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Abstract: The subject of this work is the multivariate generalization of the the-
ory of multiple Wiener–Itô integrals. In the scalar valued case this theory was
described by the author in 2014. The proofs of the present paper apply the tech-
nique of that work, but in the proof of some results new ideas were needed. The
motivation for this study was a result in the paper “Limit theorems for nonlin-
ear functionals of a stationary Gaussian sequence of vectors” (1994) by Arcones,
which contained the multivariate generalization of a non-central limit theorem
for non-linear functionals of Gaussian stationary random fields presented in a
paper by R. L. Dobrushin and the author. However, the formulation of Arcones’
result was incorrect. To present it in a correct form the multivariate version of
the theory explained in my work of 2014 has to be worked out, because the
notions introduced in this theory are needed in its formulation. This is done in
the present paper. In its continuation it will be explained how to work out a
method with the help of the results in this work that enables us to prove non-
Gaussian limit theorems for non-linear functionals of vector valued Gaussian
stationary random fields. The right version of Arcones’ result presented also in
the introduction of this work will be formulated and proved with its help in a
future paper of mine.

1 Introduction. An overview of the results.

LetX(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , where Zν denotes the lattice points with
integer coordinates in the ν-dimensional Euclidean space Rν , be a d-dimensional
real valued Gaussian stationary random field with expectation EX(p) = 0,
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p ∈ Zν . We define the notion of Gaussian property of a random field in the
usual way, i.e., we demand that all finite sets (X(p1), . . . , X(pk)), pj ∈ Zν ,
1 ≤ j ≤ k, be a Gaussian random vector, and we call a random field X(p),
p ∈ Zν , stationary if for all m ∈ Zν the random field X(m)(p) = X(p + m),
p ∈ Zν , has the same finite dimensional distributions as the original random
field X(p), p ∈ Zν . In most works only the case ν = 1 is considered, but since
we can prove our results without any difficulty for stationary random fields with
arbitrary parameter ν ≥ 1 we consider such more general models.

Our goal is to work out a good calculus which provides such a representation
of the non-linear functionals of our vector valued Gaussian stationary random
field which helps us in the study of limit theorems for such functionals. To
understand what kind of limit theorems we have in mind take the following
example.

Let us have a function H(x1, . . . , xd) of d variables, and define with the help
of a d-dimensional vector valued Gaussian stationary random field

X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν ,

and this function the random variables Y (p) = H(X1(p), . . . , Xd(p)) for all
p ∈ Zν . Let us introduce for all N = 1, 2, . . . the normalized sum

SN = A−1
N

∑

p∈BN

Y (p) (1.1)

with an appropriate norming constant AN > 0, where

BN = {p = (p1, . . . , pν) : 0 ≤ pk < N for all 1 ≤ k ≤ ν}. (1.2)

We are interested in a limit theorem for these normalized sums SN with an
appropriate norming constant AN as N → ∞. In particular, we want to know
when we get a classical central limit theorem with the natural normalization
AN = Nν/2 and when appear new kind of limit theorems. These questions were
studied in the special scalar valued case d = 1 in papers [2] and [5]. Arcones
investigated the multivariate generalization of the results in these papers.

He proved the multivariate version of the result in paper [2] which states
that if the covariance function of the underlying Gaussian field tends to zero
sufficiently fast at infinity, and the function H(x1, . . . , xd) has some nice proper-
ties, then the central limit theorem holds with the classical normalization. (He
considered only the case ν = 1, but this restriction has no great importance.)
In Theorem 6 of his paper he also formulated a result about a non-central limit
theorem under appropriate conditions. But there are some serious problems
with that result. Arcones wanted to prove a multivariate generalization of the
result in paper [5], but to do this he should have solved some problems whose
discussion he omitted.

The Gaussian limit theorem can be proved in the multivariate case by means
of a natural generalization of the method in paper [2], or one can apply some
more powerful new method, (see for example [13]), but in the proof of the
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multivariate generalization of the non-central limit theorem 6 in paper [1] some
new problems appear whose solution demands hard work.

The first problem is related to the formulation of the result. In paper [5]
the limit distribution is presented by means of a multiple Wiener-Itô integral
with respect to the random spectral measure of a one-dimensional stationary
(generalized) Gaussian random field. This random integral was introduced in
the paper of Dobrushin [4], and it is explained in more detail in my Lecture
Note [9]. But this notion was worked out in Dobrushin’s paper only for scalar
valued random fields, and the limit distribution in Theorem 6 of Arcones’ pa-
per is presented with the help of Wiener–Itô integrals with respect to random
spectral measures corresponding to vector valued stationary Gaussian random
fields. Such integrals were not defined before, and their definition is far from
trivial. The goal of the present paper is to fill this gap. Here the multivari-
ate random spectral measures will be introduced together with the multiple
Wiener–itô integrals with respect to them, and their most important properties
will be proved. This is needed for the right formulation and proof of Arcones’
result. I shall formulate the right version of this result in the introduction of
this paper, but its proof will be given only in paper [12] with the help of the
results in this work and its continuation [11].

To understand what kind of problems we meet in this paper let us first
consider briefly how the theory of Wiener–Itô integrals was worked out for scalar
valued random fields by Itô in [8] and Dobrushin in [4].

Itô considered a Gaussian random field in [8] whose elements could be ex-
pressed as random integrals with respect to a Gaussian orthogonal random
measure. He also defined multiple random integrals (called later Wiener–Itô
integrals in the literature) with respect to this orthogonal random measure,
and expressed all square integrable random variables measurable with respect
to the σ-algebra generated by the elements of the Gaussian orthogonal random
measure as a sum of such multiple integrals. The introduction of this integral
turned out to be useful, because it helped in the study of non-linear functionals
of the Gaussian random field defined by means of this integral. In particular,
Itô found a very useful relation, called Itô’s formula in the literature, between
the multiple random integrals he defined and Hermite polynomials.

Later Dobrushin worked out a version of this theory in [4], where he studied
non-linear functionals of a stationary Gaussian random field. In such a random
field a spectral and a random spectral measure can be defined in such a way
that the elements of the stationary Gaussian random field can be expressed in a
special form of (one-fold) random integrals with respect to the random spectral
measure. These random integrals can be considered as the Fourier transforms of
the random spectral measure. Dobrushin defined also multiple random integrals
with respect to this random spectral measure, and studied their properties. He
proved that these random integrals defined with respect to the random spectral
measure have similar properties as the multiple integrals introduced by Itô. In
particular, he proved Itô’s formula for this new type of random integrals. This
enabled him to express all square integrable random variables measurable with
respect to the σ-algebra generated by the elements of the original stationary
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Gaussian random field as a sum of multiple random integrals with respect to
the random spectral measure. He also found a simple and useful formula for the
calculation of the shift transforms of a random variable which is presented as a
sum of multiple random integrals. With the help of these results the normalized
random sums SN defined in (1.1) can be expressed in a simple and useful form
if the underlying stationary Gaussian random field is scalar valued (i.e., d = 1).
This representation of the normalized random sums SN made possible to prove
the limit theorems in [5].

We want to prove the generalization of the results in [5] for non-linear func-
tionals of vector valued stationary Gaussian random fields. The first step of this
program is to work out the multivariate version of Dobrushin’s theory, and this
is the subject of the present paper.

First we have to define the spectral and random spectral measure of vector
valued stationary Gaussian random fields, and this is the subject of Sections 2
and 3. To do this the multivariate version of some classical results has to be
proved. In the scalar valued case a spectral measure can be defined whose
Fourier transform is the correlation function of the stationary random field
we are working with. In the case of a vector valued stationary random field
of dimension d the correlation function is a d × d dimensional matrix valued
function. It can be shown that there exists a d × d dimensional matrix valued
measure on the d dimensional torus [−π, π)d for which each coordinate of the
matrix valued correlation function is the Fourier transforms of the corresponding
coordinate of this matrix valued measure. This measure is called the spectral
measure of the random field. In the scalar valued case, i.e., if d = 1 the spectral
measure is a positive measure, while in the vector valued case it is a positive
semidefinite matrix valued measure. A more detailed description of these results
together with their proofs is given in Section 2.

In Section 3 the so-called random spectral measure corresponding to a vector
valued stationary Gaussian random field is defined. It is a vector valued random
measure with the same dimension d as the underlying vector valued stationary
Gaussian random field. Its distribution is determined by the spectral measure
of the underlying random field. A random integral can be defined with respect
to the coordinates of the random spectral measure, and each coordinate of the
elements of the underlying vector valued Gaussian random field can be expressed
by means of an appropriate random integral with respect to the corresponding
coordinate of the random spectral measure. Because of the form of this integral
this result can be interpreted so that the underlying stationary Gaussian random
field is the Fourier transform of the random spectral measure corresponding to
it. The construction of the random spectral measure and the description of its
most important properties is given in Section 3.

Moreover, we need later the notion of spectral measures and random spectral
measures corresponding to stationary generalized random fields, and they are
introduced in Section 4. In the main text of this paper a more detailed, precise
definition of these notions will be given. We have to define these objects, because
we can formulate the limit in the limit theorems we are interested in in this paper
by means of multiple random integrals with respect to the random spectral
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measures corresponding to stationary generalized random fields.
Then I define the multiple Wiener–Itô integrals with respect to the coor-

dinates of a vector valued random spectral measure in Section 5, and I also
prove there their most important properties. In Section 6 I prove an important
result, called the diagram formula which enables us to express the product of
two multiple Wiener–Itô integrals as the sum of appropriately defined multiple
Wiener–Itô integrals. The present paper contains these results.

In the continuation of this paper, in work [11] I work out the basic tools
needed in the proof of such non-central limit theorems as the multivariate gen-
eralization of the limit theorem in [5]. First I prove, with the help of the above
mentioned diagram formula, an important result about the relation between
multiple Wiener–Itô integrals and Wick polynomials of Gaussian vectors. Wick
polynomials are the several dimensional generalizations of Hermite polynomi-
als, and the result mentioned before is the natural multivariate generalization
of Itô’s formula. Besides, [11] contains a formula that enables us to express the
shift transforms of a random variable given in the form of a sum of multiple
random variables in a useful form. These results enable us to rewrite the nor-
malized random sums SN defined in (1.1) in a form which helps in the study
of limit theorems. They enabled me to formulate and prove in [12] the right
version of Theorem 6 in Arcones’ paper [1].

Next I briefly describe the right version of Arcones’ non-central limit theo-
rem. In its formulation we consider d-dimensional stationary Gaussian random
fields

X(p) = (X1(p), . . . , Xd(p)), EXj(p) = 0 for all 1 ≤ j ≤ ν and p ∈ Zν ,

whose covariance function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν ,
is such a matrix valued function whose coordinates decrease asymptotically
polynomially at infinity with some power 0 < α < ν. More generally, this
behaviour may be slightly modified by multiplication with a slowly varying
function. More explicitly, we demand that

lim
T→∞

sup
p : p∈Zν , |p|≥T

∣

∣

∣rj,j′(p)− aj,j′(
p
|p| )|p|−αL(|p|)

∣

∣

∣

|p|−αL(|p|) = 0 (1.3)

for all 1 ≤ j, j′ ≤ d, where 0 < α < ν, L(t), t ≥ 1, is a real valued function,
slowly varying at infinity, bounded in all finite intervals, and aj,j′(t) is a real
valued continuous function on the unit sphere Sν−1 = {x : x ∈ Rν , |x| = 1},
and the identity aj′,j(x) = aj,j′(−x) holds for all x ∈ Sν−1 and 1 ≤ j, j′ ≤ d.

For the sake of simpler discussion we also demand that

EX2
j (0) = 1 for all 1 ≤ j ≤ d, and EXj(0)Xj′(0) = 0 if j 6= j′, 1 ≤ j, j′ ≤ d.

(1.4)
This is not an essential restriction, as it is explained in [12].

We want to describe the limit behaviour of some non-linear functionals of
such a random field. To do this first we describe the asymptotic behaviour of
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its spectral measure. To formulate such a result let us introduce the following
notation.

Given a vector valued stationary random field X(p) = (X1(p), . . . , Xd(p)),
p ∈ Zν , with expectation zero and covariance function rj,j′(p) = EXj(0)Xj′(p),
1 ≤ j, j′ ≤ d, p ∈ Zν that satisfies relation (1.3), let us consider its matrix
valued spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν . Take
its rescaled version G(N) = (G

(N)
j,j′ , 1 ≤ j, j′ ≤ d,

G
(N)
j,j′ (A) =

Nα

L(N)
Gj,j′

(

A

N

)

, A ∈ Bν , N = 1, 2, . . . , 1 ≤ j, j′ ≤ d, (1.5)

concentrated on [−Nπ,Nπ)ν for all N = 1, 2, . . . , where Bν denotes the σ-
algebra of the Borel measurable sets on Rν . In the next result we give the
limit of the matrix valued measures G(N), as N → ∞. Since the coordinates of
the matrices G(N) are non-probability measures and their limits are non-finite
measures, we have to introduce the right form of convergence which will be
applied in the limit theorem we shall describe. In paper [12] the so-called vague
convergence of complex measures are defined, (more precisely its definition is
recalled). In this definition also the notion of complex measures with locally
finite measures appear whose definition is explained in Section 4 of this paper.
This notion was introduced, because they are needed in the study of spectral
measures of stationary generalized fields, and we want to work with such objects.
In the presentation of the limit theorem I want to discuss we need the result
of Proposition 1.1 of [12] whose formulation applies the above notions. This
Proposition 1.1 agrees with the following result.

Proposition 1.1. Let G = (Gj,j′) be the matrix valued spectral measure of a
d-dimensional vector valued stationary random field whose covariance function
rj,j′(p) satisfies relation (1.3) with some parameter 0 < α < ν. Then for all

pairs 1 ≤ j, j′ ≤ d the sequence of complex measures G
(N)
j,j′ defined in (1.5) with

the help of the complex measure Gj,j′ tends vaguely to a complex measure G
(0)
j,j′

on Rν with locally finite total variation. These complex measures G
(0)
j,j′ , 1 ≤

j, j′ ≤ d, have the homogeneity property

G
(0)
j,j′(A) = t−αG

(0)
j,j′(tA) for all bounded A ∈ Bν , 1 ≤ j, j′ ≤ d, and t > 0.

(1.6)

The complex measure G
(0)
j,j′ with locally finite variation is determined by the

number 0 < α < ν and the function aj,j′(·) on the unit sphere Sν−1 introduced
in formula (1.3).

There exists a vector valued Gaussian stationary generalized random field

on Rν with that matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, whose

coordinates are the above defined complex measures G
(0)
j,j′ , 1 ≤ j, j′ ≤ d.

In the non-central limit theorem I shall describe the limit of random variables
SN defined by formulas (1.1) and (1.2) with the help of a vector valued station-
ary Gaussian random field whose correlation function satisfies relations (1.3)
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and (1.4) and an appropriate norming constant AN . To give a complete defini-
tion of these random variables we must tell what kind of functions H(x1, . . . , xd)
we apply in their definition. I shall choose functions of the following form in
this definition. H(x1, . . . , xd) depends on a previously fixed constant k, and it
has the form

H(x1, . . . , xd) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd
Hk1

(x1) · · ·Hkd
(xd) (1.7)

with some coefficients ck1,...,kd
, where Hk(·) denotes the k-th Hermite polyno-

mial with leading coefficient 1.
The limit distribution of the above introduced random variable SN is de-

sribed in Theorem 1.2A of [12]. This theorem is written down in the following
Theorem 1.2. The limit in this result is presented by means of a multiple
Wiener–Itô integral with respect to the random spectral measure corresponding

to the matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, which appeared in

Proposition 1.1. Let me remark that because of the homogeneity property (1.6)

of this measure G
(0)
j,j (R

ν) = ∞ for any 1 ≤ j ≤ d. Hence this matrix valued
spectral measure can be defined only as the spectral measure of a generalized
and not as the spectral measure of an ordinary vector valued stationary random
field.

Theorem 1.2. Fix some integer k ≥ 1, and let X(p) = (X1(p), . . . , Xd(p)),
p ∈ Zν , be a vector valued Gaussian stationary random field whose covariance
function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν , satisfies relation (1.3)
with some 0 < α < ν

k and relation (1.4). Let H(x1, . . . , xd) be a function of
the form given in (1.7) with the parameter k we have fixed in the formulation
of this result. Define the random variables Y (p) = H(X1(p), . . . , Xd(p)) for all
p ∈ Zν together with their normalized partial sums

SN =
1

Nν−kα/2L(N)k/2

∑

p∈BN

Y (p),

where the set BN was defined in (1.2). These random variables SN , N =
1, 2, . . . , satisfy the following limit theorem.

Let ZG(0) = (ZG(0),1, . . . , ZG(0),d) be a vector valued random spectral measure

which corresponds to the matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d,

defined in Proposition 1.1 with the help of the matrix valued spectral measure
G = (Gj,j′), corresponding the covariance function rj,j′(p) we are working with.
Then the sum of multiple Wiener–Itô integrals

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫ ν
∏

l=1

ei(x
(l)
1 +···+x

(l)
k

) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

(1.8)

ZG(0),j(1|k1,...,kd)( dx1) . . . ZG(0),j(k|k1,...,kd)( dxk)
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exists. (These Wiener–Itô integrals are defined in Section 5 of this paper.) Here

we use the notation xp = (x
(1)
p , . . . , x

(ν)
p ), p = 1, . . . , k, and define the indices

j(s|k1, . . . , kd), 1 ≤ s ≤ k, as j(s|k1, . . . , kd) = r if
∑s−1

u=1 ku < r ≤ ∑s
u=1 ku,

1 ≤ s ≤ k. (For s = 1 we apply the notation
∑0

u=1 ku = 0 in the definition
of j(1|k1, . . . , kd).) The normalized sums SN converge in distribution to the
random variable S0 defined in (1.8) as N → ∞.

The indexation of the terms ZG(0),j(s|k1,...,kd)( dxs) in formula (1.8) can be
explained in a simpler way. In the first k1 arguments x1, . . . , xk1

we write
ZG(0),1( dxs), 1 ≤ s ≤ k1, in the next k2 terms we write ZG(0),2( dxs), k1 +
1 ≤ s ≤ k1 + k2, and so on. In the last kd terms we write ZG(0),d( dxs),
k1 + · · ·+ kd−1 + 1 ≤ s ≤ k.

Actually a more general limit theorem is also proved in [12], but its proof is
based on the result of Theorem 1.2. It is worth comparing Theorem 1.2 with
its scalar valued version (i.e., with the result in the case d = 1 proved in [5]).

In paper [5] a result similar to Theorem 1.2 is proved in the scalar valued
case. In that result CHk(x), C 6= 0, i.e., the k-th Hermite polynomial mul-
tiplied with a non-zero coefficient C plays the same role as the function H(·)
defined in (1.7) in Theorem 1.2, and the condition kα < ν has to be imposed.
The limit is given by formula (1.8) in the case d = 1 with H(x) = CHk(x).
Let me remark that the Wick polynomials, i.e., the multivariate generalizations
of Hermite polynomials appeared in Theorem 1.2 in a hidden way. (See for
example Section 2 of [9] for the definition of Wick polynomials.) Indeed, the
random variables Y (p) = H(X1(p), . . . , Xd(p)), p ∈ Zν , defined with the help
of the function H(·) introduced in formula (1.7) are Wick polynomials of or-
der k because of the relation (1.4). (See Corollary 2.3 in [9].) This indicates
that the role of Hermite polynomials in results about scalar valued stationary
Gaussian random fields is taken by Wick polynomials in the their vector valued
counterparts. The next results also show such a correspondence.

The limit theorem in [5] remains valid if we replace the function CHk(x)
in it with such a function H(x) whose expansion with respect to the Hermite
polynomials contains only terms Hk′(x) of order k′ ≥ k, and the term Hk(x)
has a non-zero coefficient. The limit is the same as in the case when we take
only the first term const.Hk(x) in the expansion of the function H(x). Similarly,
Theorem 1.2 formulated above in the multivariate case remains valid if such a
random random variable H(X1(0), . . . , Xd(0)) is taken whose expansion with
respect to Wick polynomials starts with a non-zero Wick polynomial of order k,
and kα < ν. The limit does not change if we take only the term of order k of
H(X1(0), . . . , Xd(0)) in this expansion.

Let me finally remark that the Theorem holds only under the condition
kα < ν. In the case kα > ν the central limit theorem holds for SN with the
usual norming constant AN = Nν/2. This follows from a slight generalization
of the (correct) results in Arcones’ paper [1]. In the boundary case kα = ν

the central limit theorem holds again for SN , but in this case the norming con-
stant may have the form AN = NνL′(N) with a slowly varying function L′(N)
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tending to infinity as N → ∞. Let me also remark that the definition of the
limit distribution in Theorem 1.2 given in formula (1.8), is meaningful only for
kα < ν. This formula contains a multiple Wiener–Itô integral, and we have to
check whether this Wiener–Itô integral is meaningful. It is explained at the be-
ginning of Section 5 that the multiple Wiener–Itô integrals are defined only with
such kernel functions that satisfy an integrability condition. (This condition is
formulated in property (b) in the definition of a class of functions Kn,j1,...,jn .)
It can be seen that the Wiener–Itô integral appearing in formula (1.8) is mean-
ingful if kα < ν, because this integrability condition is satisfied in this case. On
the other hand, this integral cannot be defined if kα ≥ ν, because in this case
this integrability condition is violated.

1.1 A more detailed description of the results.

Next I give a more detailed overview about the results of this paper.
First I characterize the distribution of the vector valued Gaussian stationary

random fields X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , with expectation zero. This
is the subject of the second section of this work. Because of the Gaussian and
stationary property of such a random field its distribution is determined by the
correlation function rj,j′(p) = EXj(0)Xj′(p) for all 1 ≤ j, j′ ≤ d and p ∈ Zν .
We are interested in the description of those functions rj,j′(p) that can appear
as the correlation function of a vector valued stationary random field.

In the scalar valued case a well-known result solves this problem. The cor-
relation function r(p) = EX(0)X(p), p ∈ Zν , of a stationary field X(p), p ∈ Zν ,
can be represented in a unique way as the Fourier transform of a spectral mea-
sure, and the spectral measures can be characterized. Namely, we call the finite
(non negative), even measures on the torus [−π, π)ν spectral measures. For any
correlation function r(p) of a stationary field there is a unique spectral measure
µ such that r(p) =

∫

ei(p,x)µ( dx) for all p ∈ Zν , and for all spectral measures µ
there is a (Gaussian) stationary random field whose correlation function equals
the Fourier transform of this spectral measure µ.

In Section 2 we prove a similar result for vector valued stationary random
fields. In the case of a vector valued Gaussian stationary random field X(p) =
(X1(p), . . . , Xd(p)), p ∈ Zν , we have for all pairs of indices (j, j′), 1 ≤ j, j′ ≤ d,
a unique complex measure Gj,j′ on the torus [−π, π)ν with finite total variation
such that rj,j′(p) = EXj(0)Xj′(p) =

∫

ei(p,x)Gj,j′( dx) for all p ∈ Zν . This can
be interpreted so that the correlation function rj,j′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν , is
the Fourier transform of a matrix valued measure (Gj,j′), 1 ≤ j, j′ ≤ d, on the
torus [−π, π)ν . We want to give, similarly to the scalar valued case, a complete
description of those matrix valued measures on the torus [−π, π)ν for which the
correlation function of a vector valued Gaussian stationary random field can be
represented as its Fourier transform. Such matrix valued measures will be called
matrix valued spectral measures.

As I have mentioned, the coordinates of a matrix valued spectral measure
are complex measures with finite total variation. The scalar valued counterpart
of this condition is the condition that the spectral measure of a scalar valued
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stationary random field must be finite. Another important property of a matrix
valued spectral measure is that it must be positive semidefinite. The meaning of
this property is explained before the formulation of Theorem 2.2, and Lemma 2.3
gives a different, equivalent characterization of this property. Let me remark
that in the scalar valued case the spectral measure must be a measure (and
not only a complex measure), and this fact corresponds to the above property
of matrix valued spectral measures. Finally, a matrix valued spectral measure
must be even. This means that its coordinates are even, i.e., for all 1 ≤ j, j′ ≤ d

and measurable sets A on the torus Gj,j′(−A) = Gj,j′(A), where the overline
indicates complex conjugate.

Theorem 2.2 states that the above properties characterize the matrix valued
spectral measures. Let me remark that there are papers (see for example [3], [7]
or [14]) containing the above results, although in a slightly different formulation,
at least in the case ν = 1. Nevertheless, I worked out their proof, since I applied
a different method, which is used also in the later part of the paper.

In Section 3, I introduce the vector valued random spectral measures cor-
responding to a matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d. To do
this first I consider a vector valued stationary Gaussian random field X(p) =
(X1(p), . . . , Xd(p)), p ∈ Zν , with spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, and
show that a vector valued random measure ZG = (ZG1

, . . . , ZGd
) can be defined

on the measurable subsets A ⊂ [−π, π)ν of the torus which have some nice prop-
erties. A random integral can be defined with respect to the coordinates of this
random measure, and the coordinates Xj(p), 1 ≤ j ≤ d, p ∈ Zν , of the random
field X(p) can be expressed as the Fourier transforms of the appropriate coor-
dinate ZGj

of this random measure. More explicitly, Xj(p) =
∫

ei(p,x)ZG,j( dx)
for all p ∈ Zν and 1 ≤ j ≤ d. I remark that the random variables ZG,j(A),
1 ≤ j ≤ d, A ⊂ [−π, π)ν , are complex valued.

I have listed some properties of this random measure (ZG,1, . . . , ZG,d). These
properties determine its distribution, and they depend only on the spectral
measure (Gj.j′), 1 ≤ j, j′ ≤ d, of the underlying random field X(p), p ∈ Zν .
We shall call the vector valued random measures with these properties a vector
valued random spectral measure corresponding to the matrix valued spectral
measure (Gj,j′), 1 ≤ j, j′ ≤ d. We can prove that the Fourier transform of
all vector valued random spectral measures corresponding to a matrix valued
spectral measure can be defined, and it is a vector valued Gaussian stationary
random field with this matrix valued spectral measure.

Besides the above results I also proved some important properties of the
random integrals with respect to a vector valued spectral measure in Section 3.
I characterized those functions which can be integrated with respect to these
random spectral measure, and also described those functions whose integrals
are real valued random variables. In particular, I proved that if a vector valued
Gaussian stationary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , is given,
we fix some parameter 1 ≤ j ≤ d, and take the real Hilbert space consisting of
the closure of finite linear combinations

∑

k ckXj(pk) with real number valued
coefficient ck in the Hilbert space of square integrable random variables, then
each element of this Hilbert space can be expressed as the integral of a function
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on the torus [−π, π)ν with respect to the random spectral measure ZG,j . The
functions taking part in the representation of this Hilbert space also constitute
a real Hilbert space. A more detailed formulation of this result is given in
Lemma 3.2.

It may be worth discussing the relation of the results in Section 3 to their
scalar valued correspondents. The results about the existence of random spec-
tral measures for scalar valued Gaussian stationary random fields give a great
help in proving the results in Section 3. In particular, these results provide the
definition of the random spectral measures ZG,j , and determine their distribu-
tion for all 1 ≤ j ≤ d. The definition of ZG,j , and the properties determining
its distribution depend only on the measure Gj,j . On the other hand, we had
to carry out some additional work to prove those properties of a vector valued
spectral random measure which determine the joint distribution of their coordi-
nates. The non-diagonal elements Gj,j′ with j 6= j′ of the matrix valued spectral
measure (Gj,j′), 1 ≤ j, j′ ≤ d, appear at this point of the investigation.

The fourth section deals with a special subject, and our motivation to study
it demands some explanation. Here we consider vector valued Gaussian station-
ary generalized random fields.

We could have considered the continuous time version of vector valued sta-
tionary random fields where the parameter set is t ∈ Rν and not p ∈ Zν .
Here we did not discuss such models, we have considered instead vector valued
Gaussian stationary generalized random fields. This means a set of random
vectors (X1(ϕ), . . . , Xd(ϕ)) with some nice properties which are indexed by an
appropriately chosen class of functions. The precise definition of this notion
is given in Section 4. We have constructed a large class of Gaussian station-
ary generalized random fields, presented their matrix valued spectral measures,
and constructed the vector valued random spectral measures corresponding to
them. In [9] the notion of Gaussian stationary generalized random fields was
introduced and investigated in the scalar valued case. Some useful results were
proved there. It was shown, with the help of some important results of Laurent
Schwartz about distributions (generalized functions), that in the scalar valued
case the class of Gaussian, stationary generalized random fields constructed in
such a way as it was done in the present paper contains all Gaussian stationary
generalized random fields. (Here I consider two random fields the same if their
finite dimensional distributions agree.) Similarly, it is very likely that also in
the multivariate case all stationary generalized Gaussian random fields can be
constructed by the method described in this paper. But I did not study this
question, because I was interested in a different problem.

Although the theory of generalized random fields is an interesting subject
in itself, I investigated it for a different reason. I was interested in the matrix
valued spectral measures of vector valued Gaussian stationary generalized ran-
dom fields and the vector valued random spectral measures corresponding to
them and not in the Gaussian, stationary generalized random fields which were
needed for their construction. They behave similarly to the analogous objects
corresponding to (non-generalized) Gaussian stationary random fields. We can
work with them in the same way. Nevertheless, there is a difference between
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these new spectral and random spectral measures and their previously defined
counterparts which is very important for us. Namely, the coordinates of a ma-
trix valued spectral measure corresponding to a non-generalized random field
are complex measures with finite total variation, while in the case of generalized
random fields the matrix valued spectral measures need not satisfy this condi-
tion. It is enough to demand that the corresponding matrix valued measures
have locally finite total variation, and the matrix valued spectral measures are
semidefinite matrix valued measures with moderately increasing distribution at
infinity. (The definition of these notions is contained in Section 4.)

The above facts mean that we can work with a much larger class of random
spectral measures after the introduction of Gaussian stationary generalized ran-
dom fields and random spectral measures corresponding to them. This is im-
portant for us, because in the limit theorems we are interested in the limit can
be expressed by means of multiple Wiener–Itô integrals with respect to random
spectral measures constructed with the help of vector valued Gaussian station-
ary generalized random fields. Theorem 1.2 discussed in this introduction is an
example for such a limit theorem.

Sections 2—4 contain the main results about the linear functionals of vector
valued Gaussian stationary random fields. They are also needed in the study of
their non-linear functionals , and this is the subject of Sections 5 and 6. The
results of these sections help us to work out some tools which are useful in the
study of limit theorems with a new type of non-Gaussian limit.

In Section 5 multiple Wiener–Itô integrals are defined with respect to the
coordinates of a vector valued random spectral measure (ZG,1, . . . , ZG,d). We
define for all numbers n = 1, 2, . . . , and parameters j1, . . . , jn such that 1 ≤
jk ≤ d for all 1 ≤ k ≤ n and all functions f ∈ Kn,j1,...,jn , where Kn,j1,...,jn is a
real Hilbert space defined in Section 5, an n-fold Wiener–Itô integral

In(f |j1, . . . , jn) =
∫

f(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn),

and prove some of its basic properties. The definition and proofs are very
similar to the definition and proofs in scalar valued case, only we have to apply
the properties of vector valued random spectral measures.

There is one point where we have a weaker estimate than in the scalar valued
case. We can give an upper bound on the second moment of a multiple Wiener–
Itô integral with the help of the L2 norm of the kernel function of this integral
in the way as it is formulated in formula (5.6), but we can state here only an
inequality and not an equality. The behaviour of Wiener–Itô integrals with
respect to a scalar valued random spectral measure is different. If we integrate
in this case a symmetric function, and we may restrict our attention to such
integrals, then we have equality in the corresponding relation. This weaker
form of the estimate (5.6) has the consequence that in certain problems we can
get only weaker results for Wiener–Itô integrals with respect to the coordinates
of a vector valued random spectral measure than for Wiener–Itô integrals with
respect to scalar valued random spectral measures. But this will cause no serious
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problem in our study about multiple Wiener–Itô integrals with respect to vector
valued random spectral measures.

Multiple Wiener–Itô integrals were introduced in order to express a large
class of random variables with their help. More precisely, we are interested in
the following problem. Let us have a vector valued Gaussian stationary random
field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν . Their elements can be expressed
as the Fourier transforms of a vector valued random spectral measure ZG =
(ZG,1, . . . , ZG,d). Let us consider the real Hilbert space H defined in the second
paragraph of Section 5 with the help of this vector valued stationary Gaussian
random field. We would like to express the elements of this Hilbert space in the
form of a sum of multiple Wiener–Itô integrals with respect to the coordinates of
the vector valued spectral measure ZG. This problem together with the study of
a theory useful in the investigation of limit theorems for non-linear functionals
of vector valued stationary Gaussian random fields will be the subject of the
second part of this work [11]. But to carry out this program we still need the
proof of an important result about multiple Wiener–Itô integrals discussed in
Section 6 of this work.

In Section 6 I formulate and prove the multivariate version of a classical
result. I describe the product of two multiple Wiener–Itô integrals as the sum
of multiple Wiener–Itô integrals with respect to the coordinates of a vector
valued random spectral measure. The formulation and proof of this result is
similar to that of the corresponding result in the scalar valued case. In this
result we define the kernel functions of the Wiener–Itô integrals appearing in
the sum expressing the product of two Wiener–Itô integrals with the help of
some diagrams. Hence this result got the name diagram formula. I wrote down
the formulation of the diagram formula in the case of vector valued random
spectral measures in detail. On the other hand, I gave only a sketch of its proof,
because it is actually an adaptation of the original proof with a rather unpleasant
notation. I concentrated on the points which explain why the diagram formula
has such a form as we claim. Besides, I tried to explain those steps of the
proof where we have to apply some new ideas. I hope that the interested reader
can reconstruct the proof on the basis of these explanations by looking at the
original proof.

Section 6 also contains a corollary of the diagram formula, where I formulate
this result in a special case. I formulated this corollary, because in this work we
need only this corollary of the diagram formula.

2 Spectral representation of vector valued sta-

tionary random fields

Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , where Zν denotes the lattice of points
with integer coordinates in the ν-dimensional Euclidean space Rν , be a d-
dimensional real valued Gaussian stationary random field with expected value
EX(p) = 0, p ∈ Zν . Let us first characterize the covariance matrices R(p) =
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(rj,j′(p)), 1 ≤ j, j′ ≤ d, p ∈ Zν , of this d-dimensional stationary random field,
where rj,j′(p) = EXj(0)Xj′(p) = EXj(m)Xj′(p+m), 1 ≤ j, j′ ≤ d, p,m ∈ Zν .

In the case d = 1 we can characterize the function R(p) = EX(0)X(p), (in
this case j = j′ = 1, so we can omit these indices) as the Fourier transform of an
even, finite (and positive) measure G on the torus [−π, π)ν , called the spectral
measure. We are looking for the vector valued version of this result. Before
discussing this problem I recall the definition of the torus [−π, π)ν .

The points of the torus [−π, π)ν are those points x = (x1, . . . , xν) ∈ Rν for
which−π ≤ xj ≤ π for all 1 ≤ j ≤ ν. But if a coordinate of x in this set equals π,
then we consider this point the same if we replace this coordinate by −π. In such
a way we can identify all points of this set by a point of the set [−π, π)ν ⊂ Rν .
We define the topology on the torus on [−π, π)ν as the topology induced by

the metric ρ(x, y) =
ν
∑

j=1

(|xj − yj | mod 2π) if x = (x1, . . . , xν) ∈ [−π, π)ν and

y = (y1, . . . , yν) ∈ [−π, π)ν . These properties of the torus [−π, π)ν must be
taken into account when we speak of the set −A = {−x : x ∈ A} for a set
A ⊂ [−π, π)ν or of a continuous function on the torus [−π, π)ν .

Later we shall speak also about the torus [−A,A)ν for arbitrary A > 0. This
is defined in the same way, only the number π is replaced by A in the definition.

It is natural to expect that there is a natural definition of even positive
semidefinite matrix valued measures also in the d-dimensional case, d ≥ 2,
and this takes the role of the spectral measure in the vector valued case. To
define this notion first I prove a lemma. Before formulating it I recall the
definition of a complex measure with finite total variation, since this notion
appears in the formulation of the lemma. We say that a complex measure on a
measurable space has finite total variation if both its real and imaginary part can
be represented as the difference of two finite measures. I also recall Bochner’s
theorem, more precisely the version of this result that we shall apply in the
proof.

Bochner’s theorem. Let f(p), p ∈ Zν , be a positive definite function on

Zν , i.e., such a function for which the inequality
N
∑

j=1

N
∑

j′=1

zj z̄j′f(pj − pj′) ≥ 0

holds for any set of points pj ∈ Zν , and complex numbers zj, 1 ≤ j ≤ N , with
some number N ≥ 1. Then there exists a unique finite measure G on the torus
[−π, π)ν such that

f(p) =

∫

[−π,π)ν
ei(p,x)G( dx) for all p ∈ Zν .

If the function f is real valued, then the measure G is even, i.e., G(−A) = G(A)
for all A ⊂ [−π, π)ν .

Next I formulate the following lemma.

Lemma 2.1. Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , be a d-dimensional
stationary Gaussian random field with expectation zero. Then for all pairs 1 ≤
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j, j′ ≤ d the correlation function rj,j′(p) = EXj(0)Xj′(p), p ∈ Zν , can be written
in the form

rj,j′(p) = EXj(0)Xj′(p) = EXj(m)Xj′(m+ p) =

∫

[−π,π)ν
ei(p,x)Gj,j′( dx)

(2.1)
with a complex measure Gj,j′ on the torus [−π, π)ν with finite total variation.
The function rj,j′(p), p ∈ Zν , uniquely determines this complex measure Gj,j′

with finite total variation. It is even, i.e., Gj,j′(−A) = Gj,j′(A) for all mea-

surable sets A ⊂ [−π, π)ν . The relation Gj′,j(A) = Gj,j′(A) also holds for all
1 ≤ j, j′ ≤ d and A ⊂ [−π, π)ν .

Remark. Let us remark that given a d-dimensional stationary random field
with expectation zero, there exist also such d-dimensional stationary random
fields with expectation zero which are Gaussian and have the same correlation
function. As a consequence, in Lemma 2.1 we could drop the condition that the
stationary random field we are considering is Gaussian. The same can be told
about the other results of Section 2. I imposed this condition, because later, as
we work with random spectral measures and random integrals with respect to
them the Gaussian property of the underlying random field is important.

Proof of Lemma 2.1. By Bochner’s theorem we may write

rj,j(p) =

∫

[−π,π)ν
ei(p,x)Gj,j( dx), p ∈ Zν ,

for all 1 ≤ j ≤ d with some finite measure Gj,j on [−π, π)ν . We find a good
representation for rj,j′(n) if j 6= j′ with the help of following argument.

The function

qj,j′(p) = E[Xj(0) + iXj′(0)][Xj(p)− iXj′(p)]

= E[Xj(0) + iXj′(0)][Xj(p) + iXj′(p)],

p ∈ Zν , is positive definite, hence it can be written in the form

E[Xj(0) + iXj′(0)][Xj(p)− iXj′(p)] =

∫

[−π,π)ν
ei(p,x)Hj,j′( dx)

with some finite measure Hj,j′ on [−π, π)ν . Similarly,

E[Xj(0) +Xj′(0)][Xj(p) +Xj′(p)] =

∫

−[π,π)ν
ei(p,x)Kj,j′( dx)

15



with some finite measure Kj,j′ on [−π, π)ν . Hence

EXj(0)Xj′(p) =
i

2
E[Xj(0) + iXj′(0)][Xj(p)− iXj′(p)]

+
1

2
E[Xj(0) +Xj′(0)][Xj(p) +Xj′(p)]

− (1 + i)

2
[EXj(0)Xj(p) + EXj′(0)Xj′(p)]

=

∫

[−π,π)ν
ei(p,x)Gj,j′( dx)

with Gj,j′( dx) =
1
2 [iHj,j′( dx) +Kj,j′( dx)]− (1+i)

2 [Gj,j( dx) +Gj′,j′( dx)].
In such a way we have found complex measures Gj,j′ with finite total vari-

ation which satisfy relation (2.1). Since this relation holds for all p ∈ Zν , the
function rj,j′(p), p ∈ Zν , determines the measure Gj,j′ uniquely.

Since rj,j′(p) is real valued, i.e., rj,j′(p) = rj,j′(p), it can be written both in
the form

rj,j′(p) =

∫

[−π,π)ν
ei(p,x)Gj,j′( dx)

and

rj,j′(p) =

∫

[−π,π)ν
e−i(p,x)Gj,j′( dx) =

∫

[−π,π)ν
ei(p,x)Gj,j′(− dx).

Comparing these relations we get that Gj,j′(A) = Gj,j′(−A) for all measur-
able sets A ⊂ [−π, π)ν . Similarly, the relation rj′,j(p) = rj,j′(−p) implies

that Gj′,j(A) = Gj,j′(−A) = Gj,j′(A) for all measurable sets A ⊂ [−π, π)ν .
Lemma 2.1 is proved.

Since all complex measures Gj,j′ , 1 ≤ j, j′ ≤ d, have finite total variation
by Lemma 2.1, there is a finite measure µ on the torus [−π, π)ν such that all
these complex measures Gj,j′ are absolutely continuous with respect to µ, and

the absolute value of the Radon–Nikodym derivatives gj,j′(x) =
dGj,j′

dµ (x) is
integrable with respect to µ. The properties of the measures Gj,j′ proved in
Lemma 2.1 imply that the d×d matrix (gj,j′(x)), 1 ≤ j, j′ ≤ d, is Hermitian for
almost all x ∈ [−π, π)ν with respect to the measure µ. We shall call the matrix
valued measure (Gj,j′(A)), A ⊂ [−π, π)ν , positive semidefinite if the matrix
(gj,j′(x)), 1 ≤ j, j′ ≤ d, is positive semidefinite for almost all x ∈ [−π, π)ν with
respect to µ. More precisely, we introduce the following definition.

Definition of positive semidefinite matrix valued, even measures on

the torus. Let us have some complex measures Gj,j′ , 1 ≤ j, j′ ≤ d, with fi-
nite total variation on the σ-algebra of the Borel measurable sets of the torus
[−π, π)ν . Let us consider the matrix valued measure (Gj,j′), 1 ≤ j, j′ ≤ d. We
call this matrix valued measure positive semidefinite if there exists a (finite) pos-
itive measure µ on [−π, π)ν such that all complex measures Gj,j′ , 1 ≤ j, j′ ≤ d,
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are absolutely continuous with respect to it, and their Radon–Nikodym deriva-

tives gj,j′(x) =
dGj,j′

dµ (x), 1 ≤ j, j′ ≤ d, constitute a positive semidefinite matrix

(gj,j′(x)), 1 ≤ j, j′ ≤ d for almost all x ∈ Zν with respect to the measure µ. We
call this positive semidefinite matrix valued measure (Gj,j′), 1 ≤ j, j′ ≤ d, on

the torus even if Gj,j′(−A) = Gj,j′(A) for all measurable sets A ⊂ [−π, π)ν and
1 ≤ j, j′ ≤ d.

Later we shall speak also of positive semidefinite matrix valued even measures
on a torus [−A,A)ν for arbitrary A > 0 which is defined in the same way,
only the complex measures Gj,j′ and the dominating measure µ are defined on
[−A,A)ν .
Remark. Here I am speaking about measures with finite total variation, although
such (complex) measures are called generally bounded measures in the literature.
Actually, we know by Stone’s theorem that any bounded signed measure can be
represented as the difference of two bounded measures (with disjoint support).
Nevertheless, I shall remain at this name, because actually we prove directly the
finite total variation of the measures we shall work with in this paper. Besides,
(in Section 4) I shall define complex measures on Rν with locally finite total
variation, and I prefer such a name which refers to the similarity of these objects.
(The complex measures with locally finite total variation are not measures in
the original meaning of this word, only their restrictions to compact sets are
complex measures.)

The next theorem about the characterization of the correlation function of
a d-dimensional stationary Gaussian random field with zero expectation states
that the correlation functions rj,j′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν , can be given in the
form (2.1) with the help of a positive semidefinite matrix valued, even measure
(Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν . Moreover, it will be shown that
we have somewhat more freedom when we choose a dominating measure µ in
the definition of positive semidefinite matrix valued measures on the torus. If
the coordinates of a matrix valued measure (Gj,j′), 1 ≤ j, k ≤ d, are complex
measures with finite total variation, and this matrix valued measure satisfies
the definition of the positive semidefinite property with some measure µ, then
this measure µ can be replaced in the definition by any such finite measure
on the torus with respect to which the complex measures Gj,j′ are absolutely
continuous. More explicitly, the following result holds.

Theorem 2.2. The covariance matrices of a d-dimensional stationary random
field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , with expectation zero can be given
in the following form. For all 1 ≤ j, j′ ≤ d there exists a complex measure
Gj,j′ with finite total variation on the ν-dimensional torus [−π, π)ν in such a
way that for all 1 ≤ j, j′ ≤ d the correlation function rj,j′(p) = EXj(0)Xj′(p),
p ∈ Zν , is given by formula (2.1) with this complex measure Gj,j′ . The d × d

matrix G = (Gj,j′), 1 ≤ j, j′ ≤ d, whose coordinates are the complex measures
Gj,j′ has the following properties. This matrix is Hermitian, i.e., the measures

Gj,j′ satisfy the relation Gj′,j(A) = Gj,j′(A) for all pairs of indices 1 ≤ j, j′ ≤
d and measurable sets A ⊂ [−π, π)ν , and the measures Gj,j′ are even, i.e.,
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Gj,j′(−A) = Gj,j′(A) for all 1 ≤ j, j′ ≤ d and A ⊂ [−π, π)ν . For all pairs (j, j′),
1 ≤ j, j′ ≤ d, the function rj,j′(p), p ∈ Zν , defined by formula (2.1) uniquely
determines the complex measure Gj,j′ with finite total variation. Besides, Gj,j′

has the following property.
Let us take a finite measure µ on the torus [−π, π)ν such that all complex

measures Gj,j′ are absolutely continuous with respect to it (because of the finite
total variation of the complex measures Gj,j′ there exist such measures), and

put gj,j′(x) = gj,j′,µ(x) =
dGj,j′

dµ (x). Then the matrix (gj,j′(x)), 1 ≤ j, j′ ≤ d, is

positive semidefinite for almost all x ∈ [−π, π)ν with respect to the measure µ.
Conversely, if a class of complex measures Gj,j′ on [−π, π)ν , 1 ≤ j, j′ ≤ d,

have finite total variation, and (Gj,j′), 1 ≤ j, j′ ≤ d, is a positive semidefinite
matrix valued, even measure on the torus, then there exists a d-dimensional
stationary Gaussian random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , with
expectation EXj(p) = 0 and covariance EXj(p)Xj′(q) = rj,j′(p − q), where
the function rj,j′(p) is defined in (2.1) with the complex measure Gj,j′ for all
parameters 1 ≤ j, j′ ≤ d and p, q ∈ Zν .

Remark. We shall call the positive semidefinite matrix valued, even measure
(Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν with coordinates Gj,j′ satisfying
relation (2.1) the matrix valued spectral measure of the correlation function
rj,j′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν . In general, we shall call an arbitrary positive
semidefinite matrix valued, even measure on the torus [−π, π)ν a matrix valued
spectral measure on the torus [−π, π)ν . (More generally, later we shall call for
any A > 0 a positive semidefinite matrix valued, even measure on the torus
[−A,A)ν a matrix valued spectral measure on this torus.) We have the right for
such a terminology, since by Theorem 2.2 for an arbitrary positive semidefinite
matrix valued, even measure on the torus [−π, π)ν there exists a vector valued
stationary Gaussian random field on Zν such that this positive semidefinite
matrix valued, even measure is the spectral measure of its correlation function.

Proof of Theorem 2.2. The statements formulated in the first paragraph of
Theorem 2.2 follow from Lemma 2.1. Next we prove that the matrix (gj,j′(x)),
1 ≤ j, j′ ≤ d, whose elements are defined as the Radon–Nikodym derivatives of
the complex measures Gj,j′ with respect to a measure µ satisfying the conditions
of Theorem 2.2 is positive semidefinite for µ almost all x.

We prove this by first showing with the help of Weierstrass’ second approx-
imation theorem that

∫

[−π,π)ν
v(x)g(x)v∗(x)µ( dx) ≥ 0 (2.2)

for any continuous d-dimensional vector valued function
v(x) = (v1(x), . . . , vd(x)) on the ν-dimensional torus [−π, π)ν , where g(x) de-
notes the d× d matrix (gj,j′(x)), 1 ≤ j, j′ ≤ d, and v∗(x) is the conjugate of the
vector v(x).

To prove (2.2) let us first observe that by Weierstrass’ second approximation
theorem for all ε > 0 there exists a number N = N(ε) and d trigonometrical
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polynomials of order N

vN,j(x) =
∑

s=(s1,...,sν)
−N≤sk<N, 1≤k≤ν

aj,s1,...,sνe
i(s,x), 1 ≤ j ≤ d, x ∈ [−π, π)ν

for which
sup

x∈[−π,π)ν
|vN,j(x)− vj(x)| ≤ ε for all 1 ≤ j ≤ d.

Let us also define the random vector YN = (YN,1, . . . , YN,d) with coordinates

YN,j =
∑

s=(s1,...,sν)
−N≤sk<N, 1≤k≤ν

aj,s1,...,sνXj(s), 1 ≤ j ≤ d,

Then we have because of the relation EXj(s)Xj′(s
′) =

∫

ei(s−s′,x)gj,j′(x)µ( dx)

0 ≤ E





d
∑

j=1

YN,j









d
∑

j=1

YN,j



 =
d
∑

j=1

d
∑

j′=1

∫

[−π,π)ν
gj,j′(x)vN,j(x)vN,j′(x)µ( dx).

Hence
∫

[−π,π)ν
vN (x)g(x)v∗N (x)µ( dx) ≥ 0,

and we get relation (2.2) from it with the help of the limiting procedure N → ∞.
Let us choose a vector a = (a1, . . . , ad) ∈ Rd and a non-negative continuous

function u(x) on the torus [−π, π)ν . Let us apply formula (2.2) with the choice
of the function v(x) = (a1

√

u(x), . . . , ad
√

u(x)). With this choice formula (2.2)
yields that

0 ≤
∫

[−π,π)ν
v(x)g(x)v∗(x)µ( dx) =

∫

[−π,π)

u(x)ha(x)µ( dx)

with the function ha(x) = ag(x)a∗. Since this inequality holds for all non-
negative continuous functions this implies that ha(x) ≥ 0 for almost all x with
respect to the measure µ. Moreover, since ha(x) = ag(x)a∗ is a continuous
function of the parameter a for a fixed number x ∈ [−π, π)ν this also implies
that g(x) is a positive semidefinite matrix for almost all x with respect to the
measure µ. We have proved that the covariance matrix of a vector valued
stationary field has the properties stated in Theorem 2.2.

Next I show that if we have a class of complex measures Gj,j′ with finite total
variation such that (Gj,j′) is a positive semidefinite matrix valued even measure
on the torus, and the functions rj,j′(p), p ∈ Zν , are defined by formula (2.1)
with these complex measures Gj,j′ , then there exists a vector valued stationary
Gaussian field X(p) = (X1(p), . . . , Xd(p)) with expectation zero and covariance
function EXj(0)Xj′(p) = rj,j′(p).

First I show that for all N ≥ 1 there is a set of Gaussian random vectors
X(p) = (X1(p), . . . , Xd(p)), with parameters p = (p1, . . . , pν), −N ≤ pj ≤ N
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for all j = 1, . . . , d, such that EXj(p)Xj′(q) = rj,j′(p − q)) for all 1 ≤ j, j′ ≤ d

and p = (p1, . . . , pν), q = (q1, . . . , qν) with −N ≤ ps, qs ≤ N , 1 ≤ s ≤ ν.
Let us observe that the covariances rj,j′(p) defined by (2.1) are real-valued,

since Gj,j′(A) = Gj,j′(−A). To show that there exists a set of Gaussian random
vectors with the desired covariance we have to check that the covariance matrix
determined by the coordinates of these random vectors is positive semidefinite.
This means that for all sets of complex numbers

AN = {aj,p = aj,p1,...,pν
: 1 ≤ j ≤ d, −N ≤ ps ≤ N, for all 1 ≤ s ≤ ν}

I(AN ) =

d
∑

j=1

d
∑

j′=1

∑

p=(p1,...,pν)
−N≤ps≤N, 1≤s≤ν

∑

q=(q1,...,qν)
−N≤qs≤N, 1≤s≤ν

aj,paj′,qrj,j′(p− q) ≥ 0.

This inequality holds since

I(AN ) =

∫ d
∑

j=1

d
∑

j′=1









∑

p=(p1,...,pν)
−N≤ps≤N, 1≤s≤ν

aj,pe
i(p,x)









gj,j′(x)









∑

p=(p1,...,pν)
−N≤ps≤N, 1≤s≤ν

aj′,pei(p,x)









µ( dx)

=

∫





d
∑

j=1

d
∑

j′=1

bj(x)gj,j′(x)bj′(x)



µ( dx) ≥ 0,

where bj(x) =
∑

p=(p1,...,pν)
−N≤ps≤N, 1≤s≤ν

aj,pe
i(p,x). This expression is really non-negative,

since the matrix gj,j′(x) is positive semidefinite for µ-almost all x, and this im-
plies that the integrand at the right-hand side of this expression is non-negative
for µ-almost all x.

Since the distribution of the above sets of Gaussian random vectors are
consistent for different parameters N it follows from Kolmogorov’s existence
theorem for random processes with consistent finite distributions that there
exists a Gaussian random field X(p), p ∈ Zν , with EZp = 0, EXj(p)Xj′(q) =
rj,j′(p − q), where rj,j′(p) is defined by formula (2.1) with our matrix valued
spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d. In such a way we constructed a
stationary Gaussian random field with the desired properties. Theorem 2.2 is
proved.

In the next lemma I give a different characterization of positive semidefinite
matrix valued, even measures on the torus [−π, π)ν .
Lemma 2.3. Let us have a class of complex measures Gj,j′ , 1 ≤ j, j′ ≤ d,
with finite total variation on the torus [−π, π)ν . Let us define with their help
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the following σ-additive matrix valued function on the measurable subsets of the
torus [−π, π)ν . Define for all measurable sets A ⊂ [−π, π)ν the d × d matrix
G(A) = (Gj,j′(A)), 1 ≤ j, j′ ≤ d. This matrix valued function is a positive
semidefinite matrix valued, even measure on the torus [−π, π)ν if and only if
the matrix (Gj,j′(A)), 1 ≤ j, j′ ≤ d, is positive semidefinite, and Gj,j′(−A) =
Gj,j′(A) for all measurable sets A ⊂ [−π, π)ν and 1 ≤ j, j′ ≤ d.

Proof of Lemma 2.3. It is clear that if (Gj,j′) is a positive semidefinite matrix
valued, even measure, then the matrix (Gj,j′(A)) with

Gj,j′(A) =

∫

A

gj,j′(x)µ( dx), 1 ≤ j, j′ ≤ d,

is a positive semidefinite matrix, and Gj,j′(−A) = Gj,j′(A) for all measurable
sets A ⊂ [−π, π)ν and 1 ≤ j, j′ ≤ d.

On the other hand, it is not difficult to see that if the above properties hold,

then
d
∑

j=1

d
∑

j′=1

∫

vj(x)vj′(x)Gj,j′( dx) ≥ 0 for all vectors v(x) = (v1(x), . . . , vd(x)),

where vj(·), 1 ≤ j ≤ d, is a continuous function on the torus [−π, π)ν . If µ is a
finite measure on [−π, π)ν such that all complex measures Gj,j′ , 1 ≤ j, j′ ≤ d,
are absolutely continuous with respect to it with Radon–Nikodym derivative
gj,j′(x), and we denote the matrix (gj,j′(x)), 1 ≤ j, j′ ≤ d, by g(x), then the
above inequality can be rewritten in the form

∫

v(x)g(x)v∗(x)µ( dx) ≥ 0. In
the proof of Theorem 2.2 we have seen that this implies that g(x) is a positive
semidefinite matrix for µ almost all x ∈ [−π, π)ν . Lemma 2.3 is proved.

Let me also remark that the proof of Lemma 2.3 also implies that if the
definition of positive semidefinite matrix valued, even measures holds with some
finite measure µ on the torus with the property that each complex measure Gj,j′ ,
1 ≤ j, j′ ≤ d, is absolutely continuous with respect to it, then the conditions
of this definition also hold with any measure µ on the torus with the same
properties.

Given a positive semidefinite matrix valued even measure G = (Gj,j′), 1 ≤
j, j′ ≤ d, on the torus [−π, π)ν , there is a natural candidate for the choice
of the measure µ on the torus [−π, π)ν with respect to which all measures
Gj,j′ , 1 ≤ j, j′ ≤ d, are absolute continuous. We shall prove an estimate in

formula (3.2) which implies that the measure µ =
∑d

j=1Gj,j , i.e., the trace of
the matrix valued measure G has this property. Later this measure will be our
choice for the measure µ.

Let me remark that the proof of Lemma 2.3 yields another characterization of
positive semidefinite matrix valued measures on the torus. I present it, although
I shall not use it later.

A matrix valued measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, on the torus such that

Gj,j′(A) = Gj′,j(A) for all 1 ≤ j, j′ ≤ d and measurable sets A ⊂ [−π, π)ν is
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positive semidefinite if and only if

d
∑

j=1

d
∑

j′=1

∫

[−π,π)ν
uj(x)uj′(x)Gj,j′( dx) ≥ 0

for all vectors u(x) = (u1(x), . . . , ud(x)) whose coordinates are continuous func-
tions on the torus [−π, π)ν .

3 Random spectral measures in the multi-di-

mensional case

If X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , is a d-dimensional stationary Gaussian
random field with expectation zero, then its distribution is determined by its
correlation functions rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Zν . In The-
orem 2.2 we described this correlation function as the Fourier transform of a
matrix valued spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d. In the case of scalar
valued stationary random fields this result has a continuation. A so-called ran-
dom spectral measure ZG can be constructed, and the elements of the stationary
random field can be represented as an appropriate random integral with respect
to it. This result can be interpreted so that the elements of a scalar valued sta-
tionary random field can be represented as the Fourier transforms of a random
spectral measure. We want to find the multi-dimensional version of this result.

The results about scalar valued stationary random fields also help in the
study of vector valued stationary random fields. Indeed, since the j-th coor-
dinates Xj(p), of the random vectors X(p), p ∈ Zν , define a scalar valued
stationary random field we can apply for them the results known in the scalar
valued case. This enables us to construct such a random spectral measure ZG.j

for all 1 ≤ j ≤ d for which the identity Xj(p) =
∫

[−π,π)ν
ei(p,x)ZG,j( dx) holds

for all p ∈ Zν . The distribution of the random spectral measure ZG,j depends
on the coordinate Gj,j of the matrix valued spectral measure G, which is the
spectral measure of the stationary random field Xj(p), p ∈ Zν . For a fixed
number 1 ≤ j ≤ d the properties of the random spectral measure ZG,j and
the definition of the random integral with respect to it is worked out in the
literature. I shall refer to my lecture notes [9], where I described this theory.

Nevertheless, the results obtained in such a way are not sufficient for us.
They describe the distribution of the random spectral measure ZG,j for each
1 ≤ j ≤ d, but we need some additional results about their joint distribution.
To get them I recall the results in [9] which led to the construction of the random
spectral measures ZG,j , and then I extend them in order to get the results we
need to describe their joint distribution.

I explain how we define simultaneously all random spectral measures ZG,j ,
1 ≤ j ≤ d, by recalling the method of [9] with some necessary modifications in
the notation to adapt this method to our case.

We construct the random spectral measure ZG,j for all 1 ≤ j ≤ d in the
following way. First we introduce two Hilbert spaces Kc

1,j and Hc
1,j , and define
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an appropriate norm-preserving invertible linear transformation Tj from Kc
1,j to

Hc
1,j . (Here, and in the subsequent discussion I apply the superscript c in the

notation to emphasize that we are working in a complex, and not in a real Hilbert
space.) The Hilbert space Kc

1,j consists of those complex valued functions u(x)

on the torus [−π, π)ν for which
∫

[−π,π)ν
|u(x)|2Gj,j( dx) < ∞, and the norm

is defined in this space by the formula ‖u‖20,j =
∫

[−π,π)ν
|u(x)|2Gj,j( dx). The

Hilbert space Hc
1,j is defined as the closure of the linear space consisting of

the linear combinations
∑

cps
Xj(ps) with some (complex valued) coefficients

cps
and parameters ps ∈ Zν in the Hilbert space Hc. The Hilbert space Hc

consists of the complex valued random variables with finite second moment,
measurable with respect to the σ-algebra generated by the random variables
Xj(p), 1 ≤ j ≤ d, p ∈ Zν , and the norm ‖ · ‖1,j in it is determined by the
scalar product defined by the formula 〈ξ, η〉 = Eξη̄, ξ, η ∈ Hc. First we define
the transformation Tj only for finite trigonometrical sums in Kc

1,j . We define

it by the formula Tj(
∑

cps
ei(ps,x)) =

∑

cps
Xj(ps). We showed in [9] that we

have defined in such a way a norm-preserving linear transformation from an
everywhere dense subspace of Kc

1,j to an everywhere dense subspace of Hc
1,j .

This can be extended to a norm-preserving invertible linear transformation Tj
from Kc

1,j to Hc
1,j in a unique way. We define the random spectral measure

ZG,j(A) for a measurable set A ⊂ [−π, π)ν by the formula ZG,j(A) = Tj(IA(·)),
where IA(·) denotes the indicator function of the set A.

It follows from the results of [9] that for any 1 ≤ j ≤ d the measure Gj,j

determines the distribution of the random spectral measure ZG,j , (i.e., the joint
distribution of the random variables ZG,j(A1), . . . ZG,j(AN ) for all N ≥ 1 and
measurable sets Ak ⊂ [−π, π)ν , 1 ≤ k ≤ N). Next we shall study the joint
distribution of the random fields ZG,j for all 1 ≤ j ≤ d, i.e., the joint distribution
of the random variables ZG,j(A1), . . . ZG,j(AN ) for all N ≥ 1, measurable sets
Ak ⊂ [−π, π)ν , 1 ≤ k ≤ N and 1 ≤ j ≤ d. In particular, we shall show that the
joint distribution of the random fields ZG,j , 1 ≤ j ≤ d, are determined by the
matrix valued spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d. The joint distribution
of these random fields are determined by the matrix valued measure G, and not
only by their diagonal elements Gj,j , 1 ≤ j ≤ d.

To investigate the joint behaviour of the random spectral measures ZG,j ,
1 ≤ j ≤ d, first we define two Hilbert spaces Kc

1 and Hc
1 together with a norm-

preserving and invertible transformation between them. The elements of the
Hilbert space Kc

1 are the vectors u = (u1(x), . . . , ud(x)) with uj(x) ∈ Kc
1,j ,

1 ≤ j ≤ d. To define the (semi)-norm in Kc
1 we introduce a positive semidefinite

bilinear form 〈·, ·〉0 on it. To make some subsequent discussions simpler I make
the following convention in the rest of the paper. Given a positive semidefinite
matrix valued measure (Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν , I fix a
finite and even measure µ on [−π, π)ν such that all complex measures Gj,j′ are
absolutely continuous with respect to it, and I denote by gj,j′(x) their Radon–
Nikodym derivative with respect to µ. With the help of this notation we define
〈·, ·〉0 in the following way. If u(x) = (u1(x), . . . , ud(x)) ∈ Kc

1 and v(x) =
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(v1(x), . . . , vd(x)) ∈ Kc
1, then

〈u(x), v(x)〉0 =
d
∑

j=1

d
∑

j′=1

∫

uj(x)vj′(x)Gj,j′( dx) (3.1)

=

d
∑

j=1

d
∑

j′=1

∫

gj,j′(x)uj(x)vj′(x)µ( dx)

=

∫

[−π,π)ν
u(x)g(x)v(x)∗µ( dx)

with the matrix g(x) = (gj,j′(x)), 1 ≤ j, j′ ≤ d, where v∗(x) denotes the column

vector whose elements are the functions vk(x), 1 ≤ k ≤ d.
To show that the integral in the definition of 〈u(x), v(x)〉0 is convergent let

us observe that

|gj,j′(x)|2 ≤ gj,j(x)gj′,j′(x) for almost all x with respect to the measure µ
(3.2)

for all 1 ≤ j, j′ ≤ d, because g(x) is a positive semidefinite matrix for almost
all x. This fact together with the Schwarz inequality imply that
∣

∣

∣

∣

∣

∫

[−π,π)ν
uj(x)gj,j′(x)vj′(x)µ( dx)

∣

∣

∣

∣

∣

≤
∫

[−π,π)ν
|uj(x)|

√

gj,j(x)gj′,j′(x)|vj′(x)|µ( dx)

≤
(

∫

[−π,π)ν
|uj(x)|2gj,j(x)µ( dx)

)1/2(
∫

[−π,π)ν
|vj′(x)|2gj′,j′(x)µ( dx)

)1/2

<∞

for all pairs 1 ≤ j, j′ ≤ d and uj ∈ Kc
1,j and vj′ ∈ Kc

1,k. This implies that the
integral in (3.1) is finite. Moreover, the last inequality implies that

〈u(x), u(x)〉0 ≤





d
∑

j=1

(

∫

[−π,π)ν
|uj(x)|2Gj,j( dx)

)1/2




2

≤ d

d
∑

j=1

∫

[−π,π)ν
|uj(x)|2Gj,j( dx) = d

d
∑

j=1

‖uj‖20,j (3.3)

for all u(x) = (u1(x), . . . , ud(x)) ∈ Kc
1.

Observe that 〈u(x), u(x)〉0 ≥ 0, because g(x) is a positive semidefinite ma-
trix, which implies that u(x)g(x)u∗(x) ≥ 0 for almost all x with respect to the
measure µ. In such a way we can define the norm ‖ · ‖0 in Kc

1 by the formula
‖u‖0 = 〈u(x), u(x)〉0. We identify two elements u and v in Kc

1 if ‖u− v‖0 = 0.
Next we define the Hilbert space Hc

1 with the norm ‖·‖1 on it. The elements
of Hc

1 are the vectors ξ = (ξ1, . . . , ξd), where ξj ∈ Hc
1,j , 1 ≤ j ≤ d, and we define
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the norm on it by the formula ‖ξ‖21 = E
∣

∣

∣

∑d
j=1 ξj

∣

∣

∣

2

if ξ = (ξ1, . . . , ξd) ∈ Hc
1.

It is the norm induced by the scalar product 〈ξ, η〉1 = E
(

∑d
j=1 ξj

)(

∑d
j=1 ηj

)

for ξ = (ξ1, . . . , ξd) ∈ Hc
1 and η = (η1, . . . , ηd) ∈ Hc

1. We identify two elements
ξ ∈ Hc

1 and η ∈ Hc
1 if ‖ξ − η‖1 = 0.

Observe that

‖ξ‖21 = E





d
∑

j=1

ξj









d
∑

j′=1

ξj′



 ≤
d
∑

j=1

d
∑

j′=1

(E|ξj |2)1/2(E|ξj′ |2)1/2 (3.4)

=





d
∑

j=1

(E|ξj |2)1/2








d
∑

j′=1

(E|ξ|2j′)1/2


 ≤ d

d
∑

j=1

E|ξ|2j = d

k
∑

j=1

‖ξj‖21,j

for a vector ξ = (ξ1, . . . , ξd) ∈ Hc
1

We define the operator T mapping from Kc
1 to Hc

1 by the formula

Tu = T (u1, . . . , ud) = (T1u1, . . . , Tdud)

for u = (u1, . . . , ud), uj ∈ Kc
1,j , with the help of the already defined operators

Tj , 1 ≤ j ≤ d. We show that Tu = T (u1, . . . , ud) = (T1u1, . . . , Tdud) for
u = (u1, . . . , ud) ∈ Kc

1 is a norm preserving and invertible transformation from
Kc

1 to Hc
1. To prove this let us first observe that because of inequality (3.3) and

Weierstrass’ second approximation theorem the finite linear combinations




∑

p∈AN

c1,pe
i(p,x), . . . ,

∑

p∈AN

cd,pe
i(p,x)



 ,

where AN = {p = (p1, . . . , pν) : −N ≤ ps ≤ N, for all 1 ≤ s ≤ ν}, constitute
an everywhere dense linear subspace in Kc

1, and because of the inequality (3.4)
the finite linear combinations





∑

p∈AN

c1,pX1(p), . . . ,
∑

p∈AN

cd,pXd(p)





= T





∑

p∈AN

c1,pe
i(p,x), . . . ,

∑

p∈AN

cd,pe
i(p,x)



 (3.5)

constitute an everywhere dense linear subspace in Hc
1 if N = 1, 2, . . . , and the

coefficients cj,p, 1 ≤ j ≤ d, p ∈ AN , are arbitrary complex numbers. Hence
the following calculation implies that T is a norm preserving and invertible
transformation from Kc

1 to Hc
1.

If

u(x) =





∑

p∈AN

c1,pe
i(p,x), . . . ,

∑

p∈AN

cd,pe
i(p,x)




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and

v(x) =





∑

p∈AN

c′1,pe
i(p,x), . . . ,

N
∑

p∈AN

c′d,pe
i(p,x)



 ,

then

〈u(x), v(x)〉0 =

〈





∑

p∈AN

c1,pe
i(p,x), . . . ,

∑

p∈AN

cd,pe
i(p,x)



 ,





∑

p∈AN

c′1,pe
−i(p,x), . . . ,

∑

p∈AN

c′d,pe
−i(p,x)





〉

0

=

d
∑

j=1

d
∑

j′=1

∑

s∈AN

∑

t∈AN

cj,sc̄′j′,t

∫

[−π,π)π
gj,j′(x)e

i(s−t,x)µ( dx)

= E





d
∑

j=1

∑

s∈AN

cj,sXj(s)









d
∑

j′=1

∑

t∈AN

c′j′,tXj′(t)



 = 〈Tu(x), T v(x)〉1.

We shall define the random variables ZG,j(A) for all indices 1 ≤ j ≤ d

and measurable sets A ⊂ [−π, π)ν , by the formula ZG,j(A) = Tj(IA(x)) with
the above defined operators Tj , 1 ≤ j ≤ d, where IA(·) denotes the indicator
function of the set A ⊂ [−π, π)ν . Next I formulate some properties of this class
of random variables. These properties will appear in the definition of random
spectral measures. All sets appearing in the next statements are measurable
subsets of the torus [−π, π)ν .

(i) The random variables ZG,j(A) are complex valued, and their real and imagi-
nary parts are jointly Gaussian, i.e., for any positive integer N and sets As,
1 ≤ s ≤ N , the random variables ReZG,j(As), ImZG,j(As), 1 ≤ s ≤ N ,
1 ≤ j ≤ d, are jointly Gaussian.

(ii) EZG,j(A) = 0 for all 1 ≤ j ≤ d and A,

(iii) EZG,j(A)ZG,j′(B) = Gj,j′(A ∩B) for all 1 ≤ j, j′ ≤ d and sets A,B.

(iv)
n
∑

s=1
ZG,j(As) = ZG,j

(

n
⋃

s=1
As

)

if A1, . . . , An are disjoint sets, 1 ≤ j ≤ d.

(v) ZG,j(A) = ZG,j(−A) for all 1 ≤ j ≤ d and sets A.

Properties (i)–(v) were proved in the one-dimensional case, for example,
in [9]. The only difference in checking its several dimensional version is that
we have to apply the multi-dimensional operator T from Kc

1 to Hc
1 to prove

property (i), and to apply the same mapping T in proving Property (iii). Here
we exploit that 〈u, v〉0 = 〈Tu, Tv〉1. We apply this identity with the vector
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u ∈ Kc
1 whose j-th coordinate is IA(x), and the other coordinates are zero and

the vector v ∈ Kc
1 whose k-th coordinate is IB(x) and the other coordinates

are zero. Property (v) can be proved as the special case of the following more
general relation.

(v′) Tj(u) = Tj(u−) for all 1 ≤ j ≤ d and u ∈ Kc
j , where u−(x) = u(−x).

Property (v′) can be proved by first proving it in the special case when u(x)
is a trigonometrical polynomial, and then applying a limiting procedure.

Next we define the vector valued random spectral measures corresponding
to a matrix valued spectral measure.

Definition of vector valued random spectral measures on the torus.

Let a matrix valued spectral measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, be given on the
torus [−π, π)ν together with a set of complex valued random variables indexed
by pairs (j, A), where 1 ≤ j ≤ d, and A is an element of the σ-algebra A

A = {A : A ⊂ [−π, π)ν is a Borel measurable set}

of the Borel measurable sets of the torus whose joint distribution depends on the
matrix valued spectral measure G. To recall this dependence we denote the ran-
dom variable indexed by a pair (j, A), 1 ≤ j ≤ d, A ∈ A, by ZG,j(A). We call
the set of random variables ZG,j(A), 1 ≤ j ≤ d, A ∈ A, a d-dimensional vec-
tor valued random spectral measure corresponding to the matrix valued spectral
measure G on the torus [−π, π)ν if this set of random variables satisfies prop-
erties (i)–(v) defined above. Given a fixed parameter 1 ≤ j ≤ d we call the set
of random variables ZG,j(A), A ∈ A, the j-th coordinate of this d-dimensional
vector valued random spectral measure, and we denote it by ZG,j. We denote
the vector valued random spectral measure ZG,j(A), 1 ≤ j ≤ d, A ∈ A, by
ZG = (ZG,1, . . . , ZG,d).

More generally, if a matrix valued spectral measure G is given on the torus
[−B,B)ν with some number B > 0 together with a set of complex valued random
variables ZG,j(A), where 1 ≤ j ≤ d, and A is a Borel measurable set on the
torus [−B,B)ν which satisfies properties (i)–(v) defined above, then we call this
set of random variables a d-dimensional vector valued random spectral measure
corresponding to the spectral measure G. We call the set of random variables
ZG,j(A), A ∈ A, for a fixed 1 ≤ j ≤ d the j-th coordinate of this vector valued
spectral measure, and denote it by ZG,j. We denote the vector valued spectral
measure by ZG = (ZG,1, . . . , ZG,d).

Remark: If G = (Gj,j′), 1 ≤ j, j′ ≤ d, is a matrix valued spectral measure,
ZG = (ZG,1, . . . , ZG,d) is a vector valued spectral measure corresponding to it,
then Gj,j is a scalar valued spectral measure for any 1 ≤ j ≤ d, and ZG,j is a
scalar valued random spectral measure corresponding to it. As we shall see in
Lemma 3.3 the spectral measure G determines the distribution of the random
spectral measure ZG.

27



It follows from the above considerations that for any d-dimensional ma-
trix valued spectral measure there exists a d-dimensional vector valued random
spectral measure corresponding to it. We can define the random integral with
respect to it by means of the method applied in the scalar valued case.

We shall define the random integrals of the functions f ∈ Kc
1,j with respect to

the random spectral measure ZG,j , 1 ≤ j ≤ d. First we define these integrals for

elementary functions. They are finite sums of the form
∑N

s=1 csIAs
(x), where

A1, . . . , AN are disjoint sets in [−π, π)ν , and cs, 1 ≤ s ≤ N , are arbitrary
complex numbers. Their integrals with respect to the random spectral measure
ZG,j , 1 ≤ j ≤ d, are defined as

∫

(

N
∑

s=1

csIAs
(x)

)

ZG,j( dx) =
N
∑

s=1

csZG,j(As).

As it is remarked in [9], property (iv) implies that this definition is meaningful,
the integral of an elementary function does not depend on its representation.
Then a simple calculation with the help of (iii) shows that for two elementary
functions u and v

E

(∫

u(x)ZG,j( dx)

∫

v(x)ZG,j( dx)

)

=

∫

u(x)v(x)Gj,j( dx), 1 ≤ j ≤ d.

(3.6)
This implies that the integral of the elementary functions with respect to the
random spectral measure ZG,j define a norm preserving transformation from
an everywhere dense subspace of the Hilbert space of Kc

1,j to an everywhere
dense subspace of the Hilbert space of Hc

1,j . This can be extended to a unitary
transformation from Kc

1,j to Hc
1,j in a unique way, and this extension defines

the integral of a function u ∈ Kc
1,j . It is clear that relation (3.6) remains valid

for general functions u, v ∈ Kc
1,j . Moreover, it is not difficult to see with the

help of (iii) that it can be generalized to the formula

E

(∫

u(x)ZG,j( dx)

∫

v(x)ZG,j′( dx)

)

=

∫

u(x)v(x)Gj,j′( dx) (3.7)

if u ∈ Kc
1,j and v ∈ Kc

1,j′ , 1 ≤ j, j′ ≤ d.
It is clear that

E

∫

u(x)ZG,j( dx) = 0 for all u ∈ K1,j , 1 ≤ j ≤ d. (3.8)

Another important property of the random integrals with respect to ZG,j is
that for all 1 ≤ j ≤ d
∫

u(x)ZG,j( dx) is real valued if u(−x) = u(x) for µ almost all x ∈ [−π, π)ν .
(3.9)

This relation holds, since
∫

u(x)ZG,j( dx) =
∫

u(x)ZG,j( dx) if u(−x) = u(x).
We get this identity by means of the change of variables x→ −x with the help
of relation (v).
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In the next theorem, I formulate the results we have about random spectral
measures and random integrals with respect to them.

Theorem 3.1. Given a positive semidefinite matrix valued, even measure G =
(Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν there exists a vector valued random
spectral measure ZG = (ZG,1, . . . , ZG,d) corresponding to it. We have defined
the random integrals

∫

u(x)ZG,j( dx) for all 1 ≤ j ≤ d and u ∈ Kc
1,j. This is a

linear operator which satisfies relations (3.7), (3.8), (3.9), and the formula

Xj(p) =

∫

[−π,π)ν
ei(p,x)ZG,j( dx), 1 ≤ j ≤ d, p ∈ Zν , (3.10)

defines a d-dimensional vector valued Gaussian stationary field whose matrix
valued spectral measure is G = (Gj,j′), 1 ≤ j, j′ ≤ d. Moreover, if a d-
dimensional vector valued Gaussian stationary random field is given with this
matrix valued spectral measure, then the random integrals in formula (3.10)
taken with respect to the random spectral measure that we have constructed with
its help through an operator T in this section equals this vector valued Gaussian
stationary random field.

Proof of Theorem 3.1. We have already proved the existence of the vector valued
random spectral measure, and we constructed the random integral with respect
to it. It satisfies formulas (3.7) and (3.8). The random variables Xj(p) defined
in (3.10) are real valued by (3.9) and Gaussian with expectation zero. Hence we
can show that they define a Gaussian stationary sequence with spectral measure
G = (Gj.j′), 1 ≤ j, j′ ≤ d, by calculating their correlation function. We get by
formula (3.7) that EXj(p)Xj′(q) =

∫

[−π,π)ν
ei(p−q,x)Gj,j′( dx), and this had to

be checked. If the random spectral measure is constructed in the way as we have
done in this section, then a comparison of the random integral we have defined
with its help and of the operator T shows that

∫

u(x)ZG,j( dx) = Tj(u(x)) for
all u ∈ Kc

1,j . In particular,
∫

−[π,π)ν
ei(p,x)ZG,j( dx) = Tj(e

i(p,x)) = Xj(p). This

identity implies the last statement of Theorem 3.1. Theorem 3.1 is proved.

Formula (3.9) and Theorem 3.1 make possible to define for all 1 ≤ j ≤ d a
real Hilbert space K1,j consisting of appropriate elements of Kc

1,j for which the
operator Tj is a norm preserving invertible transformation from K1,j to the real
Hilbert space H1,j consisting of the real valued functions of the Hilbert space
Hc

1,j . More precisely, the following statement holds.

Lemma 3.2. Let (Gj,j′), 1 ≤ j, j′ ≤ d, be a matrix valued spectral measure on
the torus [−π, π)ν , and let (ZG,1, . . . , ZG,d) be a vector valued spectral measure
corresponding to it. Define the d-dimensional vector valued Gaussian stationary
field (X1(p), . . . , Xp(d)) by formula (3.10) with the help of this vector valued
random spectral measure. Define for all 1 ≤ j ≤ d the set of complex valued
functions K1,j on the torus [−π, π)ν as

K1,j =

{

u :

∫

|u(x)|2Gj,j( dx) <∞, u(−x) = u(x) for all x ∈ [−π, π)ν
}

.
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Then K1,j is a real Hilbert space with the scalar product

〈u, v〉 =
∫

u(x)v(x)Gj,j( dx), u, v ∈ K1,j .

Let H1,j be the real Hilbert space consisting of the closure of the finite linear

combinations
∑N

k=1 ckXj(pk), pk ∈ Zν , with real coefficients ck in the Hilbert
space H of random variables with finite second moments in the probability space
where the random spectral measures ZG,j exists. (We define the scalar product
in H in the usual way.) Then the map Tj(u) =

∫

u(x)ZG,j( dx), u ∈ K1,j, is
a norm preserving, invertible linear transformation from the real Hilbert space
K1,j to the real Hilbert space H1,j.

Proof of Lemma 3.2. The space K1,j is a real Hilbert space, since the change

of variable x → −x in the integral 〈u, v〉 =
∫

u(x)v(x)Gj,j( dx) implies that

〈u, v〉 = 〈u, v〉 for all u, v ∈ K1,j because of the evenness of the measure Gj,j .
Clearly ei(p,x) ∈ K1,j for all p ∈ Zν . The class of functions K1,j agrees with

the class of functions which have the form u(x) = v(x)+v(−x)
2 with some v ∈

Kc
1,j . As a consequence the set of finite trigonometrical polynomials

∑

cke
i(pk,x),

pk ∈ Zν , with real valued coefficients ck is an everywhere dense subspace of
K1,j . Since Tj(

∑

cke
i(pk,x)) =

∑

ckXj(pk), the transformation Tj maps an
everywhere dense subspace of K1,j to an everywhere dense subspace of H1,j .
Because of formulas (3.7) and (3.9) Tj is a norm preserving transformation in
K1,j . Hence Tj is an invertible, norm preserving transformation from K1,j to
H1,j . Lemma 3.2 is proved.

I would remark that the transformation Tj on K1,j defined in Lemma 3.2 is
the restriction of the previously defined transformation Tj on Kc

1,j to its subset
K1,j . I make also the following remark.

Lemma 3.3. The positive semidefinite matrix valued, even measure G(A) =
(Gj,j′(A)), 1 ≤ j, j′ ≤ d, A ∈ [−π, π)ν , determines the distribution of a vector
valued spectral random measure ZG,j, 1 ≤ j ≤ d, corresponding to it.

To prove this lemma we have to show that for any collection of measurable
sets A1,. . . , AN , the matrix valued measure G(A) determines the joint distribu-
tion of the random vector consisting of the elements ReZG,j(As), ImZG,j(As),
1 ≤ s ≤ N , 1 ≤ j ≤ d. Since this is a Gaussian random vector with expec-
tation zero, it is enough to check that the covariance of these random vari-
ables can be expressed by means of the matrix valued measure G(A). Since

ReZG,j(A) =
ZG,j(A)+ZG,j(A)

2 and Im ZG,j(A) =
ZG,j(A)−ZG,j(A)

2i we can calcu-
late these covariances with the help of properties (iii) and (v) of vector valued
random spectral measures.

Finally I prove an additional property of the vector valued random spectral
measures which will be useful in Section 5, in the study of multiple Wiener–Itô
integrals.
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(vi) The random variables of the form ZG,j(A ∪ (−A)) are real valued. Let a
set A ∪ (−A) be disjoint from some sets B1 ∪ (−B1),. . . , Bn ∪ (−Bn).
Then for any indices 1 ≤ j, j′ ≤ d the (complex valued) random vector
(ZG,j(A), ZG,j′(A)), is independent of the random vector consisting of the
elements ZG,k(Bs), 1 ≤ s ≤ n, 1 ≤ k ≤ d.

Proof of property (vi). It follows from property (v) that ZG,j(A ∪ (−A)) =

ZG,j(A ∪ (−A)), hence ZG,j(A ∪ (−A)) is real valued. To prove the second
statement of (vi) it is enough to check that under its conditions the (real val-
ued) random variables ReZG,j(A) and ImZG,j(A) are uncorrelated to all ran-
dom variables ReZG,k(Bs), ImZG,k(Bs), 1 ≤ s ≤ n, 1 ≤ k ≤ d. This relation
holds, since by the conditions of (vi) (±A) ∩ (±Bs) = ∅, hence relation (iii)
implies that EZG,j(±A)ZG,j′(±Bs) = 0 for all sets Bs, 1 ≤ s ≤ n, and in-
dices 1 ≤ j, j′ ≤ d. On the other hand, all covariances can be expressed as
a linear combination of such expressions, since by relation (v) ReZG,j(±A) =
ZG,j(±A)+ZG,j(±A)

2 =
ZG,j(±A)+ZG,j(∓A)

2 , and a similar relation holds also for
ImZG,j(±A), ReZG,j′(±Bs) and ImZG,j′(±Bs), 1 ≤ s ≤ n, 1 ≤ j′ ≤ d.

4 Spectral representation of vector valued sta-

tionary generalized random fields

In Sections 2 and 3 we discussed the properties of vector valued Gaussian sta-
tionary random fields with discrete parameters, which means a class of Gaussian
random vectors X(p), p ∈ Zν , with some nice properties. Similarly, we could
have defined and investigated vector valued Gaussian stationary random fields
with continuous parameters, where we consider a set of random vectors X(t)
indexed by t ∈ Rν which have some nice properties. But we do not discuss
this topic here. Here we define and investigate instead so-called vector val-
ued Gaussian stationary generalized random fields X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)),
parametrized with a nice linear space of functions ϕ.

Actually I am interested here in the vector valued Gaussian stationary gen-
eralized random fields not for their own sake. We shall construct a class of
vector valued Gaussian stationary generalized random fields. We shall show
that their distribution can be described by means of a matrix valued spectral
measure. We can also construct a vector valued random spectral measure in
such a way that the elements of our vector valued generalized random field can
be expressed in a form that can be considered as the Fourier transform of this
random spectral measure. These matrix valued spectral measures and vector
valued random spectral measures slightly differ from those defined in Sections 2
and 3, but since they are very similar to the corresponding objects defined for
stationary random fields with discrete parameters it is natural to give them the
same name.

The results that we shall prove are very similar to the results we got about
vector valued random fields with discrete parameters. The main difference is
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that we can construct a larger class of matrix valued spectral measures and
vector valued random spectral measures by means of generalized random fields.
We shall need them, because in our later investigations we shall deal with such
limit theorems where we can express the limit by means of these new, more
general objects. On the other hand, these new vector valued random spectral
measures behave similarly to the previous ones. In particular, the later results
of this paper about multiple Wiener–Itô integrals also hold for this more general
class of vector valued random spectral measures. Let me remark that we met
a similar picture in the study of scalar valued Gaussian random fields in [9], so
that here we actually generalize the results in that work to the multi-dimensional
case.

In the definition of vector valued generalized random fields we shall choose
the functions of the Schwartz space for the class of parameter set. So to define
the vector valued generalized random fields first I recall the definition of the
Schwartz space, (see [6]).

We define the Schwartz space S of real valued functions on Rν together
with its version Sc consisting of complex valued functions on Rν . The space
Sc = (Sν)c consists of those complex valued functions of ν arguments which
decrease at infinity, together with their derivatives, faster than any polynomial.
More explicitly, ϕ ∈ Sc for a complex valued function ϕ defined on Rν if

∣

∣

∣

∣

xk1
1 · · ·xkν

ν

∂q1+···+qν

∂x
q1
1 . . . ∂x

qν
ν
ϕ(x1, . . . , xν)

∣

∣

∣

∣

≤ C(k1, . . . , kν , q1, . . . , qν)

for all points x = (x1, . . . , xν) ∈ Rν and vectors (k1, . . . , kν), (q1, . . . , qν) with
non-negative integer coordinates and with some constant C(k1, . . . , kν , q1, . . . , qν)
which may depend on the function ϕ. The elements of the space S are defined
similarly, with the only difference that they are real valued functions.

To complete the definition of the spaces S and Sc we still have to define the
topology in them. We introduce the following topology in these spaces.

Let a basis of neighbourhoods of the origin consist of the sets

U(k, p, ε) =







ϕ : ϕ ∈ S, max
q=(q1,...,qν)

0≤qs≤p, for all 1≤s≤ν

sup
x
(1 + |x|2)k|Dqϕ(x)| < ε







with k = 0, 1, 2, . . . , p = 1.2, . . . and ε > 0, where |x|2 = x21 + · · · + x2ν , and

Dq = ∂q1+···+qν

∂x
q1
1 ...∂xqν

ν
for q = (q1, . . . , qν). A basis of neighbourhoods of an arbitrary

function ϕ ∈ Sc (or ϕ ∈ S) consists of sets of the form ϕ + U(k, q, ε), where
the class of sets U(k, q, ε) is a basis of neighbourhood of the origin. Actually we
shall use only the following property of this topology. A sequence of functions
ϕn ∈ Sc (or ϕn ∈ S) converges to a function ϕ in this topology if and only if

lim
n→∞

sup
x∈Rν

(1 + |x|2)k|Dqϕn(x)−Dqϕ(x)| = 0

for all k = 1, 2, . . . and q = (q1, . . . , qν). The limit function ϕ is also in the
space Sc (or in the space S).
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I shall define the notion of vector valued generalized random fields together
with some related notions with the help of the notion of Schwartz spaces. A
d-dimensional generalized random field is a random field whose elements are
d-dimensional random vectors

(X1(ϕ), . . . , Xd(ϕ)) = (X1(ϕ, ω), . . . , Xd(ϕ, ω))

defined for all functions ϕ ∈ S, where S = Sν is the Schwartz space. Before
defining vector valued generalized random fields I write down briefly the idea of
their definition. This is explained in [9] and [10] in more detail.

Given a vector valued Gaussian stationary random field

X(t) = (X1(t), . . . , Xd(t)), t ∈ Rν ,

we can define with its help the random field X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈
Sν , Xj(ϕ) =

∫

ϕ(t)Xj(t) dt, 1 ≤ j ≤ d, indexed by the elements of the Schwartz
space, and this determines the original random field. We define generalized
random fields with elements indexed by ϕ ∈ S as such random fields which
behave similarly to the random fields defined by means of such integrals.

Definition of vector valued generalized random fields. We say that the
set of random vectors (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S, is a d-dimensional vector
valued generalized random field over the Schwartz space S = Sν of rapidly de-
creasing smooth functions if:

(a) Xj(a1ϕ+ a2ψ) = a1Xj(ϕ) + a2Xj(ψ) with probability 1 for the j-th coordi-
nate of the random vectors (X1(ϕ), . . . , Xd(ϕ)) and (X1(ψ), . . . , Xd(ψ)).
This relation holds for each coordinate 1 ≤ j ≤ d, all real numbers a1 and
a2, and pair of functions ϕ, ψ from the Schwartz space S. (The excep-
tional set of probability 0 where this identity does not hold may depend on
a1, a2, ϕ, and ψ.)

(b) Xj(ϕn) ⇒ Xj(ϕ) stochastically for any 1 ≤ j ≤ d if ϕn → ϕ in the topology
of S.

We also introduce the following definition. In its formulation we use the

notation
∆
= for equality in distribution.

Definition of stationarity and Gaussian property for a vector valued

generalized random field. The d-dimensional vector valued generalized ran-
dom field X = {(X1(ϕ) . . . , Xd(ϕ)), ϕ ∈ S} is stationary if

(X1(ϕ) . . . , Xd(ϕ))
∆
= (X1(Ttϕ) . . . , Xd(Ttϕ))

for all ϕ ∈ S and t ∈ Rν , where Ttϕ(x) = ϕ(x− t). This field is called Gaussian
if (X1(ϕ), . . . , Xd(ϕ)) is a Gaussian random vector for all ϕ ∈ S. We call a
vector valued generalized random field a vector valued generalized random field
with zero expectation if EXj(ϕ) = 0 for all ϕ ∈ S and coordinates 1 ≤ j ≤ d.
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In the definition of stationarity and Gaussian property we imposed a con-
dition for a single random vector. But because of the linearity property of
generalized random fields formulated in property (a) of their definition and the
fact that if we have N random vectors ξ1, . . . , ξN and η1, . . . , ηN such that the

linear combinations
N
∑

k=1

akξk and
N
∑

k=1

akηk have the same distribution for any

coefficients ak, 1 ≤ k ≤ N , then the joint distribution of the random vec-
tors ξ1, . . . , ξN and η1, . . . , ηN agree imply that an analogous statement holds
about the properties of the joint distribution of several random vectors in a
vector valued stationary random field. Indeed, if we take N random vectors
(X1(ϕk), . . . , Xd(ϕk)), 1 ≤ k ≤ N , then their joint distribution agrees with the
joint distribution of their shifts (X1(Ttϕk), . . . , Xd(Ttϕk)), 1 ≤ k ≤ N , for any
t ∈ Rν . This follows from the fact that

N
∑

k=1

ak(X1(ϕk), . . . , Xd(ϕk))
∆
=

N
∑

k=1

ak(X1(Ttϕk), . . . , Xd(Ttϕk))

for all t ∈ Rν and coefficients ak, 1 ≤ k ≤ N , for a d-dimensional vector val-
ued stationary generalized random field because of the linearity property of the
generalized random fields and the properties of the operator Tt. A similar ar-
gument shows that the joint distribution of some vectors (X1(ϕk), . . . , Xd(ϕk)),
1 ≤ k ≤ N , in a vector valued Gaussian generalized random field is Gaussian.

I shall construct a large class of d-dimensional vector valued Gaussian sta-
tionary generalized random fields with expectation zero. I shall construct them
with the help of positive semidefinite matrix valued even measures on Rν . In
the next step I write down this definition. The main difference between the
definition of this notion and its counterpart defined on the torus [−π, π)ν is
that now we consider such complex measures which may have non-finite total
variation. We impose instead a less restrictive condition. We shall work with
complex measures on Rν which have locally finite total variation. For the sake
of completeness I give their definition.

Definition of complex measures on Rν with locally finite total varia-

tion. The definition of their evenness property. A complex measure on
Rν with locally finite total variation is such a complex valued function on the
bounded, Borel measurable subsets of Rν whose restrictions to the measurable
subsets of a cube [−T, T ]ν are complex measures with finite total variation for all
T > 0. We say that a complex measure G on Rν with locally finite total variation
is even, if G(−A) = G(A) for all bounded and measurable sets A ⊂ Rν .

Let me remark that not all complex measures with locally finite total varia-
tion can be extended to a complex measure on all measurable subsets of Rν . On
the other hand, this can be done if we are working with a (real, positive number
valued) measure. Next I formulate the definition we need in our discussion.

Definition of positive semidefinite matrix valued measures on Rν with

moderately increasing distribution at infinity. The definition of their
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evenness property. A Hermitian matrix valued measure on Rν is a class
of such Hermitian matrices (Gj,j′(A)), 1 ≤ j, j′ ≤ d, defined for all bounded,
measurable sets A ⊂ Rν for which all coordinates Gj,j′(·), 1 ≤ j, j′ ≤ d, are
complex measures on Rν with locally finite total variation. We call a Hermitian
matrix valued measure (Gj,j′(·)), 1 ≤ j, j′ ≤ d, on Rν positive semidefinite if
there exists a (σ-finite) positive measure µ on Rν such that for all numbers
T > 0 and indices 1 ≤ j, j′ ≤ d the restriction of the complex measures Gj,j′ to
the cube [−T, T ]ν is absolutely continuous with respect to µ, and the matrices
(gj,j′(x)), 1 ≤ j, j′ ≤ d, defined with the help of the Radon–Nikodym derivatives

gj,j′(x) =
dGj,j′

dµ (x), 1 ≤ j, j′ ≤ d, are Hermitian, positive semidefinite matrices
for almost all x ∈ Rν with respect to the measure µ. We call this Hermitian
matrix valued measure (Gj,j′(·)), 1 ≤ j, j′ ≤ d, on Rν even if the complex
measures Gj,j′ with locally finite variation are even for all 1 ≤ j, j′ ≤ d.

We shall say that the distribution of a positive semidefinite matrix valued
measure (Gj,j′(·)), 1 ≤ j, j′ ≤ d, on Rν is moderately increasing at infinity if

∫

(1+ |x|)−rGj,j( dx) <∞ for all 1 ≤ j ≤ d with some number r > 0. (4.1)

Remark. We can give, similarly to Lemma 2.3, a different characterization of
positive semidefinite matrix valued, even measures on Rν . Let us have some
complex measures Gj,j′ , 1 ≤ j, j′ ≤ d, on the σ-algebra of the Borel measurable
sets of Rν such that their restrictions to any cube [−T, T ]ν , T > 0, have finite
total variation. Let us consider the matrix valued measure (Gj,j′(A)), 1 ≤
j, j′ ≤ d on Rν for all bounded, measurable sets A ⊂ Rν . This matrix valued
measure is positive semidefinite and even if and only if it satisfies the following
two conditions.

(i.) The d×dmatrix (Gj,j′(A)), 1 ≤ j, j′ ≤ d, is Hermitian, positive semidefinite
for all bounded, measurable sets A ⊂ Rν .

(ii.) Gj,j′(−A) = Gj,j′(A), for all 1 ≤ j, j′ ≤ d and bounded, measurable sets
A ⊂ Rν .

This statement has almost the same proof as Lemma 2.3. The only dif-
ference in the proof is that now we have to work with such vectors v(x) =
(v1(x), . . . , vd(x)) whose coordinates vj(x) are continuous functions on Rν with
bounded support, 1 ≤ j ≤ d. Let me also remark that the following statement
also follows from this proof. If a matrix valued measure (Gj,j′(A)), 1 ≤ j, j′ ≤ d,
on Rν satisfies the conditions in the definition of positive semidefinite matrices
with some σ-finite measure µ on Rν with respect to which all complex mea-
sures Gj,j are absolutely continuous, then it satisfies these conditions with any
σ-finite measure µ on Rν with the same property.

Before constructing a large class of vector valued Gaussian stationary gen-
eralized random fields I recall an important property of the Fourier transform
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of the functions in the Schwartz spaces S and Sc (see for example [6]). Actually
this property of the Schwartz spaces made useful their choice in the definition
of generalized fields.

The Fourier transform f → f̃ is a bicontinuous map from Sc to Sc. (This
means that this transformation is invertible, and both the Fourier transform
and its inverse are continuous maps from Sc to Sc.) (The restriction of the
Fourier transform to the space S of real valued functions is a bicontinuous map
from S to the subspace of Sc consisting of those functions f ∈ Sc for which
f(−x) = f(x) for all x ∈ Rν .)

Next I formulate the following result.

Theorem 4.1 about the construction of vector valued Gaussian sta-

tionary generalized random fields with zero expectation. Let (Gj,j′),
1 ≤ j, j′ ≤ d, be a positive semidefinite matrix valued even measure on Rν whose
distribution is moderately increasing at infinity.

Then there exists a vector valued Gaussian stationary generalized random
field (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S, such that EXj(ϕ) = 0 for all ϕ ∈ S, and given
two Shwartz functions ϕ ∈ S and ψ ∈ S, the covariance function rj,j′(ϕ,ψ) =
EXj(ϕ)Xj′(ψ) is given by the formula

rj,j′(ϕ,ψ) = EXj(ϕ)Xj′(ψ) =

∫

ϕ̃(x)
¯̃
ψ(x)Gj,j′( dx) for all ϕ,ψ ∈ S, (4.2)

where ˜ denotes Fourier transform, and ¯ is complex conjugate.
Formula (4.2) and the identity EXj(ϕ) = 0 for all ϕ ∈ S determine the

distribution of the vector valued, Gaussian stationary random field
(X1(ϕ), . . . , Xd(ϕ)).

Contrariwise, for all 1 ≤ j, j′ ≤ d the covariance function EXj(ϕ)Xj′(ψ),
ϕ,ψ ∈ S, determines the coordinate Gj,j′ of the positive semidefinite, even
matrix (Gj,j′). 1 ≤ j, j′ ≤ d, with moderately increasing distribution at infinity
for which identity (4.2) holds.

Let me remark that the moderate decrease of the distribution of the positive
semidefinite matrix (Gj,j′), 1 ≤ j, j′ ≤ d, together with inequality (3.2) and
the fast decrease of the functions ϕ ∈ S at infinity guarantee that the integral
in (4.2) is convergent.

Condition (4.1) which we wrote in the definition of moderately increasing
positive semidefinite matrix valued measures appears in the theory of distribu-
tions in a natural way. Such a condition characterizes those measures which are
distributions, i.e., continuous linear maps in the Schwartz space.

In [9] we have proved with the help of some important results of Laurent
Schwartz about distributions that in the case of scalar valued models, i.e., if
d = 1 the covariance function of every Gaussian stationary generalized random
field with expectation zero agrees with the covariance function of a Gaussian
stationary generalized random field constructed in the same way as we have done
in Theorem 4.1. (In the case d = 1 the formulation of this result is simpler.)
It seems very likely that a refinement of that argument would give the proof of
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an analogous statement in the general case. I did not investigate this question,
because in the present paper we do not need such a result.

Remark. Similarly to the case of vector valued stationary fields with discrete
parameter we shall introduce the following terminology. If (Gj,j′), 1 ≤ j, j′ ≤ d,
is a positive semidefinite, matrix valued even measure with moderately increas-
ing distribution at infinity, and there is a stationary generalized random field
(X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S, whose covariance function

rj,j′(ϕ,ψ) = EXj(ϕ)Xj′(ψ), 1 ≤ j, j′ ≤ d, ϕ, ψ ∈ S,

satisfies relation (4.2) with this matrix valued measure G, then we call G the
matrix valued spectral measure of this covariance function rj,j′(ϕ,ψ). In general,
we shall call a positive semidefinite matrix valued even measure on Rν with
moderately increasing distribution at infinity a matrix valued spectral measure
on Rν . We have the right for such a terminology, because by Theorem 4.1 for
any such matrix valued measure there exists a Gaussian stationary generalized
random field such that this matrix valued measure is the matrix valued spectral
measure of its covariance function.

Let me remark that the diagonal elements Gj,j of the matrix valued spec-
tral measure of the correlation function rj,j′(ϕ,ψ) of a vector valued stationary
random field may be non finite measures on Rν , they have to satisfy only rela-
tion (4.1). As a consequence, we can find a much richer class of matrix valued
spectral measures by working with generalized random fields than by working
only with classical stationary random fields. As we shall see, also vector val-
ued random spectral measures corresponding to these matrix valued spectral
measures can be constructed. Actually we discussed vector valued stationary
generalized random fields in this paper in order to construct this larger class of
matrix valued spectral and vector valued random spectral measures.

Proof of Theorem 4.1. Let us observe that the function rj,j′(ϕ,ψ) defined in (4.2)
is real valued. This can be seen by applying the change of variables x→ −x in
this integral and by exploiting that Gj,j′(−A) = Gj,j′(A), and ϕ̃(−x) = ¯̃ϕ(x),

ψ̃(−x) = ¯̃
ψ(x), since this calculation yields that rj,j′(ϕ,ψ) = rj,j′(ϕ,ψ). Let us

also remark that rj,j′(ϕ,ψ) = rj′,j(ψ,ϕ), since by formula (4.2) and the property

Gj,j′(A) = Gj′,j(A) of the matrix (Gj,j′(A)), 1 ≤ j, j′ ≤ d, for all measurable

sets A ⊂ Rν we have rj,j′(ϕ,ψ) = rj′,j(ψ,ϕ), and we know that both side of
this identity is real valued.

First we show that for all positive integers N and functions ϕk ∈ S, 1 ≤ k ≤
N , there are some Gaussian random vectors (X1(ϕk), . . . , Xd(ϕk)), 1 ≤ k ≤ N ,
with expectation zero and covariances EXj(ϕk)Xj′(ϕk′) = rj,j′(ϕk, ϕk′) for all
1 ≤ j, j′ ≤ d, 1 ≤ k, k′ ≤ N , on an appropriate probability space, where
rj,j′(ϕk, ϕk′) is defined at the right-hand side of formula (4.2) with our matrix
valued measure (Gj,j′), 1 ≤ j, j′ ≤ d, and with the choice ϕ = ϕk, ψ = ϕk′ .

We prove this statement if we show that the matrix with elements

d(j,k),(j′,k′) = rj,j′(ϕk, ϕk′), 1 ≤ j, j′ ≤ d, 1 ≤ k, k′ ≤ N,
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is positive semidefinite. To prove this result take any vector (aj,k, 1 ≤ j ≤
d, 1 ≤ k ≤ N), and observe that

d
∑

j=1

d
∑

j′=1

N
∑

k=1

N
∑

k′=1

aj,kaj′,k′rj,j′(ϕk, ϕk′)

=

d
∑

j=1

d
∑

j′=1

N
∑

k=1

N
∑

k′=1

∫

(aj,kϕ̃k(x))(aj′,k′ ϕ̃k′(x))gj,j′(x)µ( dx)

=

d
∑

j=1

d
∑

j′=1

∫

ψj(x)ψj′(x)gj,j′(x)µ( dx) =

∫

ψ(x)g(x)ψ(x)µ( dx) ≥ 0,

where ψj(x) =
N
∑

k=1

aj,kϕ̃k(x), 1 ≤ j ≤ d, ψ(x) = (ψ1(x), . . . , ψd(x)), and g(x)

denotes the matrix (gj,j′(x)), 1 ≤ j, j′ ≤ d. In this calculation we applied
formula (4.2), the representation Gj,j′( dx) = gj,j′(x)µ( dx) and finally the fact
that g(x) is a semidefinite matrix for µ almost all x.

Then it follows from Kolmogorov’s existence theorem for random processes
with consistent finite distributions that there is a Gaussian random field

(X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S,

with zero expectation such that EXj(ϕ)Xj′(ψ) = rj,j′(ϕ,ψ) for all functions
ϕ ∈ S, (ψ ∈ S and 1 ≤ j, j′ ≤ d. Besides, the finite dimensional distributions
of this random field are determined because of the Gaussian property. Next we
show that this random field is a vector valued generalized random field.

Property (a) of the vector valued generalized random fields follows from the
following calculation.

E[a1Xj(ϕ) + a2Xj(ψ)−Xj(a1ϕ+ a2ψ)]
2

=

∫

(

a1ϕ̃(x) + a2ψ̃(x)− ( ˜a1ϕ+ a2ψ)(x)
)

×
(

a1ϕ̃(x) + a2ψ̃(x)− ( ˜a1ϕ+ a2ψ)(x)

)

Gj,j( dx) = 0

by formula (4.2) for all real numbers a1, a2, 1 ≤ j ≤ d and ϕ,ψ ∈ S.
Property (b) of the vector valued generalized random fields also holds for

this model. Actually it is proved in [9] that if ϕn → ϕ in the topology of the
space S, then E[Xj(ϕn)−Xj(ϕ)]

2 =
∫

|ϕ̃n(x)− ϕ̃(x)|2Gj,j( dx) → 0 as n→ ∞,
hence property (b) also holds. (The proof is not difficult. It exploits that for
a sequence of functions ϕn ∈ Sc, n = 0, 1, 2, . . . , ϕn → ϕ0 as n → ∞ in the
topology of Sc if and only if ϕ̃n → ϕ̃0 in the same topology. Besides, the
measure Gj,j satisfies inequality (4.1).)

It is also clear that the Gaussian random field constructed in such a way is
stationary.
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It remained to show that the covariance function rj,j′(ϕ,ψ) = EXj(ϕ)Xj′(ψ)
determines the complex measure Gj,j′ . To show this we have to observe that
inequality (3.2) holds also in this case, hence the Schwarz inequality implies that

∫

(1 + |x|)−r|gj,j′(x)|µ( dx) <∞ for all 1 ≤ j, j′ ≤ d

for a positive semidefinite matrix valued measure with moderately increasing
distribution, i.e., this inequality holds not only for j = j′. Then it follows from
the standard theory of Schwartz spaces that the class of Schwartz functions is
sufficiently rich to guarantee that the function rj,j′(ϕ,ψ) determines the complex
measure Gj,j′ . Theorem 4.1 is proved.

Next we construct a vector valued random spectral measure corresponding
to a matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, on Rν . We argue
similarly to Section 3, where the vector valued random spectral measures cor-
responding to matrix valued spectral measures on [−π, π)ν were considered. In
the construction we shall also refer to some results in [9].

Let us have a vector valued Gaussian stationary generalized random field
X = (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S, 1 ≤ j ≤ d, with a matrix valued spectral
measure (Gj,j′), 1 ≤ j, j′ ≤ d. First we define for all 1 ≤ j ≤ d some (complex)
Hilbert spaces Kc

1,j , Hc
1,j and a norm preserving, invertible linear transformation

Tj between them in the following way. Kc
1,j consists of those complex valued

functions u(x) on Rν for which
∫

|u(x)|2Gj,j( dx) < ∞ with the scalar product

〈u(x), v(x)〉 =
∫

u(x)v(x)Gj,j( dx). To define the Hilbert space Hc
1,j let us first

introduce the Hilbert space H = Hc of (complex valued) random variables with
finite second moment on the probability space (Ω,A,P) where our stationary
generalized random field is defined. We define the Hilbert space Hc in the space
consisting of these random variables with the usual scalar product 〈ξ, η〉 = Eξη̄

in Hc. The Hilbert space Hc
1,j is defined as the closure of the linear subspace of

Hc consisting of the complex valued random variables Xj(ϕ)+iXj(ψ), ϕ,ψ ∈ S.
First we define the operator Tj for functions of the form ϕ̃+ iψ, ϕ,ψ ∈ S.

We define it by the formula

Tj(ϕ̃+ iψ) = Xj(ϕ) + iXj(ψ), ϕ, ψ ∈ S. (4.3)

A calculation, which was actually carried out in [9] shows that the set of func-

tions ϕ̃+ iψ, ϕ,ψ ∈ S, is dense in Kc
1,j , and the transformation Tj , defined

in (4.3) can be extended to a norm preserving, invertible linear transforma-
tion from Kc

1,j to Hc
1,j . (In the calculation leading to this statement we apply

formula (4.2) with the choice j′ = j.)
Then we can define the random spectral measure ZG,j(A), similarly to the

case discussed in Section 3, by the formula ZG,j(A) = TjIA(·)) for all bounded
measurable sets A ⊂ Rν . To determine the joint distribution of the spectral
measures ZG,j we make the following version of the corresponding argument in
Section 3.
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We define the following two Hilbert spaces Kc
1 and Hc

1 together with a norm
preserving linear transformation T between them.

The elements of the Hilbert space Kc
1 are the vectors u = (u1(x), . . . , ud(x))

with uj(x) ∈ Kc
1,j , 1 ≤ j ≤ d. We define the scalar product on Kc

1 with
the help of the following positive semidefinite bilinear form 〈·, ·〉0. If u(x) =
(u1(x), . . . , ud(x)) ∈ Kc

1 and v(x) = (v1(x), . . . , vd(x)) ∈ Kc
1, then

〈u(x), v(x)〉0 =

d
∑

j=1

d
∑

j′=1

∫

uj(x)vj′(x)Gj,j′( dx)

=

d
∑

j=1

d
∑

j′=1

∫

gj,j′(x)uj(x)vj′(x)µ( dx) =

∫

u(x)g(x)v(x)∗µ( dx)

with the matrix g(x) = (gj,j′(x)), 1 ≤ j, j′ ≤ d, where v∗(x) denotes the column

vector whose elements are the functions vj′(x), 1 ≤ j′ ≤ d. Actually, here we
simply copied the corresponding definition in Section 3 for the discrete time
model, and we can also prove that Kc

1 is a Hilbert space with the scalar 〈·, ·〉0
in the same way as it was done in Section 3.

The construction Hc
1, and the proof of its properties is again a simple

copying of argument made in Section 3. The elements of Hc
1 are the vec-

tors ξ = (ξ1, . . . , ξd), where ξj ∈ Hc
1,j , 1 ≤ j ≤ d, and we define the norm

on it by means of the scalar product 〈ξ, η〉1 = E
(

∑d
j=1 ξj

)(

∑d
j=1 ηj

)

for

ξ = (ξ1, . . . , ξd) ∈ Hc
1 and η = (η1, . . . , ηd) ∈ Hc

1. We identify two elements
ξ ∈ Hc

1 and η ∈ Hc
1 if ‖ξ − η‖1 = 0. Then the argument of Section 3 yields that

Hc
1 is a Hilbert space with the scalar product 〈·, ·〉1.
We define the operator T from Kc

1 to Hc
1 again in the same way as in Sec-

tion 3. We define it by the formula

Tu = T (u1, . . . , ud) = (T1u1, . . . , Tdud)

for u = (u1, . . . , ud), uj ∈ Kc
1,j , with the help of the already defined operators

Tj , 1 ≤ j ≤ d. We want to show that it is a norm preserving and invertible
transformation from Kc

1 to Hc
1. Here again we apply a similar, but sightly

different argument from that in Section 3. We exploit that if we take the class
of vectors

W = {w = (u1 + iv1, . . . , ud + ivd) : uj ∈ S, vj ∈ S for all 1 ≤ j ≤ d}

then the class of vectors

W̃ = {( ˜u1 + iv1, . . . , ˜ud + ivd) : (u1 + iv1, . . . , ud + ivd) ∈W}

is an everywhere dense subspace of Kc
1. and the class of vectors

W (X) = {((X1(u1 + iv1), . . . , Xd(ud + ivd)) : (u1 + iv1, . . . , ud + ivd) ∈W}
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is an everywhere dense subspace of Hc
1. (Here again the sign ˜ denotes Fourier

transform.)
Take two vectors (u1,1+iv1,1, . . . , ud,1+ivd,1) ∈W and (u1,2+iv1,2, . . . , ud,2+

ivd,2) ∈W . The desired property of the operator T will follow from the following
calculation:

〈( ˜u1,1 + iv1,1, . . . , ˜ud,1 + vd,1), ( ˜u1,2 + iv1,2, . . . , ˜ud,2 + vd,2)〉0

=
d
∑

j=1

d
∑

j′=1

∫

˜(uj,1(x) + ivj,1(x)) ˜(uj′,2(x) + ivj′,2(x))Gj,j′( dx)

=
d
∑

j=1

d
∑

j′=1

E[Xj(uj,1) + iXj(vj,1)][Xj′(uj′,2)− iXj(uj′,2)]

= 〈(X1(u1,1) + iX1(v1,1), . . . , Xd(ud,1) + iXd(vd,1)),

(X1(u1,2) + iX1(v1,2), . . . , Xd(ud,2) + iXd(vd,2))〉1,

i.e.,

〈( ˜u1,1 + iv1,1, . . . , ˜ud,1 + vd,1), ( ˜u1,2 + iv1,2, . . . , ˜ud,2 + vd,2)〉0
= 〈(T1(u1,1 + iv1,1), . . . , Td(ud,1 + ivd,1)),

(T1(u1,2 + iv1,2), . . . , Td(ud,2 + ivd,2))〉1.

This means that the operator T maps the everywhere dense subspace W̃ of Kc
1

to the everywhere dense subspace W (X) of Hc
1 in a norm preserving form. This

implies that T is a norm preserving, invertible transformation from Kc
1 to Hc

1.
Now we turn to the definition of the vector valued random spectral measures

corresponding to a matrix valued spectral measure on Rν .
Let a vector valued, Gaussian stationary generalized random field

X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ S,

be given with a matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, on Rν .
(We take such generalized, stationary random fields which were constructed
in Theorem 4.1.) Let us consider the operators Tj , 1 ≤ j ≤ d, and T con-
structed above with the help of these quantities. We define, similarly to the
case of Gaussian stationary random fields with discrete parameters discussed
in Section 3 the random variables ZG,j(A) = Tj(IA(x)) for all 1 ≤ j ≤ d and
bounded, measurable sets A ⊂ Rν . (These functions IA(·) are clearly elements
of the Hilbert space Kc

1,j for all ≤ j ≤ d). It can be proved with the help of
the properties of the operator T that these random functions satisfy properties
(i)–(v) formulated in the definition of random spectral measures on the torus,
considered in Section 3. The argument applied in Section 3 holds also in in this
case. In particular, property (v) can be proved with the help of property (v′).
Property (v′) can be proved with some work, and actually this was done in [9].
We prove (v′) by checking it first for functions u ∈ Sc.

The above result makes natural the following definition of vector valued
random spectral measures corresponding to a matrix valued spectral measure
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on Rν . This is very similar to the definition of vector valued random spectral
measures on the torus.

Definition of vector valued random spectral measures on Rν . Let G =
(Gj,j′), 1 ≤ j, j′ ≤ d, be a matrix valued spectral measure on Rν . We call a set
of complex valued random variables ZG,j(A) depending on pairs (j, A), where
1 ≤ j ≤ d, A ∈ A, and A is the algebra

A = {A : A is a bounded Borel measurable set in Rν},

a d-dimensional vector valued random spectral measure corresponding to the
matrix valued spectral measure G on Rν if this set of random variables ZG,j(A),
1 ≤ j ≤ d, A ∈ A, satisfies properties (i)–(v) introduced in Section 3 in the
definition of vector valued random spectral measures on the torus. Given a
fixed index 1 ≤ j ≤ d, we call the set of random variables ZG,j(A), A ∈ A,
with this index j the j-th coordinate of this matrix valued spectral measure,
and we denote it by ZG,j. We denote a d-dimensional vector valued random
spectral measure corresponding to the matrix valued spectral measure G by ZG =
(ZG,1, . . . , ZG,d).

We can show with the help of the arguments applied in Section 3 that for any
d-dimensional matrix valued spectral measure on Rν there exists a d-dimensional
vector valued random spectral measure corresponding to it.

We can define the random integral
∫

f(x)ZG,j( dx) of the functions f ∈ Kc
1,j

with respect to the random spectral measure ZG,j , 1 ≤ j ≤ d, corresponding to
the matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, of a Gaussian station-
ary generalized field in the same way as we defined these random integrals with
respect to random spectral measures corresponding to a spectral measures on
the torus [−π, π)ν in Section 3. First we define these integrals for elementary
functions which are defined in the same way as it was done in Section 3. Then
following the calculation of that section we can define these integrals for a gen-
eral function f ∈ Kc

1,j , and it can be seen that formulas (3.7), (3.8) and (3.9)

remain valid for them. In particular, the random integrals
∫

ϕ̃(x)ZG,j( dx) are
(meaningful and) real valued random variables for all ϕ ∈ S, and

E

(∫

ϕ̃(x)ZG,j( dx)

∫

¯̃
ψ(x)ZG,j′( dx)

)

=

∫

ϕ̃(x)
¯̃
ψ(x)Gj,j′( dx)

for all ϕ,ψ ∈ S and 1 ≤ j, j′ ≤ d. This identity together with relation (3.7) and
the fact that the above considered random integrals are linear operators imply
that the set of random variables

Xj(ϕ) =

∫

ϕ̃(x)ZG,j( dx), ϕ ∈ S, 1 ≤ j ≤ d, (4.4)

constitute a vector valued Gaussian, stationary generalized random field with
spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d.

This implies that the natural version of Theorem 3.1 remains valid if we
consider a matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, on Rν . Then
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there exists a random spectral measure ZG = (ZG,1, . . . , ZG,d) corresponding to
it, and we have defined the random integrals

∫

u(x)ZG,j( dx), 1 ≤ j ≤ d, with
respect to it for all u ∈ Kc

1,j . The class of random variables, Xj(ϕ), ϕ ∈ S,
1 ≤ j ≤ d, defined in (4.4) constitute a vector valued, Gaussian stationary
generalized random field with matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤
d. Moreover, if a d-dimensional vector valued Gaussian stationary random field
is given with spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, then we can consider the
random spectral measure (ZG,1, . . . , ZG,d) constructed in this section with the
help of this random field. This random spectral measure has the property that
the random field given by the random integrals defined in formula (4.4) with
their help agrees with the original vector valued Gaussian stationary generalized
random field.

We can formulate a natural version of Lemma 3.2 where we consider a matrix
valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, on Rν instead of a matrix valued
spectral measure on the torus [−π, π)ν . In this version of Lemma 3.2 we define
K1,j as

K1,j =

{

u :

∫

|u(x)|2Gj,j( dx) <∞, u(−x) = u(x) for all x ∈ Rν

}

,

with the scalar product 〈u, v〉 =
∫

u(x)v(x)Gj,j( dx), u, v ∈ K1,j , and H1,j as
the closure of the linear space consisting of the finite linear combination of the
random variables Xj(ϕ), ϕ ∈ S, with real coefficients in the Hilbert space H.
This version of Lemma 3.2 states that K1,j and H1,j are real Hilbert spaces,
and Tj(u) =

∫

u(x)ZG,j( dx) is a norm preserving and invertible transformation
from K1,j to H1,j .

The proof of this version of Lemma 3.2 is very similar to the proof of the
original lemma. The main difference is that now we show that the class of
functions ϕ̃ with ϕ ∈ S is a dense linear subspace of K1,j , and the transformation
Tj(ϕ̃) =

∫

ϕ̃(x)ZG,j( dx) = Xj(ϕ), ϕ ∈ S, is a norm preserving transformation
from an everywhere dense subspace of K1,j to an everywhere dense subspace of
H1,j .

The natural version of Lemma 3.3 also holds. It states that a matrix valued
spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, on Rν determines the distribution of a
vector valued random spectral measure ZG,j , 1 ≤ j ≤ d, corresponding to it.
The proof of this version is the same as the proof of the original lemma. The
only difference is that now we consider the random spectral measure ZG,j(A)
for all measurable, bounded sets A ⊂ Rν .

Finally I would remark that property (vi) of the random spectral measures
also remains valid for this new class of random spectral measures, because its
proof applies only properties (i)–(v) of random spectral measures.
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5 Multiple Wiener–Itô integrals with respect to

vector valued random spectral measures

Next we want to rewrite the random variables with finite second moments which
are measurable with respect the σ-algebra generated by the elements of a vector
valued Gaussian stationary random field in an appropriate form, which enables
us to rewrite also the random sums defined in (1.1) in a form that helps in the
study of their limit behaviour. In the scalar valued case, i.e., when d = 1 we
could do this with the help of multiple Wiener–Itô integrals. We could rewrite
the random sums (1.1) with their help in such a form that provided great help
in the study of the limit theorems we were interested in. Next we show that
a similar method can be applied also in the case of vector valued Gaussian
stationary random fields. To do this first we have to define the multiple Wiener–
Itô integrals also in the vector valued case. We start the definition of multiple
Wiener–itô integrals in this case with the introduction of the following notation.

Let X(p) = (X1(p), . . . , Xd(p)), EX(p) = 0, p ∈ Zν , be a vector valued
stationary Gaussian random field with some matrix valued spectral measure
G = (Gj,j′), 1 ≤ j, j′ ≤ d. Let ZG = (ZG,1, . . . , ZG,d) be a vector valued
random spectral measure corresponding to it which is chosen in such a way
that Xj(p) =

∫

ei(p,x)ZG,j( dx) for all p ∈ Zν and 1 ≤ j ≤ d. Let us consider
the (real) Hilbert space H of square integrable random variables measurable
with respect to the σ-algebra generated by the random vectors X(p), p ∈ Zν .
More generally, let us consider a (possibly generalized) matrix valued spectral
measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, and a vector valued random spectral measure
ZG = (ZG,1, . . . , ZG,d) corresponding to it, where the matrix valued spectral
measures Gj,j′ and vector valued random spectral measures ZG,j are defined
either on the torus [−π, π)ν or on Rν , and consider the (real) Hilbert space H of
the square integrable (real valued) random variables, measurable with respect
to the σ-algebra generated by the random variables of the vector valued random
spectral measures ZG with the usual scalar product in this space. We would like
to write the elements of the Hilbert space H in the form of a sum of multiple
Wiener–Itô integrals with respect to the vector valued random spectral measure
ZG. I shall construct these Wiener–Itô integrals in this section, and I prove
some of their important properties.

As a discussion in Section 2 of [11] will show we cannot write all elements
of H in the form of a sum of Wiener–Itô integrals, but we can do this for the
elements of an everywhere dense subspace of H. In particular, if we consider
finitely many random variables Xj(p), 1 ≤ j ≤ d, p ∈ Zν of a discrete or Xj(ϕ),
1 ≤ j ≤ d, ϕ ∈ Sν , of a generalized vector valued stationary Gaussian random
field, then all polynomials of these random variables can be written as the sum
of Wiener–Itô integrals. Such a result will be sufficient for our purposes. In
the subsequent discussion I impose a technical condition about the properties
of the matrix valued spectral measure G = (Gj,j′) I shall be working with. I
assume that it is non-atomic. More precisely, I assume that we are working with
such a dominating measure µ for the coordinates of the matrix valued spectral
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measures Gj,j′ for which µ({x}) = 0 for all x ∈ Rν .
First I define for all n = 1, 2, . . . and 1 ≤ js ≤ d for the indices 1 ≤ s ≤ n

the n-fold multiple Wiener–Itô integral

In(f |j1, . . . , jn) =
∫

f(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn(d xn)

with respect to the coordinates of a vector valued random spectral measure ZG =
(ZG,1, . . . , ZG,d), corresponding to a matrix valued spectral measureG = (Gj,j′),
1 ≤ j, j′ ≤ d. I shall define these Wiener–Itô integrals with kernel functions f ∈
Kn,j1,...,jn in a (real) Hilbert space Kn,j1,...,jn = Kn,j1,...,jn(Gj1,j1 , . . . , Gjn,jn)
defined below.

We define Kn,j1,...,jn = Kn,j1,...,jn(Gj1,j1 . . . . , Gjn,jn) as the Hilbert space
consisting of those complex valued functions f(x1, . . . , xn) on Rnν which satisfy
the following relations (a) and (b):

(a) f(−x1, . . . ,−xn) = f(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rnν ,

(b) ‖f‖2 =
∫

|f(x1, . . . , xn)|2Gj1,j1( dx1) . . . Gjn,jn( dxn) <∞.

We define the scalar product in Kn,j1,...,jn in the following way. If f, g ∈
Kn,j1,...,jn , then

〈f, g〉 =

∫

f(x1, . . . , xn)g(x1, . . . , xn)Gj1,j1( dx1) . . . Gjn,jn( dxn)

=

∫

f(x1, . . . , xn)g(−x1, . . . ,−xn)Gj1,j1( dx1) . . . Gjn,jn( dxn).

Because of the symmetry Gjs,js(A) = Gjs,js(−A) of the spectral measure

〈f, g〉 = 〈f, g〉, i.e., the scalar product 〈f, g〉 is a real number for all f, g ∈
Kn,j1,...,jn . This means that Kn,j1,...,jn is a real Hilbert space, as I claimed. We
also define the real Hilbert space K0 for n = 0 as the space of real constants
with the norm ‖c‖ = |c|.
Remark. In the case n = 1 the above defined real Hilbert space K1,j agrees with
the real Hilbert space K1,j introduced in Lemma 3.2.

Similarly to the scalar valued case, first we introduce so-called simple func-
tions and define the multiple integrals for them. We prove some properties of
this integral which enable us to extend its definition by means of an L2 extension
for all functions f ∈ Kj1,...,jn . We define the class of simple functions together
with the notion of regular systems.

Definition of regular systems and of the class of simple functions. Let

D = {∆k, k = ±1,±2, . . . ,±N}

be a finite collection of bounded, measurable sets in Rν indexed by the integers
±1,. . . , ±N with some positive integer N . We say that D is a regular system
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if ∆k = −∆−k, and ∆k ∩ ∆l = ∅ if k 6= l for all k, l = ±1,±2, . . . ,±N . A
function f ∈ Kn,j1,...,jn is adapted to this system D if f(x1, . . . , xn) is constant
on the sets ∆k1

×∆k2
×· · ·×∆kn

, kl = ±1, . . . ,±N , l = 1, 2, . . . , n, it vanishes
outside these sets, and it also vanishes on those sets of the above form for which
kl = ±kl′ for some l 6= l′.

A function f ∈ Kn,j1,...,jn is in the class K̂n,j1,...,jn of simple functions if it
is adapted to some regular system D = {∆k, k = ±1, . . . ,±N}.
Definition of Wiener–Itô integrals of simple functions. Let a simple
function f ∈ K̂n,j1,...,jn be adapted to some regular system

D = {∆k, k = ±1, . . . ,±N}.

Its n-fold Wiener–Itô integral with respect to ZG = (ZG,1, . . . , ZG,d) with pa-
rameters j1, . . . , jn, 1 ≤ jk ≤ d for all 1 ≤ k ≤ n, is defined as

∫

f(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn) (5.1)

= In(f |j1, . . . , jn)
=

∑

kl=±1,...,±N
l=1,2,...,n

f(uk1
, . . . , ukn

)ZG,j1(∆k1
) · · ·ZG,jn(∆kn

),

where uk ∈ ∆k, k = ±1, . . . ,±N .

Although the regular system D to which f is adapted is not uniquely determined
(for example the elements of D can be divided to smaller sets), the integral
defined in (5.1) is meaningful, i.e., its value does not depend on the choice of
D. This can be proved with the help of property (iv) of vector valued random
spectral measures defined in Section 3 in the same way as it was done in the
scalar valued case in [9]. (Let me also remark that here I defined the random
integral In(f |j1, . . . , jn) with a normalization different from the normalization
of the corresponding expression IG(f) introduced in [9]. Here I omitted the
norming term 1

n! .)

Because of the definition of simple functions the sum in (5.1) does not change
if we allow in it summation only for such sequences k1, . . . , kn for which kl 6= ±kl′
if l 6= l′. This fact will be exploited in the subsequent considerations.

Next I formulate some important properties about the Wiener–Itô integrals
of simple functions. Later we shall see that these properties remain valid in the
general case.

In(f |j1, . . . , jn) is a real valued random variable for all f ∈ K̂n,j1,...,jn . (5.2)

Indeed, In(f |j1, . . . , jn) = In(f |j1, . . . , jn) by Property (a) of the functions in
Kn,j1,...,jn and property (v) of the random spectral measures defined in Section 3,

hence (5.2) holds. It is also clear that K̂n,j1,...,jn is a linear space, and the
mapping f → In(f |j1, . . . , jn) is a linear transformation on it.
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The relation

EIn(f |j1, . . . , jn) = 0 for f ∈ K̂n,j1,...,jk if n 6= 0 (5.3)

also holds. (In the non-zero terms of the sum in (5.1) we have the product
of independent random variables with expectation zero by property (vi) of the
random spectral measures described also in Section 3.) Next I express the co-
variance between random variables of the form In(f |j1, . . . , jn). To do this first
I introduce the following notation. Let Π(n) denote the set of all permutations
of the set {1, . . . , n}, and let π = (π(1), . . . , π(n)) denote one of its element.

Let us have a positive integer n ≥ 1, and two sequences j1, . . . , jn and
j′1, . . . , j

′
n, 1 ≤ js, j

′
s ≤ d for all 1 ≤ s ≤ d. Let f ∈ K̂n,j1,...,jn and h ∈ K̂n,j′1,...,j

′
n
.

I shall show that

EIn(f |j1, . . . , jn)In(h|j′1, . . . , j′n) (5.4)

=
∑

π∈Π(n)

∫

f(x1, . . . xn)h(xπ(1), . . . , xπ(n))

Gj1,j′
π−1(1)

( dx1) . . . Gjn,j′
π−1(n)

( dxn).

On the other hand, if n 6= n′, and f ∈ K̂n,j1,...,jn , h ∈ K̂n′,j′1,...,j
′
n′
, then

EIn(f |j1, . . . , jn)In′(h|j′1, . . . , j′n′) = 0. (5.5)

Next I show the following inequality with the help of formula (5.4):

E|In(f |j1, . . . , jn)|2 ≤ n!

∫

|f(x1, . . . xn)|2Gj1,j1( dx1) . . . Gjn,jn( dxn)

= n!‖fn,j1,...,jn‖2 (5.6)

for all f ∈ K̂n,j1,...,jn .

Indeed we get by applying (5.4) for f = h ∈ K̂n,j1,...,jn together with rela-
tion (3.2) that

E|In(f |j1, . . . , jn)|2 ≤
∑

π∈Π(n)

∫

|f(x1, . . . xn)||f(xπ(1), . . . , xπ(n))| (5.7)

×
n
∏

s=1

(

gjs,js(xs)gjπ−1(s),jπ−1(s)
(xs)

)1/2

µ( dx1) . . . µ( dxn).
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On the other hand, we get with the help of the Schwarz inequality that

∫

|f(x1, . . . xn)||f(xπ(1), . . . , xπ(n))|
n
∏

s=1

(

gjs,js(xs)gjπ−1(s),jπ−1(s)
(xs)

)1/2

×µ( dx1) . . . µ( dxn) (5.8)

≤
(

∫

|f(x1, . . . xn)|2
n
∏

s=1

gjs,js(xs)µ( dx1) . . . µ( dxn)

)1/2

×
(

∫

|f(xπ(1), . . . , xπ(n))|2
n
∏

s=1

gj
π−1(s),jπ−1(s)

(xs)× µ( dx1) . . . µ( dxn)

)1/2

for all π ∈ Π(n). Let us also observe that the map T from Rnν to Rnν , defined
as

T (x1, . . . , xn) = (xπ(1), . . . , xπ(n))

is a bijection, and it is a measure preserving transformation from

(Rnν , Gj1,j1 × · · · ×Gjn,jn) = (Rnν , gj1,j1(x1) · · · gjn,jn(xn)µ( dx1) . . . µ( dxn) )

to

(Rnν , Gj
π−1(1),jπ−1(1)

× · · · ×Gj
π−1(n),jπ−1(n)

)

= (Rnν , gj
π−1(1),jπ−1(1)

(x1) · · · gj
π−1(n),jπ−1(n)

(xn)µ( dx1) . . . µ( dxn) ).

To see this it is enough to check that if A = A1 × · · · ×An, then

(G1,1 × · · · ×Gn,n)(A) =
n
∏

l=1

Gl,l(Al),

TA = Aπ−1(1) × · · · ×Aπ−1(n),

(Gj
π−1(1),jπ−1(1)

× · · · ×Gj
π−1(n),jπ−1(n)

)(TA)

=

n
∏

l=1

Gj
π−1(l),jπ−1(l)

(Aπ−1(l)) = (G1,1 × · · · ×Gn,n)(A).

The last identity together with the bijective property of T imply that it is
measure preserving.

Because of the measure preserving property of the operator T we can write
that

∫

|f(x1, . . . xn)|2
n
∏

s=1

gjs,js(xs)µ( dx1) . . . µ( dxn) (5.9)

=

∫

|f(xπ(1), . . . , xπ(n))|2
n
∏

s=1

gj
π−1(s),jπ−1(s)

(xs)µ( dx1) . . . µ( dxn).
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Relation (5.6) follows from relations (5.7), (5.8) and (5.9).
To prove formulas (5.4) and (5.5) first we prove the following relations. Let

a regular system D = {∆k, k = ±1,±2, . . . ,±N} be given, choose an integer
n ≥ 1, some numbers j1, . . . , jn and j′1 . . . , j

′
n such that 1 ≤ js, j

′
s ≤ d, 1 ≤

s ≤ d, together with two sequences of numbers k1, . . . , kn and l1, . . . , ln such
that ks, ls ∈ {±1, . . . ,±N} for all 1 ≤ s ≤ n, and they also satisfy the relation
ks 6= ±ks′ , and ls 6= ±ls′ if s 6= s′. I claim that under these conditions

EZG,j1(∆k1
) · · ·ZG,jn(∆kn

)ZG,j′1
(∆l1) · · ·ZG,j′n

(∆ln) = 0 (5.10)

if {k1, . . . , kn} 6= {l1, . . . , ln}. On the other hand, if

lp = kπ(p) for all 1 ≤ p ≤ n (5.11)

with some permutation π ∈ Π(n), then

EZG,j1(∆k1
) · · ·ZG,jn(∆kn

)ZG,j′1
(∆l1) · · ·ZG,j′n

(∆ln)

= Gj1,j′
π−1(1)

(∆k1
) · · ·Gjn,j′

π−1(n)
(∆kn

). (5.12)

Let me remark that there cannot be two different permutations π ∈ Π(n) satisfy-
ing relation (5.11), since by our assumption also elements of the set {k1, . . . , kn}
are different, and the same relation holds for the set {11, . . . , ln}.

To prove (5.10) we show that under its conditions the product

ZG,j1(∆k1
) · · ·ZG,jn(∆kn

)ZG,j′1
(∆l1) · · ·ZG,j′n(∆ln)

can be written in the form of a product of two independent terms in such a way
that one of them has expectation zero.

Indeed, since {k1, . . . , kn} 6= {l1, . . . , ln}, there is such an element ks for
which ks 6= lt for all 1 ≤ t ≤ n, and also the relation ks 6= ±kt if s 6= t, holds. If
the relation ks 6= ±lt also holds for all 1 ≤ t ≤ n, then ZG,js(∆ks

) is independent
of the product of the product of the remaining terms in this product because
of property (vi) of vector valued random spectral measures given in Section 3,
and EZG,js(∆ks

) = 0. Hence relation (5.10) holds in this case.
In the other case, there is an index s′ such that ls′ = −ks. In this case the

vector

(ZG,js(∆ks
), ZG,js′ (∆ls′ )) = (ZG,js(∆ks

), ZG,js′ (−∆ls′ ))

= (ZG,js(∆ks
), ZG,js′ (∆ks

))

is independent of the remaining terms, (because of property (vi) of the vec-
tor valued random spectral measures). In the last relation we exploited that
−∆ls′ = ∆ks

). Hence

EZG,js(∆ks
)ZG,js′ (∆ls′ ) = EZG,js(∆ks

)ZG,js′ (−∆ks
) = 0,

and relation (5.10) holds in this case, too.
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To prove (5.12) let us observe that under its condition the investigated prod-
uct can be written in the form

ZG,j1(∆k1
) · · ·ZG,jn(∆kn

)ZG,j′1
(∆l1) · · ·ZG,j′n

(∆ln)

=
n
∏

p=1

ZG,jp(∆kp
)ZG,j′

π−1(p)
(∆kp

).

The terms in the product at the right-hand side are independent for different
indices s, and EZG,jp(∆kp

)ZG,j′
π−1(p)

(∆kp
) = Gjp,j′

π−1(p)
(∆kp

). Formula (5.12)

follows from these relations and the independence between the terms in the last
product. (Here we use again property (vi) of the random spectral measures.)

To prove formula (5.4) let us take a regular system

D = {∆k, k = ±1, . . . ,±N}

such that both functions f and h are adapted to it. This can be done by means
of a possible refinement of the original regular systems corresponding to the
functions f and h. Then we can write, by exploiting (5.2) and (5.10) that

EIn(f |j1, . . . , jn)In(h|j′1, . . . , j′n) = EIn(f |j1, . . . , jn)In(h|j′1, . . . , j′n)
=

∑

π∈Π(n)

∑

(k1,...kn), (l1,...ln)
kp=±1,...,±N, p=1,...,n

lp=kπ(p) p=1,...,n

f(uk1
, . . . ukn

)h(ukπ(1)
, . . . , ukπ(n)

)

×EZG,j1(∆k1
) · · ·ZG,jn(∆kn

)ZG,j′1
(∆l1) · · ·ZG,j′n(∆ln),

where uk ∈ ∆k for all k = ±1, . . . ,±N .
The expected value of the product at the right-hand side of this identity can

be calculated with the help of (5.12), and this yields that

EIn(f |j1, . . . , jn)In(h|j′1, . . . , j′n)
=

∑

π∈Π(n)

∑

(k1,...kn), (l1,...ln)
kp=±1,...,±N, p=1,...,n

lp=kπ(p), p=1,...,n

f(uk1
, . . . ukn

)h(ul1 , . . . , uln)

×Gj1,j′
π−1(1)

(∆k1
) · · ·Gjn,j′

π−1(n)
(∆kn

)

=
∑

π∈Π(n)

∫

f(x1, . . . xn)h(xπ(1), . . . , xπ(n))

×Gj1,j′
π−1(1)

( dx1) . . . Gjn,j′
π−1(n)

( dxn).

Formula (5.4) is proved.
The proof of (5.5) is based on a similar idea, but it is considerably simpler.

It can be proved similarly to relation (5.10) that for n 6= n′,

EZG,j1(∆k1
) · · ·ZG,jn(∆kn

)ZG,j′1
(∆l1) · · ·ZG,j′

n′
(∆ln′ ) = 0 (5.13)
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if we define this expression by means a regular system

D = {∆k, k = ±1,±2, . . . ,±N},

some numbers j1, . . . , jn and j′1 . . . , j
′
n′ , all of them between 1 and d, together

with two sequences of numbers k1, . . . , kn and l1, . . . , ln′ such that ks, ls ∈
{±1, . . . ,±N} for all these numbers, and they satisfy the relation ks 6= ±ks′ ,
and ls 6= ±ls′ if s 6= s′. Then, if we express

EIn(f |j1, . . . , jn)In′(h|j′1, . . . , j′n′) = EIn(f |j1, . . . , jn)In′(h|j′1, . . . , j′n′)

similarly as we have done in the proof of (5.12) we get such a sum where all
terms equal zero because of (5.13). This implies relation (5.5).

To define the Wiener–Itô integral for all functions f ∈ Kn,j1,...,jn we still
need the following result.

Lemma 5.1. The class of simple functions K̂n,j1,...,jn is a dense linear subspace
of the (real) Hilbert space Kn,j1,...,jn .

Lemma 5.1 is the multivariate version of Lemma 4.1 in [9]. (A more trans-
parent proof of this result was given in the Appendix of [10].) Actually, we do
not have to prove Lemma 5.1, because it simply follows from Lemma 4.1 of [9].
By applying this result for G =

∑n
j=1Gj,j we get that all bounded functions of

Kn,j1,...,jn are in the closure of K̂n,j1,...,jn . But this implies that all functions of
Kn,j1,...,jn are in this closure.

Let us take the L2 norm in the Hilbert space H. Then we have, for all
f ∈ K̂n,j1,...,jn , In(f |j1, . . . , jn) ∈ H, and by formula (5.6),

‖In(f |j1, . . . , jn)‖ =
[

E(In(f |j1, . . . , jn)2)
]1/2 ≤

√
n!‖fn,j1,...,jn‖.

Hence Lemma 5.1 enables us to extend the Wiener–Itô integral In(f |j1, . . . , jn)
for all f ∈ Kn,j1,...,jn . Moreover, relations (5.2)—(5.6) remain valid in the
Hilbert space Kn,j1,...,jn after this extension.

Remark. In (5.6) we have given an upper bound for the second moment of a
multiple Wiener–Itô integral, but we cannot write equality in this formula. In
the scalar-valued case we had an identity in the corresponding relation. At least
this was the case if we took the Wiener–Itô integral of a symmetric function. On
the other hand, working only with Wiener–Itô integrals of symmetric functions
did not mean a serious restriction. This relative weakness of formula (5.6) (the
lack of identity) is the reason why we cannot represent such a large class of
random variables in the form of a sum of Wiener–Itô integrals as in the scalar
valued case. (This problem will be discussed in Section 2 of [11].)

I would mention that there is a slightly stronger version of Lemma 5.1 which
is useful in the study in the second part of this paper, in [11], when we are
interested in the question under what conditions we can state that a sequence
of Wiener–Itô integrals converges to a Wiener–Itô integral. Here is this result.
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Lemma 5.2. For all functions f ∈ Kn,j1,...,jn and numbers ε > 0 there is such

a simple function g ∈ K̂n,j1,...,jn for which ‖f−g‖ ≤ ε in the norm of the Hilbert
space Kn,j1,...,jn , and there is a regular system D = {∆k, k = ±1,±2, . . . ,±N}
to which the function g is adapted, and the boundary of all sets ∆k ∈ D has
zero µ-probability with the measure µ we chose as the dominating measure for
the complex measures Gj,j′ in our considerations.

Lemma 5.2 also follows from the results of [9] or [10].

Finally, I make the following remark. If we define a new function by reindex-
ing the variables of a function of h ∈ Kn,j1,...,jn by means of a permutation of the
indices, and we change the indices of the spectral measure ZG,js in the Wiener-
Itô integral In(h|j1, . . . , jn) in an appropriate way, then we get a newWiener–Itô
integral whose value agrees with the original integral In(h|j1, . . . , jn). More ex-
plicitly, the following result holds.

Lemma 5.3. Given a function h ∈ Kn,j1,...,jn and a permutation π ∈ Π(n)
define the function hπ(x1, . . . , xn) = h(xπ(1), . . . , xπ(n)). The following identity
holds.

∫

h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn)

=

∫

hπ(x1, . . . , xn)ZG,jπ(1)
( dx1) . . . ZG,jπ(n)

( dxn). (5.14)

(In particular, hπ ∈ Kn,jπ(1),...,jπ(n)
, thus the integrals on both sides of the iden-

tity are meaningful.)

Proof of Lemma 5.3. This identity can be simply checked if h is a simple
function. It is enough to observe that if h(x1, . . . , xn) = h1(x1) · · ·hn(xn) with
some xl ∈ ∆kl

, g(l(·) is some function on Rν , 1 ≤ l ≤ n, then

∫

h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn) =

n
∏

l=1

hl(xl)ZG,jl(∆kl
),

hπ(x1, . . . , xl) = h1(xπ1
) · · ·hn(xπn

),

∫

hπ(x1, . . . , xn)ZG,jπ(1)
( dx1) . . . ZG,jπ(n)

( dxn) =
n
∏

l=1

h(xπl
)ZG,jπl

(∆kπ(l)
),

and the last two Wiener–Itô integrals equal. Then a simple limiting procedure
implies it in the general case. Lemma 5.3 is proved.

We saw in [9] that in the scalar valued case the value of a Wiener–Itô integral
∫

f(x1, . . . , xn)ZG( dx1) . . . ZG( dxn) does not change if we replace the kernel
function f by the function we get by permuting its variables x1, . . . , xn in an
arbitrary way. Lemma 5.3 is the generalization of this result to the case when
we integrate with respect to the coordinates of a vector valued random spectral
measure.
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Remark. A consequence of the result of Lemma 5.3 shows an essential difference
between the behaviour of multiple Wiener–Itô integrals with respect to scalar
and vector valued random spectral measures. It follows from the scalar valued
version of Lemma 5.3 that in the scalar valued case the Wiener–Itô integral of
a kernel function agrees with the Wiener–itô integral of the symmetrization of
this kernel function. This has the consequence that in the scalar valued case
we can restrict our attention to the Wiener–Itô integrals of symmetrical func-
tions which do not change their values by any permutation of their variables.
It can be seen that any random variable which can be written as the sum of
Wiener–Itô integrals can be written in a unique form as a sum of Wiener–Itô
integrals of different multiplicity with symmetric kernel functions. The analo-
gous result does not hold in the vector valued case. Indeed, if there is some
linear dependence among the coordinates of the underlying vectors in a vector
valued stationary random field, then such functions fj can be found for which
∑d

j=1

∫

fj(x)ZG,j( dx) ≡ 0, and not all kernel functions fj disappear in the
above sum. This shows that the unique representation of the random variables
by means of a sum of Wiener–Itô integrals may not hold in vector valued models.

6 The diagram formula for the product of mul-

tiple Wiener–Itô integrals

Let us consider a vector valued random spectral measure (ZG,1, . . . , ZG,d) cor-
responding to the matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d, of a
vector valued stationary Gaussian random field with expectation zero (either to
a discrete random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Zν , or to a generalized
one X(ϕ) = (X1(ϕ), . . . , Xd(ϕ)), ϕ ∈ Sν). Let us assume that the spectral
measure Gj,j′ , 1 ≤ j, j′ ≤ d, is non-atomic, and take two Wiener–Itô integrals

In(h1|j1, . . . , jn) =
∫

h1(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn(dxn) (6.1)

and

Im(h2|j′1, . . . , j′m) =

∫

h2(x1, . . . , xm)ZG,j′1
( dx1) . . . ZG,j′m(dxm) (6.2)

with some kernel functions h1 ∈ Kn,j1,...,jn and h2 ∈ Km,j′1,...,j
′
m
, where js, j

′
t ∈

{1, . . . , d} for all 1 ≤ s ≤ n and 1 ≤ t ≤ m.
Actually we state our problems a bit differently, which is more appropriate

for our discussion. We take two functions h1(x1, . . . , xn) and h2(xn+1, . . . , xn+m)
in the space R(n+m)ν , and define the function

h
(0)
2 (x1, . . . , xm) by the identity

h
(0)
2 (x1, . . . , xm) = h2(x

′
n+1, . . . , x

′
n+m)) if (x1, . . . , xm) = (x′n+1, . . . , x

′
n+m).

We assume that h1 ∈ Kn,j1,...,jn , h
(0)
2 ∈ Km,j′1,...,j

′
m
. Then we define the Wiener–

Itô integrals (6.1) and (6.2) with the kernel functions h1 and h
(0)
2 . In for-
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mula (6.2) we should have written the function h
(0)
2 , but we omitted the super-

script (0).
I shall present a result in which we express the product of these two Wiener–

Itô integrals as a sum of Wiener–Itô integrals. This result is called the diagram
formula, since the kernel functions of the Wiener–Itô integrals appearing in this
sum are expressed by means of some diagrams. This result is a multivariate
version of the diagram formula proved in Chapter 5 of [9]. In that work also the
product of more than two Wiener–Itô integrals is expressed in the form of a sum
of Wiener–Itô integrals. But actually the main point of the proof is to show the
validity of the diagram formula for the product of two Wiener–Itô integrals, and
we shall need only this result. So I restrict my attention to this case. Actually
we need the diagram formula only in a special case. The result in this special
case will be given in a corollary.

To express the product of the two Wiener–Itô integrals in formulas (6.1)
and (6.2) as a sum of Wiener–Itô integrals first I introduce a class of coloured
diagrams Γ = Γ(n,m) that will be used in the definition of the Wiener–Itô
integrals we shall be working with. A coloured diagram γ ∈ Γ is a graph whose
vertices are the pairs of integers (1, s), 1 ≤ s ≤ n, and (2, t), 1 ≤ t ≤ m. Each
vertex is coloured with one of the numbers 1, . . . , d. The colour of the vertex
(1, s) is js, 1 ≤ s ≤ n, and the colour of the vertex (2, t) is j′t, 1 ≤ t ≤ m. The
set of vertices of the form (1, s) will be called the first row and the set of vertices
of the form (2, t) will be called the second row of a diagram γ ∈ Γ. The coloured
diagrams γ ∈ Γ are those undirected graphs with the above coloured vertices
for which edges can go only between vertices of the first and second row, and
from each vertex there starts zero or one edge. Given a coloured diagram γ ∈ Γ
we shall denote the number of its edges by |γ|.

I shall define for all coloured diagrams γ ∈ Γ a multiple Wiener–Itô integral
depending on γ. The diagram formula states that the product of the Wiener–Itô
integrals in (6.1) and (6.2) equals the sum of these Wiener–Itô integrals.

When stating the diagram formula I shall work with the functions
h1(x1, . . . , xn) and h2(xn+1, . . . , xn+m) in Rn+m. The function
h2(xn+1, . . . , xn+m) is the function which corresponds to the kernel function

h
(0)
2 (x1, . . . , xm) in the definition of the Wiener–Itô integral in (6.2). We define

with their help the function

H(x1, . . . , xn+m) = h1(x1, . . . , xn)h2(xn+1, . . . , xn+m). (6.3)

We shall define the kernel functions appearing in the Wiener–itô integrals in
the diagram formula with the help of the functions H(x1, . . . , xn+m). In the
definition of these kernel functions I shall apply the following natural bijection S
between the coordinates of the vectors in Rn+m, i.e., the set {1, . . . , n+m} and
the vertices of the diagrams of γ ∈ Γ.

S((1, k)) = k for 1 ≤ k ≤ n, and S((2, k)) = n+ k for 1 ≤ k ≤ m. (6.4)

To simplify the formulation of the diagram formula I shall introduce the follow-
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ing notation with the help of the colours of the diagrams.

J(1, k) = jk, 1 ≤ k ≤ n and J(2, l) = j′l , 1 ≤ l ≤ m. (6.5)

First I give the formal definition of the Wiener–Itô integrals that appear in
the diagram formula. These Wiener-Itô integrals correspond to the diagrams
γ ∈ Γ introduced before. Then I describe the diagram formula with the help of
these Wiener–Itô integrals. The definition of the Wiener–Itô integrals we need
in the diagram formula applies a rather complicated notation, but its informal
explanation given after formula (6.16) may help to understand it. For the sake
of a better comprehension of the calculations in the diagram formula I shall
present an example after the formulation of this result, where the product of
two Wiener–Itô integrals is considered, and I show how to calculate a typical
term in the sum of Wiener–Itô integrals which appears in the diagram formula
for this product.

Fix some diagram γ ∈ Γ. I explain how to define the Wiener–Itô inte-
gral corresponding to γ in the diagram formula. First I define a function
Hγ(x1, . . . , xn+m) which we get by means of an appropriate permutation of
the indices of the function H defined in (6.3). This permutation of the indices
depends on the diagram γ.

To define this permutation of the indices first I define a map Tγ which maps
the set {1, . . . , n +m} to the elements in the rows of the diagrams. This map
depends on the diagram γ.

To define this map first I introduce the following sets depending on the
diagram γ:

A1 = A1(γ) = {r1, . . . , rn−|γ| : 1 ≤ r1 < r2 < · · · < rn−|γ| ≤ n (6.6)

no edge of γ starts from (1, rk), 1 ≤ k ≤ n− |γ|},

A2 = A2(γ) = {t1, . . . , tm−|γ| : 1 ≤ t1 < t2 < · · · < tm−|γ| ≤ m, (6.7)

no edge of γ starts from (2, tk), 1 ≤ k ≤ m− |γ|},

and

B = B(γ) = {(v1, w1), . . . , (v|γ|, w|γ|)) : 1 ≤ v1 < v2 < · · · v|γ| ≤ n,

((1, vk), (2, wk)) is an edge of |γ|, 1 ≤ k ≤ |γ|}. (6.8)

Let us also define with the help of the set B the sets

B1 = B1(γ) = {v1, . . . , v|γ|}, B2 = B2(γ) = {w1, . . . , w|γ|} (6.9)

with the numbers vk and wl appearing in the set

B = B(γ) = {(v1, w1)), . . . , (v|γ|, w|γ|))}.
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Now, I define the map Tγ in the following way:

Tγ(k) = (1, rk) for 1 ≤ k ≤ n− |γ|, (6.10)

Tγ(n− |γ|+ k) = (2, tk) for 1 ≤ k ≤ m− |γ|,
Tγ(n+m− 2|γ|+ k) = (1, vk) for 1 ≤ k ≤ |γ|,
Tγ(n+m− |γ|+ k) = (2, wk) for 1 ≤ k ≤ |γ|.

In formula (6.10) we worked with the numbers rk, tk, vk and wk defined in
(6.6)—(6.9). It has the following meaning. We listed the vertices of the diagram
γ in the form Tγ(s), 1 ≤ s ≤ n +m. If the vertex Tγ(s) gets the index s, then
the first n − |γ| indices are given in increasing order to the vertices from the
first row from which no edge starts. The vertices of the second row from which
no edge starts get the next m − |γ| indices also in increasing order. Then the
|γ| vertices from the first row from which an edge starts get the subsequent |γ|
indices in increasing order. The remaining |γ| vertices from the second row from
which an edge starts get the indices between n+m− |γ|+ 1 and n+m. They
are indexed in such a way that if two vertices (1, vk) and (2, wk) are connected
by en edge then the index of (2, wk) is obtained if we add |γ| to the index of
(1, vk).

I define with the help of the function Tγ and the map S(·) defined in (6.4)
the permutation

πγ(k) = S(Tγ(k)), 1 ≤ k ≤ n+m (6.11)

of the set {1, . . . , n + m}. Next I introduce the Euclidean space Rn+m
γ with

elements x(γ) = (x(γ)1, . . . , x(γ)n+m) by reindexing the arguments of the Eu-
clidean space Rn+m, where the functions h1(x1, . . . , xn) and h2(xn+1, . . . , xn+m)
are defined in the following way.

(x(γ)1, . . . , x(γ)n+m) = (xπγ(1), . . . , xπγ(n+m))

with (x(γ)1, . . . , x(γ)n+m) ∈ Rn+m
γ and (x1, . . . , xn+m) ∈ Rn+m. It will be sim-

pler to define the quantities needed in the definition of the Wiener–Itô integral
corresponding to the diagram γ as functions defined in the space Rn+n

γ . First
we define the function Hγ as

Hγ(x(γ)1, . . . , x(γ)n+m) (6.12)

= H(x(γ)1, . . . , x(γ)n−|γ|, x(γ)n+m−2|γ|+1, . . . , x(γ)n+m−|γ|,

x(γ)n−|γ|+1, . . . , x(γ)n+m−2|γ|+1, x(γ)(n+m−|γ|+1, . . . , x(γ)n+m)

= h1(x(γ)1, . . . , x(γ)n−|γ|, x(γ)πγ(n+m−2|γ|+1), . . . , x(γ)n+m−|γ|)

×h2(x(γ)n−|γ|+1, . . . , x(γ)n+m−2|γ|+1, x(γ)n+m−|γ|+1, . . . , x(γ)n+m).

Next I define the function h̄γ(x(γ)1, . . . , x(γ)n+m−|γ|)) (with n + m − |γ|
arguments) which we get by replacing x(γ)n+m−|γ|+k by −x(γ)n+m−2|γ|+k) in
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the function Hγ defined in formula (6.12) for all 1 ≤ k ≤ γ, i.e., I define

h̄γ(x(γ)1, . . . , x(γ)n+m−|γ|) (6.13)

= Hγ(x(γ)1, . . . , x(γ)n+m−|γ|,−x(γ)n+m−2|γ|+1, . . . ,−x(γ)n+m−|γ|)

= H(x(γ)1, . . . , x(γ)n−|γ|, x(γ)n+m−2|γ|+1, . . . , x(γ)n+m−|γ|,

x(γ)n−|γ|+1, . . . , x(γ)n+m−2|γ|+1,

−x(γ)n+m−2|γ|+1, . . . ,−x(γ)n+m−|γ|)

= h1(x(γ)1, . . . , x(γ)n−|γ|, x(γ)n+m−2|γ|+1, . . . , x(γ)n+m−|γ|)

×h2(x(γ)n−|γ|+1, . . . , x(γ)n+m−2|γ|+1,

−x(γ)n+m−2|γ|+1, . . . ,−x(γ)n+m)−|γ|).

In the next step I define the function ¯̄hγ(x(γ)1, . . . , x(γ)n+m−2|γ|). This will
be the kernel function of the Wiener–Itô integral which corresponds to the di-
agram γ in the diagram formula if we express it as a Wiener–Itô integral with
respect to the variables x(γ)1, . . . , x(γ)n+m−2|γ|,

¯̄hγ(xγ)1, . . . , x(γ)n+m−2|γ|) =

∫

h̄γ(x(γ)1, . . . , x(γ)n+m−|γ|) (6.14)

×
|γ|
∏

k=1

GJ(S−1(n+m−2|γ|+k)),J(S−1(n+m−|γ|+k))( dx(γ)n+m−2|γ|+k)

=

∫

h̄γ(x(γ)1, . . . , x(γ)n+m−|γ|)

|γ|
∏

k=1

Gjvk ,j
′
wk

( dx(γ)n+m−2|γ|+k)

with the function J(·) defined in (6.5), the indices vk and wk defined in (6.8)
and the function Tγ defined in (6.10).

I shall show that the Wiener–Itô integrals

In+m−2|γ|(
¯̄hγ |jr1 , . . . , jrn−|γ|

, j′t1 , . . . , j
′
tm−|γ|

) (6.15)

=

∫

¯̄hγ(x(γ)1, . . . , x(γ)n+m−2|γ|)

n+m−2|γ|
∏

k=1

ZG,J(S−1(k))(dx(γ)k)

=

∫

¯̄hγ(x(γ)1, . . . , x(γ)n+m−2|γ|)

n−|γ|
∏

k=1

ZG,jrk
( dx(γ)k)

m−|γ|
∏

l=1

ZG,j′tl
( dx(γ)l+n−|γ|)

exist for all γ ∈ Γ, and these Wiener–Itô integrals appear in the diagram formula.
The numbers rk and tl in this formula were defined in (6.6) and (6.7).

In formula (6.15) we integrated with respect to the coordinates x(γ)s, 1 ≤
s ≤ n + m, of the vectors in the Euclidean space Rn+m

γ . If we replace the
variables x(γ)s by xs in (6.15), then we get a Wiener–itô integral in the space
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Rn+m with the same value. This means that the following relation holds:

In+m−2|γ|(
¯̄hγ |jr1 , . . . , jrn−|γ|

, j′t1 , . . . , j
′
tm−|γ|

) (6.16)

= In+m−2|γ|(hγ |jr1 , . . . , jrn−|γ|
, j′t1 , . . . , j

′
tm−|γ|

)

=

∫

hγ(x1, . . . , xn+m−2|γ|)

n−|γ|
∏

k=1

ZG,jrk
( dxk)

m−|γ|
∏

l=1

ZG,j′tl
( dxl+n−|γ|)

with

hγ(x1, . . . , xn+m−2|γ|) = ¯̄hγ(x(γ)1, . . . , x(γ)n+m−2|γ|)

= ¯̄hγ(xπγ(1), . . . , xπγ(n+m−2|γ|)).

Before describing the diagram formula I explain the content of the above
defined formulas.

Let us fix a diagram γ ∈ Γ, and let us call a vertex of it from which no edge
starts open, and a vertex from which an edge starts closed. We listed the open
vertices from the first row in increasing order as (1, r1), . . . , (1, rn−|γ|), and the
open vertices from the second row as (2, t1), . . . , (2, tm−|γ|). We listed the closed
vertices from the first row in increasing order as (1, v1), . . . , (1, vγ). Finally we
listed the closed vertices from the second row as (2, w1), . . . , (2, wγ), and we
indexed them in such a way that the vertices (1, vk) and (2, wk) are connected
by an edge for all 1 ≤ k ≤ γ.

In formula (6.10) we defined the map Tγ from the set {1, . . . , n+m} to the
set of vertices of the diagram γ with the help of the above listing of the vertices.
First we considered the open vertices from the first row, then the open vertices
from the second row, and then we finished with the closed vertices first from
the first and then from the second row. We defined in (6.11) the permutation
πγ of the set {1, . . . , n+m} by applying first the map the map Tγ and then the
map S defined (6.4). We defined the function Hγ in (6.13) with the help of this
permutation. We have introduced a Euclidean space Rn+m

γ whose elements we
get by rearranging the indices of the coordinates of the Euclidean space Rn+m

where we are working with the help of the permutation πγ , and we have defined
our functions in this space.

We defined the function Hγ on the space Rn+m
γ as the product of the func-

tions h1 and h2 with reindexed variables. In the function h1 first we took the
variables x(γ)s = xπγ(s) with those indices πγ(s) which correspond to the open
vertices of the first row, and then the variables with indices corresponding to
the closed vertices of the first row. We defined the reindexation of the variables
in the second row similarly. First we took those variables whose indices corre-
spond to the open vertices and then the variables whose indices correspond to
the closed vertices of the second row.

The variables

x(γ)n+m−2|γ|+k = xπγ(n+m−2|γ|+k) and x(γ)n+m−|γ|+k = xπγ(n+m−|γ|+k)

58



in the functionHγ are variables with indices corresponding to vertices connected
by an edge. So in the definition of the function h̄γ in (6.14) I replaced in Hγ

the variable corresponding to the endpoint of an edge from the second row
of the diagram γ by the variable corresponding to the other endpoint of this
edge, and multiplied this variable by −1. Thus the variables x(γ)n+m−2|γ|+k =
xπγ(n+m−2|γ|+k), 1 ≤ k ≤ |γ|, of the function h̄γ correspond to the edges of the

diagram γ. I defined the function ¯̄hγ by integrating the function h̄γ by these
variables. The variable x(γ)n+m−2|γ|+k = xπγ(n+m−2|γ|+k) corresponds to the
k-th edge of the diagram, and we integrate this variable with respect to the
measure Gjvk ,j

′
wk

, that is with respect to the measure Gu,v whose coordinates

are the colours of the endpoints of the k-th edge.
Finally we define the Wiener–Itô integral corresponding to the diagram γ

with kernel function ¯̄hγ . We integrate the argument x(γ)k with respect to
that random spectral measure ZG,j whose parameter agrees with the colour of
the vertex corresponding to this variable. Thus we choose ZG,jrk

( dx(γ)k) for
1 ≤ k ≤ n− |γ| and ZGj′

tk−n+|γ

( dx(γ)k) if n− |γ|+ 1 ≤ k ≤ n+m− 2|γ|. We

can replace this Wiener–Itô integral defined in (6.15) with kernel function ¯̄hγ
by the Wiener–Itô integral defined in (6.16) with kernel function hγ .

Next I formulate the diagram formula.

Theorem 6.1. The diagram formula. Let us consider the Wiener–Itô in-
tegrals In(h1|j1, . . . , jn) and Im(h2|j′1, . . . , j′m) introduced in formulas (6.1) and
(6.2). The following results hold.

(A) The function ¯̄hγ defined in (6.14) satisfies the relations

¯̄hγ ∈ Kn+m−2|γ|,jr1 ,...,jrn−|γ|
,j′t1

,...,j′tm−|γ|
,

and ‖¯̄hγ‖ ≤ ‖h1‖‖h2‖ for all γ ∈ Γ. Here the norm of the function

h1 in Kn,j1,...,jn , the norm of ¯̄h2 in Km,j′1,...,j
′
m
, and the norm of ¯̄hγ in

Kn+m−2|γ|,jr1 ,...,jrn−|γ|
,j′t1

,...,j′tm−|γ|
is taken.

(B) One has

In(h1|j1, . . . , jn)Im(h2|j′1, . . . , j′m) (6.17)

=
∑

γ∈Γ

In+m−2|γ|(
¯̄hγ |jr1 , . . . , jrn−|γ|

, j′t1 , . . . , j
′
tm−|γ|

).

The terms in the sum at the right-hand side of formula (6.17) were defined
in formulas (6.12)—(6.15). The Wiener–Itô integral

In+m−2|γ|(
¯̄hγ |jr1 , . . . , jrn−|γ|

, j′t1 , . . . , j
′
tm−|γ|

)

in formula (6.17) can be replaced by the Wiener–Itô integral

In+m−2|γ|(hγ |jr1 , . . . , jrn−|γ|
, j′t1 , . . . , j

′
tm−|γ|

)

defined in (6.16).
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To understand the formulation of the diagram formula better let us consider
the following example. We take a five dimensional stationary Gaussian random
field with some spectral measure (Gj,j′(x)), 1 ≤ j, j′ ≤ 5, and random spectral
measure ZG,j( dx), 1 ≤ j ≤ 5, corresponding to it. Let us understand how
we define the Wiener–Itô integral corresponding to a typical diagram when we
apply the diagram formula in the following example. Take the product of two
Wiener–Itô integrals of the following form:

I3(h1|2, 3, 5) =
∫

h1(x1, x2, x3)ZG,2( dx1)ZG,3( dx2)ZG,5( dx3)

and

I4(h2|1, 5, 4, 1) =

∫

h2(x1, x2, x3, x4)

ZG,1( dx1)ZG,5( dx2)ZG,4( dx3)ZG,2( dx4),

and let us write it in the form of a sum of Wiener–Itô integrals with the help of
the diagram formula.

First I give the vertices of the coloured diagrams we shall be working with
together with their colours.

(1,1),2 (1,2),3 (1,3),5

(2,1),1 (2,3),4 (2,4),2(2,2),5

Figure 1: the vertices of the diagrams together with their colours

Next I consider a diagram γ which yields one of the terms in the sum express-
ing the product of these two Wiener–Itô integrals. I take the diagram which
has two edges, one edge connecting the vertices (1, 2) and (2, 4), and another
edge connecting the vertices (1, 3) and (2, 1). Let us calculate which Wiener–Itô
integral corresponds to this diagram γ.

In the next step I take this diagram γ, and I show not only the indices and
colours of its vertices, but for each vertex I also tell which value Tγ(k) it equals.
Here Tγ(k) is the function defined in formula (6.10).
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(1,1),2 (1,2),3 (1,3),5

(2,1),1 (2,3),4 (2,4),2(2,2),5

Figure 2: a typical diagram

To define the Wiener–Itô integral corresponding to this diagram let us first
consider the function

H(x1, . . . , x7) = h1(x1, x2, x3)h2(x4, x5, x6, x7)

defined in (6.3). Simple calculation shows that the function πγ(·) = S(Tγ(·)) has
the following form in this example. πγ(1) = 1, πγ(2) = 5, πγ(3) = 6, πγ(4) = 2,
πγ(5) = 3, πγ(6) = 7, πγ(7) = 4. This also means that the coordinates of the
vectors in the Euclidean space R7

γ which we get by reindexing the coordinates
of the vectors in R7 have the form

(x(γ)1, x(γ)2, x(γ)3, x(γ)4, x(γ)5, x(γ)6, x(γ)7) = (x1, x5, x6, x2, x3, x7, x4).

Then we can write the function H̄γ and h̄γ defined in (6.12) and (6.13) as

Hγ(x(γ)1, . . . , x(γ)7) = h1(x(γ)1, x(γ)4, x(γ)5)h2(x(γ)2, x(γ)3, x(γ)6, x(γ)7),

and

h̄γ(x(γ)1, . . . , x(γ)5) = h1(x(γ)1, x(γ)4, x(γ)5)h2(x(γ)2, x(γ)3,−x(γ)4,−x(γ)5).

Then we have

¯̄hγ(x(γ)1, x(γ)2, x(γ)3) =

∫

h̄γ(x(γ)1, . . . , x(γ)5)G3,2( dx(γ)4)G5,1( dx(γ)5),

and

I3(
¯̄hγ |2, 5, 4)

=

∫

¯̄hγ(x(γ)1, x(γ)2, x(γ)3)ZG,2( dx(γ)1)ZG,5( dx(γ)2)ZG,4( dx(γ)3)

is the multiple Wiener–Itô integral corresponding to the diagram γ in the di-
agram formula. To understand the definition of the function ¯̄hγ and of the
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(1, 1) = Tγ(1), 2 (1, 2) = Tγ(4), 3 (1, 3) = Tγ(5), 5

(2, 1) = Tγ(7), 1

(2, 5) = Tγ(2), 5

(2, 3) = Tγ(3), 4

(2, 4) = Tγ(6), 2

Figure 3: the previous diagram and the enumeration of their vertices with the
help of the function Tγ

Wiener–Itô integral I3(
¯̄hγ) let us observe that the first edge of the diagram

connects the vertices (1, 2) and (2, 4) with colours 3 and 2, hence in the defini-

tion of ¯̄hγ we integrate the argument x(γ)4 by G3,2( dx(γ)4), the second edge
connects the vertices (1, 3) and (2, 1) with colours 5 and 1, hence we integrate
the variable x(γ)5 by G5,1( dx(γ)5). In the definition of the Wiener integral the
variable x(γ)1 corresponds to the vertex S−1(πγ(1)) = (1, 1) which has colour 2,
hence we integrate the variable x(γ)1) by ZG,2( dx(γ)1). Similarly, we define the
variable x(γ)2 by the measure determined by the colour of S−1(πγ(2)) = (2, 2),
which is 5, i.e., we integrate by ZG,5( dx(γ)2). Finally S−1(πγ(3)) = (2, 3) has
colour 4, and we integrate the variable x(γ)3 by ZG,4( dx(γ)3).

The Wiener–Itô integral I3(
¯̄hγ |3, 1, 3) can be rewritten with the help of for-

mula (6.16) in the following form:

I3(
¯̄hγ |2, 5, 4) = I3(hγ |2, 5, 4) =

∫

hγ(x1, x2, x3)ZG,2( dx1)ZG,5( dx2)ZG,4( dx3)

with

hγ(x1, x2, x3) =

∫

h1(x1, x4, x5)h2(x2, x3,−x4,−x5)G3,2( dx4)G5,1( dx5).

This expression can be calculated similarly to I3(
¯̄hγ |2, 5, 4), only we have to

replace x(γ)s everywhere by xs in the calculation.
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I formulate a corollary of the diagram formula in which I consider the special
case of this result when the second Wiener–Itô integral defined in formula (6.2)
is a one-fold integral. In this case it has the simpler form

I1(h2|j′1) =
∫

h2(x1)ZG,j′1
( dx1) with h2 ∈ K1,j′1

. (6.18)

Here again we formulate the problem in the following way. We take a pair of
functions h1(x1, . . . , xn) and h2(xn+1) on R(n+1)ν . Then we define a function

h
(0)
2 (x1) on R1 by the formula h

(0)
2 (x1) = h2(xn+1) if x1 = xn+1. We integrate

the function h
(0)
2 (x) in formula (6.18), but we omit the superscript (0) in our

notation. We assume that h1 ∈ Kn,j1,...,jn , and h2 ∈ K1,j′1
.

In the next Corollary I express the product of the Wiener–Itô integrals given
in (6.1) and (6.18) as a sum of Wiener–Itô integrals. This formula will be needed
in the proof of the multivariate version of Itô’s formula in paper [11].

The diagram formula in this case has a simpler form, since the second row of
the diagrams we are working with consists only of one point (2, 1). Hence there
are only the diagram γ0 ∈ Γ that contains no edges and the diagrams γp ∈ Γ,
1 ≤ p ≤ n, which contain one edge that connects the vertices (1, p) and (2, 1).

Corollary of Theorem 6.1. The product of the Wiener–Itô integrals

In(h1|j1, . . . , jn) and I1(h2|j′1)

introduced in formulas (6.1) and (6.18) satisfy the identity

In(h1|j1, . . . , jn)I1(h2|j′1) (6.19)

=

∫

hγ0
(x1, . . . , xn+1)ZG,j1( dx1) · · ·ZG,jn( dxn)ZG,j′1

( dxn+1)

+

n
∑

p=1

∫

hγp
(x1, . . . , xn−1)

p−1
∏

s=1

ZG,js( dxs)

n−1
∏

s=p

ZG,js+1
( dxs)

= In+1(hγ0
|j1, . . . , jn, j′1) +

n
∑

p=1

In−1(hγp
|j1, . . . , jp−1, jp+1, . . . , jn),

where hγ0
(x1, . . . , xn+1) = h1(x1, . . . , xn)h2(xn+1), and for 1 ≤ p ≤ n

hγp
(x1, . . . , xn−1) =

∫

h1,γp
(x1, . . . , xn)h2(xn)Gjp,j′1

( dxn)

with h1,γp
(x1, . . . , xn) = h1(xπp(1), . . . , xπp(n)), where πp(k) = k if 1 ≤ k ≤ p−1,

πp(p) = n, and πp(k) = k − 1 if p+ 1 ≤ k ≤ n.
To make the definition of formula (6.19) complete I remark that for p = 1

we put
0
∏

s=1
ZG,js( dxs) ≡ 1 and for p = n

n−1
∏

s=n
ZG,js( dxs) ≡ 1.

Proof of the Corollary. We get the result of the corollary by applying Theo-
rem 6.1 in the special case when the second Wiener–Itô integral is defined by
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formula (6.18) instead of (6.2). We have to check that in this case the function
hγ0

corresponding to the diagram γ0 agrees with the function hγ0
defined in the

corollary, and to calculate the functions hγp
defined in (6.14) for the remaining

diagrams γp, 1 ≤ p ≤ n. In this case πγp
(k) = k for 1 ≤ k ≤ p−1, πγp

(k) = k+1
for p ≤ k ≤ n− 1, πγp

(n) = p, πγp
(n+ 1) = n+ 1, hence

(x(γp)1, . . . , x(γp)n+1) = (x1, . . . , xp−1, xp+1, . . . , xn, xp, xn+1),

and

h̄γp
(x(γp)1, . . . , x(γp)n+1) = h1(x(γp)1, . . . , x(γp)n)h2(−x(γp)n)

for 1 ≤ p ≤ n. On the other hand, h2(−x) = h2(x), since h2 ∈ K1,j′1
. Thus

¯̄hγp
(x(γp)1, . . . , x(γp)n−1)

=

∫

h1(x(γp)1, . . . , x(γp)n−1, x(γp)n)h2(x(γp)n)Gjp,j′1
( dx(γp)n).

Then simple calculation shows that for γ = γp the kernel function hγ = hγp

in formula (6.16) agrees with the function hγp
defined in the corollary for all

1 ≤ p ≤ n, and Theorem 6.1 yields identity (6.19) under the conditions of
the corollary. The corollary is proved.

The proof of Theorem 6.1 is similar to the proof of the diagram formula (The-
orem 5.3 in [9]). It applies the same method, only the notation becomes more
complicated than the also rather complicated notation of the original proof,
since we have to work with spectral measures of the form Gjs,j′t

and random
spectral measures of the form ZG,js or ZG,j′t

instead of the spectral measure G
and random spectral measure ZG. Hence I decided not to describe the com-
plete proof, I only concentrate on its main ideas and the formulas that explain
why such a result appears in the diagram formula. The interested reader can
reconstruct the proof by means of a careful study of the proof of Theorem 5.3
in [9].

A sketch of proof for Theorem 6.1. The proof of Part A is relatively simple.
One can check that the function hγ satisfies relation (a) in the definition of the
functions in Kn+m−2|γ|,jr1 ,...,jrn−|γ|

,j′t1
,...,j′tm−|γ|

given in Section 5 by exploiting

formula (6.14), the similar property of the functions h1 and h2 together with
the symmetry property Gj,j′(−A) = Gj,j′(A) for all 1 ≤ j, j′ ≤ d and sets A of
the spectral measure G.

To prove the inequality formulated in Part A let us first rewrite the definition
of hγ in (6.14) by replacing all measures of the form Gj.j′(dx) by gj,j′(x)µ( dx) =
Gj,j′( dx), where µ is a dominating measure for all complex measures Gj,j′ , gj,j′

is the Radon–Nikodym derivative of Gj,j′ with respect to µ, and observe that
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the inequality (3.2) and formula (6.13) and (6.14) imply that

|¯̄hγ(x(γ)1, . . . , x(γ)n+m−2|γ|)|

≤
∫

h1(xπγ(1), . . . , xπγ(n−|γ|), xπγ(n+m−2|γ|+1), . . . , xπγ(n+m−|γ|+1))

×h2(xπγ(n−|γ|+1), . . . , xπγ(n+m−2|γ|),

−xπγ(n+m−|2γ|+1), . . . ,−xπγ(n+m−|γ|))

×
|γ|
∏

k=1

√

gjvk ,jvk (xπγ(n+m−2|γ|+k))
√

gj′wk
,j′wk

(xπγ(n+m−2|γ|+k))

×µ( dxπγ(n+m−2|γ|+k)).

We get, by applying the Schwarz inequality the evenness of the measures Gj,j

and by replacing the measures of the form gj,j(x)µ( dx) or gj′,j′(x)µ( dx) by the
measures of the form Gj,j( dx) and Gj′,j′( dx) that

|¯̄hγ(x(γ)1, . . . , x(γ)n+m−2|γ|)|2

≤
∫

|h1(xπγ(1), . . . , xπγ(n−|γ|), xπγ(n+m−2|γ|+1), . . . , xπγ(n+m−|γ|+1))|2

×
|γ|
∏

k=1

Gjvk ,jvk
( dxπγ(n+m−2|γ|+k))

×
∫

|h2(xπγ(n−|γ|+1), . . . , xπγ(n+m−2|γ|),

−xπγ(n+m−|2γ|+1), . . . ,−xπγ(n+m−|γ|))|2

×
|γ|
∏

k=1

Gj′wk,wk
( dxπγ(n+m−2|γ|+k)).

Let us integrate the last inequality with respect to the product measure

n−|γ|
∏

k=1

Gjrk ,jrk
( dx(γ)k)

m−|γ|
∏

l=1

Gj′tl
,j′tl

( dx(γ)n−|γ|+l)

=

n−|γ|
∏

k=1

Gjrk ,jrk
( dxπγ(k))

m−|γ|
∏

l=1

Gj′tl
,j′tl

( dxπγ(n−|γ|+l)).

A careful analysis shows that the inequality we get in such a way agrees with
the inequality formulated in Part A of Theorem 6.1. Indeed, we get at the
left-hand side of this inequality ‖¯̄hγ‖ with the norm formulated in Part A of
Theorem 6.1, and the right-hand side equals the product ‖h1‖‖h2‖. We got
the same integrals as the integrals defining these norms, only we integrate by
the variables of the functions h1 and h2 in a different order. We also have to
exploit that the measures Gj,j are symmetric, hence the value of the integrals
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we are investigating does not change if we replace the coordinate xk by −xk in
the kernel function for certain coordinates k.

Next I turn to the proof of Part B of Theorem 6.1. First we prove this result,
i.e., identity (6.17) in the special case when both h1 and h2 are simple functions.
We may also assume that they are adapted to the same regular system

D = {∆p, p = ±1,±2, . . . ,±N},

and by a possible further division of the sets ∆p we may also assume that the
elements of D are very small. More explicitly, first we choose such a measure µ
on Rν which has finite value on all compact sets, all complex measures Gk,l, 1 ≤
k, l ≤ d, are absolutely continuous with respect to µ, and their Radon–Nikodym
derivatives satisfy the inequality |dGk,l

dµ (x)| ≤ 1 for all x ∈ Rν . Fix a small
number ε > 0. We may achieve, by splitting up the sets ∆p into smaller sets if
it is necessary, that µ(∆p) ≤ ε for all ∆p ∈ D. Let us fix a number up ∈ ∆p in
all sets ∆p ∈ D. We can express the product In(h1|j1, . . . , jn)Im(h2|j′1, . . . , j′m)
as

I = In(h1|j1, . . . , jn)Im(h2|j′1, . . . , j′m) =
∑′

h1(up1
, . . . , upn

)h2(uq1 , . . . , uqm)

×ZG,j1(∆p1
) · · ·ZG,jn(∆pn

)ZG,j′1
(∆q1) · · ·ZG,j′m(∆qm).

The summation in the sum
∑′

goes through all pairs ((p1, . . . , pn), (q1, . . . , qm))
such that pk, ql ∈ {±1, . . . ,±N}, k = 1, . . . , n, l = 1, . . . ,m, and pk 6= ±pk̄, if
k 6= k̄, and ql 6= ±ql̄ if l 6= l̄.

Write

I =
∑

γ∈Γ

∑γ
h1(up1

, . . . , upn
)h2(uq1 , . . . , uqm)

×ZG,j1(∆p1
) · · ·ZG,jn(∆pn

)ZG,j′1
(∆q1) · · ·ZG,j′n

(∆qm).

where
∑γ

contains those terms of
∑′

for which pk = ql or pk = −ql if the
vertices (1, k) and (2, l) are connected in γ, and pk 6= ±ql if (1, k) and (2, l) are
not connected in γ.

Let us introduce the notation

Σγ =
∑γ

h1(up1
, . . . , upn

)h2(uq1 , . . . , uqm)

×ZG,j1(∆p1
) · · ·ZG,jn(∆pn

)ZG,j′1
(∆q1) · · ·ZG,j′n(∆qm).

for all γ ∈ Γ.

We want to show that for small ε > 0 (where ε is an upper bound for the
measure µ of the sets Dp ∈ D) the expression Σγ is very close to

Iγ = In+m−2|γ|(
¯̄hγ |jv1

, . . . , jv(n−|γ|
, j′w1

, . . . , j′wm−|γ|
) (6.20)

for all γ ∈ Γ. For this goal we make the decomposition Σγ = Σγ
1 + Σγ

2 of Σγ
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with

Σγ
1 =

∑γ
h1(up1

, . . . , upn
)h2(uq1 , . . . , uqm)

∏

k∈A1

ZG,jk(∆pk
)
∏

l∈A2

ZG,j′
l
(∆ql)

×
∏

(k,l)∈B

E
(

ZG,jk(∆pk
)ZG,j′

l
(∆ql)

)

and

Σγ
2 = Σγ − Σγ

1 ,

where the sets A1, A2 and B were defined in formulas (6.6), (6.7) and (6.8).
It is not difficult to check that both Σγ

1 and Σγ
2 are real valued random

variables. We want to show that Σγ
1 is close to the random variable Iγ introduced

in (6.20), while Σγ
2 is a small error term. To understand the behaviour of Σγ

1

observe that

E(ZG,jk(∆pk
)ZG,j′

l
(∆ql) = E(ZG,jk(∆pk

)ZG,j′
l
(−∆ql) = 0

if ∆pk
= ∆ql (and as a consequence if ∆pk

∩ (−∆ql) = ∅), and

E(ZG,jk(∆pk
)ZG,j′

l
(∆ql) = E(ZG,jk(∆pk

)ZG,j′
l
(−∆ql) = Gjk,j′l

(∆pk
)

if ∆pk
= −∆ql . In the case (k, l) ∈ B one of these possibilities happens.

These relations make possible to rewrite Σγ
1 in a simpler form. It can be

rewritten in the form of a Wiener–Itô integral of order n + m − 2|γ| with in-
tegration with respect to the random measure

∏

k∈A1

ZG,jk( dxk)
∏

l∈A2

ZG,j′
l
( dxl),

(where the sets A1 and A2 were defined in (6.6) and (6.7)). Then we can rewrite
this integral, by reindexing its variables in a right way to an integral very similar
to the Wiener–Itô integral (6.15) (with the same parameter γ). The difference
between these two expressions is that the kernel function h′γ of the Wiener–Itô

integral expressing Σγ
1 is slightly different from the kernel function ¯̄hγ appearing

in the other integral. The main difference between these two kernel functions
is that there is a small set in the domain of integration where h′γ disappears,

while ¯̄hγ may not disappear. But the two Wiener–Itô integrals are very close to
each other. An adaptation of the argument in the proof of Theorem 5.3 in [9]
shows that

E(Σγ
1 − Iγ)

2 ≤ Cε

with an appropriate constant C > 0.
We also want to show that Σγ

2 is a negligibly small error term. To get a good
upper bound on E(Σγ

2)
2 we write it in the form

E(Σγ
2)

2 =
∑γ

2
h1(up1

, . . . , upn
)h2(uq1 , . . . , uqm)

×h1(up̄1
, . . . , up̄n

)h2(uq̄1 , . . . , uq̄m)

×Σγ
3(pk, ql, pk̄, ql̄, k, k̄ ∈ {1, . . . , n}, l, l̄ ∈ {1, . . . ,m})
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with

Σγ
3(pk, ql, pk̄, ql̄, k, k̄ ∈ {1, . . . , n}, l, l̄ ∈ {1, . . . ,m})

= E

(





∏

k∈A1

ZG,jk(∆pk
)
∏

l∈A2

ZG,j′
l
(∆ql)

∏

k̄∈A1

ZG,jk̄(∆pk̄
)
∏

l̄∈A2

ZG,j′
l̄
(∆ql̄)





×





∏

(k,l)∈B

ZG,jk(∆pk
)ZG,j′

l
(∆ql)− E

∏

(k,l)∈B

ZG,jk(∆pk
)ZG,j′

l
(∆ql)





×





∏

(k̄,l̄)∈B

ZG,jk̄(∆pk̄
)ZG,j′

l̄
(∆ql̄)− E

∏

(k̄,l̄)∈B

ZG,jk̄(∆pk̄
)ZG,j′

l̄
(∆ql̄)





)

,

where we sum in
∑γ

2 for such sequences of indices pk, ql, pk̄, ql̄, k, k̄ ∈ {1, . . . , n},
l, l̄ ∈ {1, . . . ,m}, pk, pk̄, ql, ql̄ ∈ {±1, . . . ,±N} which satisfy the following prop-
erties. For all indices k, l, k̄ and l̄, pk = ql or pk = −ql if (k, l) ∈ B, and
similarly pk̄ = ql̄ or pk̄ = −ql̄ if (k̄, l̄) ∈ B. Otherwise all numbers ±pk and ±ql
are different, and similarly otherwise all ±pk̄ and ±ql̄ are different.

We get a good estimate on E(Σγ
2)

2 by giving a good bound on all terms

Σγ
3(pk, ql, pk̄, ql̄, k, k̄ ∈ {1, . . . , n}, l, l̄ ∈ {1, . . . ,m}) (6.21)

in the formula expressing it. This can be done by adapting the corresponding
argument in Theorem 5.3 of [9]. This argument shows that for most sets of
parameters pk, qk, pk̄, ql̄ the term in (6.21) equals zero. More explicitly, it is
equal to zero if A 6= −Ā with

A = {pk : k ∈ A1} ∪ {ql : l ∈ A2} and Ā = {pk̄ : k̄ ∈ A1} ∪ {ql̄ : l̄ ∈ A2},

and it also equals zero if F ∪ (−F) and F̄ ∪ (−F̄) are disjoint, where

F =
⋃

(k,l)∈B

{pk, ql} and F̄ =
⋃

(k̄,l̄)∈B

{pk̄, ql̄}.

These statements can be proved by adapting the corresponding argument in
Theorem 5.3 of [9]. More precisely, in the proof of the first statement we still
need the following additional observation. If (X,Y, Z) is a three-dimensional
Gaussian vector with EX = EY = EZ = 0, then EXY Z = 0. (In the proof
of Theorem 5.3 in [9] we needed this statement only in a special case when it
trivially holds.)

To prove this statement let us apply the following orthogonalization for the
random variables X, Y and Z. Write Y = αX + η, Z = β1X + β2η + ζ, where
X, η, ζ are orthogonal, (jointly) Gaussian random variables with expectation
zero. Then they are also independent, hence EXY Z = EX(αX + η)(β1X +
β2η + ζ) = 0.
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In the remaining cases the expression in (6.21) can be estimated (again by
adapting the argument of Theorem 5.3 in [9]) in the following way.

Σγ
3(pk, ql, pk̄, ql̄, k, k̄ ∈ {1, . . . , n}, l, l̄ ∈ {1, . . . ,m})

≤ Cε
∏′

µ(∆pk
)µ(∆lq )µ(∆pk̄

)µ(∆ql̄)

with some constant C (not depending on ε) and the measure µ dominating the
complex measures Gj,k with the properties we demanded at the start of the
proof. The sign ′ in the product

∏′
means that first we take the sets ∆pk

, ∆ql ,
∆pk̄

, ∆ql̄ for all parameters k, k̄ ∈ {1, . . . , n} and l, l̄ ∈ {1, . . . ,m}, then if a set
∆ appears twice in the sequence of these sets we omit one of them. Then if both
the sets ∆ and −∆ appear for some set ∆, then we omit one of them from this
sequence. Then we take in

∏′
the product of the terms µ(∆) with the sets ∆

in the remaining sequence.
It can be proved with the help of the estimates on the terms in (6.21) (see

again Theorem 5.3 in [9]) that

E(Σγ
2)

2 ≤ Cε.

It is not difficult to prove part B of Theorem 6.1 with the help of the estimates
on E(Σγ

1 − Iγ)
2 ≤ Cε and E(Σγ

2)
2 ≤ Cε if h1 and h2 are simple functions.

One only has to make an appropriate limiting procedure with ε → 0. Then we
can complete the proof of Theorem 6.1 similarly to the proof of Theorem 5.3
in [9] by means of an appropriate approximation of Wiener–Itô integrals with
Wiener–Itô integrals of simple functions. In this approximation we have to
apply Lemma 5.1 and the properties of the Wiener–Itô integrals, in particular
the already proved Part A of Theorem 6.1.
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ematics 849, Revised (augmented) version, Springer Verlag, Berlin–
Heidelberg–New York.

[10] Major. P. (2017) Limit theorems for non-linear functionals of stationary
Gaussian random fields. https://arxiv.org/abs/1708.03313

[11] Major. P. (2021) The theory of Wiener–Itô integrals in vector valued Gaus-
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