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Bolyai College of Eötvös Loránd University, Budapest

In the first part of this paper we formulated and proved the
almost sure functional limit theorem under general conditions. In
this paper we prove with its help that the usual conditions of limit
theorems for the distribution of appropriately normalized sums of
independent random variables are also sufficient for the almost sure
functional limit theorem for these independent random variables.

1. Introduction

In this paper we study the almost sure functional limit theorem for independent random
variables. To make the paper more accessible we recall some definitions given in Part I.
of this work.

Let ξn(ω), n = 1, 2, . . . , be a sequence of random variables on a probability space

(Ω,A, P ), and let us define the partial sums Sn(ω) =
n
∑

k=1

ξk(ω), n = 1, 2, . . . , S0(ω) ≡ 0.

Let a monotone increasing sequence Bn, n = 0, 1, . . . , of real numbers be given such
that

B0 = 0, lim
n→∞

Bn = ∞, and lim
n→∞

Bn+1

Bn
= 1 (1.1)

together with a positive number α > 0, and define, with the help of the above partial
sums Sn(ω), n = 1, 2, . . . , the broken lines

S(s, ω) = Sj(ω) if Bj−1 ≤ s < Bj ,

Sk(s, ω) = B
−1/α
k S(Bks, ω), 0 ≤ s ≤ 1,

=
Sj−1(ω)

B
1/α
k

if sj−1,k ≤ s < sj,k, 1 ≤ j ≤ k, Sk(1, ω) =
Sk(ω)

B
1/α
k

,

k = 1, 2, . . . ,

(1.2)

where sj,k =
Bj

Bk
, 0 ≤ j ≤ k. Now we introduce the following definition.

Definition of the almost sure functional limit theorem. Let ξn(ω), n = 1, 2, . . . ,
be a sequence of random variables, and let a sequence of real numbers Bn, n = 1, 2, . . . ,
be given which satisfies formula (1.1) together with some α > 0. Let us consider the
random broken lines Sk(s, ω), 0 ≤ s ≤ 1, defined with the help of their partial sums

Sk(ω) =
k
∑

j=1

ξj(ω), k = 1, 2, . . . , by formula (1.2). For all ω ∈ Ω and N = 1, 2, . . . define
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the random probability measures µN (ω) on the space D([0, 1]) of càdlàg (continuous from
the right, limit from the left) functions on the interval [0, 1] in the following way: The
measure µN (ω) is concentrated on the random broken lines Sk(·, ω), 1 ≤ k ≤ N , defined
in formula (1.2), and

µN (ω)(Sk(·, ω)) =
1

log
BN

B1

log
Bk+1

Bk
, 1 ≤ k < N. (1.3)

The sequence of random variables ξn(ω), n = 1, 2, . . . , satisfies the almost sure func-
tional limit theorem with weight function Bn, n = 1, 2, . . . , parameter α > 0 and limit
measure µ0 on the space D([0, 1]) if for almost all ω ∈ Ω the probability measures µN (ω)
defined with the help of the above constants Bn and α (appearing in formula (1.2)) con-
verge weakly to the measure µ0 as N → ∞.

This definition can be naturally modified to measures in the space C([0, 1]) of
continuous functions on the interval [0, 1]. It follows from the general theory that if the
almost sure functional limit theorem holds in the space D([0, 1]) and the limit measure
µ0 is concentrated in the space C([0, 1]), then the C([0, 1]) version of the almost sure
functional limit theorem also holds. We formulated the almost sure functional limit
theorem in the D([0, 1]) space, because we want to prove it also for random variables
in the domain of attraction of a stable law. In this case we have to work in the space
D([0, 1]).

The definition of the almost sure functional limit theorem given here slightly differs
from that given in Part I. of this paper (see [18].) In the definition given there we have
considered a sequence of An instead of the number α. But since in all cases we prove

the almost sure functional limit theorem a sequence of the form An = B
1/α
n is chosen,

we made this modification. In Section 2 of Part I. of this paper we formulated and
proved a Corollary which states the following: Let a self-similar process X(t, ω), t ≥ 0,
be given with a self-similarity parameter α > 0, (see its definition in Part I.) which also
satisfies some additional weak conditions which are not serious restriction in possible
applications, together with a sequence Bn, n = 1, 2, . . . , of real numbers for which
relation (1.1) holds. Then the random variables ηn(ω) = X(Bn, ω) − X(Bn−1, ω),
n = 1, 2, . . . , satisfy the almost sure functional limit theorem with weight function
Bn, n = 1, 2, . . . , parameter α and limit measure µ0 which is the distribution of the
self-similar process restricted to the interval [0, 1].

In particular, by applying this result with the choice of the Wiener process W (t, ω)
as the self-similar process together with a sequence Bn satisfying formula (1.1) we
get that the almost sure functional limit theorem holds for a sequence of independent
Gaussian random variables ηn(ω), n = 1, 2, . . . , Eηn(ω) = 0, Eη2

n(ω) = Bn − Bn−1

with the weight functions Bn, parameter α = 2 and limit measure µ0 which is the
Wiener measure, i.e. the distribution of the process W (t, ω), 0 ≤ t ≤ 1. Similarly, we
get by considering a stable process X(t, ω) with self-similarity parameter α, 0 < α < 2,
α 6= 1, as a self-similar process and a sequence of real numbers Bn satisfying relation
(1.1), that a sequence of independent random variables ηn(ω), n = 1, 2, . . . , such that
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the distribution of ηn(ω) agrees with the distribution of X(Bn − Bn−1, ω) satisfies the
almost sure functional limit theorem with weight function Bn, parameter α and limit
measure µ0 which is the distribution of the restriction of the process X(t, ω) to the
interval [0, 1]. We prove that if a sequence of independent random variables is given
whose normalized partial sums converge in distribution either to the standard normal
distribution or to a stable law, then this sequence also satisfies the almost sure functional
limit theorem. Such statements are the main results of this paper. They are formulated
in the following Theorems.

Theorem 1. Let ξn(ω), n = 1, 2, . . . , be a sequence of independent random variables
such that Eξn(ω) = 0, Eξ2

n(ω) = σ2
n, and it satisfies the Lindeberg condition, i.e.

lim
n→∞

1

D2
n

n
∑

k=1

Eξ2
k(ω)I(|ξk(ω)| ≥ εDn) = 0 for all ε > 0, (1.4)

where D2
n =

n
∑

k=1

σ2
k. Then the sequence of random variables ξn(ω), n = 1, 2, . . . , satisfies

the almost sure functional (central) limit theorem with the Wiener measure µ0 as the
limit measure, weight function Bn = D2

n, n = 1, 2, . . . , and parameter α = 2.

Theorem 2. Let ξn(ω), n = 1, 2, . . . , be a sequence of independent, identically dis-
tributed random variables with a non-degenerated distribution such that Eξ1(ω) = 0 and
µ(x) = Eξ2

1(ω)I(|ξ1(ω)| ≤ x) is a slowly varying function at infinity. Define the num-

bers an as an = sup

{

u : n
µ(u)

u2
≥ 1

}

for all n ≥ n0 with a sufficiently large integer n0.

(This definition is meaningful. To see this observe that n
µ(u)

u2
> 1 for an appropriate

u and all sufficiently large n, and lim
u→∞

nµ(u)

u2
= 0 for all n if µ(u) is a slowly varying

function.) Define the sequence an in the above way if n ≥ n0, and for the sake of a
unique definition put an = an0 for n ≤ n0. Then the sequence ξn(ω), n = 1, 2, . . . , sat-
isfies the almost sure (central) functional limit theorem with the Wiener measure µ0 as

the limit measure, weight function Bn =
n
∑

k=1

µ(ak), n = 1, 2, . . . , and parameter α = 2.

To formulate the following Theorem 3 let us recall that the distribution function
G(x) of a stable law, 0 < α < 2, is determined by three parameters α, C1 ≥ 0 and
C2 ≥ 0, C1 + C2 > 0, such that the relations

G(x) ∼ C1x
−α if x → ∞,

1 − G(−x) ∼ C2x
−α if x → ∞

(1.5)

hold. Let us also recall that for all stable laws G(x) satisfying (1.5) with 0 < α < 2,
α 6= 1, there is a (stable) process X(t, ω), 0 ≤ t ≤ 1, with trajectories in the space
D([0, 1]) such that it has independent and stationary increments, and X(1, ω) has the
distribution function G(x). The distribution of this process X(t, ω) in the space D([0, 1])
is uniquely determined. It is a self-similar process with self-similarity parameter α.
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In the next Theorem 3 we formulate the following result: If such conditons are
imposed under which the normalized partial sums of a sequence of independent, iden-
tically distributed random converge in distribution to a stable law, then these random
variables also satisfy the almost sure functional limit theorem. Before formulating the
precise statement let us introduce some notations. Let us consider a distribution func-
tion F (x) which satisfies the following condition:

1 − F (x) ∼ C1x
−αL(x)

F (−x) ∼ C2x
−αL(x)

if x → ∞, (1.6)

where L(x) is a slowly varying function at infinity, C1 ≥ 0, C2 ≥ 0, C1 + C2 > 0, 0 <
α < 2, α 6= 1. Let us define the following functions b(x) and L̄(x) which appear in the
normalization of the almost sure functional theorem (and also in the usual limit theorem)
for i.i.d. random variables with distribution function F (x) which satisfies condition (1.6).

For all x > 0 put b(x) = max

{

u :
L(u)x

uα
≥ 1

}

, and let L̄(x) = b(x)αx−1, where the

number α and function L(·) are the same as in formula (1.6). Let µ0 denote the (uniquely
determined) distribution of the stable process X(t, ω) with parameter α > 0, 0 ≤ t ≤ 1,
in the space D([0, 1]) for which X(1, ω) has that stable distribution G(x) which satisfies
relation (1.5). (The numbers α, C1 and C2 are the same in formulas (1.5) and (1.6).)

Theorem 3. Let ξn(ω), n = 1, 2, . . . , be a sequence of independent and identically
distributed random variables with a distribution function F (x) which satisfies Condition
(1.6). Then there is a sequence of real numbers an such that the sequence of random
variables ξn(ω)−an, n = 1, 2, . . . , satisfies the almost sure functional limit theorem with

weight function Bn =
n
∑

k=1

L̄(k), n = 1, 2, . . . and limit measure µ0, where the function

L̄(x) and measure µ0 were defined before the formulation of this Theorem 3.

We also claim that the function b(x) defined before the formulation of this The-
orem 3 is a regularly varying function at infinity with parameter 1/α, hence L̄(x) =
b(x)αx−1 is a slowly varying function.

The normalized partial sums
1

B
1/α
n

n
∑

k=1

(ξk(ω)−an) converge in distribution to G(x)

as n → ∞ if the constants an are the same as in the almost sure functional limit theorem
formulated in this theorem.

Remark 1: With some modification in the proof the last statement of Theorem 3,
the limit theorem for the distribution of the normalized partial sums, can be replaced
by a stronger version of this result. The functional limit theorem also holds for the
distributions of the random broken lines made for all n = 1, 2, . . . from the normalized

partial sum Sk(ω) =
1

B
1/α
n

k
∑

j=1

(ξj(ω) − an), k = 1, . . . , n, in the natural way. The limit

is the same measure µ0 which appears as the limit in the almost sure limit theorem.

We also explain without working out all details that Theorem 3 also holds for α = 1
with some slight natural modifications.
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Theorem 3′. The results of Theorem 3 also hold in the case α = 1 with the slight
modification that in this case the “shift parameters” an, n = 1, 2, . . . must be defined
differently, the measure µ0 is the distribution of the process X(t) − γt log t with the
constant γ = γ(C1, C2) = C1 − C2, where X(t, ω) is the stable process with parameter
α = 1 for which X(1, ω) has distribution function G(x) which satisfies relation (1.5).

Remark 2. The norming (shift) constants an in the limit theorem for the distribution of
the normalized partial sums mentioned at the end of Theorem 3 are determined with a
certain accuracy uniquely. Namely, the norming constants an can be replaced by another

norming constant ān if and only if an− ān = o

(

B
1/α
n

n

)

. This implies that the norming

sequence ak, k = 1, 2, . . . , in the almost sure functional limit theorem can be replaced
by any such sequence āk for which the number ān can be chosen as the norming (shift)
constant in the partial sum of the first n term in the limit theorem for the distribution

of the partial sums. To see this it is enough to observe that lim
n→∞

n
∑

k=1

ak − āk

B
1/α
n

= 0, since

n
∑

k=1

ak − āk

B
1/α
n

= o

(

n
∑

k=1

B
1/α
k

kB
1/α
n

)

= o(1).

Let us remark that the conditions imposed in Theorems 1 and 2 are the natural
conditions for the central limit theorem for sums of independent random variables.
Theorem 1 contains the necessary and sufficient conditions of the central limit theorem

for sums of independent random variables with the natural norming constants D
1/2
n

if these random variables satisfy the condition of uniform smallness. The conditions
in Theorem 2 are the necessary and sufficient conditions of the central limit theorem
with an appropriate normalization for sums of independent and identically distributed
random variables. Similarly, in Theorem 3 the necessary and sufficient conditions of the
limit theorem with a stable limit law for partial sums of independent and identically
distributed random variables were imposed.

The above results will be proved by means of a coupling argument. In Part I. we
introduced a notion we called the Property A. We showed that if Property A holds for
a pair of sequences of random variables (ξn(ω), ηn(ω)), n = 1, 2, . . . , and the sequence
ηn(ω), n = 1, 2, . . . , satisfies the almost sure functional limit theorem, then the sequence
of random variables ξn(ω), n = 1, 2, . . . , also satisfies the almost sure functional limit
theorem with the same weight function Bn, parameter α and limit measure µ0 as the
sequence ηn(ω), n = 1, 2, . . . . We shall prove Theorems 1, 2 and 3 with the help of this
result which we recall in the next section.

A result we shall call the Basic Lemma will be formulated and proved. Then it
will be proved with its help that the sequences of random variables considered in these
theorems together with a sequence of appropriately defined independent random vari-
ables with normal or stable distributions satisfy Property A. The theorems follow from
Property A for these pairs of sequences and the almost sure functional limit theorem
for independent random variables with Gaussian or stable distribution mentioned in the
beginning of this paper.
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This paper consists of six sections. In Section 2 we formulate a result we call the
Basic Lemma. This Basic Lemma will be proved in Section 3. In Section 4 we prove
Theorems 1 and 2, some almost sure functional limit theorems with the Wiener measure
as the limit measure. In Section 5 we prove Theorem 3, the almost sure functional limit
theorem for independent, identically distributed random variables in the domain of
attraction of a stable law. Finally, Section 6 contains the formulation of certain open
problems and some comments. Here we also compare briefly our results with those of
earlier papers.

2. Formulation of Property A and the Basic Lemma

First we recall the definition of Property A which enables us to prove the almost sure
functional limit theorem in several interesting cases.

Definition of Property A. Let ηn(ω), n = 1, 2, . . . , be a sequence of random variables
which satisfies the almost sure functional limit theorem with a limit measure µ0 in the
space D([0, 1]) with some weight function Bn, n = 0, 1, . . . , satisfying relation (1.1) and
parameter α > 0. Let us also assume that the limit measure µ0 is the distribution of the
restriction of a self-similar process X(u, ω) with self-similarity parameter α > 0 to the
interval 0 ≤ u ≤ 1.

Define the indices N(n) as N(n) = inf{k : Bk ≥ 2n}, n = 0, 1, . . . . The pair of
sequences of random variables (ξn(ω), ηn(ω)), n = 1, 2, . . . , satisfies Property A if for
all ε > 0 there exists a sequence of random variables ξ̃n(ω) = ξ̃n(ε, ω), n = 1, 2, . . . ,
whose (joint) distribution agrees with the (joint) distribution of the sequence ξn(ω), n =

1, 2, . . . , and the partial sums S̃n(ω) =
n
∑

k=1

ξ̃k(ω) and Tn(ω) =
n
∑

k=1

ηk(ω), n = 1, 2, . . . ,

satisfy the relation

lim sup
n→∞

1

n

N(n)
∑

k=1

log
Bk+1

Bk
I

















ω :

sup
0≤j≤k

|S̃j(ω) − Tj(ω)|

B
1/α
k

> ε
















≤ ε (2.1)

for almost all ω ∈ Ω, where I(A) denotes the indicator function of the set A.

In Theorem 4 of Part I. we have proved that if the pair of sequences of random
variables (ξn(ω), ηn(ω)), n = 1, 2, . . . , satisfies Property A, then the sequence of random
variables ξn(ω), n = 1, 2, . . . , satisfies the almost sure functional limit theorem with the
same weight function Bn, parameter α > 0 and limit measure µ0 as the sequence of
random variables ηn(ω), n = 1, 2, . . . . In this section we formulate a lemma which
enables us to check Property A in several interesting cases.

To prove Property A we need a good construction of the pairs (ξ̃n(ω), ηn(ω)), n =
1, 2, . . . . Let us first briefly describe a standard method which produces a construction
for partial sums of independent random variables in such a way that the differences of
the partial sums S̃n(ω) − Tn(ω), n = 1, 2, . . . , made from these random variables are
relatively small for almost all ω.
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Let us choose an appropriate subsequence nj of the integers and apply a so-
called quantile transform, to be described later, which makes the differences (Snj (ω) −
Snj−1(ω))−(Tnj (ω)−Tnj−1(ω)) relatively small, and for which the expressions Snj (ω)−
Snj−1(ω) and Tnj (ω)−Tnj−1(ω) have the right distribution. We make such constructions
independently for all j = 1, 2, . . . , and define the random variables Snj (ω) and Tnj (ω)
as the partial sums of these terms. Then these subsequences can be extended to two
sequences Sn(ω) and Tn(ω) which have the same joint distribution as the partial sums
of the independent random variables ξk(ω) and ηk(ω), k = 1, 2, . . . . The differences
between the random variables Snj (ω)−Snj−1(ω) and Tnj (ω)− Tnj−1(ω) constructed in
the above way can be well estimated if we have a good control on the distance of the
distribution functions of these partial sums. This enables us to bound the differences
Snj (ω)−Tnj (ω), and then by bounding the fluctuation of the sequences Sn(ω) and Tn(ω)
between these points we get an estimate about the goodness of this approximation.

Such a construction, with the appropriate choice of the numbers nj is made in
certain papers to get an almost sure approximation of a sequence Tn(ω) of partial sums
of independent random variables with a sequence Sn(ω), n = 1, 2, . . . , of partial sums of
different independent random variables. The construction we make to satisfy Property A
in case of independent random variables is similar. The only difference is that we
want to get a good bound on the expression in formula (2.1) instead of an almost sure
approximation, hence we choose the sequence nj according to this requirement. Now
we only demand that the differences Sn(ω) − Tn(ω) be small for most indices n. The
existence of some exceptional indices n (depending on ω) where this difference is large
is allowed if they do not enlarge considerably the expression in formula (2.1). The role
of the following Basic Lemma is that it enables us to show that a construction satisfying
Property A can be made under relatively weak conditions. Before its formulation we give
an informal explanation about the technical details n it, and also make some indication
about its role in the proof of Theorems 1—3.

The Basic Lemma actually states that the above sketched construction with an
appropriate choice of the points nj satisfies inequality (2.1). In this lemma we give a
bound for the partial sums of some random variables ζk(ω), k = 1, 2, . . . , if they satisfy
certain conditions. The bound (2.6) proved in the Basic Lemma will be applied with
the choice ζk(ω) = ξ̃k(ω) − ηk(ω) where ξ̃k(ω) and ηk(ω), k = 1, 2, . . . , are random
variables constructed in the above way. Let us remark that when the sequences Sn(ω)
and Tn(ω) are compared, then the natural time scale is measured by the sequence Bn.
(To understand this let us look at the definition of the process S(t, ω) in formula (1.2).)
Let us consider an exponentially rare sequence of the time parameter. This is the
content of the definition of the numbers N(n) in the formulation of the Basic Lemma
which guarantees that BN(n) ∼ 2n. We shall also define a refinement N(n, k) of this
sequence, and these points N(n, k) will play the role of the points nj where the quantile
transform will be applied in the above sketched construction.

We make a decomposition of the random variables ζk(ω) in formula (2.3) of the

Basic Lemma which will be satisfied in our applications with the natural choice ζ
(1)
k (ω) =

ξ̃k(ω) and ζ
(2)
k (ω) = ηk(ω). The Basic Lemma also contains a condition about the

independence of the random variables UN(n,k)(ω) − UN(n,k−1)(ω), n = 1, 2, . . . , k =
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1, . . . , ln, defined there, but this is a condition which is automatically satisfied in the
constructions we apply in the proof of Theorems 1—3. In formula (2.5) we formulate
an estimate which can be satisfied in our applications if we define the points N(n, k) in
an appropriate way and give a good estimate for the difference of the partial sums of
the random variables ξ̃j(ω) and ηj(ω) with indices j between these points by means of
an estimate on the quantile transform. In our applications formula (2.4) states a good
bound for the fluctuation of the partial sums of the random variables ξk(ω) and ηk(ω),
k = 1, 2, . . . . Let us also remark we need the bounds in formulas (2.4) and (2.5) only
for large indices n, and the threshold index from which they must hold may depend on
the parameter ε > 0 appearing in formula (2.6). These are the conditions imposed in
the Basic Lemma to satisfy formula (2.6).

We shall prove Theorems 1 — 3 by means of the Basic Lemma. An important step
of the proof is a good choice of the points N(n, k) between which the quantile transform
will be applied. This choice is essentially different in the proof of Theorem 3 and
Theorem 1. In Theorem 3 the points N(n, k) contain all integer points between N(n−1)
and N(n). In this case formula (2.4) is an empty condition. In the proof of Theorem 1
the numbers N(n, k) will be chosen in such a way that BN(n,k+1)−BN(n,k) ∼ ε̄2n, where
the coefficient ε̄ > 0 is a very small number, but it does not depend on the number n.
This means that the numbers N(n, k) (with fixed n) are relatively uniformly distributed
in the interval [N(n−1), N(n)), and the difference between them is relatively large. The
cause of the different choice of N(n, k) in the proof of Theorem 1 and Theorem 3 is that
under the conditions of Theorem 3 the single terms ξn(ω) and ηn(ω) have a similar
distribution, while under the conditions of Theorem 1 one can guarantee the similar
distribution of the partial sums of the random variables ξn(ω) and ηn(ω), by means of
the central limit theorem, only if these partial sums have sufficiently many terms. In
the proof of Theorem 2 the single terms ξn(ω) will be written up as sums of random
variables by means of an appropriate truncation. Then in the proof of Theorem 2
different partial sums have to be handled. All of them will be investigated by means
of the Basic Lemma, but some of them will be estimated with a choice of the numbers
N(n, k) similar to that given in the proof of Theorem 1 and some of them with a choice
of the numbers N(n, k) similar to that given in the proof of Theorem 3.

Now we turn to the formulation of the Basic Lemma. First we introduce the
following definition.

Definition of refinement of a sequence of integers. Given a sequence 0 = N(0) <
N(1) < N(2) < · · · of integers we call the refinement of this sequence N(n), n =
0, 1, 2, . . . a set of non-negative integers N(n, k) indexed by two parameters n = 1, 2, . . . ,
and 0 ≤ k ≤ ln with some positive integer ln such that

N(n − 1) = N(n, 0) < N(n, 1) < · · · < N(n, ln) = N(n), n = 1, 2, . . . .

Basic Lemma. Let Bn, n = 0, 1, . . . , B0 = 1, be a sequence of real numbers which
satisfies relation (1.1). Let a sequence of random variables ζn(ω), n = 1, 2, . . . and a
number α > 0 also be given. Define the sequence N(n) = inf{k : Bk ≥ 2n}, n = 1, 2, . . . ,
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N(0) = 0. We give an estimate on the maximum of the partial sums of the random
variables ζn(ω) under appropriate conditions.

Fix a number ε > 0 and a refinement N(n, k), n = 0, 1, . . . , 0 ≤ k ≤ ln, of the
sequence N(n), n = 1, 2, . . . , which may depend on ε. Put

Un(ω) =
n
∑

j=1

ζj(ω), n = 1, 2, . . . ,

and

Vn(ω) = sup
0<j≤ln

∣

∣UN(n,j)(ω) − UN(n,0)(ω)
∣

∣ , n = 1, 2, . . . . (2.2)

Let us assume that there is a decomposition

ζk(ω) = ζ
(1)
k (ω) − ζ

(2)
k (ω), k = 1, 2, . . . (2.3)

of the random variables ζk(ω) in such a way that both sequences ζ
(i)
k (ω), k = 1, 2, . . . ,

i = 1, 2, consist of independent random variables which satisfy certain inequalities for-
mulated below. To formulate them let us introduce the notation

ζ
(i)
n,k,m(ω) = ζ

(i)
N(n,k−1)+m(ω), n = 1, 2, . . . , k = 1, . . . , ln,

1 ≤ m ≤ N(n, k) − N(n, k − 1), i = 1, 2

with the help of the refinement N(n, k) of the sequence N(n), n = 1, 2, . . . , fixed in this
lemma. Let us assume that the following inequalities hold:

P

(

sup
1≤p<N(n,k)−N(n,k−1)

∣

∣

∣

∣

∣

p
∑

m=1

ζ
(i)
n,k,m(ω)

∣

∣

∣

∣

∣

> εx2n/α

)

≤ C1εx
−γ

ln

i = 1, 2, for all x ≥ 1, n ≥ n0, and 1 ≤ k ≤ ln

(2.4)

with some constants n0 = n0(ε) > 0, γ > 0 and C1 > 0. (In the case N(n, k) =
N(n, k−1)+1 this sum is empty. In this case we assume that relation (2.4) is satisfied.)
Let us also assume that the random variables UN(n,k)(ω) − UN(n,k−1)(ω), n = 1, 2, . . . ,
k = 1, . . . , ln, are independent, and the inequality

P
(

Vn(ω) ≥ εx2n/α
)

≤ C2εx
−γ for all x ≥ 1 and n ≥ n0 (2.5)

holds with some n0 = n0(ε), γ > 0 and C2 > 0. Then

lim sup
n→∞

1

n

N(n)
∑

k=1

log
Bk+1

Bk
I





sup
0≤s≤k

|Us(ω)|

B
1/α
k

> Kε



 ≤ Kε

for almost all ω ∈ Ω.

(2.6)
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with an appropriate constant K = K(C1, C2, γ, α) > 0. (Such a constant K could be
given explicitly, but we do not need such a formula. It is enough to know that this
constant K does not depend on ε.)

We shall be able to prove Property A under weak conditions by applying the Basic
Lemma for arbitrary small ε > 0. In such a way we show that the conditions sufficient for
a limit theorem for partial sums of independent random variables also imply Property A
with an appropriate construction. On the other hand, a construction by means of an
almost sure approximation only supplies a weaker result. Indeed, by applying such
a construction we get bounds sufficient for our purposes only under some additional
conditions. The reason for this difference is that the condition of Property A formulated
in formula (2.1) only demands that the differences Sn(ω) − Tn(ω) be small in some
average. Let us remark that there are even results, (see Berkes and Csáki [4]) which
state that there are cases when the almost sure functional limit theorem holds for a
sequence of independent random variables, but their partial sums do not satisfy a limit
theorem.

Finally we remark that in Conditions (2.4) and (2.5) an estimate on the tail be-
haviour of the partial sums was formulated. In a limit theorem for normalized partial
sums of independent random variables we do not require such an estimate. But the con-
ditions formulated in Theorems 1, 2 and 3, i.e. the necessary and sufficient conditions of
certain limit theorems also imply an estimate on the tail behaviour appropriate for our
purposes. Actually, conditions (2.4) and (2.5) can be considerably weakened. The power
|x|−γ at the right-hand side of these formulas could be replaced by (1 + log |x|)−γ′

with
a sufficiently large γ′ > 0. But such a condition does not seem to be better applicable
in the problems we are interested in.
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3. Proof of the Basic Lemma

Proof of the Basic Lemma. We shall prove relation (2.6) with the help of two inequal-
ities. In these inequalities the supremum is taken for an appropriate subsequence. To

formulate them we define the numbers L0 = 1, Lp =
p
∑

k=1

lk, p = 1, 2, . . . , and the se-

quence m(j), j = 0, 1, . . . , by the formula m(0) = 0 and m(j) = N(p − 1, j − Lp−1),
if Lp−1 < j ≤ Lp. The numbers lp and N(p, j) in these formulas are the same as
those considered in the formulation of the Basic Lemma. The number m(j) counts
the value of the j-th term among the numbers N(n, k). Observe that in particular

m(Ln) = N(n − 1, ln) = N(n), n = 1, 2, . . . . Put An = B
1/α
n . We shall prove that

lim sup
n→∞

1

n

Ln
∑

j=1

log
Bm(j)+1

Bm(j−1)+1
I





sup
1≤s≤j

|Um(s)(ω)|

Am(j)
> K1ε



 ≤ K1ε

for almost all ω ∈ Ω

(3.1)

with an appropriate constant K1 > 0, and

lim sup
n→∞

1

n

Ln
∑

j=1

log
Bm(j)+1

Bm(j−1)+1
I







sup
1≤s≤j

sup
m(s−1)<p<m(s)

|Up(ω) − Um(s−1)(ω)|

Am(j)
> K2ε







≤ K2ε for almost all ω ∈ Ω
(3.2)

with an appropriate constant K2 > 0. First we show that relations (3.1) and (3.2) imply
relation (2.6) with K = 31/α(K1 + K2).

Indeed, if for some ω ∈ Ω there is an index k, n0 ≤ k ≤ N(n) with some n0 =
n0(ε), such that it gives a non-zero contribution to the sum in (2.6) with the choice
K = 31/α(K1 +K2), i.e. sup

1≤s≤k
|Us(ω)| > 31/α(K1 +K2)Akε, then consider that interval

(m(j − 1),m(j)], 1 ≤ j ≤ Ln, which contains this number k. In this case one of the
following relations holds. Either

sup
1≤s≤j

|Um(s)(ω)| > 31/αK1Akε ≥ K1Am(j)ε

or

sup
1≤s≤j

sup
m(s−1)<p<m(s)

|Up(ω) − Um(s−1)(ω)| > 31/αK2Akε ≥ K2Am(j)ε.

Then the contribution of the terms with indices in the interval (m(j − 1),m(j)] to the

sum in the expression (2.6) is not greater than log
Bm(j)+1

Bm(j−1)+1
, and such a contribution

appears in the j-th term of one of the sum (3.1) or (3.2). Hence relations (3.1) and

11



(3.2), the identity m(Ln) = N(n) together with a summation for 1 ≤ j ≤ Ln imply
formula (2.6).

To prove relation (3.1) introduce the random variables

Ts(ω) = Um(s)(ω) − Um(s−1)(ω), s = 1, 2, . . . .

The random variables Ts(ω), s = 1, 2, . . . are independent. This statement is equivalent
to the independence of the random variables UN(n,k)(ω) − UN(n,k−1)(ω), n = 1, 2, . . . ,
k = 1, . . . , ln, and this is a condition imposed in the formulation of the Basic Lemma.

Since lim
n→∞

BN(n+1)

BN(n)
= 2, An = B

1/α
n , there is some n0 > 0 such that

AN(n) ≥ 2(n−k)/2αAN(k) for arbitrary n ≥ n0 and k ≤ n.

For all s = 1, 2, . . . define the number R(s) which satisfies the inequality LR(s)−1 < s ≤
LR(s). The number R(s) counts the number of the form N(l, 0) = N(l − 1) among the
first s terms of the sequence N(n, k). This fact and the content of the value of m(j)
imply that N(R(s) − 1)) < m(s) ≤ N(R(s)). (The sequence R(s) is the “inverse” of
the monotone sequence Ls. The relation R(Ls) = s holds.) Hence

Am(j)

Am(s)
≥ 2(R(j)−R(s)−1)/2α for 1 ≤ s ≤ j and j ≥ n0.

Let us fix some j ≥ n0. We shall show by applying the above relation for s ≤ j and by
putting in one block those indices s for which N(r − 1) < m(s) ≤ N(r), or equivalently
Lr−1 < s ≤ Lr that











ω :

sup
1≤s≤j

∣

∣Um(s)(ω)
∣

∣

Am(j)
≥ K1ε











=

{

ω :

∣

∣

∣

∣

∣

s
∑

p=1

Tp(ω)

∣

∣

∣

∣

∣

≥ K1εAm(j) for some 1 ≤ s ≤ j

}

⊂
R(j)
⋃

r=1







ω : sup
Lr−1<u≤Lr

∣

∣

∣

∣

∣

∣

u
∑

p=Lr−1+1

Tp(ω)

∣

∣

∣

∣

∣

∣

≥ CK1ε2
(R(j)−r)/4αAm(Lr−1)







(3.3)
with C = 1 − 2−1/4α. To prove relation (3.3) observe that if Lr−1 < j, then

Am(j) ≥ 2(R(j)−R(Lr−1)−1)/2αAm(Lr−1) = 2(R(j)−r)/2αAm(Lr−1),

hence if some ω is not contained in the set at the right-hand side, i.e.

sup
Lr−1<u≤Lr

∣

∣

∣

∣

∣

∣

u
∑

p=Lr−1+1

Tp(ω)

∣

∣

∣

∣

∣

∣

< CK1ε2
(R(j)−r)/4αAm(Lr−1) for all 1 ≤ r ≤ R(j)
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then

∣

∣

∣

∣

∣

s
∑

p=1

Tp(ω)

∣

∣

∣

∣

∣

<

R(j)
∑

r=1

sup
Lr−1<u≤Lr

∣

∣

∣

∣

∣

∣

u
∑

p=Lr−1+1

Tp(ω)

∣

∣

∣

∣

∣

∣

≤ CK1ε

R(j)
∑

r=1

2−(R(j)−r)/4α2(R(j)−r)/2αAm(Lr−1)

≤ CK1ε

R(j)
∑

r=1

2−(R(j)−r)/4αAm(j) < K1εAm(j)

for all s ≤ LR(j), hence for all s ≤ j, and this means that ω is not contained in the set
at the left-hand side of formula (3.3).

We get from formula (3.3), the definition of the random variables Vr(ω) introduced

in formula (2.2) and the relation Am(Lr−1) = B
1/α
m(Lr−1)

= B
1/α
N(r−1) ≥ 2(r−1)/α that











ω :

sup
1≤s≤j

∣

∣Um(s)(ω)
∣

∣

Am(j)
≥ K1ε











⊂
R(j)
⋃

r=1

{

ω : Vr(ω) ≥ CK1ε2
(R(j)−r)/4α × 2(r−1)/α

}

=

R(j)
⋃

r=1

{

ω : Vr(ω) ≥ CK12
(R(j)+3r−4)/4αε

}

(3.4)

We shall prove relation (3.1) with the help of (3.4). Let us first sum for R(j) = p with
a fixed p ≥ n0. (Observe that the right-hand side of (3.4) depends on j only through
R(j).) We get that

∑

j : R(j)=p

log
Bm(j)+1

Bm(j−1)+1
I





sup
1≤s≤j

|Um(s)(ω)|

Am(j)
> K1ε





≤
∑

j : R(j)=p

log
Bm(j)+1

Bm(j−1)+1

p
∑

r=1

I
(

Vr(ω) ≥ CK12
(p+3r−4)/4αε

)

=

p
∑

r=1

I
(

Vr(ω) ≥ CK12
(p+3r−4)/4αε

)

∑

j : R(j)=p

log
Bm(j)+1

Bm(j−1)+1
(3.5)

≤ log
BN(p+1)+1

BN(p)

p
∑

r=1

I
(

Vr(ω) ≥ CK12
(p+3r−4)/4αε

)

≤ 2

p
∑

r=1

I
(

Vr(ω) ≥ CK12
(p+3r−4)/4αε

)

if p ≥ n0 with a sufficiently large threshold n0.
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We get a good bound on the expression in (3.1) by summing the estimates (3.5)
for p = Ln0 , Ln0 +1, . . . , exploiting that the terms of (3.1) not considered in such a way
give only a bounded contribution, and the relation R(j) ≤ n holds for j ≤ Ln. In such
a way we obtain that

Ln
∑

j=1

log
Bm(j)+1

Bm(j−1)+1
I





sup
1≤s≤j

|Um(s)(ω)|

Am(j)
> K1ε





≤ 2

n
∑

p=1

p
∑

r=1

I
(

Vr(ω) ≥ CK12
(p+3r−4)/4αε

)

+ const.

(3.6)

Define the random variables

χr(ω) =

∞
∑

p=0

I
(

2−r/αVr(ω) ≥ CK12
(p−4)/4αε

)

, r = 1, 2, . . . .

We can write with the help of relation (3.6) by changing the order of summation at the
right-hand side that

lim sup
n→∞

1

n

Ln
∑

j=1

log
Bm(j)+1

Bm(j−1)+1
I





sup
1≤s≤j

|Um(s)(ω)|

Am(j)
> K1ε





≤ lim sup
n→∞

2

n

n
∑

r=1

n
∑

p=r

I
(

Vr(ω) ≥ CK12
r/α2(p−r−4)/4αε

)

(3.7)

= lim sup
n→∞

2

n

n
∑

r=1

n−r
∑

p=0

I
(

2−r/αVr(ω) ≥ CK12
(p−4)/4αε

)

≤ lim sup
n→∞

2

n

n
∑

r=1

χr(ω).

The random variables χr(ω), r = 1, 2, . . . , are independent, the relations 0 ≤
Eχr(ω) ≤ Kε and Eχ2

r(ω) ≤ const. hold for r ≥ n0(ε) because of relation (2.5),
where an explicit bound can be given for K = K(α, γ). Indeed, the random variables
χr(ω) take non-negative integer values, the set {ω : χr(ω) ≥ k} agrees with the set
{ω : 2−r/αVr(ω) ≥ CK12

(k−4)/4αε} whose probability can be bounded by C1ε2
−kγ/4α

by formula (2.5). (We may assume that K1 > 0 is chosen so large that CK12
−1/α > 1.)

This implies that P (χr(ω) ≥ x) ≤ C1ε2
−γx/4α for r ≥ n0. Hence the laws of large

numbers can be applied for these random variables, and we get that

lim
n→0

1

n

n
∑

r=1

(χr(ω) − Eχr(ω)) = 0, for almost all ω ∈ Ω

and lim sup
n→∞

1

n

n
∑

r=1

Eχr(ω) ≤ Kε.
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These estimates together with relation (3.7) imply (3.1).

To prove relation (3.2) let us introduce the random variables

Z(i)
n (ω) =

1

2n/α
sup

1≤k≤ln

sup
1≤p<N(n,k)−N(n,k−1)

∣

∣

∣

∣

∣

p
∑

m=1

ζ
(i)
n,k,m(ω)

∣

∣

∣

∣

∣

,

n = 1, 2, . . . , i = 1, 2.

Condition (2.4) implies that

P
(

Z(i)
n (ω) ≥ εx

)

≤ C1εx
−γ for all x ≥ A n ≥ n0(ε) and i = 1, 2. (3.8)

We claim that

Lr
∑

j=Lr−1+1

log
Bm(j)+1

Bm(j−1)+1
I







sup
1≤s≤j

sup
m(s−1)<p<m(s)

|Up(ω) − Um(s−1)(ω)|

Am(j)
> K2ε







≤ 2
r
∑

u=1

(

I

(

Z(1)
u (ω) >

K2ε2
(r−u−1)/α

2

)

+ I

(

Z(2)
s (ω) >

K2ε2
(r−u−1)/α

2

))

for all r ≥ n0. Indeed, the left-hand side of this inequality is non-zero only if one of
the term at the right side is non-zero. In this case the left hand-side is bounded by

Lr
∑

j=Lr−1+1

log
Bm(j)+1

Bm(j−1)+1
≤ 2, and one of the summands at the right-hand side is non-

zero, since Z
(1)
u (ω) + Z

(2)
u (ω) > 2−u/αK2εAm(j) ≥ K2ε2

(r−u−1)/α for some 1 ≤ u ≤ r.
Hence the inequality also holds in this case. By summing up this inequality for r =
1, . . . , n we get the following bound for the expression in (3.2):

lim sup
n→∞

1

n

Ln
∑

j=1

log
Bm(j)+1

Bm(j−1)+1
I







sup
1≤s≤j

sup
m(s−1)<p<m(s)

|Up(ω) − Um(s−1)(ω)|

Am(j)
> K2ε







≤ lim sup
n→∞

2

n

n
∑

r=1

r
∑

u=1

(

I

(

Z(1)
u (ω) >

K2ε2
(r−u−1)/α

2

)

(3.9)

+ I

(

Z(2)
u (ω) >

K2ε2
(r−u−1)/α

2

))

.

Let us define the random variables

X(i)
u (ω) =

∞
∑

p=0

I

(

Z(i)
u (ω) ≥ K2ε

4
2(p−1)/α

)

, u = 0, 1, 2, . . . , i = 1, 2.
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Then by changing the order of summation at the right-hand side of (3.9) we get that
the left-hand side of formula (3.2) can be bounded by the expression

lim sup
n→∞

2

n

n
∑

u=1

(

X(1)
u (ω) + X(2)

u (ω)
)

.

The averages of the random variables X
(1)
u (ω) + X

(2)
u (ω) − EX

(1)
u (ω) − EX

(2)
u (ω) tend

to zero with probability one. Indeed, the random variables X
(i)
u (ω) satisfy the laws of

large numbers both for i = 1 and i = 2, because they are independent, and by relation

(3.8) the moments of these random variables are finite. (The estimates P (X
(i)
u > x) ≤

C22
−γx/α, i = 1, 2, u ≥ n0 follows from relation (2.4) if K2 > 0 is chosen sufficiently

large. This can be proved similarly to the estimate on the probability of P (χr(ω) > x)

made after formula (3.7).) Moreover, EX
(i)
u (ω) ≤ Kε for all u ≥ n0(ε) and i = 1, 2,

with an appropriate constant K > 0, and as a consequence

lim sup
n→∞

2

n

n
∑

u=1

(

EX(1)
u (ω) + EX(2)

u (ω)
)

≤ 4Kε.

These relations imply formula (3.2). The Basic Lemma is proved.

4. The proof of Theorems 1 and 2

Proof of Theorem 1. Let ηn(ω), n = 1, 2, . . . , be a sequence of independent Gaussian
random variables such that Eηn(ω) = 0 and Eη2

n(ω) = σ2
n. Let us fix a number ε > 0.

We want to construct a sequence of independent random variables ξ̃
(ε)
n (ω), n = 1, 2, . . . ,

which has the same distribution as the sequence ξn(ω), n = 1, 2, . . . , and the sequences

ζn(ω) = ξ̃
(ε)
n (ω) − ηn(ω), and Un(ω) =

n
∑

j=1

ζn(ω), n = 1, 2, . . . , satisfy relation (2.6)

with Bn = D2
n =

n
∑

k=1

σ2
k, α = 2 and the number ε we have fixed. This relation will

be proved with an application of the Basic Lemma. If we can do this for arbitrary
ε > 0, then Theorem 4 of Part I., recalled at the beginning of Section 2 and the almost
sure functional (central) limit theorem for the sequence ηn(ω), n = 1, 2, . . . , imply
Theorem 1.

We shall omit the sign “̃ ” and “(ε)” and write ξn instead of ξ̃
(ε)
n . To apply the Basic

Lemma we have to define some quantities. We fix a sufficiently small ε̄ = ε̄(ε) > 0 to
be defined later and define the numbers N(n), n = 1, 2, . . . , by means of the sequence
Bn = D2

n as in the formulation of the Basic Lemma. Then we define an “ε̄ regular
refinement” N(n, k), n = 1, 2, . . . , 0 ≤ k ≤ ln, of the sequence N(n). By this regularity
property we mean that

ε̄(BN(n) − BN(n−1)) ≤BN(n,k) − BN(n,k−1) ≤ 3ε̄(BN(n) − BN(n−1))

for n ≥ n0(ε̄) and all 1 ≤ k ≤ ln.
(4.1)
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The numbers N(n, k) will be defined recursively in the variable k for fixed n in the
following way. Put N(n, 0) = N(n − 1), and if N(n, k) is already defined and BN(n) −
BN(n,k) > 3ε̄(BN(n) − BN(n−1)), then

N(n, k + 1) = min{j : Bj − BN(n,k) ≥ ε̄(BN(n) − BN(n−1))}.

If BN(n)−BN(n,k) ≤ 3ε̄(BN(n)−BN(n−1)), then put N(n, k+1) = N(n). Let us remark
that the Lindeberg condition (1.4) implies that the sequence Bn, n = 1, 2, . . . , satisfies

relation (1.1), and lim
N→∞

sup
N(n−1)≤k≤N(n)

σ2
k

BN(n)
= 0. Hence lim

n→∞
2−nBN(n) = 1, and

BN(n,k) − BN(n,k−1) ∼ ε̄(BN(n) − BN(n−1)), if 1 ≤ k ≤ ln − 1. It is not difficult to see
that the sequence N(n, k) is an ε̄ regular refinement of the sequence N(n).

Let Fn,k(x) = P (Sn,k(ω) < x) denote the distribution function of Sn,k(ω) =

1

Ān,k

N(n,k)
∑

j=N(n,k−1)+1

ξj(ω) with Ā2
n,k =

N(n,k)
∑

j=N(n,k−1)+1

σ2
j = BN(n,k)−BN(n,k−1), and define

the random variables Tn,k(ω) =
1

Ān,k

N(n,k)
∑

j=N(n,k−1)+1

ηj(ω), n = 1, 2, . . . , k = 1, . . . , ln.

Let Φ(x) denote the standard normal distribution function. Then Tn,k(ω), n = 1, 2, . . . ,
k = 1, . . . , ln, are independent standard normal random variables, and the variables
χn,k(ω) = Φ(Tn,k(ω)) are independent random variables, uniformly distributed in the
interval [0, 1].

We shall construct the random variables Sn,k(ω) =
1

Ān,k

N(n,k)
∑

j=N(n,k−1)+1

ξj(ω), n =

1, 2, . . . , 1 ≤ k ≤ ln, by means of the so-called quantile transform as Sn,k(ω) =
F−1

n,k(χn,k(ω)), where F−1
n,k(x) denotes the inverse of the distribution function Fn,k(x).

More precisely, we define this inverse function as F−1
n,k(x) = Gn,k(x) = sup{u : Fn,k(u) <

x}, and Sn,k(ω) = Gn,k(χn,k(ω)), n = 1, 2, . . . , k = 1, . . . , ln. Such a definition is
meaningful for all distribution functions. The random variables Sn,k(ω), n = 1, 2, . . . ,
k = 1, . . . , ln, defined in this way are independent, and they have distribution function
Fn,k(x).

To see that the distribution function of the above defined random variable Sn,k(ω)
is really Fn,k(x) let us first observe that

P (Sn,k(ω) < x) = lim
h : h>0,h→0

P (Sn,k(ω) < x − h)

= lim
h : h>0,h→0

P (Gn,k(χn,k(ω)) < x − h) ≤ P (χn,k(ω) ≤ F (x)) = F (x),

since {ω : G(χn,k(ω)) < x−h} ⊂ {ω : χn,k(ω) ≤ F (x)} for all h > 0. To see the estimate
from the opposite direction observe that P (Sn,k(ω) < x) = P (Gn,k(χn,k(ω)) < x) ≥
P (χn,k(ω) < F (x)) = F (x), since {ω : χn,k(ω) < F (x)} ⊂ {ω : Gn,k(χn,k(ω)) < x}. The
last relation holds, since in the case χn,k(ω) < Fn,k(x) we have χn,k(ω) = Fn,k(x) − h
with some h > 0, and Gn,k(χn,k(ω)) = sup{v : Fn,k(v) < Fn,k(x) − h} < x. This
relation holds, since the continuity of the function Fn,k(x) from the left implies that all
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numbers v for which Fn,k(v) < Fn,k(x) − h, the inequality v ≤ x − δ holds with some
δ = δ(h) > 0.

Define the random variables SN(n,k)(ω) =
∑

(m,j) : m<n−1, 1≤j≤lm
or m=n−1, and j≤k

Ām,jSm,j(ω), for

all n = 1, 2, . . . , 1 ≤ k ≤ ln. If we consider the partial sums S ′
n(ω) =

n
∑

k=1

ξk(ω)

with the random variables ξk(ω) given in the formulation of Theorem 1 then the joint
distribution of the random vectors SN(n,k)(ω) and S′

N(n,k)(ω), n = 1, 2, . . . , 1 ≤ k ≤ ln
agree. It follows from the results of general measure theory that in a sufficiently rich
probability space the sequence of random variables of the form SN(p,k)(ω), p = 1, 2, . . . ,
0 ≤ k ≤ lp, can be extended to a sequence of random variables Sn(ω), n = 1, 2, . . . whose
elements for the indices of the form N(p, k) are the already constructed random variables
SN(p,k)(ω), and the distribution of the sequences Sn(ω) and S′

n(ω), n = 1, 2, . . . , agree.
Define the random variables ξn(ω) = Sn(ω)−Sn−1(ω), n = 1, 2, . . . . This sequence has
the same joint distribution as the original sequence of independent random variables
ξn(ω) considered in the formulation of Theorem 1. In such a way we constructed a
sequence of random variables ξn(ω) in dependence of a small parameter ε̄ > 0.

Put ζn(ω) = ξn(ω) − ηn(ω), n = 1, 2, . . . . We claim that if the parameter ε̄ = ε̄(ε)
is chosen sufficiently small, then this sequence together with the already constructed
“ε̄ regular refinement” N(n, k) of the sequence N(n) and with the choice of the ran-

dom variables ζ
(1)
n (ω) = ξn(ω), ζ

(2)
n (ω) = ηn(ω), ζ

(1)
n,k,m(ω) = ξN(n,k−1)+m(ω) and

ζ
(2)
n,k,m(ω) = ηN(n,k−1)+m(ω), n = 1, 2, . . . , k = 1, . . . , ln, 0 ≤ m < N(n, k)−N(n, k−1),

satisfy the Basic Lemma with parameter ε. This statement implies Theorem 1.

The most important step in the proof of this statement is to show the following
estimate. Because of the central limit theorem for all δ > 0 there is a threshold n0 =
n0(δ) such that

E(Sn,k(ω) − Tn,k(ω))2 ≤ δ, for all n ≥ n0 and 1 ≤ k ≤ ln. (4.2)

To prove relation (4.2) let us observe that the Lindeberg condition appearing in the
formulation of Theorem 1 makes it possible to apply the central limit theorem for the
normalized sums Sn,k(ω). This result yields that the distribution functions Fn,k of the
random variables Sn,k(ω) satisfy the relation lim

n→∞
sup

1≤k≤ln

sup
|x|<∞

|Fn,k(x) − Φ(x)| = 0.

This implies that the random variables Tn,k(ω) and the Sn,k(ω) constructed by the
above described quantile transform from the random variables χn,k(ω) = Φ(Tn,k(ω))
satisfy the following relation: For all L > 1 and η > 0 there exists some n0 = n0(L, η)
such that

|Sn,k(ω) − Tn,k(ω)| <
η

L
on the set {ω : |Tn,k(ω)| ≤ L}

for all n ≥ n0 and 1 ≤ k ≤ ln. Let us choose the number L > 1 in such a way that the
standard normal random variables Tn,k(ω) satisfy the inequality ET 2

n,k(ω)I(|Tn,k(ω)| ≥

18



L) <
δ

10
, and let η =

δ

20
. Then E(Tn,k(ω) − Sn,k(ω))2I(|Tn,k(ω)| ≤ L) <

δ2

400
, and

∣

∣E(T 2
n,k(ω) − S2

n,k(ω))I(|Tn,k(ω)| ≤ L)
∣

∣ ≤
(

E (Tn,k(ω) + Sn,k(ω))
2
)1/2

(

E (Tn,k(ω) − Sn,k(ω))
2
I(|Tn,k(ω)| ≤ L)

)1/2

<
δ

10
.

Since ES2
n,k(ω) = ET 2

n,k(ω) = 1, the inequalities ES2
n,k(ω)I(|Tn,k(ω)| ≤ L) ≥ 1 − δ

5
,

and ES2
n,k(ω)I(|Tn,k(ω)| > L) ≤ δ

5
hold. Because of the simple inequality

E(SN(n,k)(ω) − TN(n,k)(ω))2 ≤ E(SN(n,k)(ω) − TN(n,k)(ω))2I(|Tn,k(ω)| ≤ L)

+ 2ES2
N(n,k)(ω)I(|Tn,k(ω)| ≥ L) + 2ET 2

N(n,k)(ω))2I(|Tn,k(ω)| ≥ L)

the above relations imply (4.2).

Let us remark that the estimate (4.2) does not depend on the parameter ε̄ appearing
in our construction. Only the threshold index n0 = n0(δ) = n0(δ, ε̄) in (4.2) depends
on this parameter.

Put

Zn,k(ω) =

N(n,k)
∑

j=N(n,k−1)+1

ζj(ω) =

N(n,k)
∑

j=N(n,k−1)+1

(ξj(ω) − ηj(ω))

n = 1, 2, . . . , 1 ≤ k ≤ ln

Observe that EZn,k(ω) = 0, EZ2
n,k(ω) ≤ δĀ2

n,k, if n ≥ n0,
ln
∑

k=1

Ā2
n,k =

N(n)
∑

j=N(n−1)+1

σ2
j =

B(N(n))−B(N(n−1)) = 2n−1(1+o(1)), and the expression to be estimated in formula

(2.5) can be written in the form Vn(ω) = sup
1≤j≤ln

∣

∣

∣

∣

j
∑

l=1

Zj(ω)

∣

∣

∣

∣

. These relations together

with the Kolmogorov inequality imply that

P (|Vn(ω)| ≥ εx2n/2) = P

(

sup
1≤j≤ln

∣

∣

∣

∣

∣

j
∑

l=1

Zj(ω)

∣

∣

∣

∣

∣

≥ εx2n/2

)

≤
δ

ln
∑

j=1

Ā2
n,j

ε2x22n
≤ 2δ

ε2x2

Hence we get relation (2.5) with γ = 2 by choosing δ = ε3.

Now we turn to the proof of formula (2.4). We shall prove it only for the random

variables ζ
(1)
n,k,p(ω) = ξN(n,k−1)+p(ω), n = 1, 2, . . . , k = 1, . . . , ln, 0 ≤ p < N(n, k) −

N(n, k−1). The same proof also applies to the sequence ζ
(2)
n,k,p(ω) = ηN(n,k−1)+p(ω), but

this case can be checked simply, because the random variables ζ
(2)
n,k,p(ω) are Gaussian.

The appropriate choice of the small parameter ε̄ = ε̄(ε) > 0 is important at this step.
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Let us observe that by relation (4.1) the norming constants Ān,k satisfy the relation

2n−1ε̄ ≤ Ā2
n,k = BN(n,k) − BN(n,k−1) ≤ 2n+2ε̄, and ln ≤ 2

ε̄
for n ≥ n0(ε̄). We have

to bound the probability of the event in formula (2.4). Since the random variables

ζ
(1)
n,k,p(ω) = ξN(n,k−1)+p(ω), are independent, we could apply the Kolmogorov inequality

to get an estimate for this expression. But a direct application of this estimate is not
good enough for our purposes, and we have to apply a more refined argument. It is the
factor l−1

n at the right-hand side of (2.4) which makes the problem harder.

First we show that for all δ > 0 and n > n0(δ) there exists some K = K(δ) such
that

ES2
n,k(ω)I(|Sn,k(ω))| > K) ≤ 4δ. (4.3)

Relation (4.3) follows from relation (4.2) and the observations that there exists some
L > 0 such that ET 2

n,k(ω)I(Tn,k(ω) ≥ L) ≤ δ and some K = K(L) > 0 such that
{ω : |Sn,k(ω)| ≥ K} ⊂ {ω : |Tn,k(ω)| ≥ L} for all sufficiently large n and 1 ≤ k ≤ ln.
The latter statement follows from the special structure of the quantile transform. Then
ES2

n,k(ω)I(|Sn,k(ω))| > K) ≤ 2ET 2
n,k(ω)I(|Sn,k(ω))| > K) + 2E(Sn,k(ω)− Tn,k(ω))2 ≤

4δ, as we claimed.

We can write by the Chebishev inequality and formula (4.3) that

P





∣

∣

∣

∣

∣

∣

N(n,k)
∑

p=N(n,k−1)+1

ζ
(1)
n,k,p(ω)

∣

∣

∣

∣

∣

∣

> εx2n/2



 = P (Ān,k|Sn,k(ω)| > εx2n/2)

≤ ES2
n,k(ω)I(|Sn,k(ω)| ≥ K)

Ā2
n,k

ε2x22n
≤

4Ā2
n,kδ

ε2x22n

for all x ≥ 1, n ≥ n0, and 1 ≤ k ≤ ln

(4.4)

provided that ε̄ > 0 is chosen so small that Ān,kK ≤ ε2n/2, which relation makes it
possible to replace the second moment of Sn,k(ω) by the second moment of the random
variable Sn,k(ω)I(|Sn,k(ω)| ≥ K) in the above estimate. Such a choice of ε̄ is possible,
since Ā2

n,k ≤ ε̄2n+2 if n ≥ n0. (We remark that the constants in the estimations applied
to get (4.4) do not depend on the parameter ε̄. Only the threshold index n0 depends
on it.) Since lnĀ2

n,k ≤ 2n+3 the number δ > 0 can be chosen in such a way that

δĀ2
n,kln ≤ ε32n for all sufficiently large n. For instance δ = ε3/8 is a good choice.

With such a choice of δ we get a weakened form of formula (2.4) with γ = 2. Here
the supremum is dropped, only the last term p = N(n, k) − N(n, k − 1) is taken in the
supremum in expression (2.4).

Formula (2.4) in its original form can be proved for instance with the help of formula
(4.4) and the following maximum inequality (see e.g. [8], Lemma 3.21 at p. 45). Let

ξ1(ω), . . . , ξn(ω) be independent random variables, and put Sk(ω) =
k
∑

j=1

ξj(ω). Then

for all y > 0 such that max
1≤k≤n

P (Sk(ω) > y) ≤ 1

4

P

(

sup
1≤k≤n

Sk(ω) ≥ 2y

)

≤ 4

3
P (Sn(ω) ≥ y). (4.5)
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We apply this inequality for the partial sums

Sm(ω) = ±
m
∑

p=1

ζ
(1)
n,k,p(ω), 1 ≤ m ≤ N(n, k) − N(n, k − 1).

Since Eζ
(1)
n,k,p(ω) = 0, and the variance D2

n =
N(n,k)−N(n,k−1)

∑

p=N(n,k−1)+1

E(ζ
(1)
n,k,p)

2(ω) = Ā2
n,k,

satisfies the inequality D2
n = Ā2

n,k ≤ ε̄2n+2. Because of these estimates Chebishev’s
inequality yields that for n ≥ n0(ε̄)

max
1≤m≤N(n,k)−N(n,k−1)

P
(

Sm(ω) > ε
x

2
2n/2

)

≤ 1

4
for x ≥ 1

2

if ε̄ = ε̄(ε) is sufficiently small. Hence formula (4.5) is applicable with y =
x

2
2n/2 if

x ≥ 1
2 . Let us observe that relation (4.4) also holds for x ≥ 1/2 and not only for x ≥ 1.

These relations imply that for sufficiently small ε̄ = ε̄(ε) > 0

P

(

sup
1≤m≤N(n,k)−N(n,k−1)

∣

∣

∣

∣

∣

m
∑

p=1

ζ
(1)
n,k,p(ω)

∣

∣

∣

∣

∣

> εx2n/2

)

≤
50Ā2

n,kδ

ε2x22n

for all x ≥ 1, n ≥ 0, and 1 ≤ k ≤ ln.

This relation implies formula (2.4) with γ = 2 in the same way as formula (4.4) implied
its weakened form. Theorem 1 is proved.

Proof of Theorem 2. We may assume that lim
x→∞

µ(x) = Eξ2
1(ω) = ∞, because in the

case Eξ2
1(ω) < ∞ Theorem 1 can be applied. More precisely Theorem 1 supplies a

modified version of Theorem 2 in this case with the norming sequence B̄n = nEξ2
1(ω)

instead of the original sequence Bn. But lim
n→∞

B̄n

Bn
= 1, in this case, and Theorem 5 of

Part I. implies the result in this case.

Since the function µ(x) = Eξ2
1(ω)I(|ξ1(ω)| ≤ x) is a slowly varying function, it

follows for instance from Theorem 2 of [13] in Chapter VIII, Section 9 (and its proof)
that

P (|ξ1(ω)| > x) = o
(

x−2µ(x)
)

if x → ∞,

E|ξ1|I(|ξ1(ω)| > x) = o
(

x−1µ(x)
)

if x → ∞.
(4.6)

Define the random variables ξ̄n(ω) = ξn(ω)I(|ξn(ω)| ≤ an), χ
(1)
n (ω) = ξn(ω)I(ξn(ω) ≥

an), and χ
(2)
n (ω) = ξn(ω)I(ξn(ω) ≤ −an), n = 1, 2, . . . , with the numbers an defined in

the formulation of Theorem 2. We claim that

a.) The sequence of random variables ξ̄n(ω), n = 1, 2, . . . , satisfies the almost sure func-

tional limit theorem with the weight function Bn =
n
∑

k=1

ak, n = 1, 2, . . . , parameter

α = 2, and the Wiener measure µ0 as the limit measure.
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b.) Both sequences of random variables χ
(i)
n (ω), n = 1, 2, . . . , i = 1, 2, satisfy the almost

sure functional limit theorem with the same weight function Bn as in Statement a.),
n = 1, 2, . . . , parameter α = 2, and (degenerated) limit measure µ0 on the space
D([0, 1]) which is concentrated on the function x(t) ≡ 0.

Statement b.) can be reformulated in the following way: Put S
(i)
n (ω) =

n
∑

k=1

χ
(i)
k (ω),

i = 1, 2, n = 1, 2, . . . , and define the broken lines S
(i)
N (·, ω), i = 1, 2, N = 1, 2, . . . , with

the above random variables S
(i)
n (ω), the numbers Bn and parameter α = 2 by formula

(1.2). For all ω ∈ Ω, i = 1, 2, and n = 1, 2, . . . , introduce the (random) measure Pω,i,n

by the formula Pω,i,n

(

S
(i)
k (·, ω)

)

=
1

log Bn

B1

log
Bk+1

Bk
, 1 ≤ k < n. Then for any open

neighbourhhood G of the function x(t) ≡ 0 in the space D([0, 1]) lim
n→∞

Pω,i,n(G) = 0

for almost all ω ∈ Ω, i = 1, 2.

Since ξn(ω) = ξ̄n(ω)+ χ
(1)
n (ω)+ χ

(2)
n (ω), Statements a.) and b.) imply Theorem 2.

Indeed, it can be seen for instance with the help of Lemma B of Part I.) and State-
ment b.) that for almost all ω ∈ Ω the sequence ξn(ω), n = 1, 2, . . . , satisfies the same
almost sure functional limit theorem as the sequence ξ̄n(ω), n = 1, 2, . . . .

We shall prove Statement a.) with the help of Theorem 1. Let us first observe that

lim
n→∞

Var ξ̄n(ω)

µ(an)
= 1. Indeed,

Var ξ̄n(ω)

µ(an)
− 1 =

(Eξ̄n(ω))2

µ(an)
, and by the relations (4.6)

and Eξn(ω) = 0, the definition of the sequence of an and an → ∞ as n → ∞ we have

(Eξ̄n(ω))2 = (Eξn(ω)I(|ξn(ω)| > an)2 = o(a−2
n µ(an)2) = o

(

µ(an)

n

)

. This means that

for B̄n =
n
∑

k=1

Var ξ̄k(ω), lim
n→∞

B̄n

Bn
= 1.

To prove Statement a.) first we show that for all ε > 0

lim
n→∞

1

Bn

n
∑

k=1

E
[

(ξ̄k(ω) − Eξ̄k(ω))2I
(

|ξ̄k(ω) − Eξ̄k(ω)| > εB1/2
n

)]

= 0, (4.7)

which implies that the Lindeberg condition holds for the sequence ξ̄k(ω) − Eξ̄k(ω),
k = 1, 2, . . . .

First we show that

√
c ≤ lim inf

n→∞
sup

cn≤k≤n

ak

an
≤ lim sup

n→∞
sup

cn≤k≤n

ak

an
≤ 1 for all 0 < c < 1. (4.8)

Indeed, it follows from the definition of the sequence an that ak ≤ an for all k ≤ n, and
this implies the right-hand side of (4.8). On the other hand, since µ(·) is a slowly varying

function the numbers an satisfy the relation lim
n→∞

n
µ(an)

a2
n

= 1, and for any ε > 0, k ≥ cn

and n ≥ n0(c, ε), k
µ((

√
c − ε)an)

((
√

c − ε)an)2
> cn

µ(an)

(c −√
cε)a2

n

≥ 1, hence ak ≥ (
√

c − ε)an. This
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relation implies the left-hand side of (4.8). Since µ(·) is a slowly varying function, it
follows from relation (4.8) that

lim
n→∞

Bn

nµ(an)
= 1. (4.9)

By relation (4.9) the expression Bn can be replaced by nµ(an) in (4.7). Let us also

observe that B
1/2
n ∼

√

nµ(an) =

√

nµ(an)

a2
n

an ∼ an, and |Eξ̄k(ω)| ≤ E|ξ̄1(ω)| ≤ const.

for large n. Hence the terms in the sum (4.7) can be estimated as

E
[

(ξ̄k(ω) − Eξ̄k(ω))2I
(

|ξ̄k(ω) − Eξ̄k(ω)| ≥ εB1/2
n

)]

≤ 2 (E|ξ1(ω)|)2 + 2Eξk(ω)2I
(ε

2
an ≤ |ξk| ≤ ak

)

≤ const. + max
(

µ(ak) − µ
(ε

2
an

)

, 0
)

.

Since µ(x) is a slowly varying function tending to infinity as x → ∞, lim
n→∞

an = ∞, and

ak ≥ const.
√

can if k ≥ cn, with some 0 < c ≤ 1 the above estimate implies that for
all ε > 0 and δ > 0 there is some threshold n0 = n0(ε, δ) such that for all n ≥ n0 and
1 ≤ k ≤ n

E
[

(ξ̄k(ω) − Eξ̄k(ω))2I
(

|ξ̄k(ω) − Eξ̄k(ω)| ≥ εB1/2
n

)]

≤ δµ(an).

Summing these inequalities for all 1 ≤ k ≤ n and exploiting that they hold (for suffi-
ciently large n) for all δ > 0 we get relation (4.7).

The above relations together with Theorem 5 of Part I. of this paper (which states
that the weight function Bn in the almost sure functional limit theorem can be replaced

by a weight function B̄n such that lim
n→∞

B̄n

Bn
= 1) imply that the sequence of random

variables ξ̄n(ω)−Eξ̄n(ω), n = 1, 2, . . . , satisfy the almost sure functional limit theorem
with parameter α = 2 and the Wiener measure µ0 as limit measure. Hence to finish the
proof Statement a.) it is enough to show that

lim
n→∞

1

B
1/2
n

n
∑

k=1

Eξ̄k(ω) = 0. (4.10)

To prove relation (4.10) let us first observe that because of the identity Eξ1(ω) = 0,
relations (4.6) and (4.9) we can write, fixing an ε > 0 for all r > r0(ε) that

∣

∣

∣

∣

∣

∣

2r+1
∑

j=2r+1

Eξ̄j(ω)

∣

∣

∣

∣

∣

∣

≤ ε
2r+1
∑

j=2r+1

µ(aj)

aj
≤ const. ε2r µ(a2r )

a2r

≤ const. εa2r .
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Given an integer n, choose the integer R such that 2R < n ≤ 2R+1, and apply the above

estimate for all r0(ε) ≤ r ≤ R. Then we get by using the relations B
1/2
n ∼

√

nµ(an) ∼
an and an → ∞ if n → ∞ that lim

r→∞

a2r+1

a2r

=
√

2 and

∣

∣

∣

∣

∣

∣

n
∑

j=1

Eξ̄j(ω)

∣

∣

∣

∣

∣

∣

≤ const. (ε) + const. ε

R
∑

r=1

a2r

≤ const. (ε) + const. ′εan ≤ const. (ε) + const. ′εB1/2
n .

Since the above relation holds for all ε > 0, it implies relation (4.10).

We shall prove Statement b.) for the sequence χ
(1)
n (ω), n = 1, 2, . . . , the proof for

the sequence χ
(2)
n (ω) is the same. Put Sn(ω) =

n
∑

j=1

χ
(1)
j (ω). First we show that to verify

Statement b.) it is enough to prove the inequality

lim sup
n→∞

1

n

N(n)
∑

k=1

log
Bk

Bk−1
I











sup
0≤j≤k

Sj(ω)

B
1/2
k

> ε









 ≤ ε, for all ε > 0 (4.11)

with N(n) = inf{k : Bk ≥ 2n}. One can argue for instance in the following way. Let
us remark that the sequence of (degenerated) random variables ηn(ω) ≡ 0 satisfies the
almost sure functional limit theorem with the weight function Bn, parameter α = 2 and
limit measure µ0 which is concentrated to the function x(t) ≡ 0, 0 ≤ t ≤ 1. Then to

prove Statement b.) it is enough to check that the pair of sequences (χ
(1)
n (ω), ηn(ω)),

n = 1, 2, . . . , satisfy Property A. Formula (4.11) agrees with Property A in the present
case.

We shall prove formula (4.11) by means of the Basic Lemma with the same sequence

of numbers Bn which appears in Theorem 2, ζn(ω) = χ
(1)
n (ω), n = 1, 2, . . . , and the

(trivial) refinement of the sequence N(n) for which the numbers N(n, k) contain all
integers in the interval [N(n − 1), N(n)]. (This refinement of the sequence N(n) does
not depend on ε.) With this choice of the refinement of the sequence N(n) condition
(2.4) is an empty statement in the application of the Basic Lemma, and it is enough to
check relation (2.5). In the present case

Vn(ω) = sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

ζj(ω)

∣

∣

∣

∣

∣

∣

=

N(n)
∑

j=N(n−1)

ζj(ω), (4.12)

and we have to prove relation (2.5) with this random variable, α = 2 and appropriate
γ > 0. Then the validity of relation (2.6) for all 1 > ε > 0 implies relation (4.11) i.e.
the remaining part of the proof of Theorem 2.

We shall prove relation (2.5) with some fixed ε > 0 and x ≥ 1 for the sequence

ζn(ω) = χ
(1)
n (ω) by estimating the expression

N(n)
∑

j=N(n−1)+1

Eζj(ω)= E

∣

∣

∣

∣

∣

N(n)
∑

j=N(n−1)+1

ζj(ω)

∣

∣

∣

∣

∣

.
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To do this we need a good bound on the term N(n). By the relation Bn ∼ nµ(an)
and the definition of the numbers N(n) we have N(n)µ(aN(n)) ∼ 2n for sufficiently large

n. The relation a2
N(n)

N(n)µ(aN(n))

a2
N(n)

∼ 2n and the definition of the numbers an imply

that lim
n→∞

2−n/2aN(n) = 1. Hence N(n) ≤ 2n+2

µ(aN(n))
and 2(n−1)/2 < aN(n) < 2(n+1)/2

for large n. Now we can write with the help of relation (4.6)

N(n)
∑

j=N(n−1)+1

Eζj(ω) ≤ ε̄N(n)
µ(aN(n))

aN(n)
≤ ε̄

2n+2

aN(n)
≤ ε̄2(n+5)/2 ≤ ε22n/2

if the number ε̄ is sufficiently small (and the threshold n0(ε̄) is sufficiently large). Hence
the Markov inequality yields that

P





N(n)
∑

j=N(n−1)+1

ζj(ω) ≥ εx2n/2



 ≤ ε22n/2

εx2n/2
= εx−1.

It follows from this estimate that the random variables Vn(ω) defined in (4.12) satisfy
the estimate (2.5) with γ = 1. Theorem 2 is proved.

5. The proof of Theorem 3

Proof of Theorem 3. By the results quoted in Sections 1 and 2 it is enough to show that
the sequences (ξn(ω)− an, ηn(ω)), n = 1, 2, . . . , satisfy Property A with an appropriate
sequence of constants an and ηn(ω) = L̄(n)1/αη̄n(ω), n = 1, 2, . . . , where η̄n(ω) are i.i.d.
random variables with the stable distribution G(x) satisfying formula (1.5), and L̄(·)
is the slowly varying function defined in the formulation of Theorem 3 whose existence
still has to be proved.

We shall prove Property A with the help of the Basic Lemma together with a quan-
tile transform representation of the random variables ξn(ω), by means of the random
variables ηn(ω), n = 1, 2, . . . , to be described below.

The random variables ηn(ω), n = 1, 2, . . . , have distribution function Gn(x) =

G

(

x

L̄(n)1/α

)

with the stable distribution function G(x) which satisfies relation (1.5).

The distribution function Gn(x) has a density function, hence the independent ran-
dom variables Gn(ηn(ω)), n = 1, 2, . . . , are uniformly distributed in the interval [0, 1].
Then, similarly to the construction in the proof of Theorem 1 we can construct the
random variables ξn(ω), n = 1, 2, . . . . More explicitly, we define a sequence of i.i.d.
random variables with the same distribution function F (x) as the originally given se-
quence ξn(ω), n = 1, 2, . . . , by the formula ξn(ω) = F−1(Gn(η(ω)), n = 1, 2, . . . , where
F−1(x) = sup{u : F (u) < x}. We will show with the help of the Basic Lemma that this
construction of the pairs (ξn(ω) − an, ηn(ω)), n = 1, 2, . . . , with

an = E (ξn(ω) − ηn(ω)) I
(

|ηn(ω)| < n1/αL̄(n)1/α
)
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satisfies Property A. (Observe that the construction which must satisfy certain property
depending on a parameter ε > 0 does not depend on the parameter ε.)

First we formulate and prove a Lemma which plays an important role in the proof.

Lemma 1. Let us consider the function b(x) = max

{

u :
L(u)x

uα
≥ 1

}

, x > 0, introduced

in the formulation of Theorem 3. This function b(x) is a regularly varying function
with parameter 1/α, hence L̄(x) = b(x)αx−1 is a slowly varying function. Define the
distribution functions Gn(x) and random variables ηn(ω) and ξn(ω), n = 1, 2, . . . , in
the way described above with the help of this slowly varying function L̄(·). The relation

lim
x→∞

xL(b(x))

b(x)α
= 1 holds. For all ε̄ > 0 there exists an index n0 = n0(ε̄) such that

|ξn(ω) − ηn(ω)| < ε̄|ηn(ω)| if ε̄n1/αL̄(n)1/α < ηn(ω) < ε̄−1n1/αL̄(n)1/α

and n ≥ n0(ε̄).
(5.1)

Proof of Lemma 1. Since L(x) is a slowly varying function we have lim
x→∞

b(x) = ∞, and

the relations lim
x→∞

L(b(x))x

b(x)α
= 1 and lim

x→∞

L(c1/αb(x))cx

(c1/αb(x))α
= 1 hold for all 1 ≤ c ≤ K,

where K > 1 is an arbitrary fixed constant. Moreover, the convergence in the second
relation is uniform in the variable c as x → ∞. It can be shown with the help of these

properties that lim
x→∞

b(cx)

c1/αb(x)
= 1, since they imply that for large x > 0 the number

c1/αb(x) is a good approximation for b(cx). This relation means that the function b(x)
is regularly varying with parameter 1/α. The regular varying property of the function
b(x) implies that the function L̄(x) = b(x)αx−1 is slowly varying.

We claim that for any ε̄ > 0

lim
n→∞

sup
ε̄
2 n1/αL̄(n)1/α<x<2ε̄−1n1/αL̄(n)1/α

xα 1 − F (x)

L(x)
= C1

lim
n→∞

sup
ε̄
2 n1/αL̄(n)1/α<x<2ε̄−1n1/αL̄(n)1/α

xα F (−x)

L(x)
= C2,

(5.2)

and

lim
n→∞

sup
ε̄
2 n1/αL̄(n)1/α<x<2ε̄−1n1/αL̄(n)1/α

xα 1 − Gn(x)

L(x)
= C1

lim
n→∞

sup
ε̄
2 n1/αL̄(n)1/α<x<2ε̄−1n1/αL̄(n)1/α

xα Gn(−x)

L(x)
= C2.

(5.2′)

Formula (5.2) follows from relation (1.6). Formula (5.2′) can be deduced from (1.5) and
the definition of the function Gn(x) if we show that

lim
n→∞

sup
ε̄
2 n1/αL̄(n)1/α<x<2ε̄−1n1/αL̄(n)1/α

L̄(n)

L(x)
= 1.
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To see the last statement observe that in the domain we are interested in L(x) ∼
L(n1/αL̄(n)1/α)), hence it can be reduced to the formula

lim
n→∞

L̄(n)

L(n1/αL̄(n)1/α)
= 1. (5.3)

Relation (5.3) holds, since L(n1/αL̄(n)1/α) = L(b(n)) ∼ b(n)α

n
= L̄(n).

Relations (5.2) and (5.2′) imply that for all ε̄ > 0 there is a threshold n = n(ε̄)
such that

1 − F ((1 + ε̄)x) < 1 − Gn(x) < 1 − F ((1 − ε̄)x)

F (−(1 + ε̄)x) < Gn(−x) < F ((1 − ε̄)x)

if ε̄n1/αL(n)1/α < x < ε̄−1n1/αL(n)1/α.

Hence

(1 − ε̄)x < F−1(Gn(x)) < (1 + ε̄)x

−(1 + ε̄)x < F−1(Gn(−x)) < −(1 − ε̄)x

if ε̄n1/αL(n)1/α < x < ε̄−1n1/αL(n)1/α. The last formula together with the definition
of the quantile transform imply relation (5.1). Lemma 1 is proved.

Now we turn back to the proof of Theorem 3. We shall prove Property A with the
help of the Basic Lemma with the (greatest possible) refinement N(n, k) of the sequence
N(n), n = 1, 2, . . . , for which the numbers N(n, k) contain all integers in the interval
[N(n−1), N(n)] for all n = 1, 2, . . . . With this choice of the sequence N(n, k) condition
(2.4) has not be checked in the application of the Basic Lemma. We only have to check
formula (2.5), which states in the present case that

P



 sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

(ξj(ω) − aj − ηj(ω))

∣

∣

∣

∣

∣

∣

> εx2n/α



 < Cεx−γ

for all x ≥ 1 and n ≥ n0(ε)

(5.4)

with an appropriate γ > 0.

Let us make the following observation. Since L̄(n) is a slowly varying function the

relation lim
n→∞

B̄n

Bn
= 1 holds with B̄n = nL̄(n). This relation together with formula (1.1)

imply that for all large n the number N(n) satisfies the relation N(n)L̄(N(n)) ∼ 2n.
Since L̄(n) is a slowly varying function this relation also implies that N(n) ≤ 5N(n−1) if

n is sufficiently large. Indeed, since
L̄(N(n − 1))

L̄(N(n))
≤ 1.01

(

N(n)

N(n − 1)

)1/2

for sufficiently

large n, we have
√

5 ≥ 1.01N(n)L̄(N(n))

N(n − 1)L̄(N(n − 1))
≥
(

N(n)

N(n − 1)

)1/2

for sufficiently large
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n, as we claimed. Hence L̄(k) ∼ L̄(N(n)) and (kL̄(k))1/α ≤ 9

8
2n/α for N(n − 1) ≤ k ≤

N(n).

In the proof of the inequality (5.4) we shall bound separately the contribution of
those indices j for which ηj(ω) is relatively small, more explicitly their values is much
less than j1/αL̄(j)1/α, the indices j of middle order terms for which ηj(ω) is of order
j1/αL̄(j)1/α and finally those indices for which the terms ηj(ω) are much larger than
j1/αL̄(j)1/α. The contribution of the terms with small and middle order will be bounded
by means of an estimate for the expected values and variances of their sum together
with an application of Kolmogorov’s inequality. The contribution of the large values
can be estimated by means of the tail behaviour of the distribution functions F (x) and
Gn(x). The separation between the large and middle values will depend also on the
value of the parameter x in formula (5.4). In the estimates we shall fix a sufficiently
small ε̄ = ε̄(ε) and apply the estimate (5.1).

To estimate the contribution of the small terms let us first bound the terms

E(ξj(ω) − ηj(ω))I
(

|ηj(ω)| < ε4/(2−α)j1/αL(j)1/α
)

− aj

and
E(ξj(ω) − ηj(ω))2I

(

|ηj(ω)| < ε4/(2−α)j1/αL̄(j)1/α
)

.

Fix a sufficiently small ε̄ = ε̄(ε) to be defined later, and consider indices j > n0(ε̄). i.e.
such indices for which the relation (5.1) is applicable. In this case, if ε̄(ε) is sufficiently
small, we can write because of the definition of the norming constants an

∣

∣

∣
E(ξj(ω) − ηj(ω))I

(

|ηj(ω)| < ε4/(2−α)j1/αL̄(j)1/α
)

− aj

∣

∣

∣

=
∣

∣

∣E(ξj(ω) − ηj(ω))I
(

ε4/(2−α)j1/αL̄(j)1/α ≤ |ηj(ω)| < j1/αL̄(j)1/α
)∣

∣

∣

≤ ε̄E|ηj(ω)|I
(

ε4/(2−α)j1/αL(j)1/α ≤ |ηj(ω)| < j1/αL̄(j)1/α
)

= ε̄

∫

ε4/(2−α)j1/αL̄(j)1/α≤|u|≤j1/αL̄(j)1/α

|u|Gj( du)

≤ const. ε̄L̄(j)1/α

∫ j1/α

ε4/(2−α)j1/α

uḠ( du) ≤ ε

45
j(1−α)/αL̄(j)1/α

(5.5)

with Ḡ(u) = 1 − G(u) + G(−u). To estimate the second moment of these summands
write

E(ξj(ω) − ηj(ω))2I
(

|ηj(ω)| < ε4/(2−α)j1/αL̄(j)1/α
)

≤ 2Eξ2
j (ω)I

(

|ξj(ω)| < 2ε4/(2−α)j1/αL̄(j)1/α
)

+ 2Eη2
j (ω)I

(

|ηj(ω)| < ε4/(2−α)j1/αL̄(j)1/α
)

.

This inequality implies together with an asymptotic relation about the behaviour of
the moments of a random variable with regularly varying distribution function, a result
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which follows for instance from Theorem 2, Part (i) in [13] Chapter VIII. Section 9 with
the choice η = 0 and ζ = 2, that

E(ξj(ω) − ηj(ω))2I
(

|ηj(ω)| < ε4/(2−α)j1/αL̄(j)1/α
)

≤ const. ε8/(2−α)j2/αL̄(j)2/α

[

(

1 − F (ε4/(2−α)j1/αL̄(j)1/α)
)

+
(

1 − Gj(ε
4/(2−α)j1/αL̄(j)1/α)

)

]

≤ const. ε8/(2−α)j2/αL̄(j)2/αε−4α/(2−α)j−1L̄(j)−1
[

L
(

j1/αL̄(j)1/α
)

+ L̄(j)
]

≤ const. ε4j−1+2/αL̄(j)2/α

(5.6)
because of formula (5.3).

The estimates (5.5) and (5.6) together with the estimates N(n)L̄(N(n)) ∼ 2n,
(kL̄(k))1/α ≤ 9

82n/α for k ≤ N(n), N(n) < 5N(n − 1) and Kolmogorov’s inequality

imply that with the notation of the events Aj = {ω : |ηj(ω)| < ε4/(2−α)j1/αL̄(j)1/α}
and their indicator functions I(Aj(ω)), j = 1, 2, . . . ,

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

E(ξj(ω) − ηj(ω))I(Aj(ω)) − aj)

∣

∣

∣

∣

∣

∣

≤
k
∑

j=N(n−1)+1

ε

45
j(1−α)/αL̄(j)1/α

≤ ε

40
2n/α

N(n)
∑

j=N(n−1)+1

1

j
≤ ε

30
2n/α log

N(n)

N(n − 1)
≤ ε

8
2n/α

for all N(n − 1) < k ≤ N(n), and

P



 sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(Aj(ω)) − aj

∣

∣

∣

∣

∣

∣

>
ε

4
x2n/α





≤

N(n)
∑

j=N(n−1)+1

E(ξj(ω) − ηj(ω))2I(Aj(ω))

ε2

64x222n/α
≤ ε4

[

N(n)L̄(N(n))
]2/α

ε2

64x222n/α

≤ const. ε2

x2
for all x ≥ 1 and n ≥ n0(ε̄)

(5.7)

We still have to bound the contribution of those terms ξj(ω) − ηj(ω) in the sum
(5.4) for which ηj(ω) ≥ ε4/(2−α)j1/αL̄(j)1/α. We shall separate them to middle terms for
which |ηj(ω)| is not too large and large terms for which |ηj(ω)| is large. This separation
to the middle and large terms will be made differently for large and small values of the
parameter x in formula (5.4).
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Let us choose the number ε̄(ε) sufficiently small, and define the sets

Bj(x) =
{

ω : ε4/(2−α)j1/αL̄(j)1/α ≤ |ηj(ω)| < ε−1/αxj1/αL̄(j)1/α
}

and

Cj(x) =
{

ω : |ηj(ω)| ≥ ε−1/αxj1/αL̄(j)1/α
}

together with the indicator functions I(Bj(x)(ω)) and I(Cj(x)(ω)), j = 1, 2, . . . , of
these sets if 1 ≤ x ≤ ε̄−1/4. For sufficiently large j relation (5.1) can be applied on the
sets Bj(ω). This implies that because of the factor ε̄ in the upper bound given (5.1) we
can prove similarly to the proof of relations (5.5) and (5.6) that

|E(ξj(ω) − ηj(ω))I(Bj(x)(ω))| ≤ ε

45
j(1−α)/αL̄(j)1/α. (5.8)

and

E(ξj(ω) − ηj(ω))2I(Bj(x)(ω)) ≤ const. ε4j−1+2/αL̄(j)2/α (5.9)

for x ≤ ε̄−1/4. These estimates together with Kolmogorov’s inequality and the asymp-
totic relations we have for N(n) and L(N(n) yield similarly to the estimate (5.7) the
bound

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

E(ξj(ω) − ηj(ω))I(Bj(ω))

∣

∣

∣

∣

∣

∣

≤
k
∑

j=N(n−1)+1

ε

45
j(1−α)/αL̄(j)1/α

≤ ε

9

(

N(n)L̄(N(n))
)1/α ≤ ε

8
2n/α

for all N(n−) + 1 ≤ k ≤ N(n) and

P



 sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(Bj(x)(ω))

∣

∣

∣

∣

∣

∣

>
ε

4
x2n/α





≤

N(n)
∑

j=N(n−1)+1

E(ξj(ω) − ηj(ω))2I(Bj(x)(ω))

ε2

64x222n/α
≤ const.

ε4
[

N(n)L̄(N(n))
]2/α

ε2

64x222n/α

≤ const. ε2

x2
for all ε̄−1/4 ≥ x ≥ 1 and n ≥ n0(ε̄).

(5.10)
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In the outer domain we can write for ε̄−1/4 ≥ x because of the definition of the sets
Cj(x)

P



 sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(Cj(x)(ω))

∣

∣

∣

∣

∣

∣

>
ε

2
x2n/α





≤ P ({ω : ω ∈ Cj(x) for some N(n − 1) < k ≤ N(n)})

≤
N(n)
∑

j=N(n−1)+1

P
(

|ηj(ω)| ≥ ε−1/αxj1/αL̄(j)1/α
)

≤ const. εx−α

N(n)
∑

j=N(n−1)+1

1

j
≤ const. εx−α.

(5.11)

Since Aj ∪ Bj(x) ∪ Cj(x) = Ω for all j, relations (5.7), (5.10) and (5.11) imply
relation (5.4) with γ = α in the case x < ε̄−1/4.

In the case x ≥ ε̄−1/4 define the sets

B′
j(x) =

{

ω : ε4/(2−α)j1/αL̄(j)1/α ≤ |ηj(ω)| < x1/2j1/αL̄(j)1/α
}

and

C ′
j(x) =

{

ω : |ηj(ω)| ≥ x1/2j1/αL̄(j)1/α
}

together with the indicator functions of these sets I(B ′
j(x)(ω)) and I(C ′

j(x)(ω)), j =

1, 2, . . . . We remark that if ε̄(ε) > 0 is very small, then x1/2 ¿ εx. In this case we can
apply the estimation

L
(

x1/2j1/αL̄(j)1/α
)

≤ C(t)xtL(j1/αL̄(j)1/α) ≤ C ′(t)xtL̄(j) (5.12)

for all x ≥ 1 and t > 0 which holds, because L(·) is a slowly varying function. With
the help of relation (5.12) the following (weaker) version of the estimate (5.11) can be
proved which is appropriate for our purposes.

P



 sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(C ′
j(x)(ω))

∣

∣

∣

∣

∣

∣

>
ε

2
x2n/α





≤
N(n)+1
∑

j=N(n−1)+1

P
(

|ηj(ω)| ≥ x1/2j1/αL̄(j)1/α
)

≤ const.x−α/3

N(n)
∑

j=N(n−1)+1

1

j
≤ const. x−α/3 < εx−α/4,

(5.13)
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if ε̄ is sufficiently small, and as a consequence x is sufficiently large.

To prove an estimate analogous to (5.10), to bound the contribution of the middle
terms for large x, we give a (weaker) estimate on the first two moments of the random
variables (ξj(ω) − ηj(ω))I(B′

j(x))(ω).

The estimation of the second moment is simpler. In this case we can argue similarly
to the estimate (5.6). We can apply the result from Feller’s book [13], Theorem 2,
Part (i) Chapter VIII. Section 9 with the choice η = 0 and ζ = 2. Then we get with the
application of formula (5.12) that

E(ξj(ω) − ηj(ω))2I(B′
j(x)(ω)) ≤ const. xj2/αL̄(j)2/α

[

(

1 − F (x1/2j1/αL̄(j)1/α)
)

+
(

1 − Gj(x
1/2j1/αL̄(j)1/α)

)

]

≤ const. xj2/αL̄(j)2/αx−α/2j−1L̄(j)−1
[

L
(

x1/2j1/αL̄(j)1/α
)

+ L̄(j)
]

≤ const. xj−1+2/αL̄(j)2/α,

and

Var





N(n)
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(B′
j(x))(ω)



 ≤ const.x22n/α. (5.14)

To get an appropriate estimate on the first moment let us observe that in the estimation
in formula (5.5) we gave a good bound on the integral we want to estimate if the do-
main of integration is restricted to the interval ε4/(2−α)j1/αL̄(j)1/α ≤ |u| ≤ j1/αL̄(j)1/α.
Hence, handling this part of the integral separately we get integrating by parts and ap-
plying (5.12) with t = α > 0

∣

∣E(ξj(ω) − ηj(ω))I(B′
j(x)(ω))

∣

∣ ≤ εj−1+1/αL̄(j)1/α

+

∫

j1/αL̄(j)1/α≤|u|≤x1/2j1/αL̄(j)1/α

|u|(F ( du) + Gj(du))

≤ const.

∫

j1/αL̄(j)1/α≤|u|≤x1/2j1/αL̄(j)1/α

(F (u) + Gj(u)) du

+ const.x1/2j−1+1/αL̄(j)1/α ≤ const. x1/2j−1+1/αL̄(j)1/α.

Hence

∣

∣

∣

∣

∣

∣

E
k
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(B′
j(x)(ω))

∣

∣

∣

∣

∣

∣

≤ const.x1/2N(n)1/αL̄(N(n))1/α ≤ const.x1/22n/α ≤ ε

8
x2n/α

(5.15)

for all N(n−1) ≤ k ≤ N(n) if ε̄ = ε̄(ε) is sufficiently small, hence x > ε̄−1/4 is sufficiently
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large. The estimates (5.14) and (5.15) together with Kolmogorov’s inequality imply that

P



 sup
N(n−1)<k≤N(n)

∣

∣

∣

∣

∣

∣

k
∑

j=N(n−1)+1

(ξj(ω) − ηj(ω))I(B′
j(x)(ω))

∣

∣

∣

∣

∣

∣

>
ε

4
x2n/α





≤ x22n/α

ε2

64x222n/α
≤ ε

x1/2
for all x ≥ ε̄−1/4 and n ≥ n0(ε̄)

(5.16)

if ε̄ is sufficiently small. Now relations (5.7), (5.13) and (5.16) imply relation (5.4) in
remaining case x > ε̄−1/4 with γ = min

(

α
4 , 1

2

)

= α
4 . Since the number ε̄ = ε̄(ε) can be

chosen in such a way that all inequalities needed in the proof are satisfied, the above
calculations imply the almost sure functional limit theorem.

To complete the proof of Theorem 3 we still have to show that the random vari-

ables
1

Bn

n
∑

j=1

(ξj(ω) − an) converge in distribution to the distribution function G(x).

We prove this if we show that
1

n1/αL̄(n)1/α

n
∑

j=1

(ξj(ω) − ηj(ω) − an) ⇒ 0 as n → ∞,

where ⇒ denotes convergence in distribution. (The denominator Bn can be replaced
by n1/αL̄(n)1/α ∼ Bn in this formula.) Let us choose the representation

ξj(ω) − ηj(ω) = (ξj(ω)) − ηj(ω))I
(

|ηj(ω)| < ε4/(2−α)n1/αL̄(n)1/α
)

+ (ξj(ω)) − ηj(ω))I
(

ε4/(2−α)n1/αL̄(n)1/α) ≤ |ηj(ω)| ≤ ε−1n1/αL̄(n)1/α
)

+ (ξj(ω)) − ηj(ω))I
(

|ηj(ω)| ≥ ε−1n1/αL̄(n)1/α
)

,

(5.17)
and apply a natural modification of relations (5.5), (5.6), (5.8) and (5.9) appropriate
in the present case. Here the separation levels are chosen as ε4/(2−α)n1/αL̄(n)1/α in-
stead of ε4/(2−α)j1/αL̄(j)1/α in relations (5.5) and (5.6), and ε−1n1/αL̄(n)1/α instead of
xj1/αL̄(j)1/α in relations (5.8) and (5.9). The main difference in the proof of the almost
sure functional limit theorem and in the proof of the limit theorem for the distribution
of the normalized partial sum is that now we make the same truncation for all indices
1 ≤ j ≤ n. Then we can bound the expression we get if we take the sum of the first
two terms in (5.17) for indices j = 1, 2, . . . , n by means of Chebishev’s inequality. We
get that

P





1

n1/αL̄(n)1/α

n
∑

j=1

(

(ξj(ω) − ηj(ω))I(|ηj(ω)| < ε−1n1/αL̄(n)1/α) − an

)

> ε





≤ const. ε2. (5.18)

On the other hand,

n
∑

j=1

P
(

|ηj(ω)| ≥ ε−1n1/αL̄(n)1/α
)

≤ n × const. εαn−1 = const. εα (5.19)
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by relations (1.5) and (5.3). Relations (5.18) and (5.19) imply the weak convergence.
Theorem 3 is proved. (The functional limit theorem formulated in Remark 1 can be
proved by some modification of the proof, in particular by applying the Kolmogorov
inequality instead of the Chebishev inequality in the estimates.)

Proof of Theorem 3′. The stable process X0(t, ω) is not self-similar, because only the
relation

X0(tT, ω)
∆
= TX0(t, ω) + γtT log T

holds with γ = C1 − C2, where
∆
= denotes equation in distribution. In this case the

process X ′
0(t, ω) = X0(t, ω)−γt log t is self-similar with self-similarity parameter α = 1.

Indeed, the relation

X ′
0(tT, ω) = X0(tT, ω) − γtT log tT

∆
= TX0(t, ω) + γtT (log T − log tT )

= T (X0(t, ω) − γt log t) = TX ′
0(t, ω)

holds for all T > 0. The results of Part I. can be applied for this process. They imply
that the random variables ηn(ω) = L̄(n)η̄n(ω) − Cn satisfy the almost sure functional
limit theorem with Cn = γ(Bn log Bn − Bn−1 log Bn−1), where ηj(ω), n = 1, 2, . . . , are
i.i.d. random variables with distribution function G(x). Then checking the proof of
Theorem 3 one can see that the estimates given there also hold in the case α = 1.
They imply that relation (5.4) also holds in this case. Hence Property A holds for
the pairs (ξn(ω) − Cn, ηn(ω) − Cn). This result implies that the sequence ξn(ω) − Cn

or the sequence ξn(ω) with an appropriate (modified) shift an and weight function

Bn =
n
∑

k=1

L̄(k) satisfies the almost sure functional limit theorem.
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6. Discussion of the results, and some open problems

Our results state that for a sequence of random variables ξn(ω), n = 1, 2, . . . , with
some nice properties a result of the following type holds. Define a sequence of random
broken lines Xn(·, ω), n = 1, 2, . . . , in the way described in formula (1.2) by means of
these random variables ξ1(ω), ξ2(ω), . . . , for all n = 1, 2. . . . , and ω ∈ Ω, define the
probability µN (ω) in the function space D([0, 1]) (or in the space C([0, 1]) if this is
possible) by attaching an appropriately defined probability ak,N to the appropriately

normalized version of the trajectories Xk(·, ω), k = 1, . . . , N ,
N
∑

k=1

ak,N = 1. Carrying

out the above construction in an appropriate way, e.g. in the way described in this
work, we get that the measures µN (ω) weakly converge to an appropriate measure µ0

for almost all ω ∈ Ω. In the first part of this work we proved such results for general
self-similar processes. A weaker version of such results also appeared in the paper [9]
of Csáki and Földes. In the second part we proved such results for processes which are
close to some special self-similar processes. Actually the transformation which enables
one to construct stationary processes by means of self-similar processes and vice versa
was found already in Lamperti’s paper [17]. This transformation which enabled us to
study self-similar processes by means of “generalized Ornstein–Uhlenbeck processes”
was applied by Lamperti to construct self-similar processes. Let us remark that this
method in itself does not settle the problem of construction of self-similar processes. An
important question is to construct such self-similar processes which are also stationary
or have stationary increments. Such constructions demand new ideas.

One may ask how close these measures µN (ω), N = 1, 2, . . . , are to the limit
measure µ0. The following two questions seem to be natural problems in this direction.

i.) Can a more precise estimate be given about the distance d(µN (ω), µ0), where d(·, ·)
is an appropriate metric on the space of probability measures which metrizes weak

convergence? With which replacement of the weights
log Bk+1

Bk

log BN

B1

in formula (1.3) do

the measures µN (ω), N = 1, 2, . . . , have the same limit for almost all ω ∈ Ω as the
original measures in the definition of the almost sure invariance principle?

ii.) The weak convergence of the measures µN (ω) to µ0 states that
∫

F(x)µN (ω)( dx) →
∫

F(x)µ0( dx) as N → ∞ for all continuous and bounded functional F in the space
D([0, 1]) (or C([0, 1]). For which larger classes of functionals F does this statement
hold?

There are some results in the spirit of problem 1, see e.g. [14], but some further,
deeper results in this direction would be welcome. The second problem is a natural
version of the generalization of the Donsker theorem, and description of the so-called
Donsker classes. This is a popular subject, (see e.g. [12]), but I do not know of any
improvement of the almost sure functional limit theorem in this direction. Let us also
remark that the basis of our proofs was the application of the ergodic theorem for the
“generalized Ornstein–Uhlenbeck processes”. In the case of general self-similar processes
we cannot assume a stronger result, but in some important special cases, like in the
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case of (non-generalized) Ornstein–Uhlenbeck process there is a chance to improve the
ergodic theorem and to get a non-trivial partial answer to the question (i).

Another natural generalization of the almost sure invariance principle is to prove
the existence of limit of the appropriate weighted average of the variables FSk(·, ω) for
almost all ω ∈ Ω, where the trajectories Sk(·, ω) are defined in formula (1.2), not only
for bounded continuous functionals in the space C([0, 1]) or D([0, 1]), but also for such
functionals F which satisfy certain moment conditions, but may be unbounded. The
idea behind such a generalization is that the ergodic theorem which is in the background
of the proofs requires only that certain moment condition be satisfied.

There are several papers about such problems. These papers consider such special
functionals which depend only on Sk(1, ω). The deepest result in this direction I know
about is contained in the paper [16] of Ibragimov and Lifshitz.

Roughly speaking, the second part of this work stated that the almost sure func-
tional limit theorem holds for independent random variables under the conditions of
the limit theorem for the distribution of the normalized partial sums of these random
variables. Let us also remark that there are examples (see e.g. [4]) showing that the
almost sure functional limit theorem also may hold in cases when the limit theorem for
the normalized partial sums of these random variables does not hold.

The construction and proofs (the formulation and application of the Basic Lemma)
in Part II. strongly exploited the independence of the random variables under consid-
eration. The question arises what can be said in the dependent case. Does the almost
sure limit theorem hold under general conditions? Are the conditions sufficient for a
limit theorem for the distribution of the normalized partial sums sufficient also for the
almost sure functional limit theorem? I would formulate as a ‘fist rule’ a positive an-
swer to this question, but cannot supply a proof. It might be interesting to study such
limit theorems where the limit is a self-similar process with dependent increments. The
process constructed by Dobrushin in [10], and the papers proving limit theorem with
this limit (see e.g. [11] or [19]) may be interesting in this respect.

We make a brief comparison between our results and results of earlier papers. A
more detailed overview together with a comprehensive list of literature can be found in
paper [3].

The most frequently studied problem in this subject is the case when the limit
is Gaussian. Most works is restricted to a one-dimensional version of the almost sure
functional limit theorem called the almost sure central limit theorem. This result states

that under general condition the partial sums Sn(ω) =
n
∑

j=1

ξj(ω), n = 1, 2, . . . , of

independent random variables with expectation zero satisfy the relation

lim
n→∞

1
n
∑

k=1

bk

n
∑

k=1

1

bk
P
(

Sk < x
√

Var Sk

)

= Φ(x) for almost all ω ∈ Ω

with the choice of appropriate weights bn, n = 1, 2, . . . , where Φ(·) denotes the normal
distribution function. The result of M. Atlagh [1] is the sharpest result in this direction
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among the results I know about. Atlagh assumed, similarly to our Theorem 1, that
the Lindeberg condition holds, and he also formulated a very weak restriction about

the growth of the variance of the summands. He chose the weights bk =
Eξ2

k

Var Sk
in his

paper. Formally, this is a choice of weights different from ours. But since log
Var Sk

Var Sk−1
∼

Eξ2
k

Var Sk
, and this approximation is sufficiently good under the conditions formulated by

Atlagh, it can be proved with the help of Theorem 4 in Part I. that the results with
these two different weights are equivalent. More explicitly, it follows from this result

that the two choices of weights are equivalent if
∞
∑

k=1

(

Eξ2
k

Var Sk

)2

< ∞, and this relation

holds under the conditions of Atlagh’s result. We omit the details of the proof.

We discuss the analogs of Theorems 2 and 3 more briefly. There are results (see e.g.
[2], [5] and [6]) which supply a one-dimensional version of these results. Here the weight
functions are different from ours. At this point it is important that these results only
deal with one dimensional distribution and not with the random broken lines which
contain ‘the whole history’ of the process. In these one dimensional problems some
general theorems about averaging, see e.g. the paper Bingham and Roger [7], give a
fairly big freedom in the choice of the weight functions. On the other hand, in the case
of the almost sure functional limit theorem a radical change of the weight functions also
modifies the points where the random broken lines have a jump, hence it may modify
the shape of the broken lines. This means that in such a case we have less freedom in
the choice of the weights. Let us remark that the class of weight functions for which the
almost sure functional limit theorem holds could be enlarged. There is a possibility to
generalize the class of possible weights given in Theorem 4 of Part I. to triangular arrays
Bk,n, 1 ≤ k ≤ n under appropriate conditions. This would give a better possibility to
compare our results with those of [2], [5] and [6], but we shall not discuss this problem.

Finally we remark that in Theorem 3 (and Theorem 3′) we have to give a ‘shift
parameter’ an beside the weight functions Bn to define the random broken lines which
satisfy the almost sure functional limit theorem. Here again we have certain freedom.
As we showed in the Remark 2. in Section 1 this norming constants can be chosen in
the same way as in the limit theorems for the distribution function of the normalized
partial sums. This means that, by the limit theorems with a stable limit law we can
choose an = 0 in the case α < 1 and an = Eξ1(ω) in the case 1 < α < 2. The choice of
the norming constant an cannot be given in such a simple way in the case α = 1.

The results of [5] and of the recent paper [15] also imply Theorem 3 and 3′. The
method of these papers is different from ours.

After having finished this work I have learned about the recent paper [15] of Ibrag-
imov. I. A. and Lifshitz, M. A. which has not yet appeared. The subject of this paper
is similar to ours, but there are considerable differences both in the formulation of the
results and method of the proofs. The aim of the authors of this work — similarly
to the present paper — is to find the general principles and results in the theory of
almost sure limit theorems. They prove both one dimensional and functional almost
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sure limit theorems. They show that the usual limit theorems for distribution functions,
which they apply in an equivalent form expressed by means of characteristic functions,
also imply the almost sure limit theorems. It is worth mentioning that the proof of
the almost sure functional limit theorem in [15] formulated in Theorem 3.1 contains an
interesting idea which also could help to considerably simplify the proof of Theorem 1
in Part I. of the present paper.
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14. Horváth, L. and Khoshnevisan, D.: A strong approximation for logarithmic ave-
rages. Studia Sci. Math. Hung. 31 (1996), 187–196.

15. Ibragimov, I. A. and Lifshitz, M. A.: O predel’nih teoremah tipa “pochti navernoe”
(On “almost sure” type limit theorems), In Russian, Teoriya Veroyatnostej, (to
appear)

38



16. Ibragimov, I. A. and Lifshitz, M. A.: On the convergence of generalized moments
in the almost sure central limit theorem (to appear)

17. Lamperti, J. W.: Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104
(1962) 64–78.

18. Major, P.: Almost sure functional limit theorems. Part I. The general case. Studia
Sci. Math. Hung. 34 (1998), 273–304.

19. Taqqu, M. S.: Convergence of integrated processes of arbitrary Hermite rank. Z.
Wahrscheinlichkeitstheorie 50 (1979) 53–83.

39


