
in Hn. Proposition 2.3 is proved. �
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Remark. In Proposition 2.3 we expressed a dense subset of Hn as a sum of
n-fold Wiener–Itô integrals, but we did not express all elements of Hn in
such a form. But even this weaker result suffices for our purposes.

In the case of scalar-valued stationary random fields, we have a stronger
result. In that case, we can express all elements of Hn as an n-fold Wiener–
Itô integral, and actually, we can say somewhat more. There is a so-called
Fock space representation of all elements h ∈ H, which represents the el-
ements h ∈ H in the form of a sum of multiple Wiener–Itô integrals of
different multiplicity. (See Theorem 4.2 of [8] together with the definition
of Fock spaces on page 28 of [8].) Moreover, this result has some useful
consequences about the properties of this representation.

We cannot prove a similar result in the vector-valued case. This difference
appears because of the following reason. If a sequence of random variables
hN ∈ Hn, N = 0, 1, 2, . . . , has the property that hN → h0 with some
h0 ∈ Hn in the norm of Hn as N → ∞ in the scalar-valued case, then these
random variables hN can be expressed as n-fold Wiener–Itô integrals of such
functions kN ∈ Kn for which kN → k0 in the norm of Kn. On the other
hand, in the case of vector-valued models we do not have a similar result.

Next, we consider a vector-valued stationary Gaussian random field

X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν ,

whose elements can be written in the form Xj(p) =
∫
ei(p,x)ZG,j( dx) by

means of the random spectral measure ZG = (ZG,1, . . . , ZG,d) of this random
field for all p ∈ Z

ν and 1 ≤ j ≤ d. Let us consider a random variable Y ∈ Hn

which can be represented as the n-fold Wiener–Itô integral of some function
h ∈ Kn,j1,...,jn , i.e.,

Y =

∫

h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn). (2.6)

In the next result the shift transforms TuY , u ∈ Z
ν , of Y given in for-

mula (2.6) will be expressed in a useful form which shows some similarity
to the Fourier transform of a function.

To do this let us first recall the definition of the shift transforms Tu,
u ∈ Z

ν , in a stationary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν .

Given some element Xj(m), m ∈ Z
ν , 1 ≤ j ≤ d, of the random field,

and u ∈ Z
ν , we define the shift transform of Xj(m) by Tu as TuXj(m) =

Xj(u + m). More generally, given any measurable function h(Xj(m),m ∈
Z
ν , 1 ≤ j ≤ d), we define the shift transform of the random variable Y =

h(Xj(m), m ∈ Z
ν , 1 ≤ j ≤ d), by the formula TuY = h(Xj(m + u), m ∈

Z
ν , 1 ≤ j ≤ d). This transformation was discussed in the scalar-valued

case in [8]. It can be seen, (similarly to the argument in that work) that the
definition of this transformation is meaningful (i.e., the value of TuY does not
depend on the choice of the function h for which Y = h(Xj(m), m ∈ Z

ν , 1 ≤
j ≤ d)), and we have defined in such a way unitary (linear) transformations
Tu, u ∈ Z

ν , on H for which TuTv = Tu+v.
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In Lemma 3.2 of [10] it was shown that each random variable Uj ∈ H1,j

can be written in the form Uj =
∫
h(x)ZG,j( dx) with some function h(x) ∈

K1,j . On the other hand, I claim that for all u ∈ Z
ν and h ∈ K1,j

TuUj =

∫

ei(u,x)h(x)ZG,j( dx) for Uj =

∫

h(x)ZG,j( dx). (2.7)

Indeed, relation (2.7) clearly holds if h(x) = ei(p,x) with some p ∈ Z
ν , since

in this case Uj = Xj(p) and TuUj = Xj(p + u). But this implies that
relation (2.7) holds for all finite trigonometrical polynomials of the form

h(x) =
∑

cke
i(pk,x), and for the closure of these functions with respect to

the L2 norm determined by the measure Gj,j , i.e., for all h ∈ K1,j .
In Proposition 2.4 a similar formula is presented about the shift trans-

forms of a random variable Y given by formula (2.6). This result is useful in
the study of limit theorems related to non-linear functionals of a stationary
Gaussian field.

Proposition 2.4 about the representation of shift transformations.

Let a vector-valued stationary Gaussian random field

X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν ,

be given with a vector-valued random spectral measure ZG = (ZG,1, . . . , ZG,d)

such that Xj(p) =
∫
ei(p,x)ZG,j( dx) for all p ∈ Z

ν and 1 ≤ j ≤ d. Let
Y ∈ Hn be the random variable defined in formula (2.6) with the help of this
vector-valued random spectral measure ZG and some function h ∈ Kn,j1,...,jn.
Then

TuY =

∫

ei(u,x1+···+xn)h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn) (2.8)

for all u ∈ Z
ν .

Proof of Proposition 2.4. Formula (2.8) holds in the special case if n = 1,
and h(x) ∈ K1,j , since in this case Y =

∫
h(x)ZG,j( dx), and

TuY =

∫

ei(u,x)h(x)ZG,j( dx)

by formula (2.7).
I claim that formula (2.8) also holds in the case when the random variable

Y is given by formula (2.6) with a kernel function of the form h(x1, . . . , xn) =
ϕ1(x1) · · ·ϕn(xn) defined with the help of some functions ϕs(x) ∈ K1,js ,
1 ≤ s ≤ n. Indeed, in this case Y =:U1 · · ·Un : with Us =

∫
ϕs(x)ZG,js( dx),

1 ≤ s ≤ n, because of Theorem 2.2. On the other hand, I claim that

Tu :U1 · · ·Un : =: (TuU1) · · · (TuUn) : .

To see this let us observe that by Theorem 2B :U1 · · ·Un : is the orthogonal
projection of the product U1 · · ·Un to the Hilbert subspace Hn(U1, . . . , Un).
Similarly, : (TuU1) · · · (TuUn) : is the orthogonal projection of the vector
(TuU1) · · · (TuUn) to the Hilbert subspace Hn(TuU1, . . . , TuUn). Since the
vectors (U1, . . . , Un) and (TuU1, . . . , TuUn) have the same distribution, and
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the Wick polynomial corresponding to their product can be calculated in
the same way this implies that if :U1 · · ·Un : = g(U1, . . . , Un) with some
function g, then

: (TuU1) · · · (TuUn) : = g(TuU1, . . . , TuUn)

with the same function g. (In the present case g(x1, . . . , xn) is a polyno-
mial of order n.) On the other hand, Tu :U1 · · ·Un : = Tug(U1, . . . , Un) =
g(TuU1, . . . , TuUn) in this case. The above argument implies the desired
identity.

Thus we can state that if Y is defined by formula (2.6) with a function

h(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn)

with the above properties, then

TuY = : (TuU1) · · · (TuUn) :

=

∫

ei(u,x1+···+xn)h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn)

because of Theorem 2.2 and the relation TuUs =
∫
ei(u,x)ϕs(x)ZG,js( dx) for

all indices 1 ≤ s ≤ n.
From the result in this case follows that relation (2.8) also holds if Y is

defined by (2.6) with a function h(x1, . . . , xn) of the form of a finite sum

h(x1, . . . , xn) =
∑

k

ϕ1,k(x1)ϕ2,k(x2) · · ·ϕn,k(xn)

with ϕs,k ∈ K1,js , 1 ≤ s ≤ n.
Since functions of the above form are dense in Kn,j1,...,jn , Tu is a unitary

operator, and both (linear) transformations

h(x1, . . . , xn) → ei(u,x1+···+xn)h(x1, . . . , xn)

and h → In(h|j1, . . . , jn) from the space Kn,j1,...,jn to the spaces Kn,j1,...,jn

and Hn are of bounded norms, it is not difficult to see that Proposition 2.4
holds in the general case. Proposition 2.4 is proved. �

3. On the proof of limit theorems for non-linear functionals

of vector-valued stationary Gaussian random fields

First I recall the limit theorem problem we are interested in.
Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , be a d-dimensional vector-
valued stationary Gaussian random field, and let a function H(x1, . . . , xd),
H : R

d → R
1, of d variables be given. Let us define with their help the

random variables Y (p) = H(X1(p), . . . , Xd(p)) for all p ∈ Z
ν , and introduce

for all N = 1, 2, . . . the normalized random sum

SN = A−1
N

∑

p∈BN

Y (p) (3.1)
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with an appropriate norming constant AN > 0, where

BN = {p = (p1, . . . , pν) : 0 ≤ pk < N for all 1 ≤ k ≤ ν}. (3.2)

Let us also fix the vector-valued random spectral measure (ZG,1, . . . , ZG,d)

on the torus [−π, π)ν for which Xj(p) =
∫
ei(p,x)ZG,j( dx), 1 ≤ j ≤ d,

p ∈ Z
ν . We are interested in the question what kind of limit theorems

may hold for the normalized sums SN defined in (3.1) as N → ∞ with
appropriate norming constants AN . Here we are interested in the case when
the correlation functions rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, tend to zero
slowly as |p| → ∞. This means strong dependence of the random variables
in the stationary random fields. In such cases, we can get limit theorems
with a non-Gaussian limit.

We have studied the above problem in [5] for scalar-valued stationary
random fields, i.e., in the case d = 1, and we have proved some new kinds
of limit theorems. Let me remark that at the same time M. Taqqu also
proved similar results with the help of a different method, see [13]. I do not
discuss Taqqu’s work, because here I am interested in the question of how
to generalize the method in [5] to prove limit theorems also for non-linear
functionals of vector-valued stationary Gaussian random fields.

In paper [10] and Section 2 of this work I discussed the notions and
results we have to adopt some important methods of [8] when we are working
with multivariate models. In this section, I explain how to generalize those
methods of [8] which lead to non-central limit theorems when we are working
with non-linear functionals of vector-valued stationary Gaussian random
fields. I shall give the proof of the limit theorems in paper [11] with the help
of these results.

In the first step of this discussion I rewrite the limit problem we are
interested in in a different form. Let us observe that we have Xj(p) =
TpXj(0) with the shift transform Tp for all p ∈ Z

ν and 1 ≤ j ≤ d, hence
Y (p) = TpY (0), and we can rewrite the sum in (3.1) in the form

SN = A−1
N

∑

p∈BN

TpY (0). (3.3)

As it will turn out the crucial point in the investigation of our limit theorems
is the study of limit theorems in the special case when Y (0) is a Wick
polynomial, and here we restrict our attention to this case.

Let us consider the case when Y (0) is a Wick polynomial of order k which
has the form

Y (0) = :
∑

(k1,...,kd)
k1+···+kd=k

ak1,...,kdX1(0)
k1 · · ·Xd(0)

kd : (3.4)

with some real coefficients ak1,...,kd . Then by the corollary of Theorem 2.2
and the identities Xj((0) =

∫
I1(x)ZG,j( dx), 1 ≤ j ≤ d, where I1(·) denotes

the indicator function of the torus [−π, π)ν , the random variable Y (0) can
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be written in the form

Y (0) =
∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

ak1,...,kd

∫

I1(x1) . . . I1(xk)
d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG,j( dxt)



 ,

where for j = 1 we define
k1+···+kj∏

t=k1+···+kj−1+1

ZG,j( dxt) =
k1∏

t=1
ZG,1( dxt), and if

kj = 0 for some 1 ≤ j ≤ d, then the product
k1+···+kj∏

t=k1+···+kj−1+1

ZGj
( dxt) is

omitted from this express By Proposition 2.4 we can write

TpY (0) =
∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

ak1,...,kd

∫

ei(p,x1+···+xk)
d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG.j( dxt)





(3.5)
for all indices p ∈ Z

ν .
We get by summing up formula (3.5) for all p ∈ BN with our choice of

Y (0) that

SN = A−1
N

∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

ak1,...,kd

∫ ν∏

l=1

eiN(x
(l)
1 +···+x

(l)
k

) − 1

ei(x
(l)
1 +···+x

(l)
k

) − 1

d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG,j( dxt)



 ,

where we write x = (x(1), . . . , x(ν)) for all x ∈ [−π, π)ν . (The set BN

was defined in (3.2).) I shall rewrite the above identity in a form more
appropriate for us, First I apply the change of variables yl = Nxl, 1 ≤ l ≤ n.
It yields that

SN =
∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

∫

hNk1,...,kd(y1, . . . , yk)
d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG(N),j( dyt)



 ,

(3.6)
where

hNk1,...,kd(y1, . . . , yk) = ak1,...,kd

ν∏

l=1

ei(y
(l)
1 +···+y

(l)
k

) − 1

N(ei(y
(l)
1 +···+y

(l)
k

)/N − 1)

is a function on [−Nπ,Nπ)ν , and ZG(N),j(A) = Nν/kA
−1/n
N ZG,j(

A
N ) is de-

fined for all measurable sets A ⊂ [−Nπ,Nπ)ν and j = 1, . . . , d. Here we
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use the notation ys = (y
(1)
s , . . . , y

(ν)
s ), 1 ≤ s ≤ k. Let us observe that

(ZG(N),1, . . . , ZG(N),d) is a vector-valued random spectral measure on the

torus [−Nπ,Nπ)ν , corresponding to the matrix valued spectral measure

G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus [−Nπ,Nπ)ν), defined by the

formula

G
(N)
j,j′ (A) = N2ν/kA

−2/n
N Gj,j′

(
A

N

)

, 1 ≤ j, j′ ≤ d,

for all measurable sets A ⊂ [−Nπ,Nπ)ν , where G = (Gj,j′), 1 ≤ j, j′ ≤ d,
is the matrix valued spectral measure of the original vector-valued station-
ary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν . On the other hand,

hNk1,...,kd ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

) with jp = s if k1 + · · · + ks−1 < p ≤

k1 + · · ·+ ks, 1 ≤ s ≤ d. (For s = 1 we define k1 + · · ·+ ks−1 = 0.)
In formula (3.6) we have taken summation for the series (k1, . . . , kd) ∈

K, where K = {(k1, . . . , kd) : ks ≥ 0, 1 ≤ s ≤ d, k1 + · · · + kd = k},
and in each term of the sum at its right-hand side there was a product of

the form
∏k

s=1 ZG(N),js
(dut) with a sequence (j1, . . . , jk) ∈ J , where J =

{(j1, . . . , jk) : 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ d}, and it depended on the sequence
(k1, . . . , kd) which indices j1, . . . , jk appeared in the above product

We want to rewrite expression (3.6) in a more pleasant form. For this
goal, we make the following observation. There is a natural invertible map
T : J → K, defined as T (j1, . . . , jk) = (k1(j1, . . . , jk), . . . , kd(j1, . . . , jk)) for
all (j1, . . . , jk) ∈ J , where for all indices 1 ≤ s ≤ d, ks(j1, . . . , jk) equals the
number of those elements jp in the sequence (j1, . . . , jk) for which jp = s.
Its inverse is defined by the formula

T−1(k1, . . . , kd) = (j1(k1, . . . , kd), . . . , jk(k1, . . . , kd))

for all (k1, . . . , kd) ∈ K, where js(k1, . . . , kd) = min{u : k1 + · · ·+ ku ≥ s}.
With the help of the above defined functions ks = ks(j1, . . . , jk), 1 ≤

s ≤ d, we can rewrite the identity in (3.6) in a form more appropriate for
us. In this new formula we take summation for (j1, . . . , jk) ∈ J instead of
(k1, . . . , kd) ∈ K. We get that

SN =
∑

(j1,...,jk)
1≤j1≤···≤jk≤d

∫

hNj1,...jk(y1, . . . , yk)ZG(N),j1
( dy1) . . . ZG(N),jk

( dyk)

(3.7)
with

hNj1,...,jk(y1, . . . , yk) = ak1(j1,...,jk),...,kd(j1,...,jk)

ν∏

l=1

ei(y
(l)
1 +···+y

(l)
k

) − 1

N(ei(y
(l)
1 +···+y

(l)
k

)/N − 1)
.

Let us observe that

lim
N→∞

hNj1,...,jk(y1, . . . , yk) = h0j1,...,k(y1, . . . , yk)
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with the function

h0j1,...,jk(y1, . . . , yk) = ak1(j1,...,jk),...,kd(j1,...,jk)

ν∏

l=1

ei(y
(l)
1 +···+y

(l)
k

) − 1

i(y
(l)
1 + · · ·+ y

(l)
k )

defined on R
kν , and this convergence is uniform in all bounded subsets of

R
kν .
It is natural to expect that if the matrix valued spectral measures G(N) =

(G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, converge to a matrix valued spectral measure G(0) =

(G
(0)
j,j′), 1 ≤ j, j′ ≤ d, defined on R

ν in an appropriate way, then a limiting

procedure in formula (3.7) supplies the limit theorem SN → S0 in distribu-
tion with

S0 =
∑

(j1,...,jk)
1≤j1≤···≤jk≤d

∫

h0j1,...jk(y1, . . . , yk)ZG(0),j1
( dy1) . . . ZG(0),jk

( dyk)

as N → ∞, where (ZG(0),1, . . . , ZG(0),d) is a vector-valued random spectral

measure on R
ν corresponding to the matrix valued spectral measure (G

(0)
j,j′),

1 ≤ j, j′ ≤ d. On the other hand, the convergence of the spectral measures
G(N) to the spectral measure G(0) is satisfied in many interesting models,
for instance in the models investigated in paper [11].

Next, I explain how to work out a precise method to prove limit theorems
on the basis of the above heuristic argument. In particular, we are interested
in the question of when the above sketched heuristic argument can be carried
out. In the scalar-valued case, this problem was solved in Lemma 8.3 of [8].
Here I prove the vector-valued variant of this result.

In the formulation of Lemma 8.3 of [8], we had to introduce a version of
the notion of weak convergence of finite measures to a larger class of mea-
sures, to the class of so-called locally finite measures. They are measures,
whose restrictions to any compact set are finite. Here I introduce a slight
generalization of the notion called vague convergence in [8] to the case when
we are working with complex measures of locally finite total variation. In [8]
we have worked with (positive) measures. (The definition of complex mea-
sures on R

ν with locally finite total variation was explained in Section 4 of
the paper [10].)

Definition of vague convergence of complex measures on R
ν with

locally finite total variation. Let GN , N = 1, 2, . . . , be a sequence of
complex measures on R

ν with locally finite total variation. We say that the
sequence GN vaguely converges to a complex measure G0 on R

ν with locally

finite total variation (in notation GN
v
→ G0) if

lim
N→∞

∫

f(x)GN ( dx) =

∫

f(x)G0( dx) (3.8)

for all continuous functions f on R
ν with a bounded support.
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I shall take a sequence of sums of k-fold Wiener–Itô integrals, and then I
formulate Proposition 3.1 which states that under some appropriate condi-
tions these sums of random integrals have a limit that can be expressed in
an explicit form. This result together with the representation of non-linear
functionals of vector-valued stationary Gaussian random fields by means
of multiple Wiener–Itô integrals enable us to prove limit theorems with
a non-Gaussian limit for non-linear functionals of vector-valued stationary
Gaussian random fields.

For all N = 1, 2, . . . take a sequence of matrix valued non-atomic spectral

measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus [−ANπ,ANπ)ν with parameter

AN such that AN → ∞ as N → ∞. Let us also take some functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

)

on the torus [−ANπ,ANπ)ν for all (j1, . . . , jk) with 1 ≤ js ≤ d, 1 ≤ s ≤ k,
and N = 1, 2, . . . . For all N = 1, 2, . . . fix a vector-valued random spectral
measure

(ZG(N),1, . . . , Z
(N)

G(N),d
)

on the torus [−ANπ,ANπ)ν corresponding to the matrix valued spectral

measure (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d. Let us define with the help of these quantities

the sums of n-fold Wiener–Itô integrals

ZN =
∑

(j1,...,jk)
1≤js≤d for all 1≤s≤k

∫

hNj1,...,jk(x1, . . . , xk)ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk),

(3.9)
N = 1, 2, . . . . In the next result I show that under appropriate conditions
these random variables ZN converge in distribution to a random variable Z0

expressed in the form of a sum of multiple Wiener–Itô integrals.

Proposition 3.1. Let us consider for all N = 1, 2, . . . the sums of k-fold
Wiener–Itô integrals ZN defined in formula (3.9) with the help of certain
vector-valued random spectral measures (ZG(N),1, . . . , ZG(N),d) corresponding

to some non-atomic matrix valued spectral measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d,

defined on tori [−AN , AN )ν such that AN → ∞ as N → ∞, and functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

).

Let the coordinates G
(N)
j,j′ , 1 ≤ j, j′ ≤ d, of the matrix valued spectral mea-

sures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, converge vaguely to the coordinates G

(0)
j,j′ of a

non-atomic matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, on R

ν for

all 1 ≤ j, j′ ≤ d as N → ∞, and let (ZG(0),1, . . . , ZG(0),d) be a vector-valued
random spectral measure on R

ν corresponding to the matrix valued spectral

measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d. Let us also have some functions h0j1,...,jk for
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all (j1, . . . , jk) with 1 ≤ js ≤ d, 1 ≤ s ≤ k, such that these functions and
matrix valued spectral measures satisfy the following conditions.

(a): The functions h0j1,...,jk(x1, . . . , xk) are continuous on R
kν for all

1 ≤ js ≤ d, 1 ≤ s ≤ k, and for all T > 0 and indices 1 ≤ js ≤ d,
1 ≤ s ≤ k, and the functions hNj1,...,jk(x1, . . . , xk) converge uniformly

to the function h0j1,...,jk(x1, . . . , xk) on the cube [−T, T ]kν as N → ∞.

(b): For all ε > 0 there is some T0 = T0(ε) > 0 such that
∫

Rkν\[−T,T ]kν
|hNj1,...,jk(x1, . . . , xk)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

(dxk) < ε2 (3.10)

for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N = 1, 2 . . . if T > T0.

Then inequality (3.10) holds also for N = 0,

h0j1,...,jk ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(0)
j1,j1

, . . . G
(0)
jk,jk

), (3.11)

the sum of random integrals

Z0 =
∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)ZG(0),j1
( dx1) . . . ZG(0),jk

( dxk)

(3.12)
exists, and the random variables ZN defined in (3.9) satisfy the relation

ZN
D
→ Z0 as N → ∞, where

D
→ denotes convergence in distribution.

Remark 1. A complex measure G
(N)
j,j′ with finite total variation defined on

the torus [−ANπ,ANπ)ν can be identified in a natural way with a complex
measure on R

ν which is concentrated on its subset [−ANπ,ANπ)ν . We take

this identification of G
(N)
j,j′ with a complex measure on R

ν when we give

meaning to formula (3.8) with GN = G
(N)
j,j′ and G0 = G

(0)
j,j′ in the definition

of the vague convergence of the complex measures G
(N)
j,j′ to G

(0)
j,j′ as N → ∞.

Remark 2. In Proposition 3.1 we imposed two conditions for the convergence
of the sums of multiple Wiener–Itô integrals ZN defined in (3.9) to the sum
of multiple Wiener–Itô integrals Z0 defined in (3.12). First we demanded
that the spectral measures and kernel functions appearing in the definition of
the expressions ZN should converge to the corresponding spectral measure
and kernel functions appearing in the definition of the expression Z0 in
an appropriate way. We still imposed an additional condition in part (b) of
Proposition 3.1. This is a compactness type condition which implies that the
random integrals in the definition of the random variables ZN are essentially
concentrated in a compact set not depending on the parameter N . I shall
show in the Appendix with the help of an example that without condition (b)
Proposition 3.1 may not hold any longer. I shall also make some additional
remarks about Proposition 3.1.
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Proposition 3.1 is a multivariate version of Lemma 8.3 in [8]. I gave a
simpler proof for this lemma in Lemma 6.3 of [9], and here I shall adopt
this proof. We have to overcome some additional difficulties, which arose
because we are working with vector-valued random fields. First I briefly
explain the method of the proof.

In the first step we show that relation (3.11) holds, and the random in-
tegrals appearing in the definition of Z0 really exist. In the proof of this
statement condition (b) of Proposition 3.1 plays an important role.

In the next step, we reduce the proof of the limit theorem in Proposi-
tion 3.1 to the proof of a simpler statement formulated in relation (3.13).
The main point in this reduction is that here we have to prove the limit the-
orem only for the sums of such Wiener–Itô integrals whose kernel functions
do not depend on the parameter N . The proof of this reduction is based on
some results on Wiener–Itô integrals proved in [10] and the characterization
of convergence of distribution with the help of characteristic functions.

Then we make a further simplification of the statement we have to prove.
We show that the statement in formula (3.18) implies relation (3.13), hence
Proposition 3.1, too. Formula (3.18) states, similarly to relation (3.13), the
convergence of some sums of Wiener–Itô integrals in distribution, but the
kernel functions of the random integrals appearing here are simple functions,
and this makes its proof simpler.

The reduction of relation (3.13) to (3.18) is done similarly to the reduc-
tion of Proposition 3.1 to relation (3.13). But here we need in addition some
results which provide a good approximation of the kernel functions in (3.13)
by simple functions. (See Section 5 of [10] for the definition of simple func-
tions and of their properties needed in our proof.) The formulation of the
precise statements we need for the reduction of (3.13) to (3.18) is given in
formulas (3.16) and (3.17).

One must be careful in the proof of these formulas. The main difficulty
arises because in (3.17) we demand a good approximation simultaneously
for all sufficiently large indices N .

The results of Section 5 in [10] enable us to construct such simple func-
tions which satisfy (3.16). Moreover, they make possible to construct these
approximating simple functions with the following additional property. We
define an appropriate measure µ0 on R

ν with some nice properties, and the
simple functions we construct are adapted to such a regular system whose
elements have boundaries with zero µ0 measure. With the help of this extra
property (and with a good definition of the measure µ0) we can achieve that
relation (3.17) also holds.

Then it remains to prove relation (3.18). Here the convergence of certain
Gaussian polynomials in distribution has to be proved. The main step of

the proof is to show that under the conditions of Proposition 3.1 G
(N)
j,j′ (∆) →

G
(0)
j,j′(∆) as N → ∞ for all 1 ≤ j, j′ ≤ d for those measurable sets ∆ ⊂ R

ν

whose boundaries behave nicely in a certain sense. At this point, some new
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arguments are needed in the proof.The arguments applied in the study of
scalar valued random fields are not sufficient here.

The proof of this convergence is fairly simple if j = j′. In this case, we
can apply some results about weak convergence of measures. But the proof
is more difficult for pairs (j, j′) with j 6= j′. This difficulty arises, because

if j 6= j′, then it may happen that G
(N)
j,j′ (·) with a fixed parameter N is not

a (real-valued, positive) measure. To get a proof in this case we apply a

special argument, where we exploit that G
(N)
j,j′ is an element of a positive

semidefinite matrix valued measure G(N).
If the limit behavior of the complex measures G

(N)
j,j′ with locally finite

total variation is already known, then relation (3.18) can be proved in a
standard way. For all N = 0, 1, 2, . . . we consider the random vector ZN (D)
we obtain by restricting the random spectral measure ZGN to the elements
of the regular system D we are working with. We have to prove a limit
theorem for a polynomial of these random vectors as N → ∞. This can
be done with the help of the results we proved about spectral and random
spectral measures in [10].

Proof of Proposition 3.1. First I show that relation (3.10) holds also for

N = 0. To see this let us first show that the measures µ
(N)
j1,...,jk

, N = 1, 2, . . . ,
defined as

µ
(N)
j1,...,jk

(A) =

∫

A
|hNj1,...,jk(x1, . . . , xk)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

(dxk), A ⊂ R
kν ,

converge vaguely to the locally finite measure µ
(0)
j1,...,jk

defined as

µ
(0)
j1,...,jk

(A) =

∫

A
|h0j1,...,jk(x1, . . . , xk)|

2G
(0)
j1,j1

( dx1) . . . G
(0)
jk,jk

(dxk), A ⊂ R
kν ,

if N → ∞.
Indeed, it follows from the vague convergence of the measures G

(N)
j,j to G

(0)
j,j

as N → ∞ and the continuity of the function h
(0)
j1,...,jn

that this relation holds

if we replace the kernel function |hNj1,...,jk(x1, . . . , xk)|
2 by the kernel function

|h0j1,...,jk(x1, . . . , xk)|
2 in the definition of the measures µ

(N)
j1,...,jk

. Then con-

dition (a) of Proposition 3.1 implies that this relation also holds with the

original definition of the measures µ
(N)
j1,...,jk

.

Next I state that the measure µ
(0)
j1,...,jk

is finite, and the measures µ
(N)
j1,...,jk

converge to it not only vaguely but also weakly. Indeed, condition (b) im-

plies that the sequence of measures µ
(N)
j1,...,jk

is compact with respect to the
topology defining the weak convergence of finite measures, hence any sub-
sequence of it has a convergent sub-subsequence. But the limit of such a
sub-subsequence can be only its limit with respect to the vague convergence,
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i.e., it is µ
(0)
j1,...,jk

. This implies that µ
(0)
j1,...,jk

is a finite measure, and the se-

quence of measures µ
(N)
j1,...,jk

converges also weakly to it.

Finally the properties of the functions hNj1,...,jk , and their convergence to

h0j1,...,jk formulated in condition (a) imply that also the symmetry property

h0j1,,...,jk(−x1, . . . ,−xk) = h0j1,...,jk(x1, . . . , xk) holds, hence relation (3.11) is

valid, and the random integral Z0 defined in (3.12) is meaningful. Next

I reduce the proof of the relation ZN
D
→ Z0 to the proof of the following

statement:
Under the conditions of Proposition 3.1

∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk) (3.13)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

D
→

∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)

ZG(0),j1
( dx1) . . . ZG(0),jk

( dxk),

as N → ∞, where χT (x1, . . . , xk) is the indicator function of the cube
[−T, T ]kν . We make a small, not so important technical restriction in the
choice of the number T in (3.13). Let me recall that for all all vector-valued
spectral measures GN there is a finite measure µN on R

ν such that all coordi-

nates G
(N)
j,j′ of GN , (more precisely their restrictions to any compact sets) are

such measures which are absolutely continuous measures with respect to µN .
(See Section 4 of [10].) We fix such a measure µN for all N = 0, 1, 2, . . . ,
and we shall call them dominating measures. We shall work with such mea-
sures µN in the proof of Proposition 3.1. We state formula (3.13) for all
such T > 0 for which the boundary of the cube [−T, T ]kν has zero measure
with respect to the measure µ0 × · · · × µ0

︸ ︷︷ ︸

k times

.

To prove this reduction let us observe that by formulas (5.6) in [10]
and (3.10)

E

[∫

[1− χT (x1, . . . , xk)]h
N
j1,...,jk

(x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ k!

∫

Rkν\[−T,T ]kν
|hNj1,...,jk(x1, . . . , xn)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk) < k!ε2
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for all sequences (j1, . . . , jk), 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N = 0, 1, 2, . . . if
T > T0(ε). Hence

E

[
∑

(j1,...,jk)
1≤js≤d for all 1≤s≤k

∫

[1− χT (x1, . . . , xk)]h
N
j1,...,jk

(x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ dkk!ε2 (3.14)

for all N = 0, 1, . . . if T > T0(ε).

Since G
(N)
j,j

v
→ G

(0)
j,j for all 1 ≤ j ≤ d as N → ∞, hence for all T > 0 there

is some number C(T ) such that G
(N)
j,j ([−T, T ]) ≤ C(T ) for all N = 1, 2, . . .

and 1 ≤ j ≤ d. Because of this estimate and the uniform convergence
hNj1,...,jk → h0j1,...,jk on any cube [−T, T ]kν we have

E

[∫

[hNj1,...,jk(x1, . . . , xk)− h0j1,...,jk(x1, . . . , xk)]χT (x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ k!

∫

[−T,T ]kν
|hNj1,...,jk(x1, . . . , xk)− h0j1,...,jk(x1, . . . , xk)|

2

G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk) < ε2

for all T > 0 and (j1, . . . , jk), 1 ≤ js ≤ d, 1 ≤ s ≤ k, if N > N1 with some
N1 = N1(T, ε). Hence

E

[
∑

1≤j1,...,jk≤d

∫

[hNj1,...,jk(x1, . . . , xk)− h0j1,...,jk(x1, . . . , xk)] (3.15)

χT (x1, . . . , xk)ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ dkε2

for all T > 0 if N > N1 with some N1 = N1(T, ε).
Let us define the quantities

UN = UN (T ) =
∑

1≤j1,...,jk≤d

∫

hNj1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk),

and

VN = VN (T ) =
∑

1≤j1,...,jk≤d

∫

h0j1,...,jn(x1, . . . , xk)χT (x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk),

N = 1, 2, . . . . We introduce the definition of VN = VN (T ) also for N = 0,
where we replace the spectral measures ZG(N),j , N ≥ 1, 1 ≤ j ≤ d, by
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ZG(0),j , 1 ≤ j ≤ d, in the definition of VN . We can reduce the proof of the

relation ZN
D
→ Z0 to formula (3.13) in the following way. By formula (3.14)

we can state that

|E(eitZN − eitUN )| ≤ E|(1− eit(ZN−UN ))| ≤ E|(t(ZN − UN )|

≤ |t|(E(ZN − UN )2)1/2 ≤ |t|(dkk!)1/2ε.

for all t ∈ R
1 with the random variable ZN defined in (3.9) if T > T0 and

N > N0(ε). Similarly, |E(eitUN − eitVN )| ≤ |t|(E(UN − VN )2)1/2 ≤ |t|dk/2ε
for all t ∈ R

1 and N > N0 by inequality (3.15). Besides, (3.14) with N = 0
implies that

E|eitV0 − EeitZ0 | ≤ |t|(E(Z0 − V0)
2)1/2 ≤ |t|dn/2ε

for all t ∈ R
1 if T > T0(ε), where Z0 is defined in (3.12) and V0 after the

definition of VN for N ≥ 1. Finally, EeitVN → EeitV0 for all t ∈ R
1 if relation

(3.13) holds. These relations together imply that |EeitZN −EeitZ0 | ≤ C(t)ε
if N > N0(t, ε) with some numbers C(t) and N0(t, ε). Since this inequality

holds for all ε > 0, it implies that ZN
D
→ Z0. (In formula (3.13) we imposed

a condition on the parameter T > 0. We demanded that the boundary of
[−T, T ]kν must have measure zero with respect to the product measure of
µ0. It causes no problem that we can apply the above argument only for
parameters T with this property.)

We shall prove (3.13) with the help of some statements formulated below.
To formulate them let us first fix a number T > 0 such that the bound-
ary of the cube [−T, T ]kν has zero measure with respect to the measure
µ0 × · · · × µ0
︸ ︷︷ ︸

n times

. Observe that

h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk) ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

)

for all T > 0 and N = 0, 1, 2, . . . . I claim that for all ε > 0 a regular system
D = D(ε) = {∆k, k = ±1, . . . ,±M} can be constructed for which all of its
elements have zero measure with respect the a dominating measure µ0, i.e.
µ0(∂∆k) = 0 for all 1 ≤ |k| ≤ M , ∆k ⊂ [−T, T ]ν for all 1 ≤ |k| ≤ M , and
such that there exist some simple functions

f ε
j1,...,jk

∈ K̂n,j1,...,jk(G
(0)
j1,j1

, . . . , G
(0)
jn,jk

)

indexed by the parameters (j1, . . . , jk), 1 ≤ js ≤ d, 1 ≤ s ≤ k which are
adapted to this regular system and satisfy the inequalities written down in
the following two formulas (3.16 and (3.17):

∫

|h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)− f ε
j1,...,jk

(x1, . . . , xk)|
2

G
(0)
j1,j1

( dx1) . . . G
(0)
jk,jk

( dxk) < ε2 (3.16)
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for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and also
∫

|h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)− f ε
j1,...,jk

(x1, . . . , xk)|
2

G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk) < ε2 (3.17)

for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N ≥ N0 with some N0 = N0(ε, T ).
I also claim that with such a choice of simple functions

YN
D
→ Y0 (3.18)

as N → ∞, where

YN = YN (ε, T )

=
∑

(j1,...,jk)
1≤js≤d for all 1≤s≤k

∫

f ε
j1,...,jk

(x1, . . . , xk)ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

for N = 0, 1, 2, . . . .
Let us show that for all ε > 0 there exists a regular system D together

with some simple functions f ε
j1,...,jk

adapted to it which satisfy the desired
properties.

Indeed, by Lemma (5.2) of [10] for all ε > 0 and parameters (j1, . . . , jk),
1 ≤ js ≤ d, 1 ≤ s ≤ k, there exists such a simple function f ε

j1,...,jk
adapted

to a regular system Dj1,...,jk in such a way that this function f ε
j1,...,jk

satisfies

(3.16), and the elements of Dj1,...,jk have boundaries with zero µ0 measure.
Let us make such a construction for all parameters (j1, . . . , jk). It can be
seen that there is a refinement D of the regular systems Dj1,...,jk such that all
simple functions f ε

j1,...,jk
are adapted to it, and its elements have boundaries

with zero µ0 probability. (I omit the details of this construction.) This
regular system together with the functions f ε

j1,...,jk
adapted to it satisfy the

desired requirements, because, as we shall see, their properties imply that
these functions satisfy not only (3.16), but also (3.17).

Relation (3.13) can be proved with the help of relations (3.16), (3.17) and

(3.18) similarly to the reduction of the relation ZN
D
→ Z0 to formula (3.13).

Indeed, one gets from inequalities (3.16), (5.6) in [10] and the definition of
the quantities VN and Y0, by applying an argument similar to the proof of
relation (3.14) that

E(V0 − Y0)
2 ≤ k!kdε2,

and also
E(VN − YN )2 ≤ kdk!ε2

if N > N0(ε, T ) by (3.17) and (5.6) in [10].
Then we can show with the help of these relations similarly to the reduc-

tion of the relation ZN
D
→ Z0 to formula (3.13) that |EeitVN − EeitYN | ≤ ε,

|EeitYN − EeitY0 | ≤ ε, and |EeitY0 − EeitV0 | ≤ ε if N > N0(ε, t, T ) with
some threshold index N0(ε, t, T ). Here in the first and third inequality we
apply the last two inequalities which were consequences of (3.16) and (3.17),



WIENER–ITÔ INTEGRALS IN GAUSSIAN STATIONARY RANDOM FIELDS II 31

while the second inequality follows from (3.18). Since these relations hold
for all ε > 0 they imply that EeitVN → EeitV0 for all t ∈ R

1 as N → ∞,

i.e. VN
D
→ V0 as N → ∞, and this is formula (3.13) written with a different

notation.
It remains to prove (3.16), (3.17) and (3.18). We made such a construc-

tion of a regular system and simple functions adapted to it with the help
of Lemma 5.2 in [10] which satisfy (3.16). Then formula (3.17) follows
from some classical results about vague (and weak) convergence of measures.
Since we are working in the proof of (3.17) in a cube [−T, T ]kν it is enough
to know the results about weak convergence to carry out our arguments.

Let us first observe that since the restrictions of the measures G
(N)
j,j to

[−T, T ]ν tend weakly to the restriction of the measure G
(0)
j,j to the cube

[−T, T ]ν as N → ∞, we can also say that the restrictions of the product

measures G
(N)
j1,j1

× · · · ×G
(N)
jk,jk

to the cube [−T, T ]kν converge weakly to the

restriction of the product measure G
(0)
j1,j1

×· · ·×G
(0)
jk,jk

on the cube [−T, T ]kν ,
as N → ∞. On the other hand, the function

H0
j1,...jk

(x1, . . . , xk)

= |h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)− f ε
j1,...,jk

(x1, . . . , xk)|
2

is almost everywhere continuous with respect to the measure G
(0)
j1,j1

× · · · ×

G
(0)
jk,jk

. By the general theory about convergence of measures these properties
imply that

∫

H0
j1,...jk

(x1, . . . , xk)G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

→

∫

H0
j1,...jk

(x1, . . . , xk)G
(0)
j1,j1

( dx1) . . . G
(0)
jk,jk

( dxk)

as N → ∞. (Such a convergence is proved for probability measures for
example in [2].) A careful analysis shows that this result remains valid
for sequences of finite, but not necessarily probability measures. Let me
remark that here we are working with (real, non-negative) measures. The
last relation together with (3.16) imply (3.17).

To prove relation (3.18) first we show that G
(N)
j,j′ (∆k) → G

(0)
j,j′(∆k) as

N → ∞ for all 1 ≤ j, j′ ≤ d and ∆k ∈ D with the regular system D we are
working with. (Let me recall that the boundary of all sets ∆k ∈ D has zero

µ0 measure and hence also zero G
(0)
j,j′ measure.)

If j = j′ then this relation follows immediately from the facts that G
(N)
j,j

v
→

G
(0)
j,j , G

(0)
j,j (∂∆k) = 0 for all 1 ≤ |k| ≤ M , and G

(N)
j,j is a locally finite measure

for all N = 0, 1, 2, . . . . If j 6= j′, then we have to apply a more refined

argument, since in this case we only know that G
(N)
j,j′ is a complex measure

with locally finite total variation. In this case we will exploit that the matrix
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valued measures (G
(N)
j.j′ ), 1 ≤ j, j′ ≤ d, are positive semidefinite. This implies

that the Radon–Nikodym derivatives g
(N)
j,j′ of the complex measures G

(N)
j,j′

with respect to the dominating measure µN have the following property.
For all N = 0, 1, 2, . . . and 1 ≤ j, j′ ≤ d such that j 6= j′ the 2× 2 matrices

g(N)(x|j, j′) =

(

g
(N)
j,j (x), g

(N)
j,j′ (x)

g
(N)
j′,j (x), ng

(N)
j′,j′(x)

)

are positive semidefinite for µN almost all x ∈ R
ν . Let us define for all

non-negative functions v(x), x ∈ R
ν the vector S(x|v) = (

√

v(x),
√

v(x)).

By exploiting that the matrices g(N)(x|j, j′) are positive semidefinite we get
that

∫
v(x)[G

(N)
j,j ( dx) +G

(N)
j,j′ ( dx) +G

(N)
j′,j ( dx) +G

(N)
j′,j′( dx)]

=
∫
S(x|v)g(N)(x|j, j′)S(x|v)∗µN ( dx) ≥ 0

for all functions v such that v(x) ≥ 0, x ∈ R
ν . Hence H

(N)
j.j′ = [G

(N)
j,j +G

(N)
j,j′ +

G
(N)
j′,j + G

(N)
j′,j′ ] is a locally finite measure on R

ν . Moreover H
(N)
j,j′

v
→ H

(0)
j,j′ as

N → ∞. This implies that H
(N)
j,j′ (∆k) → H

(0)
j,j′(∆k), therefore G

(N)
j,j′ (∆k) +

G
(N)
j′,j (∆k) → G

(0)
j,j′(∆k) +G

(0)
j′,j(∆k) as N → ∞ for all ∆k ∈ D.

We get similarly by working with the vectors R(x|v) = (
√

v(x), i
√

v(x))

instead of the vectors S(x|v) = (
√

v(x),
√

v(x)) for all functions v(x) ≥ 0,

x ∈ R
ν , that K

(N)
j.j′ = [G

(N)
j,j + iG

(N)
j,j′ − iG

(N)
j′,j + G

(N)
j′,j′ ] is a a locally finite

measure for all N = 0, 1, 2, . . . , and K
(N)
j,j

v
→ K

(0)
j,j′ as N → ∞. Thus

K
(N)
j,j′ (∆k) → K

(0)
j,j′(∆k), therefore G

(N)
j,j′ (∆k) − G

(N)
j′,j (∆k) → G

(0)
j,j′(∆k) −

G
(0)
j′,j(∆k) asN → ∞ for all ∆k ∈ D. These relations imply thatG

(N)
j,j′ (∆k) →

G
(0)
j,j′(∆k) for all ∆k ∈ D.

Let us define for all N = 0, 1, 2, . . . and our regular system D = {∆k, 1 ≤
|k| ≤ M} the Gaussian random vector

ZN (D) =
(

ReZG(N),j(∆k), ImZG(N),j(∆k), |k| ≤ M, 1 ≤ j ≤ d
)

I claim that the elements of the covariance matrices of the random vectors
ZN (D) can be expressed by means of the numbers G

(N)
j,j′ (∆k), 1 ≤ |k| ≤ M

and 1 ≤ j, j′ ≤ d, and the covariance matrices of ZN (D) converge to the
covariance matrix of Z0(D) as N → ∞. (In the proof of this statement
I repeat some arguments applied in the investigation of random spectral
measures in Section 3 of [10].)
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To prove these relations observe that

ReZG(N),j(∆k) =
ZG(N),j(∆k) + ZG(N),j(∆k)

2
,

ImZG(N),j(∆k) =
ZG(N),j(∆k)− ZG(N),j(∆k)

2i
,

and ZG(N),j(∆k) = ZG(N),j(−∆k) = ZG(N),j(∆−k). (In the last identity we

also exploited the properties of the regular systemsD.) Also the properties of
the regular systems imply that if ∆k,∆l ∈ D, then we have either ∆k∩∆l =
∆k or ∆k ∩∆l = ∅. The first identity holds if l = k and the second one if

l 6= k. Hence we have either EZG(N),j(∆k)ZG(N),j′(∆l) = G
(N)
j,j′ (∆k) if k = l

or EZG(N),j(∆k)ZG(N),j′(∆l) = 0 if k 6= l. These relations imply that we can
express all covariances

EReZG(N),j(∆k)ReZG(N),j′(∆l), EReZG(N),j(∆k)ImZG(N),j′(∆l)

and EImZG(N),j(∆k)ImZG(N),j′(∆l)

with the help of the quantities G
(N)
j,j′ (∆k), 1 ≤ j, j′ ≤ d, 1 ≤ |k| ≤ M . The

convergence of the numbers G
(N)
j,j′ (∆k) to G

(0)
j,j′(∆k) also implies that the

covariance matrices of ZN (D) converge to the covariance matrix of Z0(D)
as N → ∞.

The convergence of the covariance matrices of the Gaussian random vec-
tors ZN (D) with expectation zero also implies that the distributions of
ZN (D) converge weakly to the distribution of Z0(D) as N → ∞. But then
the same can be told about any continuous functions of the coordinates
of the random vectors ZN (D). Because of the definition of the multiple
Wiener–Itô integrals of simple functions the random variables YN in for-
mula (3.18) are polynomials, hence continuous functions of the coordinates
of the random vectors ZN (D). Besides, these polynomials do not depend
on the parameter N . Hence the previous results imply that formula (3.18)
holds. Proposition 3.1 is proved. �

To simplify the application of Proposition 3.1 we also prove the following
lemma.

Lemma 3.2. Let us have a sequence of matrix valued spectral measures

(G
(N)
j,j′ ), N = 1, 2, . . . , 1 ≤ j, j′ ≤ d, on the torus [−ANπ,ANπ]ν such that

AN → ∞, and G
(N)
j,j′

v
→ G

(0)
j,j′ with some complex measure (G

(0))
j,j′ ) with locally

finite total variation for all 1 ≤ j, j′ ≤ d as N → ∞. Then G(0) = (G
(0)
j,j′),

1 ≤ j, j′ ≤ d, is a positive semidefinite matrix valued even measure on R
ν .

Remark. Lemma 3.2 helps to show that in many interesting cases the limit

matrix G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, of the spectral measures G(N) = (G

(N)
j,j′ ),

1 ≤ j, j′ ≤ d, N = 1, 2, . . . , in Proposition 3.1 is the spectral measure of
a generalized stationary Gaussian random field. Indeed, in Theorem 4.1
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of [10] it was shown that a positive semidefinite matrix valued measure on
R
ν whose distribution is moderately increasing at infinity is the spectral

measure of such a random field. (See Section 4 of [10] for the definition of

these notions.) So by Lemma 3.2 to prove that G(0) is the spectral measure
of a generalized stationary Gaussian random field it is enough to show that
the distribution of G(0) is moderately increasing.

Proof of Lemma 3.2. We have to show that (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is

a positive semidefinite matrix valued measure. To do this take a vector
v(x) = (v1(x), . . . , vd(x)) whose coordinates vk(x), 1 ≤ k ≤ d, are continu-
ous functions with compact support. We have

lim
N→∞

d∑

j=1

d∑

j′=1

∫

vj(x)vj′(x)G
(N)
j,j′ ( dx) =

d∑

j=1

d∑

j′=1

∫

vj(x)vj′(x)G
(0)
j,j′( dx) ≥ 0.

(3.19)

The identity in (3.19) holds, since G
(N)
j,j′

v
→ G

(0)
j,j′ for all 1 ≤ j, j′ ≤ d. The

inequality at the end of (3.19) also holds, because (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, is

a positive semidefinite matrix valued measure for all N = 1, 2, . . . , and this
implies that the left-hand side of (3.19) is non-negative for all N = 1, 2, . . . .

Thus we got that if g
(0)
j,j′(x) is the Radon–Nikodym derivative of G

(0)
j,j′ with

respect to some dominating measure µ0 in the point x ∈ R
ν for all 1 ≤

j, j′ ≤ d, we take the d× d matrix g(0)(x) = (g
(0)
j,j′(x)), 1 ≤ j, j′ ≤ d, and the

coordinates of the vector v(x) = (v1(x), . . . , vd(x)) are continuous functions
with compact support, then

∫

v(x)g(0)(x)v∗(x)µ0( dx) ≥ 0.

In the proof of Theorem 2.2 of [10] we have shown that this relation implies

that (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is a positive semidefinite matrix valued measure.

We still have to show that the complex measure G
(0)
j,j′ with locally finite

variation is even for all 1 ≤ j, j′ ≤ d. To do this fix a pair j, j′ of indices,

1 ≤ j, j′ ≤ d, and define for all N = 0, 1, 2, . . . the complex measure (G′)
(N)
j,j′

by the relation (G′)
(N)
j,j′ (A) = G

(N)
j,j′ (−A) for all bounded, measurable sets

A ⊂ R
ν . It is not difficult to see that not only G

(N)
j,j′

v
→ G

(0)
j,j′ , but also

(G′)
(N)
j,j′

v
→ (G′)0j,j′ as N → ∞. The evenness of the measures G

(N)
j,j′ for

N = 1, 2, . . . means that G
(N)
j,j′ = (G′)

(N)
j,j′ for all N = 1, 2, . . . . By taking the

limit N → ∞ we get that G
(0)
j,j′ = (G′)

(0)
j,j′ . This means that G

(0)
j,j is an even

complex measure with locally finite variation. Lemma 3.2 is proved. �
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Appendix A. On the results in Section 2.

The Appendix consists of two parts. In the first part some questions
related to Section 2 while in the second part some questions related to
Section 3 are discussed.

In the first part the idea of the proof of Itô’s formula is explained together
with the reason why to work with Wick polynomials in it. It is also shown
how Itô’s formula can be applied in the proof of the other results in Section 2.

The second part deals with the investigation of limit problems for non-
linear functionals of a stationary Gaussian random field and the content
of Proposition 3.1. Here I try to explain the role of the compactness type
condition (b) in this proposition with the help of an example.

First I try to explain the idea behind the proof of Itô’s formula. To do
this first I consider its one-dimensional version. In that case we want to
prove the following statement. Let ϕ(x), ϕ(−x) = ϕ(x), be such a function
for which

∫
|ϕ(x)|2G( dx) = 1 with a spectral measure G, and consider

a random spectral measure ZG corresponding to the spectral measure G.
Then Y =

∫
ϕ(x)ZG( dx) is a standard normal random variable, and the

identity

Hn

(∫

ϕ(x)ZG( dx)

)

=

∫

ϕ(x1) · · ·ϕ(xn)ZG( dx1) . . . ZG( dxn). (A.1)

holds for all n ≥ 1. Actually, Itô’s formula is a more general result, but here
it will be enough to consider this special case.

It is proved in the general theory that the above-defined random vari-
able Y has standard normal distribution. Formula (A.1) is proved by induc-
tion with respect to n. In this induction, we apply the recursion formula (2.2)
for Hermite polynomials and the diagram formula for the product of multiple
Wiener–Itô integrals. We exploit that they “fit to each other”.

Formula (A.1) clearly holds for n = 1. To prove it for n if we know it for
m < n we rewrite the left-hand side of (A.1) with the help of the recursion
formula (2.2). We rewrite the random integral

∫

ϕ(x1) · · ·ϕ(xn)ZG( dx1) . . . ZG( dxn)

at the right hand of (A.1) by means of the identity that we get by applying
the diagram formula for the product

∫

ϕ(x1) · · ·ϕ(xn−1)ZG( dx1) . . . ZG( dxn−1)

∫

ϕ(x)ZG( dx).

(I remark that Proposition 5.1 of [8] yields a generalization of the formula we
get in such a way.) Then some calculations with the help of these formulas
and the inductive hypothesis yield the proof of formula (A.1) for n.

Itô’s formula for vector-valued stationary Gaussian random fields can be
proved by an appropriate adaptation of the above argument. In the proof,
we apply a useful special case of the diagram formula for vector-valued



36 PÉTER MAJOR

stationary Gaussian random fields presented in [10]. It is formulated in the
corollary of Theorem 6.1 in[10].

On the other hand, we need a new identity instead of formula (2.2) in the
proof that we can formulate it with the help of Wick polynomials. This was
the reason for the introduction of Wick polynomials in this paper. They
are defined in Section 2 with the help of some results in [10]. First we
have to understand that this definition is correct. Namely, we have to show
that the Wick polynomial : P (ξ1, . . . , ξm) : of a homogeneous polynomial
P (ξ1, . . . , ξm) of order n depends only on the random variables ξ1, . . . , ξm,
although in its definition we applied a projection to a Hilbert space Hn

which may depend on other random variables, too.
The result of Theorem 2B implies the correctness of this definition.It

states that the value of the Wick polynomial does not change if we take
projection to the Hilbert space Hn(ξ1, . . . , ξm) introduced before the formu-
lation of this result instead of the projection to Hn. The definition of this
new Hilbert space is similar to that of Hn, the only difference is that here
we work only with the random variables ξ1, . . . , ξm.

The proof of Theorem 2B exploits the following property of Gaussian
random vectors. If some coordinates of a Gaussian random vector are un-
correlated, then they are also independent. This implies that the elements of
the underlying Gaussian random field can be decomposed as Xt = η1,t+η2,t,
t ∈ T , in such a way that η1,t is a linear combination of the random variables
ξ1, . . . , ξm, while η2,t is uncorrelated, hence independent of them. The proof
of Theorem 2B is based on this fact. I omit the details of the proof.

Theorem 2B implies in particular that : ξn : = Hn(ξ) if ξ is a standard
normal random variable. Corollary 2C describes a deeper relation between
Hermite and Wick polynomials. This can be exploited. For instance, iden-
tity (2.3) formulated in Proposition 2.1 can be proved with its help and
formula (2.2) about Hermite polynomials. This identity plays an important
role in the proof of Itô’s formula.

The proof of Itô’s formula for vector-valued stationary Gaussian random
fields is made with the help of the identity (2.3) for Wick polynomials and
the Corollary of Theorem 6.1 in [10] which is a special case of the diagram
formula for vector-valued stationary Gaussian random fields. It is a natural
adaptation of the previously discussed proof in the scalar-valued case.

It is easy to deduce from Theorem 2.2 its Corollary. In this Corollary the
Wick polynomials of such homogeneous polynomials are considered whose
arguments are elements of one of the Hilbert spaces H1,j , 1 ≤ j ≤ d. In the
Corollary of Theorem 2.2 such expressions are expressed in the form of a sum
of multiple Wiener–Itô integrals. The class of homogeneous polynomials
considered in the Corollary of Theorem 2.2 is fairly large. This fact is
exploited in the proof of Proposition 2.3, which states that the set of all
finite sums of n-fold Wiener–Itô integrals constitute an everywhere dense
class of functions in Hn.
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In the last result of Section 2, in Theorem 2.4 a random variable, defined
in formula (2.6) in the form of a multiple Wiener–Itô integral is considered,
and its shift transforms are calculated in formula (2.8). This is an impor-
tant result, and its proof is based also on the Itô formula. The validity of
formula (2.8) can be checked first for the shifts of one-fold Wiener–Itô inte-
grals. Then it can be proved with the help of Itô’s formula for such multiple
Wiener–Itô integrals whose kernel functions have the special form

h(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn).

After this Proposition 2.4 can be proved in the general case by means of a
standard method.

Appendix B. On the results in Section 3.

At the beginning of Section 3 I formulated a limit problem. I con-
sidered a vector-valued stationary Gaussian random field X(p), p ∈ Z

ν ,
defined a Wick polynomial of order k of the coordinates of the vector
X(0) = (X1(0), . . . , Xd(0)), and I was interested in a limit problem for
the expressions SN defined in (3.3). These expressions are normalized par-
tial sums whose elements are shift transforms TpY (0) of the random vari-
able Y (0) defined in (3.4).

This problem is a multivariate version of the problem studied in [5].
The expressions SN can be rewritten in an interesting simple form. To

do this first we rewrite the random variable Y (0) in the form of a sum of
multiple Wiener–Itô integrals and express its shift transforms TpY (0) with
the help of Proposition 2.4. This enables us to express the appropriately
rescaled versions of the random variables Sn as sums of multiple Wiener–Itô
integrals with such kernel functions which have a limit as N → ∞. This
is done in (3.7). This formula suggests that if the matrix valued spectral

measuresG(N) defined in Section 3 have a limit, then the normalized versions
of the random variables SN are convergent in distribution, and we can get
their limit by means of a natural limiting procedure. Maybe, this limiting
procedure can be carried out only under some not too restrictive additional
conditions. If this limiting procedure can be carried out then we get a limit
theorem for the normalized versions of the random variables Sn.

Proposition 3.1 gives a useful sufficient condition for the application of
such a limiting procedure. In its formulation some random variables ZN ,
N = 0, 1, 2, . . . , defined in (3.9) and (3.12) are considered. First it is shown
that under the conditions of Proposition 3.1 these random variables exist
(the multiple integrals appearing in their definition are well-defined), and

then also the convergence ZN
D
→ Z0 is proved.

The conditions of Proposition 3.1 formulated in part (a) are natural.
They demand that the kernel functions hNj1,...,jk(x1, . . . , xk) of the random

integrals in ZN and the matrix valued spectral measures G(N) converge to
h0j1,...,jk(x1, . . . , xk) and G(0) in an appropriate way. (Actually, there is also
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a hidden condition here. The functions h0j1,...,jk(x1, . . . , xk) must be contin-

uous. In the scalar-valued version of this result, in Proposition 8.3 of [8] a
slightly weaker continuity condition is imposed. Here we do not discuss the
question how the continuity property in Proposition 3.1 can be weakened.)

On the other hand, part (b) of Proposition 8.3 contains an additional
condition that deserves special attention. We can understand its role better
by considering the application of Proposition 3.1 in the proof of the main
result in [11] or the application of its scalar-valued version in the proof of
Theorem 8.2 in [8].

In Theorem 8.2 of [8] a scalar-valued stationary Gaussian random field
X(p), p ∈ Z

ν , is considered. The random variables Y (p) = Hk(X(p)) =
TpY (0) are introduced, where Hk(·) is the Hermite polynomial of order k,
and the normalized partial sums SN are defined by formula (3.3) with
these random variables Y (p). A non-central limit theorem is proved with

normalizing constants AN = Nν−kα/2L(N)k/2 if the correlation function

r(p) = EX(0)X(p) satisfies the relation r(p) = |p|−αa
(

p
|p|

)

L(|p|) with

some 0 < α < ν
k , where L(·) is a slowly varying function at infinity, and

a(·) is a function on the unit sphere of Rν . It shows the dependence of the
correlation function r(p) on the direction of the vector p.

Paper [11] contains a multivariate version of this result. Here a vector-
valued stationary Gaussian random fieldX(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν ,
is considered, and a limit theorem is proved for the random variables SN ,
defined in (3.3) and (3.4) under appropriate conditions. A condition, similar
to the condition of the correlation function in Theorem 8.2 of [8] is imposed
on the correlation function rj,j′(p) = EXj(0)Xj′(p) which is described in
formula (1.3) of [10]. A non-central limit theorem with normalizing constants

AN = Nν−kα/2L(N)k/2 is proved if this condition holds for the correlation
function with exponent 0 < α < ν

k .
It is worth understanding why the condition α < ν

k in the exponent of
the formula expressing the decrease of the correlation function is needed
in the proof of these results. In the first step of these proofs, we have to
describe the asymptotic behavior of the spectral measure of the underlying
stationary Gaussian random field. In the scalar-valued case this is done
in Lemma 8.2 of [8]. It describes the limit behavior of the appropriately
rescaled versions GN of the spectral measure G of the stationary Gauss-
ian random field we are working with. These measures are defined by the
identity GN (A) = Nα

L(N)G
(
A
N

)
for all measurable sets A. In this lemma, it

is proved that these measures GN have a vague limit G0 as N → ∞, and
the limit measure has the homogeneity property G0(A) = t−αG0(tA) for all
measurable sets A and t > 0. There is a similar result also in the case of
vector-valued stationary Gaussian fields.

The above results imply that the spectral measures and kernel functions
in the representation of SN in formula (3.7) satisfy the starting conditions
of Proposition 3.1 if the correlation function of the underlying stationary
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Gaussian field has such an asymptotic behavior at the infinity as it is de-
manded in the above-mentioned results. Moreover, they are satisfied if the
correlation function satisfies the desired relation with arbitrary “homogene-
ity parameter” ν > α > 0.

One would like to understand where we exploited the condition α < ν
k ,

and what can be told if this condition is violated. (The number k was
the order of the Wick polynomial we were working with.) This question is
related to condition (b) in Proposition 3.1. It is proved that this condition
is satisfied under the additional condition α < ν

k . (This is proved in [5]
or [8] in the scalar and in [11] in the vector-valued case.) On the other
hand, it can be proved that if the asymptotic formula prescribed for the
correlation function satisfies the prescribed asymptotic relation with α ≥ ν

k ,
then relation (3.11) does not hold, and as a consequence, the definition of
the random variable Z0 in (3.12) is incorrect.

We have a more detailed knowledge on the behavior of the random sum SN

defined in (3.3) if α > ν
k . It is known that it satisfies the central limit theorem

with the standard normalization Nν/2. This follows from the central limit
theorem proved in [3] in the scalar and in Theorem 4 of [1] in the vector-
valued case. One only has to check that the conditions of these results
are satisfied in this case, and this can be done by calculating the necessary
covariances. A similar central limit theorem also holds if α = ν

k , but in this

case, it may happen that the norming constant is Nν/2L(N) with a slowly
varying function L(N) tending to infinity as N → ∞.

The above-discussed results suggest the following heuristic picture about
a generalized version of the results discussed in the Appendix.

Let us have a stationary Gaussian random field X(p), p ∈ Z
ν and a

non-linear functional Y of this random field. Take the shifts Y (p) = TpY ,
p ∈ Z

ν , of this non-linear functional, and consider their normalized sums SN

defined in formula (3.1). We are interested in what kind of limit theorem
holds for this sequence SN asN → ∞ with an appropriate norming constants
AN . In Section 3 we considered a special case of this problem and proved
that it can be reformulated to the problem about the limit theorem for a
sequence ZN defined in (3.9). Such a sequence has a limit if the kernel
functions and spectral measures in the definition of ZN behave nicely. A
similar reformulation of the above-mentioned limit problem is possible in a
more general case, only different kernel functions appear in the definition
of the random integrals in (3.9). Proposition 3.1 may help in the study of
the limit behavior of the random variables ZN defined in (3.9). It turned
out that condition (b) of Proposition 3.1 is an important condition of this
result. Let us understand its role better.

Condition (b) of Proposition 3.1 is a compactness type condition formu-
lated in (3.10). Let us consider the integrals in it when we integrate on the
whole space R

ν . If the values of these integrals tend to infinity as N → ∞,
then for large N the essential part of the random integrals in (3.9) comes
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from a region that contains vectors in R
kν with very big norms. It is natural

to expect that in such cases the random variables ZN satisfy the central limit
theorem with the classical norming constants AN = Nν/2 under very general
conditions. Such a result is proved besides the above-mentioned papers [1]
and [3] also in the book [12]. On the other hand, Proposition 3.1 implies the
existence of a non-Gaussian limit, expressed by means of a sum of multiple
Wiener–Itô if the spectral measures and the kernel functions have a limit,
and condition (b) of Proposition 3.1 holds.
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