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In this paper we formulate and prove the almost sure functional
limit theorem in fairly general cases. This limit theorem is a result
which states that if a stochastic process X(t, ω), t ≥ 0, is given on
a probability space with some nice properties, then an appropriate
probability measure λ̄T can be defined on the interval [1, T ] for all
T > 1 in such a way that for almost all ω the distributions of the
appropriate normalizations of the trajectories Xt(·, ω) = X(t·, ω),
considered as random variables ξT (t), t ∈ [1, T ], on the probability
spaces ([1, T ],A, λT ) with values in a function space have a weak limit
independent of ω as T → ∞. We shall consider self-similar processes
which appear in different limit theorems. The almost sure functional
limit theorem will be formulated and proved for them and their ap-
propriate discretization under weak conditions. We also formulate
and prove a coupling argument which makes it possible to prove the
almost sure functional limit theorem for certain processes which con-
verge to a self-similar process. In the second part of this work we shall
prove and generalize — with the help of the results of the first part
— some known almost sure functional limit theorems for independent
random variables.

1. Introduction

The following “almost sure central limit theorem” is a popular subject in recent research.
Let X1(ω), X2(ω), . . . be a sequence of iid. random variables, EX1 = 0, EX2

1 = 1,

Sn(ω) =
n
∑

k=1

Xk(ω) on a probability space (Ω,A, P ). (In the sequel we denote by

(Ω,A, P ) the probability space where the random variables we are considering exist.)
Then

lim
n→∞

1

log n

n
∑

k=1

1

k
I

(

Sk(ω)√
k

< u

)

= Φ(u) for almost all ω ∈ Ω (1.1)

and all numbers u, where I(A) denotes the indicator function of a set A, and Φ(u) is the
standard normal distribution function. This result was discovered by Brosamler [2] and
Schatte [7]. It states that appropriately normalized partial sums of iid. random variables
satisfy not only the central limit theorem, but for a typical ω ∈ Ω the weighted averages

of the functions gk(u, ω) = I
(

Sk(ω) < u
√

k
)

with appropriate weights converge to the

normal law. Later this result was formulated in a more general form which states

that not only the weighted averages of the functions I
(

Sk(ω) < u
√

k
)

converge to the
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normal distribution function for a typical ω, but a similar result also holds for sequences
of random broken lines or polygons Gn(u) = Gn(u, ω), n = 1, 2, . . . , defined in an
appropriate way on the interval [0, 1] by means of the partial sums S1(ω), . . . , Sn(ω).

Define a random measure µn = µn(ω) for all n by attaching an appropriate weight
ak = ak,n to the functions Gk(u, ω) for all 1 ≤ k ≤ n. Then these measures converge
weakly to the Wiener measure for almost all ω. Such a result is called an almost sure
functional limit theorem. Later we formulate this notion in a more detailed form.

The almost sure central (and also the functional) limit theorem shows some simi-
larity to the ergodic theorem which states — in physical terminology — that the space
and time averages of ergodic sequences agree. In the case of the almost sure central limit

theorem an analogous result holds for the normalized partial sums
Sk(ω)√

k
, k = 1, 2, . . . .

Now the time average is replaced by a weighted time average, where the k-th term gets

weight ak = ak,n =
1

log(n + 1)
log

k + 1

k
∼ 1

k log n
, 1 ≤ k ≤ n, in the n-th block instead

of the weight
1

n
given to the first n terms in the ergodic theorem. On the other hand,

Sn(ω)√
n

is asymptotically normally distributed, with expectation zero and variance one.

Hence the right-hand side in formula (1.1) equals lim
n→∞

EI

(

Sn(ω)√
n

< u

)

, and this ex-

pression resembles to a space average. This similarity of the almost sure central limit
theorem to the ergodic theorem may be put even stronger by an appropriate time scaling
to be explained later.

The relation between the ergodic theorem and almost sure central (and functional)
limit theorem is deeper than the above mentioned formal analogy. It was pointed out, —
by our knowledge it was discovered by Brosamler [1], Fisher [5] and Lacey and Philipps
in [6] — that these theorems can be deduced from the ergodic theorem applied to the
Ornstein–Uhlenbeck process.

In the present paper we discuss how the almost sure central and functional limit
theorem can be generalized and proved by means of the ergodic theorem in a natural way.
The proof has two main ingredients. The first one is to show that a result analogous
to the almost sure functional limit theorem holds for the Wiener process. This can
be deduced from the ergodic theorem for the Ornstein–Uhlenbeck process. This is an
ergodic process which can be obtained from the Wiener process by means of a well-known
transformation. The second ingredient is to show that, since the random polygons or
broken lines constructed from the partial sums of independent random variables in
a natural way behave similarly to the Wiener process, the almost sure central limit
theorem for the Wiener process also implies this result for the random polygons (or
broken lines) made from normalized partial sums of independent random variables.

First we show that the method of proving the almost sure functional limit theorem
for the Wiener process by means of the ergodic theorem for the Ornstein–Uhlenbeck
process can be generalized for a large class of other processes, for the so-called self-similar
processes. The stationarity property of the Ornstein–Uhlenbeck process is equivalent
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to the self-similarity property of the Wiener process, a property which holds for all
self-similar processes. Actually, self-similar process are those processes which appear
as the limit in different limit theorems. Similarly to the construction of the Ornstein–
Uhlenbeck process generalized Ornstein–Uhlenbeck processes can be constructed as the
transforms of self-similar processes. These generalized Ornstein-Uhlenbeck processes
are stationary processes, and the application of the ergodic theorem for them enables
us to prove the almost sure functional limit theorem for general self-similar processes.
Then with the help of some further work we can also prove the almost sure functional
limit theorem for their appropriate discretized versions.

In the next step we want to find a good coupling argument which enables us to
prove the almost sure invariance principle not only for (self-similar) limit processes but
also for processes in the domain of their attraction. To carry out such a program a
coupling argument has to be introduced which is adapted to the present problem. We
shall do it by introducing a notion we call the Property A.

In Part II. of this work we shall prove the almost sure functional limit theorem
for independent random variables whose partial sums converge to the normal or to a
stable law. In the proofs we shall exploit that the Wiener process and the stable process
are self-similar, hence the results of the present paper can be applied for them. Then
we can prove, by applying the coupling argument of the present paper, the almost
sure invariance principle for independent random variables which satisfy certain (weak)
conditions.

There are other processes which are natural candidates for almost sure functional
limit theorem type results, e.g. random processes in the domain of attraction of a self-
similar process subordinated to a Gaussian process (see Dobrushin [3]). But such prob-
lems will not be discussed here.

Several results of the present paper can be traced down in earlier works. Our
main goal is to explain the main ideas behind these results and to present a unified
treatment of various problems in this subject. The first part of this work considers
general results where no independence type condition is assumed. In the second part
different arguments — the techniques worked out for the study of independent random
variables — are applied, and we deal there with almost sure functional limit theorems
for independent random variables. This paper consists of three sections. In Section 2
we formulate the main results, and Section 3 contains the proofs.

2. The main results of the paper

To formulate our results first we recall the definition of self-similar processes with self-
similarity parameter α and define with their help a new process which we call a gener-
alized Ornstein–Uhlenbeck process.

Definition of self-similar processes. We call a stochastic process X(u, ω), u ≥ 0,
X(0, ω) ≡ 0, self-similar with self-similarity parameter α, α > 0, if

X(u, ω)
∆
=

X(Tu, ω)

T 1/α
, 0 ≤ u < ∞, (2.1)
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for all T > 0, where
∆
= means that the processes at the two sides of the equation have

the same distribution. (Here we consider the distribution of the whole process X(u, ω),
u ≥ 0, and not only its one-dimensional distributions.)

The Wiener process is self-similar with self-similarity parameter α = 2. Similarly,
for all stable laws G with parameter α, 0 < α < 2, α 6= 1, a so-called stable process
X(u, ω) can be constructed which has independent and stationary increments, X(0, ω) ≡
0, which is self-similar with self-similarity parameter α, and the distribution function
of X(1, ω) is G. The case α = 1 is exceptional. In this case (except the special
case when X(1, ω) has symmetric distribution) only a modified version of formula (2.1)
holds, where a norming factor const. log T must be added with an appropriate non-zero
constant to one side in formula (2.1). Another example for self-similar processes was
given by Dobrushin in paper [3], who could construct new kind of self-similar processes
subordinated to a Gaussian process. He constructed them by working with non-linear
functionals of Gaussian processes.

Now we introduce the following notion:

Definition of generalized Ornstein–Uhlenbeck processes. Let X(u, ω), u ≥ 0, be
a self-similar process with self-similarity parameter α > 0. We call the process Z(t, ω),
−∞ < t < ∞, defined by formula

Z(t, ω) =
X(et, ω)

et/α
, −∞ < t < ∞, (2.2)

the generalized Ornstein–Uhlenbeck process corresponding to the process X(u, ω).

Let us remark that the generalized Ornstein–Uhlenbeck process corresponding to
the Wiener process is the usual Ornstein–Uhlenbeck process.

A Wiener process W (t, ω), t ≥ 0, has continuous trajectories, the trajectories of a
stable process X(t, ω) are so-called càdlàg (continue à droite, limite à gauche) functions,
i.e. all trajectories X(·, ω) are continuous from the right, and have a left-hand side limit
in all points t > 0. Hence the Wiener process W (t, ω) and any of its scaled version
AT W (Tt, ω), 0 ≤ t ≤ 1, where T > 0 and AT > 0 are arbitrary constants, can
be considered as random variables taking values in the space C([0, 1]) of continuous
functions on the interval [0, 1]. The processes X(t, ω), AT X(tT, ω), 0 ≤ t ≤ 1, where
X(t, ω), 0 ≤ t < ∞, is a stable process, can be considered as random variables on the
space D([0, 1]) of càdlàg functions on the interval [0, 1].

We shall work not only in the space C([0, 1]) but also in the space D([0, 1]). To
work in the space D([0, 1]) one has to handle some unpleasant technical problems. But
since we also want to investigate stable processes in Part II. of this work, we also have
to work in this space. We shall apply the book of P. Billingsley [1] as the main reference
for this subject.

We consider both spaces C([0, 1]) and D([0, 1]) with the usual topology, and the
Borel σ-algebra generated by this topology. Both spaces can be endowed with a metric
which induces this topology, and with which these spaces are separable, complete metric
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spaces. A detailed discussion and proof of these results and definitions can be found in
the book of P. Billingsley [1]. Since we shall need the exact form of these metrics we
recall these results. In the C([0, 1]) space the supremum metric ρ(x, y) = sup

0≤t≤1
|x(t) −

x(s)| is considered. In the space D([0, 1]) the following metric d0(·, ·) satisfies these
properties: For a pair of functions x, y ∈ D([0, 1]) d0(x, y) ≤ ε, if there exists such a
homeomorphism λ(t) : [0, 1] → [0, 1] of the interval [0, 1] into itself for which λ(0) = 0,

sup
t6=s

log

∣

∣

∣

∣

λ(t) − λ(s)

t − s

∣

∣

∣

∣

≤ ε, and |x(t) − y(λ(t))| ≤ ε for all t ∈ [0, 1]. (See for instance

Theorems 14.1 and 14.2 in Billingsley’s book [1].) In the sequel we shall apply these
metrics in the spaces C([0, 1]) and D([0, 1]), and denote them by ρ(·, ·).

Let us also recall that given some probability measures µT on a metric space K

indexed by T ∈ [1,∞) or T = {A1, A2, . . . }, lim
n→∞

AN = ∞, the measures µT converge

weakly to a measure µ on K as T → ∞ if lim
T→∞

∫

K

F(x)µT ( dx) =
∫

K

F(x)µ( dx) for all

continuous and bounded functionals F on the space K. The next result states the almost
sure functional limit theorem for a self-similar process which satisfies some additional
conditions. The proof is based on the ergodic theorem applied for the generalized
Ornstein–Uhlenbeck process corresponding to this self-similar process.

Theorem 1. Let X(u, ω) be a self-similar process with continuous or càdlàg trajectories,
and Z(t, ω) the generalized Ornstein–Uhlenbeck process corresponding to it. The process
Z(t, ω), −∞ < t < ∞, is stationary. Let us assume that the process Z(t, ω) is not
only stationary, but also ergodic. Then for all measurable and bounded functionals F
on the space C([0, 1]) or D([0, 1]) (depending on whether the trajectories of X(·, ω) are
continuous or only càdlàg functions)

lim
T→∞

1

log T

T
∫

1

1

t
F(Xt(u, ω)) dt = EF(X1(u, ω)) for almost all ω, (2.3)

where

Xt(u, ω) =
X(ut, ω)

t1/α
, 0 ≤ u ≤ 1, t > 0. (2.4)

Let us define for all ω ∈ Ω and T ≥ 1 the (random) probability measure µT (ω) in the
space C([0, 1]) or D([0, 1]) which is concentrated on the trajectories Xt(ω), 1 ≤ t ≤ T ,

and takes the value Xt(ω), 1 ≤ t ≤ T , with probability
1

log T

dt

t
. More formally, for

a measurable set A ⊂ C([0, 1]) or A ⊂ D([0, 1]) put µT (ω)(A) = λ̄T {t : Xt(ω) ∈ A},
where λ̄T is a measure on [1, T ] defined by the formula λT (C) =

1

log T

∫

C

dt

t
for all

measurable sets C ⊂ [0, T ].

The following version of Formula (2.3) also holds: For almost all ω ∈ Ω the proba-
bility measures µT (ω) converge weakly to the distribution of the process X1(u, ω) defined
in (2.4) with t = 1, or in other words, there is a set of probability one such that if
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ω is in this set then relation (2.3) holds for this ω and all bounded and continuous
functionals F .

If X(u, ω) is a Wiener or stable process, then the generalized Ornstein–Uhlenbeck
process corresponding to it is not only stationary, but also ergodic. Hence the results of
Theorem 1 are applicable in this case.

We want to prove a discretized version of the above result, where the measures
µT (ω) concentrated in the set of trajectories Xt(ω), 1 ≤ t ≤ T , are replaced by some
measures µN (ω) which are concentrated on a set of trajectories Xa(j,N)(ω) with appro-
priate weights, and the numbers a(j,N) constitute a finite set. Then we want to make
a further discretization, where the trajectories Xa(j,N) are replaced by their discretized
version. To prove these results in the case when the trajectories of the process X(·, ω)
are càdlàg functions we impose the following additional condition.

P

(

lim
t→1−0

X(t, ω) = X(1, ω)

)

= 1. (2.5)

First we formulate a result which serves as the basis of the discretization results formu-
lated later.

Theorem 2. Let X(u, ω), Xt(u, ω), µT (ω) and µ0 be the same as in Theorem 1. Let us
assume that the conditions of Theorem 1 are satisfied, and also the additional condition
(2.5) holds in the case when the process X(·, ω) has càdlàg trajectories. Let us define,
similarly to the trajectories Xt(·, ω) defined in (2.4), the following transformed functions
xt = xt(·) of a function x ∈ C([0, 1]) or x ∈ D([0, 1]) by the formula

xt(u) = xt,α(u) = t−1/αx(ut), 0 ≤ u ≤ 1, 0 < t ≤ 1, (2.4′)

where α is the self-similarity parameter of the underlying self-similar process X(·, ω).
Then for almost all ω ∈ Ω

lim
ε→0

lim
T→∞

µT (ω)

(

sup
1−ε≤s,t≤1

ρ(xs, xt) > δ

)

= 0 for all δ > 0. (2.6)

where ρ(·, ·) is the metric whose definition was recalled before Theorem 1, and with
which C(0, 1]) or D([0, 1]) are separable, complete metric spaces. (Let us recall that the
(random) measure µT (ω) is concentrated on the trajectories Xu(·, ω), 1 ≤ u ≤ T , of the
process X(·, ω) defined by formula (2.4).)

Condition (2.5) had to be imposed to control the behaviour of the trajectories of
the processes Xt(u, ω) in the end point u = 1. This is not a strict restriction. For
instance the next simple Lemma 1 gives a sufficient condition for its validity. It implies
in particular, that the stable processes with self-similarity parameter α, 0 < α < 2,
α 6= 1, satisfy relation (2.5).

Lemma 1. Let X(·, ω) be a self-similar process with self-similarity parameter α > 0
which is also a process with stationary increments, and whose trajectories are càdlàg
functions. Then it satisfies relation (2.5).
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Now we formulate the result about “possible discretization” of the measures µT in
the result of Theorem 1. Before this we make some comments which can explain the
content of this result.

For all T > 1 let us consider the probability space ([1, T ],A, λ̄T ), where A is the
Borel σ-algebra, and λ̄T is the measure defined in the formulation of Lemma 1. Fix
an ω ∈ Ω, and let us consider the random variable ξ(t), 1 ≤ t ≤ T , as ξ(t) = Xt(·, ω),
defined in formula (2.4), in the probability space ([1, T ],A, λ̄T ). This is a random
variable which takes its value in the space C([0, 1]) or D([0, 1]), and it has distribution
µT (ω). Let us consider the above construction with some T = BN , together with a dense
splitting 1 = BN,1 < BN,2 < · · · < BN,kN

= BN of the interval [1, BN ]. Let us define

the random variable ξ̂(t) such that ξ̂(t) = ξ(Bk,N ) = XBk,N
(·, ω) if t ∈ [Bk,N , Bk+1,N ].

This random variable is close to the previously defined random variable ξ(t), hence it
is natural to expect that if µ̂Bn

(ω) denotes its distribution, then the measures µ̂BN
(ω)

have the same weak limit as the measures µBN
(ω) as N → ∞. The first statement of

Theorem 3 is a result of this type. Then we prove that an appropriate small modification
of the functions ξ(Bk,N ) = XBk,N (·, ω) does not change the limit behaviour of the
measures µ̂BN

(ω). The second statement of Theorem 3 is such a result.

Theorem 3. Let us assume that the conditions of Theorem 1 and Theorem 2 are
satisfied. For all N = 0, 1, . . . let us consider a finite increasing sequence of real numbers
1 = B1,N < B2,N < · · · < BkN ,N , and for the sake of simpler notation let us denote
BkN ,N by BN . Let us assume that these sequences satisfy the following properties:

lim
N→∞

BN = ∞, lim
N→∞

log Bj,N

log BN
= 0 for all fixed j,

and lim
j→∞

sup
(k,N) : j≤k<N

Bk+1,N

Bk,N
= 1.

(2.7)

Moreover, assume the following strengthened form of the relation lim
N→∞

BN = ∞:

lim
j→∞

inf
N : N≥j

Bl,n

Bj,N
= ∞ for all fixed l = 1, 2, . . . . (2.8)

For all ω ∈ Ω define the (random) measures µ̂N (ω), N = 1, 2, . . . , with the help of the
sequences 1 = B1,N < B2,N < · · · < BkN ,N in the following way:

The measure µ̂N (ω), N = 1, 2, . . . , is concentrated on the trajectories XBj,N
(·, ω),

1 ≤ j < kN , where Xt(·, ω) is defined in (2.4), and

µ̂N (ω)(XBj,N
(·, ω)) =

1

log BN

Bj+1,N
∫

Bj,N

1

u
du =

1

log BN
log

Bj+1,N

Bj,N
,

1 ≤ j < kN .

(2.9)

Then for almost all ω the measures µ̂N (ω) converge weakly to µ0.
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For all ω ∈ Ω let us also define the following random broken lines X̄Bj,N
(·, ω) which

are “discretizations” of the trajectories XBj,N
(·, ω).

X̄Bj,N
(s, ω) = XBj,N

(

Bl−1,N

Bj,N
, ω

)

if
Bl−1,N

Bj,N
≤ s <

Bl,N

Bj,N
,

1 ≤ l ≤ j, 1 ≤ j < kN , and X̄Bj,N
(1, ω) = XBj,N

(1, ω),

where B0,N = 0. (The definition B0,N = 0 is needed to define X̄Bj,N
(s, ω) also for

0 ≤ sBj,N < B1,N .)

Define the measures µ̄N (ω) (with the help of the already defined measures µ̂N (ω))
as

µ̄N (ω)(X̄Bj,N
(·, ω)) = µ̂N (ω)(XBj,N

(·, ω)) =
1

log BN
log

Bj+1,N

Bj,N
, 1 ≤ j < kN . (2.9′)

Then for almost all ω ∈ Ω the probability measures µ̄N (ω) converge weakly to the prob-
ability measure µ0 as N → ∞.

We have defined X̄Bj,N
(·, ω) as a broken line with discontinuities and not as a

polygon where the values of XBj,N
in the points

Bl,N

Bj,N
are connected by linear segments.

The reason for working with broken lines is that we want to prove results which are
valid also in the case when the processes Xt(·, ω) take their values in D([0, 1]) but not
necessarily in the space C([0, 1]). In the general case the results we want to prove are
valid only when broken lines are considered. In the case of processes with continuous
trajectories we also could have defined them as random polygons. Moreover, it follows
from some results of the general theory (see e.g. Section 18 in Billingsley’s book [1])
that if the distribution of the processes consisting of the above defined random broken
lines converge to a measure in the C([0, 1]) space, then the distributions of the naturally
defined random polygon version of these processes have the same limit in the C([0, 1])
space.

Let ξn(ω), n = 1, 2, . . . , be a sequence of random variables, and let us define

the partial sums Sn(ω) =
n
∑

k=1

ξk(ω), n = 1, 2, . . . , S0(ω) ≡ 0. Let us also consider

two appropriate monotone increasing numerical sequences An and Bn, n = 0, 1, . . . , of
positive numbers such that

B0 = 0, lim
n→∞

An = ∞, lim
n→∞

Bn = ∞, and lim
n→∞

Bn+1

Bn
= 1. (2.10)

For all k = 1, 2, . . . let us consider the partition 0 = s0,k ≤ s1,k ≤ · · · ≤ sk,k of the

interval [0, 1], defined by the formula sj,k =
Bj

Bk
, 0 ≤ j ≤ k. Let us also define with the

help of the quantities ξn(ω), An and Bn, n = 1, 2, . . . the following random broken lines
Sk(s, ω), 0 ≤ s ≤ 1, k = 1, 2, . . . ,

Sk(s, ω) =
Sj−1(ω)

Ak
if sj−1,k ≤ s < sj,k, 1 ≤ j ≤ k, Sk(1, ω) =

Sk(ω)

Ak
(2.11)
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Now we introduce the following definition.

Definition of the almost sure functional limit theorem. Let ξn(ω), n = 1, 2, . . . ,
be a sequence of random variables, and let two monotone increasing sequences of non-
negative real numbers An and Bn, n = 1, 2, . . . , be given which satisfy formula (2.10).
Let us consider the random broken lines Sk(s, ω), 0 ≤ s ≤ 1, defined with the help of
their partial sums Sk(ω), k = 1, 2, . . . , by formula (2.11). For all ω ∈ Ω and N =
1, 2, . . . , define the random measure µN (ω) in the following way: The measure µN (ω)
is concentrated on the random broken lines Sk(·, ω), 1 ≤ k < N , and

µN (ω)(Sk(·, ω)) =
1

log
BN

B1

log
Bk+1

Bk
, 1 ≤ k < N. (2.12)

We say that the sequence of random variables ξn(ω), n = 1, 2, . . . , satisfies the almost
sure functional limit theorem with weight functions An and Bn, n = 1, 2, . . . , and limit
measure µ0 on the space D([0, 1]) if for almost all ω ∈ Ω the probability measures µN (ω)
converge weakly to the measure µ0 as N → ∞. In the special case when the limit measure
µ0 is the Wiener measure we say that these random variables satisfy the almost sure
functional central limit theorem.

If the limit measure µ0 is concentrated in the space C([0, 1]), then the broken lines
Sk(·, ω) can be replaced by a natural modification which is a random polygon. Then
we can consider a version of the measures µN (ω) which are defined in the same way
as the original ones, only the random processes Sk(·, ω) are replaced by their random
polygon version. Then the convergence of the original measures µN (ω) to µ0 in the
space D([0, 1]) implies the convergence of their modified version in the C([0, 1]) space
with the same limit. Let us also remark that although we allowed fairly large freedom
in the definition of the sequence An in the definition of the almost sure functional limit
theorem, nevertheless we shall always choose it in a very special way. Namely, in all
almost sure functional limit theorems we shall prove the limit measure is the distribution
of a self-similar process with a self-similarity parameter α > 0 restricted to the interval

[0, 1], and An is chosen as An = B
1/α
n .

Let us remark that if the random variables ξk(ω) satisfy the almost sure functional
central limit theorem with weight functions An =

√
n and Bn = n, — and in Part II.

we shall prove that under the conditions imposed for the validity of formula (1.1) this
is the case, — then they also satisfy relation (1.1). To see this, fix a real number u and
define the functional F = Ft in the space C([0, 1]) by the formula F(x) = 1 if x(1) < u,
and F(x) = 0 if x(1) ≥ u, where x ∈ C([0, 1]), i.e. it is a continuous function on the
interval [0, 1]. This functional F is continuous with probability one with respect to the
Wiener measure µ0. Hence

∫

F(x) dµn(ω)(x) →
∫

F(x) dµ0(x) for almost all ω. This
relation is equivalent to formula (1.1). Indeed, the right-hand side of this relation equals
the right-hand side of formula (1.1), while the left-hand side is a slight modification of
the left-hand side of (1.1). The difference between these formulas is that the weights
1

k
in (1.1) are replaced by log

k + 1

k
in the other formula, and summation goes from 1
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to n − 1 instead of summation from 1 to n. Since log
k + 1

k
=

1

k
+ O

(

1

k2

)

these two

relations are equivalent.

We formulate the following statement because of its importance in later applications
in form of a Corollary.

Corollary. Let X(·, ω) be a self-similar process with self-similarity parameter α > 0
such that its trajectories are in the C([0, 1]) or D([0, 1]) space, it satisfies relation (2.5),
and the generalized Ornstein–Uhlenbeck process corresponding to it is ergodic. Let tn,
n = 0, 1, . . . , t0 = 0, be an increasing sequence of real numbers such that lim

n→∞
tn = ∞,

lim
n→∞

tn+1

tn
= 1. Put ηn(ω) = X(tn, ω)−X(tn−1, ω), Bn = tn, An = B

1/α
n , n = 1, 2, . . . .

Then the sequence ηn(ω), n = 1, 2, . . . , satisfies the almost sure functional limit theorem
with weight functions An and Bn and limit measure µ0 which is the distribution of the
process X(u, ω), restricted to 0 ≤ u ≤ 1.

To prove this Corollary define the process X ′(u, ω) = A−1
1 X(B1u, ω) and observe

that it has the same distribution as the process X(u, ω). Define the real numbers

Bk,N =
tk
t1

, 1 ≤ k ≤ N , consider the random broken lines X̄ ′
Bj,N

(·, ω), 1 ≤ j ≤ N , and

the random measure µ̄N (ω) defined in the formulation of Theorem 3 with this process
X ′(·, ω) and these numbers Bk,N , (with the choice kN = N), and apply Theorem 3, —
whose conditions are satisfied, — for these random measures µ̄N (ω).

On the other hand, define the random broken lines Sk(s, ω) by formula (2.11) with

BN = tN , AN = B
1/α
n and the partial sums Sk(ω) =

k
∑

l=1

(X(tl, ω) − X(tl−1, ω)), and

let us also define the measure µN (ω) by formula (2.12) with these random broken lines.
Then a comparison shows that the above defined broken lines X̄ ′

Bj,N
(·, ω) and Sj(·, ω)

and also their distributions, the random measures µ̄N (ω) and µN (ω) agree. Hence the
second statement of Theorem 3 implies the almost sure functional limit theorem in this
case.

If a sequence of random variables ξn(ω), n = 1, 2, . . . , is close to this sequence
ηn(ω), then it is natural to except that this new sequence satisfies the same almost sure
functional limit theorem. We want to give a good coupling argument that enables us to
prove this for a large class of processes ξn(ω). For this aim we define a Property A. We
prove that if Property A holds for a pair of sequences or random variables (ξn(ω), ηn(ω)),
n = 1, 2, . . . , and the sequence ηn(ω), n = 1, 2, . . . , satisfies the almost sure functional
limit theorem, then the sequence ξn(ω), n = 1, 2, . . . also satisfies the almost sure
functional limit theorem with the same norming constants and limit law.

Definition of Property A. Let ηn(ω), n = 1, 2, . . . , be a sequence of random variables
which satisfies the almost sure functional limit theorem with a limit measure µ0 in
the space C([0, 1]) or D([0, 1]) and some weight functions An and Bn satisfying relation
(2.10). Let us also assume that the limit measure µ0 is the distribution of the restriction
of a self-similar process X(u, ω) with self-similarity parameter α > 0 to the interval
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0 ≤ u ≤ 1, and the weight functions An and Bn are such that An = B
1/α
n .

Define the indices N(n) as N(n) = inf{k : Bk ≥ 2n}, n = 0, 1, . . . . The pairs of
sequences of random variables (ξn(ω), ηn(ω)), n = 1, 2, . . . , satisfy Property A if for all
ε > 0 and δ > 0 there exists a sequence of random variables ξ̃n(ω) = ξ̃n(ε, δ, ω), n =
1, 2, . . . , whose (joint) distribution agrees with the (joint) distribution of the sequence

ξn(ω), n = 1, 2, . . . , and the partial sums S̃n(ω) =
n
∑

k=1

ξ̃k(ω) and Tn(ω) =
n
∑

k=1

ηk(ω)

satisfy the following relation:

lim sup
n→∞

1

n

N(n)
∑

k=1

log
Bk+1

Bk
I

















sup
0≤j≤k

|S̃j(ω) − Tj(ω)|

Ak
> ε
















< δ (2.13)

for almost all ω ∈ Ω, where I(A) denotes the indicator function of the set A.

Remark: Let us remark that the joint distribution of the random variables ξn(ω), n =
1, 2, . . . , determines whether it satisfies the almost sure invariance principle. It is not
important how and on which probability space these random variables are constructed.
This can be seen for instance by applying the following “canonical representation” of
the sequence ξn(ω), n = 1, 2, . . . , on the probability space (Ω,A, P ). Define the space
(R∞,B∞, µ̄), where R∞ = {(x1, x2, . . . ) : xj ∈ R, j = 1, 2, . . . }, B∞ is the Borel σ-
algebra on R∞, µ̄(B) = P ((ξ1, ξ2, . . . ) ∈ B) for B ∈ B∞, and define the random
variables ξ̄n(x1, x2, . . . ) = xn, n = 1, 2, . . . , on this space. Then the random variables ξ̄n

on the space (R∞,B∞, µ̄) have the same joint distribution as the random variables ξn(ω),
and these two sequences satisfy the almost sure invariance principle simultaneously.

Theorem 4. Let ηn(ω), n = 1, 2, . . . , be a sequence of random variables which satisfies
the almost sure functional limit theorem, and let a pair of sequences of random variables
(ξn(ω), ηn(ω)), n = 1, 2, . . . , satisfy Property A. Then the sequence of random variables
ξn(ω), n = 1, 2, . . . , also satisfies the almost sure functional limit theorem with the
same weight functions An and Bn and limit measure µ0 as the sequence of random
variables ηn(ω).

We shall prove in Part II. of this work that Theorem 4 is applicable in several
interesting cases. We shall prove with the help of a Basic Lemma formulated there that
when partial sums of independent random variables are considered, then an appropriate
construction satisfies the conditions of Theorem 4 under general conditions. In such a
way it will turn out that the necessary and sufficient conditions of limit theorems for
normalized partial sums of independent random variables are also sufficient conditions
for the almost sure functional limit theorem.

We shall prove still another result which states that a small perturbation of the
weight functions Bn does not affect the validity of the almost sure functional limit
theorem. The reason to prove such a result is the following. We have certain freedom
in the choice of the weight-functions Bn, and there are cases when no “most natural
choice” of the weight functions exists. We want to show that different natural choices
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yield equivalent results. Let us remark that a modification of the weight-functions
Bn also implies a modification of the random broken lines Sn(t, ω) appearing in the
definition of the almost sure functional limit theorem.

Theorem 5. Let a sequence of random variables ξn(ω), n = 1, 2, . . . , satisfy the almost
sure functional limit theorem with some limit measure µ0 and weight functions Bn,

An = B
1/α
n with some α > 0, n = 0, 1, . . . , which satisfies relation (2.11). Let us

also assume that a process X(·, ω) in the space D([0, 1]) whose distribution is the limit
measure µ0 satisfies condition (2.5). Let B̄n, n = 0, 1, . . . , B̄0 = 1, be another monotone

increasing sequence such that lim
n→∞

B̄n

Bn
= 1. Put Ān = B̄

1/α
n . Then the sequence of

random variables ξn(ω) also satisfies the almost sure functional limit theorem with the
limit measure µ0 and weight functions B̄n and Ān.

We shall prove Theorem 5 with the help of the following Theorem 5A.*

Theorem 5A. Let the conditions of Theorem 5 be satisfied. Define the partial sums

Sn(ω) =
n
∑

k=1

ξk(ω), n = 1, 2, . . . , and the random broken lines Sk(s, ω) and S̄k(s, ω),

0 ≤ s ≤ 1, k = 1, 2, . . . , by formula (2.11) with the help of the constants Bn, An = B
1/α
n

and B̄n, Ān = B̄
1/α
n respectively. Let us also define the random measures µ̂N (ω),

N = 1, 2, . . . , on the product space D([0, 1]) × D([0, 1]) for all ω ∈ Ω by the formula

µ̂N (ω)(Sk(·, ω), S̄k(ω)) =
1

log
BN

B1

log
Bk+1

Bk
, 1 ≤ k ≤ N . For almost all ω ∈ Ω and all

δ > 0 the relation lim
N→∞

µ̂N (ω){(x, y) : x, y ∈ D([0, 1]), d(x, y) ≥ δ} = 0 holds, where

d(·, ·) is the (complete) metric introduced to define the topology in the space D([0, 1]).

Remark: Actually the proof of Theorem 5 yields a little bit more than the result formu-
lated there. It shows that under the conditions of Theorem 5 the sequence of probability
measures defined by formulas (2.11) and (2.12) have the same weak limit for almost all
ω ∈ Ω as the original one if the random broken lines Sk(s, ω) are replaced by S̄k(s, ω)

or the weight functions
1

log
BN

B1

log
Bk+1

Bk
are replaced by

1

log
B̄N

B̄1

log
B̄k+1

B̄k
in formula

(2.12) or if both replacements are made. Moreover, these statements hold if the condi-

tion lim
n→∞

B̄n

Bn
= 1 in Theorem 5 is replaced by the weaker condition B̄n = BnL(Bn),

where L(·) is a slowly varying function at infinity.

* In the first version of this paper the proof of Theorem 5 was incomplete. Unfortunately, I have

observed this only after the appearance of the paper. This problem is settled in this version by the

insertion and proof of Theorem 5A.
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3. Proof of the results

Proof of Theorem 1. We can write

Z(t + T, ω) =
X(et+T , ω)

e(t+T )/α

∆
=

X(et, ω)

e(t+T )/αe−T/α
=

X(et, ω)

et/α
= Z(t, ω)

for all −∞ < T < ∞. Hence the process Z(t, ω), −∞ < t < ∞, is stationary. If
it is not only stationary, but also ergodic, then the ergodic theorem can be applied
for the process Z(·, ω) and all bounded and measurable functionals G on the space
(R(−∞,∞),B, µ), where R(−∞,∞) is the space of functions on the interval (−∞,∞), B0

is the σ-algebra induced by the usual Borel (product) topology on R(−∞,∞), µ is the
distribution of the process Z(·, ω) on the space (R(−∞,∞),B0), and B is the closure of
the σ-algebra B0 with respect to the measure µ. This means that B ∈ B if and only
if there exists some B0 ∈ B0 such that µ(B0∆B) = 0 for the symmetric difference
B0∆B, or more precisely there is a B0 measurable set C such that µ(C) = 0 and
B0∆B ⊂ C. Furthermore, we introduce the shift operators Ts defined by the formula
Ts(z(·)) = z(s+ ·) for all z(·) ∈ R(−∞,∞) and put Zs(v, ω) = Z(s+v, ω), −∞ < v < ∞.
Then the ergodic theorem implies that

lim
T→∞

1

log T

log T
∫

0

G(Ts(Z(u, ω)) ds = lim
T→∞

1

log T

log T
∫

0

G(Zs(u, ω)) ds

= EG(Z(u, ω)) for almost all ω ∈ Ω.

(3.1)

Given a bounded measurable functional* F on the space C([0, 1]) or D([0, 1]) let
us extend it to the space of all measurable functions on the space R[0,1] of all functions
on the interval [0, 1] by defining F(x) = 0 if the function x = x(·) is not in the space
C([0, 1]) or D([0, 1]). Then we define the functional G = G(F) on the space R(−∞,∞)

by the formula G(z) = F(xz) with xz(u) = u1/αz(log u), 0 < u ≤ 1, z(0) = 0. We can
write

1

log T

T
∫

1

1

t
F(Xt(·, ω)) dt =

1

log T

log T
∫

0

F(Xes(·, ω)) ds =
1

log T

log T
∫

0

G(Zs(·, ω)) ds,

* Yurij Davydov suggested to show that the procedure we follow is legitime also from measure

theoretical point of view, i.e. no problem arises because F is defined in the space C([0, 1]) or D([0, 1]),
and we work in the space of all functions in the interval [0,1] with the usual product topology and σ-

algebra. This procedure can be justified for instance by means of the results proved in Billingsley’s

book [1], in the discussion after Theorem 8.3 and in Theorem 14.5. These results state that the σ-

algebra defined by the usual topology in the spaces C([0, 1]) and D([0, 1]) agrees with the restriction

of the usual σ-algebra in the space of all functions on the interval [0,1] to these spaces. We give a more

detailed explanation in Appendix 2.
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since G(Zs(·, ω)) = F(Xes(·, ω)). Indeed,

xZs(·,ω)(u) = u1/αZs(log u, ω) = u1/αZ(s + log u, ω) = u1/α X(es+log u, ω)

e(s+log u)/α

=
X(ues, ω)

es/α
, for all 0 ≤ u ≤ 1,

hence xZs(·,ω) = Xes(·, ω), where Xs(·, ω) was defined in (2.4). This relation (with the
choice s = 0) implies in particular that

EG(Z(·, ω)) = EG(Z0(·, ω)) = EF(X1(·, ω)).

These identities together with relation (3.1) and the definition of the measures µT (ω)
introduced in the formulation of Theorem 1 imply that

lim
T→∞

∫

F(x) dµT (ω)(x) = lim
T→∞

1

log T

T
∫

1

1

t
F(Xt(·, ω)) dt

= lim
T→∞

1

log T

log T
∫

0

G(Zs(·, ω)) ds = EG(Z(·, ω))

= EF(X1(·, ω)) =

∫

F(x) dµ0(x) for almost all ω ∈ Ω.

(3.2)
To prove Theorem 1 we have to show that relation (3.2) holds simultaneously for all
bounded and continuous functionals F for almost all ω ∈ Ω, and the exceptional set of
ω ∈ Ω of measure zero should not depend on the functional F . We prove this* with the
help of the following

Lemma A. Under the conditions of Theorem 1 the closure of the set of (random) mea-
sures µT (ω), T ≥ 1, are compact in the topology defining weak convergence of probability
measures in the space C([0, 1]) or D([0, 1]) (depending on where the distribution of the
process X(·, ω) is defined) for almost all ω ∈ Ω.

Proof of Lemma A: We apply the result that a set of probability measures µT on a sep-
arable complete metric space (endowed with the topology inducing weak convergence)
is compact if and only if for all ε > 0 there is a compact set K = K(ε) on the metric
space such that µT (K) ≥ 1 − ε for all measures µT . Both spaces C([0, 1]) and D(0, 1])
can be endowed with a metric which turns them to a separable complete metric space.

* After having published this work I learned about the still unpublished paper “On almost sure

type limit theorems” (in Russian) of I. A. Ibragimov and M. A. Lifshitz, where a much simpler proof

of this statement is presented. I added an Appendix to this paper which supplies their proof. This

can replace the remaining part of the proof of Theorem 1 except the last part, where the ergodicity of

certain processes is proved.

14



(See e.g. Theorems 6.1 and 6.2, 14.1) in Billingsley’s book [1].) Because of these re-
sults the following statement has to be proved. For almost all ω ∈ Ω and all ε > 0
there exists a compact set K = K(ε, ω) in the space C([0, 1]) or D([0, 1]) such that
µT (ω)(K) ≥ 1− ε for all T ≥ 1. In the proof we shall apply formula (3.2) which is valid
for all bounded and measurable functionals F and some classical results which describe
the compact sets in C([0, 1]) and D([0, 1]). These results can be found for instance in
the book of Billingsley [1]. (Theorem 8.2 gives a description of compact sets in C([0, 1])
and Theorem 14.4 a description of compact sets in D([0, 1]).)

Let us first consider the case when the distribution of the processes XT (·, ω) defined
in formula (2.4) are in the C([0, 1]) space. We shall prove that for almost all ω ∈ Ω and
all ε > 0 and η > 0 there exist some numbers K = K(ε, ω) and δ = δ(ε, η, ω) > 0 such
that

µT (ω)

(

x ∈ C([0, 1]) : sup
0≤u≤1

|x(u)| ≥ K

)

≤ ε,

and (3.3)

µT (ω) (x ∈ C([0, 1]) : |wx(δ)| ≥ η) ≤ ε,

for all T ≥ 1, where wx(δ) = sup
|t−s|≤δ

|x(t) − x(s)| for a function x ∈ C([0, 1]). First we

show that relation (3.3) implies that for almost all ω ∈ Ω and all T ≥ 1 and ε > 0 there
exists a compact set K(ε) = K(ε, ω) ⊂ C([0, 1]) for which µT (ω)(K(ε)) ≥ 1−ε. Indeed,
let us fix some ε > 0, and consider the sets

J0 =

(

x ∈ C([0, 1]) : sup
0≤u≤1

|x(u)| > K

)

and
Jn =

(

x ∈ C([0, 1]) : |wx(δn)| > 2−nε
)

, n = 1, 2, . . .

with such constants K = K(ε, ω) and δn = δn(ε, ω) for which µT (ω)(Jn) ≤ ε2−n−1,
n = 0, 1, . . . , T ≥ 1. Such sets Jn really exist because of relation (3.3). (The numbers
K and δn in the definition of the sets Jn and thus the sets Jn may depend on ω.) Define

the set K(ε) =
∞
⋂

n=0
J̄n, where J̄ is the complement of the set J. Then K(ε) is a compact

set in C([0, 1]), and for almost all ω and T ≥ 1 µT (ω)(K(ε)) ≥ 1 − ε. Applying this
result for all εn = 2−n, n = 1, 2, . . . , we get a set of Ω̄ of probability one, such that
for all ω ∈ Ω̄, T ≥ 1 and ε > 0 there exists a compact set K(ε) = K(ε, ω) such that
µT (ω)(K(ε)) ≥ 1 − ε. In such a way we reduced the proof of Lemma A in the case of
continuous trajectories X(·, ω) to the proof of relation (3.3).

To prove formula (3.3) we shall apply relation (3.2) with appropriate functionals
F1 and F2 on the space C([0, 1]). Put

F1(x) = F1,K(x) = I

(

sup
0≤u≤1

|x(u)| ≥ K

)
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and

F2(x) = F2,δ,η(x) = I

(

sup
s,t∈[0,1] : |t−s|≤δ

|x(s) − x(t)| ≥ η

)

with appropriate constants K > 0, η > 0 and δ > 0. For fixed ε > 0 and η > 0
the constants K = K(ε) > 0 and δ = δ(ε, η) > 0 can be chosen in such a way that
EF1(X1(·, ω)) < ε2 and EF2(X1(·, ω)) < ε2. Then, because of formula (3.2) for almost
all ω ∈ Ω there exists such a threshold T0 = T0(ω) for which

∫

Fi(x) dµT (ω)(x) ≤ ε for
all T ≥ T0(ω) and i = 1, 2. Since Fi(x) = 0 or Fi(x) = 1, i = 1, 2, this relation implies
that µT (ω)(x : Fi(x) 6= 0) ≤ ε, for T ≥ T0(ω), i = 1, 2. This means that relation (3.3)
holds for T ≥ T0(ω). Furthermore, since XaT (u, ω) = a−1/αXT (au, ω) for all 0 < a ≤ 1,

µt(ω)

(

x : sup
0≤u≤1

|x(u)| ≥ K

)

≤ µT0(ω)(ω)

(

x : sup
0≤u≤1

|x(u)| ≥ KT0(ω)−1/α

)

,

and

µt(ω) (x ∈ C([0, 1]) : |wx(δ)| ≥ η)

≤ µT0(ω)(ω)
(

x ∈ C([0, 1]) : |wx(δT0(ω))| ≥ ηT0(ω)−1/α
)

.

if 1 ≤ t ≤ T0(ω). These probabilities can be taken small by choosing a sufficiently large
K > 0 and sufficiently small δ > 0 which depend only on T0(ω). Hence relation (3.3)
holds not only for T ≥ T0(ω) but also for all T ≥ 1 with a possible modification of the
constants δ(ε, η, ω) and K(ω) in it.

The proof in the case when the processes XT (·, ω) defined in (2.4) take their values
in the space D([0, 1]) is similar, hence we only indicate the necessary modifications.
Because of the description of compact sets in the space D([0, 1]) found for instance
in Theorem (14.4) in Billingsley’s book [1]) we can reduce the proof of Lemma A in
this case, by a natural modification of the argument presented after the formulation of
formula (3.3), to the following modified version of relation (3.3): For all ε > 0 and η > 0
there exist some K > 0 and δ > 0 such that

µT (ω)

(

x ∈ D([0, 1]) : sup
0≤u≤1

|x(u)| ≥ K

)

≤ ε,

µT (ω) (x ∈ D([0, 1]) : |w′′
x(δ)| ≥ η) ≤ ε,

µT (ω)(x ∈ D([0, 1]) : wx[0, δ) ≥ η) ≤ ε

µT (ω)(x ∈ D([0, 1]) : wx[1 − δ, 1) ≥ η) ≤ ε

(3.3′)

for all T ≥ 1, where

w′′
x(δ) = sup

0≤t1≤t≤t2,|t2−t1|≤δ

min{|x(t) − x(t1)|, |x(t2) − x(t)|},
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and wx[a, b) = sup
a≤s,t<b

|x(t) − x(s)| for all numbers 0 ≤ a < b ≤ 1.

The proof of formula (3.3′) is similar to that of formula (3.3). Let us introduce the
functionals

F1(x) = I

(

sup
0≤t≤1

|x(t)| ≥ K

)

, F2(x) = I (w′′
x(δ) ≥ η) ,

F3(x) = I (wx[0, δ) ≥ η) and F4(x) = I (wx[1 − δ, 1) ≥ η)

on the space D([0, 1]), where the constants K = K(ε) and δ = δ(ε, η) will be appro-
priately chosen. Let us observe that with their appropriate choice we can achieve that
EFi(X(·, ω) ≤ ε2 for i = 1, 2, 3, 4. To see this it is enough to observe that for all
x ∈ D([0, 1]) sup

0≤t≤1
|x(t)| < ∞, lim

δ→0
w′′

x(δ) = 0 (see e.g. formulas (14.8) and (14.46) in

Billingsley’s book [1]), lim
δ→0

wx[0, δ) = 0 and lim
δ→0

wx[1 − δ, 1) = 0. These functionals Fi

take values 0 and 1, and formula (3, 3′) can be proved similarly to (3.3) with the help
of relation (3.2). In such a way Lemma A is proved.

Now we turn back to the proof of Theorem 1. We prove with the help of Lemma A,
formula (3.2) and a compactness argument that for almost all ω ∈ Ω the sequence of
measures µT (ω) converges weakly to µ0 as T → ∞. First we show that for all ε0 > 0
and ε > 0 there exists a set Ω0 = Ω0(ε0, ε) ⊂ Ω and a compact set K = K(ε0, ε) in
C([0, 1]) or D([0, 1]) such that P (Ω0) ≥ 1− ε0 and µT (ω)(K) ≥ 1− ε for all ω ∈ Ω0 and
T ≥ 1. This can be deduced from formulas (3.3) in the space C([0, 1]) and from formula
(3.3′) in the space D([0, 1]) by an argument similar to the proof of the compactness
of the measures µT (ω) by means of these relations. Thus for instance in the space
C([0, 1]) we define the sets Jn, n = 1, 2, . . . , and K = K(ε) similarly to the definition
given after formula (3.3) with the only difference that in this case the numbers K and
δn appearing in the definition of the sets Jn are chosen independently of ω in such a
way that P ({ω : µT (ω)(Jn) ≤ ε2−n−1 for all T ≥ 1}) ≥ 1 − ε02

−n−1. The argument in
the case of the D([0, 1]) space with the help of relation (3.3′) is similar.

For a large number L > 0 let F(L) denote the class of continuous and bounded
functionals F on the space C([0, 1]) or D([0, 1]) such that |F(x)| ≤ L for all x ∈ C([0, 1])
or x ∈ D([0, 1]). Fix an ε0 > 0 and ε > 0, and choose a set Ω0 ⊂ Ω and a compact set

K = K(ε0, ε, L) in such a way that P (Ω0) ≥ 1−ε0 and µT (ω)(K) ≥ 1− ε

L
for all ω ∈ Ω0

and T ≥ 1. Fix two small numbers η > 0 and δ > 0, and let the set F(L, ε0, ε, η, δ) ⊂
F(L) consist of those functionals F ∈ F(L) for which sup

x,y∈K, ρ(x,y)≤δ

|F(x) − F(y)| ≤ η.

For all δ > 0 fix a finite δ-net in the compact set K corresponding to it, i.e. a finite set
Jδ = {x1, . . . , xr} ⊂ K such that for all x ∈ K min

1≤s≤r
ρ(x, xs) ≤ δ. Such a δ-net really

exists because of the compactness of the set K.

Consider the above fixed numbers ε0 > 0, ε > 0 and L > 0, together with the sets
Ω0 and K corresponding to them. First we show that there exists an Ω′

0 ⊂ Ω0 such that
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P (Ω0 \ Ω′
0) = 0, and

lim sup
T→∞

∣

∣

∣

∣

∫

F(x)µT (ω)( dx) −
∫

F(x)µ0( dx)

∣

∣

∣

∣

< ε

for all F ∈ F(L) and ω ∈ Ω′
0.

(3.4)

To prove relation (3.4) let us first observe that because of the uniform continuity of the
functionals F ∈ FL on the compact set K the relation

∞
⋃

n=1

F

(

L, ε0, ε, η,
1

n

)

= F(L) (3.5)

holds for all fixed ε0 > 0, ε > 0, η > 0 and L > 0.

Put δ = 1
n , consider the 1

n -net J1/n = {x1, . . . , xr} corresponding to it, and make a

partition of the set F
(

L, ε0, ε, η, 1
n

)

into subclasses F
(

L, ε0, ε, η, 1
n , j(1), . . . , j(r)

)

with
integers |j(s)| ≤ (L + 1)η−1, s = 1, . . . , r, which consist of those functionals F ∈
F
(

L, ε0, ε, η, 1
n

)

for which F(xs) ∈ [jsη, (js + 1)η), s = 1, . . . , r. If F1 and F2 belong to
the same subclass F(L, ε0, ε, η, 1

n , j(1), . . . , j(r)), then |F1(x)−F2(x)| < 2η for all x ∈ K

because of the module of continuity of these functionals on the set K, and because of the

relation µT (ω)(K) ≥ 1 − ε

L
for all ω ∈ Ω0,

∣

∣

∫

F1(x)µT (ω)( dx) −F2(x)µT (ω)( dx)
∣

∣ <

ε + 2η.

Let us choose an arbitrary functional F from all non-empty sets

F

(

L, ε0, ε, η,
1

n
, j(1), . . . , j(r)

)

.

We get by applying formula (3.2) for these functionals F and the previous estimation a
weakened version of relation (3.4) on a set ω ∈ Ω′′

0(n) ⊂ Ω0 such that P (Ω0\Ω′′
0(n)) = 0,

where F(L) is replaced by F
(

L, ε0, ε.η, 1
n

)

, and the upper bound ε by ε + 2η. Then
we get, by applying this relation for all n = 1, 2, . . . together with relation (3.5) the

weakened version of (3.4) for all ω ∈
∞
⋂

n=1
Ω′′

0(n) and F ∈ F(L) with upper bound ε + 2η

instead of ε. Finally, we get formula (3.4) in its original form by letting η → 0.

It is not difficult to see that relation (3.4) implies the weak convergence µT (ω) to
µ0 for almost all ω ∈ Ω. Indeed, let us fix a number L > 0 and ε > 0. Then we get, by
applying relation (3.4) for all ε0(n) = n−1, n = 1, 2, . . . that there exists a set Ω0(n),

P (Ω0(n)) = 1 − 1

n
, such that relation (3.4) holds for all ω ∈ Ω0(n). This implies that

relation (3.4) holds for all ω ∈ Ω̄ =
∞
⋃

n=1
Ω0(n), i.e. on a set of probability 1. Then, since

relation (3.4) holds for all L > 0 and ε > 0 with probability 1 we get by letting L → ∞
and ε → 0 in this relation that the sequences of measures µT (ω) converge weakly to the
measure µ0 for almost all ω ∈ Ω.

To complete the proof of Theorem 1 still we have to show that in the case of a
Wiener or a stable process the generalized Ornstein–Uhlenbeck process corresponding
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to it is ergodic. This follows from a natural modification of the zero–one law for sums
of independent identically distributed random variables to processes with independent
and stationary increments which can be found for instance in Feller’s book [4], Chap-
ter 4, Section 7, Theorem 3. The continuous time version of this result which can be
proved similarly, also holds. It states that if X(t), t ≥ 0, is a stable process with some
parameter α, 0 < α ≤ 2, and a set A is measurable with respect to the (tail) σ-algebra
F which is the intersection F =

⋂

T>0

FT , where FT = σ{X(t, ·) : t ≥ T}, then A has

probability zero or one. The same result holds if the set A is measurable with respect to
the σ-algebra

⋂

T>0

F ′
T , where F ′

T = σ{X(t, ·) : t ≤ T}. (This result follows for instance

from the observation that t−2/αX
(

1
t , ω
)

is also a stable process. These relations are
equivalent to the statement that the generalized Ornstein–Uhlenbeck process Z(t) cor-
responding to this stable process has trivial σ-algebra at infinity and minus infinity, i.e.
all sets which are measurable with respect to the σ-algebra generated by the random
variables t ≥ T (or t ≤ T ) for all −∞ < T < ∞ have probability zero or one. This is a
property which is actually stronger than the ergodicity of the process.

Proof of Theorem 2: Theorem 2 will be proved by means of formula (3.2) with an
appropriately defined functional F in the space C([0, 1]) or D([0, 1]). Let us define the
functional F = Fε,δ with some ε > 0 and δ > 0 as

Fε,δ(x) = I

(

sup
1−ε≤s,t≤1

ρ(xs(·), xt(·)) ≥ δ

)

,

where the function xt is defined in (2.4′), and ρ(·, ·) is the metric introduced in Section 2.
We claim that under the conditions of Theorem 2

lim
ε→0

EFε,δ(X1(·, ω)) = 0 (3.6)

for all δ > 0.

Let us also observe that by relation (3.2)

lim
T→∞

µT (ω)

(

sup
1−ε≤s,t≤1

ρ(xs, xt) > δ

)

= lim
T→∞

∫

Fε,δ(x) dµT (ω)(x) = EFε,δ(X1(·, ω))

for all ε > 0 and δ > 0 and almost all ω, where the function xt was defined in formula
(2.4′). Then we get relation (2.6) with the help of formula (3.6), by letting ε → 0 in the
last formula. Hence to prove relation (2.6) it is enough to prove formula (3.6).

If X1(·, ω) ∈ C([0, 1]), then this relation follows from the observation that for all
η > 0 there is a compact set Kη in C([0, 1]) such that P (X1(·, ω) ∈ Kη) ≥ 1−η, and for
all δ > 0 there exists an ε = ε(η) > 0 such that |x(u)−x(v)| < δ if x ∈ Kη, and |u−v| ≤
ε. There is also a constant L > 0 such that sup

x∈Kη

|x(u)| ≤ L. Since these relations hold

for all δ > 0 and appropriate L > 0 they imply that lim
ε→0

sup
x∈Kη,1−ε≤t≤1

ρ(xt, x) = 0. This
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means that for sufficiently small ε > 0 Fε,δ(X1(·, ω)) = 0 if X1(·, ω) ∈ Kη, i.e. in the
case when an event of probability greater than 1− η occurs. Hence relation (3.6) holds
in this case. The situation in the space D([0, 1]) is more sophisticated. In this case
formula (2.5) also has to be applied.

Since all functions x(t) in the space D([0, 1]) have a limit as t → 1 − 0 it follows
from relation (2.5) that for all δ > 0

P

(

lim
ε→0

sup
1−ε≤t≤1

|X(t, ω) − X(1, ω)| ≥ δ

2

)

= 0.

Hence there is a set K = Kη in the space D([0, 1]) such that P (X1(·, ω) ∈ K) ≥ 1 − η,

the closure of the set K is compact, and for all x ∈ K lim
ε→0

sup
1−ε≤t≤1

|xt − x| <
δ

2
, where

the function xt was defined in (2.4′). There is a finite
δ

5
–net in K, i.e. a finite set

J = {x(1), . . . , x(s)}, x(r) ∈ K, r = 1, . . . , s, in such a way that for all x ∈ K there is

some x(r) ∈ J such that ρ(x, x(r)) ≤ δ

5
. Then to prove formula (2.6) it is enough to show

that for all x(r) ∈ J there is some ε̄ > 0 such that ρ(x
(r)
t , x(r)) ≤ δ

4
for all 1− ε̄ ≤ t ≤ 1.

Indeed, if this statement holds, then for arbitrary x ∈ K there is some x(r) ∈ J such

that ρ(x, x(r)) ≤ δ

5
. Then ρ(xs, xt) ≤ ρ(xs, x

(r)
s ) + ρ(xt, x

(r)
t ) + ρ(x

(r)
s , x

(r)
t ). Let us also

observe that because of the definition of the functions xt for sufficiently small ε̄ > 0 for

all x ∈ D([0, 1]), 1 − ε̄ ≤ t ≤ 1 and x(r) ∈ J the inequality ρ(xt, x
(r)
t ) ≤ 5

4
ρ(x, x(r))

holds, and ρ(x
(r)
s , x

(r)
t ) ≤ ρ(x

(r)
s , x(r)) + ρ(x

(r)
t , x(r)). The above inequalities imply that

ρ(xs, xt) ≤ δ for 1 − ε̄ ≤ s, t ≤ 1 if x ∈ K. Hence Fε,δ(X1(·, ω)) = 0 with ε = ε̄ if
X1(·, ω) ∈ K. Then formula (3.6) follows from the relation P (X1(·, ω) ∈ K) ≥ 1 − η.

Thus to complete the proof of formula (2.6) it is enough to show that for an arbitrary

function x ∈ D([0, 1]) such that lim
u→1−0

|x(u) − x(1)| <
δ

2
the relation lim

ε→0
ρ(xt, x) <

δ

2
holds. (This relation means in particular that the limit exists.) To prove this relation let

us define for all
1

2
≤ t < 1 the mapping λt(u) of the interval [0, 1] into itself as λt(u) = tu

for 0 ≤ u ≤ t∗(t) with t∗(t) = 1 −
√

1 − t, and define λt(u) in the remaining interval
(t∗(t), 1] also linearly, i.e. let λt(u) = (

√
1 − t + t)u + 1 − t −

√
1 − t for t∗(t) ≤ u ≤ 1.

Then lim
t→1

sup
u6=v

log

∣

∣

∣

∣

λt(u) − λt(v)

u − v

∣

∣

∣

∣

= 0. Because of the definition of the metric ρ = d0 it

is enough to show that

lim
t→1

sup
0≤u≤1

|xt(u) − x(λt(u))| = lim
u→1

|x(u) − x(1)| <
δ

2
.

It is known that for an x ∈ D([0, 1]) function sup
0≤u≤1

|x(u)| < ∞ (see e.g. Billingsley’s
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book [1]). Hence

sup
0≤u≤t∗(t)

|xt(u) − x(λt(u))| ≤ (t−1/α − 1) sup
0≤u≤1

|x(u)|

≤ const. (t−1/α − 1) → 0 if t → 1 − 0.

Similarly, since a function x ∈ D([0, 1]) has a right-hand side limit in the point 1,
sup

t∗(t)≤u<1

|xt(u) − x(λt(u))| → 0 as t → 1 − 0. Finally in the point u = 1 λt(1) = 1,

and lim
t→1−0

|xt(1) − x(λt(1))| =

∣

∣

∣

∣

x(1) − lim
t→1−0

x(t)

∣

∣

∣

∣

<
δ

2
. These relations imply that

lim
t→1−0

ρ(xt, x) = lim
t→1−0

|x(t) − x(1)| < δ
2 . Theorem 2 is proved.

Proof of Lemma 1. We have to prove that for arbitrary δ > 0

lim
ε→0

P

(

sup
1−ε≤t≤1

|X(t, ω) − X(1, ω)| > δ

)

= 0.

Because of the stationary increment and self-similarity property of the process X(t, ω)
with parameter α > 0 yields that

P

(

sup
1−ε≤t≤1

|X(t, ω) − X(1, ω)| > δ

)

= P

(

sup
0≤t≤ε

|X(t, ω) − X(ε, ω)| > δ

)

= P

(

sup
0≤t≤1

|X(t, ω) − X(1, ω)| > δε−1/α

)

.

Then tending with ε → 0 we get that δε−1/α → ∞, and the required property holds.

To prove Theorem 3 first we formulate and prove the following technical Lemma:

Lemma B. Let (M,M, ρ) be a separable, complete metric space such that M is the
σ-algebra generated by the open sets of this space. Let two sequences of probability
measures µN and µ̄N , N = 1, 2, . . . , be given on the space (M,M, ρ) such that the
measures µN weakly converge to a probability measure µ0 on (M,M, ρ) as N → ∞, and

lim inf
N→∞

(µ̄N (Fε) − µN (F)) ≥ 0 for all closed sets F ∈ M and ε > 0, (3.7)

where Aε = {x : ρ(x,A) < ε} denotes the ε-neighborhood of a set A ∈ M. Then the
measures µ̄N converge weakly to the same limit measure µ0 as N → ∞. Moreover,
condition (3.7) can be slightly weakened. It is enough to assume that it holds for all
compact sets K ∈ M and ε > 0.

Proof of Lemma B. The weak convergence of the measures µ̄N to µ0 as N → ∞ is
equivalent to the relation lim inf

N→∞
µ̄N (G) ≥ µ0(G) for all open sets G ∈ M. For all open

sets G ∈ M and ε > 0 there exists a compact set K = Kε ∈ M such that K ⊂ G and
µ0(K) ≥ µ0(G) − ε. Then there exists some η > 0 such that also the η-neighborhood
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of K satisfies the relation Kη ⊂ G. Consider the η/2 neighborhood Kη/2 of the set K.
Since G contains the η/2 neighborhood of the closure of Kη/2, and the measures µN

converge weakly to the measure µ0 as N → ∞ we can write with the help of relation
(3.7) that lim inf

N→∞
µ̄N (G) ≥ lim inf

N→∞
µN (Kη/2) ≥ µ0(K

η/2) ≥ µ0(G) − ε. Since the last

relation holds for all ε > 0 and open sets G, it implies the convergence of the measures
µ̄N to µ0 as N → ∞.

To complete the proof of Lemma B let us observe that because of the compactness
(convergence) of the measures µN in the weak convergence topology for all ε > 0 there
is a compact set K ∈ M such that µN (K) > 1 − ε for all N = 1, 2, . . . . Then for
a closed set F ∈ M the set F ∩ K is also compact, and lim inf

N→∞
(µ̄N (Fε) − µN (F)) ≥

lim inf
N→∞

(µ̄N ((F ∩ K)ε) − µN (F ∩ K))− ε ≥ −ε. Since this relation holds for all ε > 0, it

is enough to assume relation (3.7) for compact sets K.

Now we introduce the notion of good coupling we shall use later and formulate a
simple consequence of Lemma B.

Definition of good coupling: Let two sequences of probability measures µN and
µ̄N , N = 1, 2, . . . , be given on a separable complete metric space (M,M, ρ), where M
denotes the σ-algebra generated by the topology induced by the metric ρ. These two
sequences of measures have a good coupling if for all ε > 0 and δ > 0 there is a sequence
of probability measures P ε,δ

N , N = 1, 2, . . . , on the product space (M × M,M×M, ρ̄),
ρ̄((x1, y1), (x2, y2)) = ρ(x1, x2) + ρ(y1, y2) which satisfies the following properties.

i.) The marginal distributions of P ε,δ
N are µN and µ̄N , i.e. P ε,δ

N (A×M) = µN (A) and

P ε,δ
N (M × A) = µ̄N (A) for all A ∈ M, and n = 1, 2, . . . .

ii.) lim sup
N→∞

P ε,δ
N ({(x, y) : ρ(x, y) > ε}) ≤ δ.

Corollary of Lemma B. If two sequences of probability measures µN and µ̄N , N =
1, 2, . . . , on a complete separable metric space (M,M, ρ) have a good coupling, and the
sequence of measures µN converge weakly to a probability measure µ0, then the measures
µ̄N converge weakly to the same measure µ0.

Proof of the Corollary. Fix an ε > 0. For all δ > 0 we can write

lim inf
N→∞

(µ̄N (Fε) − µN (F)) ≥ − lim sup
N→∞

P ε,δ
N ({(x, y) : ρ(x, y) > ε}) ≥ −δ.

We get the statement of the Corollary by letting δ → 0.

Proof of Theorem 3. We shall prove the weak convergence of the measures µ̂N (ω) for
almost all ω with the help of Lemma B with the choice of µBN

(ω) as µN and µ̂N (ω) as
µ̄N . Then (for almost all ω) the measures µN converge weakly to µ0, and it is enough
to show that for almost all ω ∈ Ω

lim inf
N→∞

(µ̂N (ω)(Fε) − µBN
(ω)(F)) ≥ 0 for all closed sets

F ⊂ D([0, 1]) or F ⊂ C([0, 1]) and ε ≥ 0.
(3.8)
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Let us recall that for arbitrary measurable set B ⊂ D([0, 1]) (or B ⊂ C([0, 1]))

µBN
(ω)(B) = λ̄BN

{s : s ∈ [1, BN ], Xs(·, ω) ∈ B}

and

µ̄N (ω)(B) = λ̄BN
{s : there is some 1 ≤ j < kN such that

Bj,N ≤ s < Bj+1,N , and XBj,N
(·, ω) ∈ B},

where the measure λ̄T was defined in the formulation of Lemma 1.

For a pair of numbers ε > 0 and η > 0 define the set

A(ε, η) =

{

x ∈ D([0, 1]) : sup
1−η<s≤t≤1

ρ(xs, xt) ≤ ε

}

.

Given some ε > 0 and δ > 0 fix some η = η(ω, ε, δ) > 0 and N0 = N0(ω, ε, δ) in
such a way that µBN

(ω)(A(ε, η)) > 1 − δ for N ≥ N0. By Theorem 2 such a choice
of η and N0 is possible for almost all ω ∈ Ω. Then we can choose, since the numbers
Bk,j satisfy condition (2.7), some number j0 = j0(η) and N1 ≥ N0 in such a way that
Bk+1,N

Bk,N
≤ 1 + η

2 , if N ≥ N1 and j0 ≤ k < N , and
log Bj0,N

log BN
< δ if N ≥ N1. Then for

all N ≥ N1

µ̂N (ω)(Fε) ≥ µ̂N (ω)(XBk,N
(·, ω) ∈ Fε, for some k ≥ j0)

= λ̄BN
({s : there is some j0 ≤ j < kN such that

Bj,N ≤ s < Bj+1,N and XBj ,N (·, ω) ∈ Fε})
≥ λ̄BN

({s : Bj0,N ≤ s < BN and Xs(·, ω) ∈ F ∩ A(ε, η)})

The last inequality in this relation holds, because, in the case when Xs(·, ω) ∈ F ∩AN

and s ∈ [Bj,N , Bj+1,N ) with some j0 ≤ j < kN (observe that the relation [Bj0,N , BN ) =
kN−1
⋃

j=j0

[Bj,N , Bj+1,N ) holds), then XBj,N
(·, ω) ∈ Fε, and this implies that all points s ∈

(Bj,N , Bj+1,N ] are contained in the set whose λ̄T measure is considered in the previous
expression. To see the validity of this statement observe that with the notation x =

Xs(·, ω), x ∈ D([0, 1]) XBj,N
(·, ω) = xu with u =

Bj,N

s
, which satisfies the inequality

1 − η ≤ 1

1 + η
2

≤ u ≤ 1, where the function xu is defined in formula (2.4′). Hence

x ∈ A(ε, η) ∩ F implies that xu ∈ Fε, as we claimed. Then we get that

µ̂N (ω)(Fε) ≥ λ̄BN
(s : s ∈ [1, BN ), and Xs(·, ω) ∈ F)

− λ̄BN
([1, Bj0,N )) − µBN

(D([0, 1]) \ A(ε, η))

≥ λ̄BN
(s : s ∈ [1, BN ), and Xs(·, ω) ∈ F) − 2δ = µBN

(F) − 2δ,

(3.9)
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because µBN
(D([0, 1]) \ A(ε, η)) ≤ δ and

λ̄BN
([1, Bj0,N )) =

1

log BN

Bj0,N
∫

1

1

t
dt =

log Bj0,N

log BN
≤ δ.

Letting δ → 0 in formula (3.9) we get formula (3.8). This implies the first part of
Theorem 3.

We prove the second statement of Theorem 3 with the help of the Corollary of
Lemma B, where µ̂N (ω) plays the role of µN and µ̄N (ω) the role of µ̄N . We define
the measure P ε

N = PN (ω) on the space D([0, 1]) × D([0, 1]) independently of the pa-
rameter ε in the following way: The measure PN (ω) is concentrated on the trajectories
(XBj ,N (·, ω), X̄Bj ,N (·, ω)), and

PN (ω)((XBj ,N (·, ω), X̄Bj ,N (·, ω)) =
1

log BN
log

Bj+1,N

Bj,N
.

Such a coupling can be constructed e.g. in the following way: For all N = 1, 2, . . .
let AN denote the set AN = {1, . . . , kN}, AN the σ-algebra consisting of all sub-

sets of AN , and define the probability measure νN , νN (j) =
1

log BN
log

Bj+1,N

Bj,N
, 1 ≤

j < kN on (AN ,AN ). Then for all ω ∈ Ω define the random variable ξω(j) =
(XBj ,N (·, ω), X̄Bj ,N (·, ω)), 1 ≤ j ≤ kN , on the probability space (AN ,AN , νN ), and let
PN (ω) be the distribution of the random variables ξω in the space D([0, 1])×D([0, 1]).

The marginal distributions of the measures PN (ω) are µ̂N (ω) and µ̄N (ω). Hence
by Corollary of Lemma B it is enough to prove that for almost all ω the relation

lim
N→∞

PN (ω)(AN (ε, ω)) = 0 (3.10)

holds with

AN (ε, ω) =
{

(XBj ,N (·, ω), X̄Bj ,N (·, ω)) : ρ(XBj ,N (·, ω), X̄Bj ,N (·, ω)) > ε
}

for all ε > 0. Since the measures µ̂N are compact for all η > 0 there is a compact set
K = K(η) ⊂ D([0, 1]) such that µ̂N (K) > 1− η for all N = 1, 2, . . . , and formula (3.10)
can be reduced to the statement

lim
N→∞

PN (ω)(AN (ε, ω) ∩ (K × D([0, 1]))) = 0 (3.11)

for arbitrary compact set K ⊂ D([0, 1]). Moreover, this statement can be reduced
to a slightly weaker statement. To formulate it let us define for all η > 0 and N =
1, 2, . . . the number ̂(N) = ̂(N, η) as ̂(N) = max{j : log Bj,N ≤ η log BN}. Because
of condition (2.7) imposed on the numbers Bj,k in Theorem 3 ̂(N) → ∞ as N → ∞.
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Because of the definition of the measures µ̂N (ω) and the number ̂(N) the inequality

µ̂N (ω)

{

⋃

j : j≤̂(N)

XBj,N
(·, ω)

}

≤ η holds. Define the set

A
η
N (ε, ω) =

{

(XBj ,N (·, ω), X̄Bj ,N (·, ω)) : ̂(N, η) ≤ j ≤ kN ,

ρ(XBj ,N (·, ω), X̄Bj ,N (·, ω)) > ε
}

.

Then µ̂N (ω)(AN (ε, ω)\Aη
N (ε, ω)) ≤ η, and relation (3.11) can be reduced to the relation

lim
N→∞

PN (ω)(Aη
N (ε, ω) ∩ (K × D([0, 1]))) = 0 (3.11′)

by letting η → 0.

We claim that for an arbitrary compact set K ⊂ D([0, 1]), ε > 0 and η > 0
there is some N0 = N0(K, ε, η, ω) such that for all N ≥ N0 and j ≥ ̂(N) the relation
XBj,N

(·, ω) ∈ K implies that ρ(XBj,N
(·, ω), X̄Bj,N

(·, ω)) < ε, hence the set A
η
N (ε, ω) ∩

(K × D([0, 1])) is empty for large enough N . This statement clearly implies relation
(3.11′).

To prove this statement let us observe that the trajectory X̄Bj,N
(·, ω) is obtained as

a discretization of the trajectory XBj,N
(·, ω) of the following type: There is a partition

0 = tj,0,N < tj,1,N < · · · < tj,j,N = 1 of the interval [0, 1] such that X̄Bj,N
(t, ω) =

XBj,N
(tj,l−1,N , ω) if tj,l−1,N ≤ t < tj,l,N , 1 ≤ l ≤ j, and X̄Bj,N

(1, ω) = XBj,N
(1, ω).

The numbers tj,l,N could be given explicitly as tj,l,N =
Bl−1,N

Bj,N
, but we do not need

their explicit form. What we need is the fact that conditions (2.7) and (2.8) imposed
on the numbers Bj,N imply that lim

̂→∞
lim sup
N→∞

sup
N≥j≥̂

sup
1≤l≤j

(tj,l,N − tj,l−1,N ) = 0. This

relation holds since for all η > 0 there exist some ̂1 = ̂1(η), ̂2 = ̂2(η) and N0 = N0(η)

in such a way that
Bl,N

Bl−1,N
≤ 1 + η

2 if ̂1 ≤ l ≤ N and N ≥ N0, and ηB̂2,N ≥ B̂1,N if

N ≥ N0. Then for all N ≥ j ≥ ̂2 and N ≥ N0 tj,l,N −tj,l−1,N ≤ Bl,N − Bl−1,N

Bl,N
≤ η for

j ≥ l ≥ ̂1, and tj,l,N − tj,l−1,N ≤ B̂1,N

B2,N
≤ η if 1 ≤ l ≤ ̂1. The width of the partitions

considered above tends to zero if ̂ = ̂(N) → ∞, as we claimed. Indeed, the previous
calculations imply that it is less than η for ̂ ≥ ̂2(η).

We claim that this relation implies that

lim
N→∞

sup
j : j≥̂(N), Xj,N (·,ω)∈K

ρ(Xj,N (·, ω), X̄j,N (·, ω)) = 0

for all compact sets K ⊂ D([0, 1]), and this relation implies formula (3.11′) and hence
the second part of Theorem 3.

Let us define the following function g(x, δ) for x ∈ D([0, 1]) and δ > 0:

g(x, δ) = sup
0=t0<t1<···<ts=1

tj−tj−1≤δ, j=1,...,s

ρ(x, x̄t0,··· ,ts
), (3.12)
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where

x̄t0,··· ,ts
(t) = x(tj−1) if tj−1 ≤ t < tj , j = 1, . . . , s and x̄t0,··· ,ts

(1) = x(1).

We shall prove the following Lemma C which is probably well-known among experts,
but whose explicit formulation we did not find in the literature.

Lemma C. For all functions x ∈ D([0, 1]) lim
δ→0

g(x, δ) = 0. Moreover, for all compact

sets K ⊂ D([0, 1])

lim
δ→0

sup
x∈K

g(x, δ) = 0.

Then to finish the proof of Theorem 3 it is enough to show that lim
δ→0

sup
x∈K

g(x, δ) = 0

for all compact sets K ⊂ D([0, 1]), where the function g(x, δ) is defined in formula
(3.12), and this is the content of Lemma C.

Proof of Lemma C. It is known (see e.g. Billingsley’s book [1] formulas (14.6) and (14.7))
that for all η > 0 there is some α = α(η) > 0 and a partition 0 = u0 < u1 < · · · < ur = 1
of the interval [0, 1] such that for uj −uj−1 > α, and sup

1≤j≤r
sup

uj−1≤s,t<uj

|x(s)−x(t)| < η.

Let us consider an arbitrary partition 0 = t0 < t1 < · · · < ts = 1 of the interval [0, 1]
such that sup

1≤j≤s
|tj − tj−1| < αη. We claim that in this case ρ(x, x̄t1,...,ts

) ≤ η. Since

this relation holds for all η > 0, it implies the first statement of Lemma C.

To prove this statement let us consider the partition 0 = T0 < T1 < · · · < Tr,
such that the interval [Tj , Tj+1) is the union of those intervals [tl, tl+1) for which tl ∈
[uj , uj+1). Let λ(·) be that mapping of the interval [0, 1] into itself which maps the
interval [uj , uj+1) linearly to the interval [Tj , Tj+1). Then sup

0≤u≤1
|x(λ(u))−x̄t1,...,ts

(u)| ≤

η, and also sup
t6=s

log

∣

∣

∣

∣

λ(t) − λ(s)

t − s

∣

∣

∣

∣

≤ η. Hence ρ(x, x̄t1,...,ts
) ≤ η, as we claimed. This

implies the first statement of Lemma C.

The second, more general statement follows in the same way. We only have to
observe that the number α = α(η) can be chosen as the same number for all x ∈ K in
a compact set K ∈ D([0, 1]). This follows from the characterization of compact sets in
the space D([0, 1]). (See relation (14.33) in Theorem 14.3 in the book of Billingsley [1].)

Proof of Theorem 4. Let us construct the following coupling of the random broken
lines S̃N (·, ω) and TN (·, ω) which are defined with the help of the random variables

S̃k(ω) and Tk(ω), k = 1, 2, . . . , in formula (2.13). Let P ε,δ
N (ω), ω ∈ Ω, be a measure on

D([0, 1]) × D([0, 1]) concentrated on the pairs, (S̃k(·, ω), Tk(·, ω)) in such a way that

P ε,δ
N (ω)(S̃k(·, ω), Tk(·, ω)) = µN (ω)(Tk(·, ω)) =

1

log
BN

B1

log
Bk+1

Bk
, 1 ≤ k < N.
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(The parameters ε > 0 and δ > 0 in the definition are the same ε and δ which appear
in formula (2.13).)

Then the marginal distributions of P ε,δ
N (ω) are the distributions µN (ω) and µ̄N (ω)

appearing in the definition of the almost sure functional limit theorem. By the Corollary
of Lemma B it is enough to prove that

lim sup
N→∞

P ε,δ
N (ω){(x, y) : ρ(x, y) > ε} < δ

for almost all ω ∈ Ω. Since ρ(x, y) ≤ d(x, y) with d(x, y) = sup
0≤u≤1

|x(u) − y(u)|,

P ε,δ
N (ω){(x, y) : ρ(x, y) > ε} ≤ 2

log BN

N−1
∑

k=1

log
Bk+1

Bk
I(d(S̃k(·, ω), Tk(·, ω)) > ε)

for sufficiently large N . For a number N choose the number n̄ = n̄(N) such that
2n̄−1 ≤ BN < 2n̄. Then N ≤ N(n̄), and log BN ≥ n̄ − 1. Hence

P ε,δ
N (ω){(x, y) : ρ(x, y) > ε} ≤ 1

n̄ − 1

N(n̄)
∑

k=1

log
Bk+1

Bk
I

















sup
1≤j≤k

|S̃j(ω) − Tj(ω)|

Ak
> ε

















with this n̄ = n̄(N). As n̄(N) tends to infinity as N → ∞ relation (2.13) implies that
the lim sup of the right-hand side of the last expression is less than δ for almost all ω
as N → ∞. Theorem 4 is proved.

Proof of Theorem 5A. Let us consider the partial sums Sk(ω) =
k
∑

j=1

ξj(ω), k = 1, 2, . . . ,

and the random polygons Sn(s, ω) and S̄n(s, ω), n = 1, 2, . . . , defined by formula (2.11)

with weight functions Bn, An = B
1/α
n and B̄n, Ān = B̄

1/α
n respectively. Let us also

introduce the random polygons S̄′
n(ω) defined with the help of the partial sums Sk(ω)

with the new weight functions B̄n and the original sequence An = B
1/α
n by formulas

(2.11). We have to compare the distance ρ(SN (·, ω), S̄′
N (·, ω)) ≤ ε.

It is not difficult to show that lim
N→∞

d(SN (·, ω), S̄′
N (·, ω)) = 0 under the conditions of

Theorem 5, if the metric ρ = d0 applied in this paper is replaced by the following metric
d(·, ·) in the space D([0, 1]): The relation d(x, y) ≤ ε, x, y ∈ D([0, 1]), holds, if there is a
strictly monotone increasing continuous function λ(t) which is a homeomorphism of the
interval [0, 1] into itself, and sup

0≤t≤1
|λ(t) − t| ≤ ε, sup

0≤t≤1
|y(t) − x(λ(t))| ≤ ε. The metric

d induces the same topology as the metric ρ = d0 in the space D([0, 1]), but it has the
unpleasant property that the space D([0, 1]) is not a complete metric space with this
metric. A detailed discussion about the relation between the metrics d(·, ·) and d0(·, ·)
is contained in the book of Billingsley [1].

In the proof we have to overcome the following difficulty. The natural transfor-
mation λ(·) for which S̄N (λ(·, ω)) is close to S̄′

N (·, ω) is the map which transforms the
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point B̄k

B̄N
to the point Bk

BN
, and is linear between these points. This transformation

shows that for large N the corresponding trajectories are close in the d(·, ·) metric, but
it supplies no good estimate for the distance in the d0(·, ·) metric.

We recall the following result from Billingsley’s book [1] (see Lemma 2 in Sec-
tion 14): If d(x, y) ≤ δ2, 0 < δ ≤ 1/4, then ρ(x, y) = d0(x, y) ≤ 4δ + w′

x(δ), where the
inequality w′

x(δ) ≤ ε for a function x ∈ D([0, 1]) means that there exist some numbers
0 = t0 < t1 < · · · < ts = 1 such that tj − tj−1 ≥ ε, and sup

tj−1≤u,v<tj

|x(u) − x(v)| ≤ ε for

all j = 1, 2, . . . .

For all ω ∈ Ω for which the sequence of probability measures µN (ω), N = 1, 2, . . . ,
defined by relations (2.11) and (2.12) are compact fix a compact set K = K(ε, ω) ∈
D([0, 1]) in such a way that µN (ω)(K) ≥ 1 − ε. We have lim

δ→0
w′

x(δ) = 0 for arbitrary

x ∈ D([0, 1]). Moreover, lim
δ→0

sup
x∈K

w′
x(δ) = 0 for an arbitrary compact set K ⊂ D([0, 1]).

(See, Theorem 14.3 in Billingsley book [1].) Given some δ/2 > 0 and the compact
set K = K(ε, ω) ⊂ D([0, 1]) we have fixed choose a number 0 < η < 1/4 such that
5η < δ/2 and a number η̄ > 0 such that w′

x(η̄) < η if x ∈ K. Then there is an index
N0 = N0(η, η̄) such that d(SN (·, ω), S̄′

N (·, ω)) ≤ min(η2, η̄2), if N ≥ N0. The above
relations imply that ρ(SN (·, ω), S̄N (·, ω)) ≤ 4min(η, η̄) + w′

SN (·,ω)(η̄) ≤ δ/2, if N ≥ N0

and SN (·, ω) ∈ K.

To complete the proof of Theorem 5A we compare the random broken lines S̄′
n(ω)

and S̄n(ω). Observe that S̄′
k(·, ω) =

Āk

Ak
S̄k(·, ω), and lim

k→∞

Āk

Ak
= 1. On the other

hand, given the compact set K = K(ε, ω), there is a number K = K(ε, ω) > 0 such
that sup

x∈K

sup
0≤s≤1

|x(s)| ≤ K. These facts imply that there exists some threshold index

N1 = N1(ω, ε) such that ρ(S̄N (·, ω), S̄′
N (ω)) ≤ δ/2 if N ≥ N1.

The previous arguments imply that there is some index N̄ = max(N0, N1) and a
compact set K ∈ D([0, 1]) such that µN (ω)(K) ≥ 1− ε, and ρ(SN (·, ω), S̄N (·, ω)) ≤ δ if
N ≥ N1 and SN (·, ω) ∈ K. Since lim

N→∞
µN (Sk(·, ω)) = 0 for all fixed k > 0, the µN (ω)

probability of the random broken lines Sn(·, ω) for which ρ(Sn(·, ω), S̄n(ω)) ≤ δ is less
than 2ε. Since this relation holds for all ε > 0, it implies Theorem 5A.

Proof of Theorem 5. First we prove the following statement. Let us fix some δ > 0 and
let K̄ be a compact set in the space D([0, 1]) which also satisfies the following property:
There is some η0 > 0 such that

sup
1−η0≤u≤1

|x(u) − x(1)| ≤ δ

4
for all x ∈ K. (3.13)

We claim that there exists a number η = η(δ, η0, K̄) > 0 such that for all functions
x ∈ K̄ and numbers 1 − η ≤ t ≤ 1 the inequality d(x, xt) < δ holds, where the function
xt is defined in formula (2.4′), and d(·, ·) is the complete metric we introduced to define
the topology in the space D([0, 1]).
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To prove this statement let us first observe that because of the compactness of the
set K̄ there exists a number K > 0 such that sup

x∈K̄

sup
0≤u≤1

|x(u)| ≤ K. Given a function

x(·) ∈ D([0, 1]) and a number 0 < t ≤ 1 define the function x̄ ∈ D([0, 1]) as x̄t(u) =
x(tu), 0 ≤ u ≤ 1. Then there exists an η1 > 0 such that d(xt, x̄t) < K(t−α/2 − 1) ≤ δ

2
if x ∈ K̄ and 1 − η1 ≤ t ≤ 1. Hence it is enough to show that there is some η′ > 0 in
such a way that d(x, x̄t) ≤ δ

2 if x ∈ K̄ and 1 − η′ ≤ t ≤ 1.

To prove this statement let us define for all 1
2 ≤ t < 1 the mapping λt(u) of the

interval [0, 1] into itself as λt(u) = tu for 0 ≤ u ≤ t∗(t) with t∗(t) = 1−
√

1 − t, and define
λt(u) in the remaining interval (t∗(t), 1] also linearly, i.e. let λt(u) = (

√
1 − t+ t)u+1−

t−
√

1 − t for t∗(t) ≤ u ≤ 1. There is some η2 > 0 such that sup
u6=v

log

∣

∣

∣

∣

λt(u) − λt(v)

u − v

∣

∣

∣

∣

≤ δ

2
if 1− η2 ≤ t ≤ 1. By recalling the definition of the metric d(·, ·) we see that to complete
the proof of the statement we claimed to hold it is enough to show that there is some
η3 > 0 such that for all x ∈ K̄ and 1−η3 ≤ t ≤ 1 sup

0≤u≤1
|x(λt(u))− x̄t(u)| ≤ δ

2 . Then the

relation formulated at the start of the proof of Theorem 5 holds with η = min(η1, η2, η3).
But x(λt(u)) − x̄t(u) = 0 if 0 ≤ u ≤ t∗(t), and |x(λt(u)) − x̄t(u)| ≤ δ

2 for t∗(t) ≤ t ≤ 1
if η3 > 0 is chosen so small that t∗(t) > 1 − η0 for 1 − η3 < t ≤ 1 with the number η0

appearing in relation (3.13).

By Lemma B to prove Theorem 5 it is enough to show that for an arbitrary compact
set K ⊂ D([0, 1]) and α > 0

lim inf
N→∞

(µ̄N (ω)(Kα) − µN (ω)(K)) ≥ 0 for almost all ω ∈ Ω, (3.14)

where Kα = {x : ρ(x,K) ≤ α} is the α-neighborhood of the set K.

To prove relation (3.14) we define some quantities. Let us observe that because of
Theorem 5A and Lemma B the sequence of probability measures µ′

N (ω), N = 1, 2, . . . ,

µ′
N (ω)(S̄k(·, ω)) =

1

log
BN

B1

log
Bk+1

Bk
, 1 ≤ k < N , are convergent hence compact for

almost all ω ∈ Ω. Let us fix some ε > 0. There is some compact set K̄0 ∈ D([0, 1])
η = η(ε, α, ω) in such a way that µ′

N (ω)(K̄0) ≥ 1 − ε
2 for all N = 1, 2, . . . . Because

of the conditions of Theorem 5 (The condition that relation (2.14) holds) there exists
some η0 > 0 such that the set

K̄1 = {x : x ∈ D([0, 1]) sup
1−η0≤t≤1

|x(t) − x(1)| ≤ α

8

satisfies the inequality µ0

(

K̄1

)

≥ 1 − ε
3 . The above defined set K̄1 is closed, hence the

compactness of the sequence of measures µ′
N (ω) implies that there is some threshold

N0 = N0(ω) such that µN (ω)
(

K̄1

)

≥ 1− ε
2 for all N ≥ N0. Define the set K̄ = K̄0∩K̄1.

Then for almost all ω ∈ Ω there is some threshold N0 = N0(ω) µN (ω)(K̄) ≥ 1 − ε for
all N ≥ N0.
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There exists some η > 0 such that d(x, xt) ≤ α
2 if x ∈ K̄ and 1− η ≤ t ≤ 1. For all

positive integers n define the number ñ = ñ(η) as

ñ = min
{

k : Bk >
(

1 − η

2

)

Bn and B̄k >
(

1 − η

2

)

B̄n

}

. (3.15)

If the index n is such that the relations Sn(·, ω) ∈ K, d(Sn(·, ω), S̄n(·, ω)) < α
2 , S̄n(·, ω) ∈

K̄ hold and ñ(n) ≤ m ≤ n, then S̄m(·, ω) ∈ Kα. Indeed,

d(S̄m(·, ω), S̄n(·, ω)) <
α

2
, (3.16)

since with the notation x(·) = S̄n(·, ω) we have S̄m(·, ω) = xt(·) with t = Bm

Bn
which

satisfies the inequality 1 − η
2 ≤ t ≤ 1, and this implies (3.16). Relation (3.16) and the

other conditions we have imposed imply that S̄m(·, ω)) ∈ Kα.

Let us fix some sufficiently large integer M > 0 to be chosen later which may
depend on α, ε, ω ∈ Ω and the sequences Bn and B̄n, but does not depend on the index
N for which the measures µN (ω) and µ̄N (ω) are considered. Define the set of indices

C = C(α, ε, ω,K) =
{

k : k ≥ M, Sk(·, ω) ∈ K, ρ(Sn(·, ω), S̄n(·, ω)) <
α

2
, S̄n(·, ω) ∈ K̄

}

and the sets K0(N) ∈ D([0, 1])

K0(N) = {Sk(·, ω) : k ∈ C, 1 ≤ k < N}, N = 1, 2, . . . .

Then K0(N) ⊂ K, and

lim sup
N→∞

(µN (ω)(K) − µN (ω)(K0(N))) < 2ε (3.17)

for almost all ω ∈ Ω. To see the last relation observe that lim
N→∞

µN (ω)(Sk(ω)) = 0 for

all fixed k, and because of Theorem 5A

lim
N→∞

µN (ω)
{

the union of random broken lines Sn(ω) : ρ(Sn(·, ω), S̄n(·, ω)) ≥ α

2

}

= 0.

Let us define the following enlargements of the set C ∩ {k : 1 ≤ k ≤ N}:

C̄N = C̄N (α, ε, ω,K) = {m : there is some n ∈ C, 1 ≤ n ≤ N, such that ñ(n) ≤ m ≤ n} ,

N = 1, 2, . . . , and the sets of trajectories

K∗(N) =
{

S̄m(·, ω) : m ∈ C̄N

}

.

Then K̄∗(N) ⊂ Kα because of the properties of the sets C and C̄N . On the other hand,

the set C̄N consists of disjoint intervals of integers [Lj , Rj) such that
Lj

Rj
≥ 1 − η

3
, and
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Lj ≥ (1 − η)M . (Here we use that if the number M is chose sufficiently large, then for
all n ≥ M the two sides in the defining inequalities in relation (3.15) are almost equal.)

We claim that if we choose the constant M sufficiently large, then

lim sup
N→∞

µ̄N (ω)(K∗(N))

µN (ω)(K∗(N))
≥ 1 − ε (3.18)

Indeed,

µ̄N (K∗(N))

µN (K∗(N))
≥ inf

j

µ̄N

(

⋃

Lj≤m<Rj

Sm(·, ω)

)

µN

(

⋃

Lj≤m<Rj

Sm(·, ω)

) = inf
j

log
BN

B1

log
B̄N

B̄1

log
B̄Rj

B̄Lj

log
BRj

BLj

, (3.19)

where [Lj , Rj) are the (disjoint) intervals whose union is the set C̄N . To prove (3.18)

make the following observations: Since lim
N→∞

BN = ∞ and lim
N→∞

B̄N

BN
= 1, the relation

lim
N→∞

log
BN

B1

log
B̄N

B̄1

= 1 holds. On the other hand log
B̄Rj

B̄Lj

≥ η

4
for sufficiently large M ,

since the interval [Lj , Rj) contains an interval [ñ(n), n]. This inequality together with

the relation lim
N→∞

B̄N

BN
= 1 imply that the inequality

B̄Rj

B̄Lj

≥
(

1 − εη

100

) B̄Rj

B̄Lj

, hence

log
B̄Rj

B̄Lj

≥
(

1 − ε

4

)

log
BRj

BLj

. The above estimates together with relation (3.18) imply

inequalities (3.19). Relations (3.17), (3.18) and the relation Kα ⊃ K∗(N) ⊃ K0(N)
imply that for sufficiently large N

µ̄N (ω)(Kα) ≥ µ̄N (ω)(K∗(N)) ≥ (1 − ε)µN (ω)(K∗(N))

≥ (1 − ε)µN (ω)(K0(N))) ≥ (1 − ε)µN (ω)(K)) − 2ε.

Since this relation holds for all ε > 0 it implies relation (3.14) hence Theorem 5.

Acknowledgement: I would like to thank István Berkes for many useful discussions on
this subject.
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Appendix

A simpler proof of the almost sure functional limit theorem part of Theorem 1 by means
of formula (3.2).

This proof is a simple adaptation of an argument of I. A. Ibragimov and M. A. Lifshitz
made in their paper On almost sure type limit theorems.

The weak convergence of the measures µT (ω) to the measure µ0 as T → ∞ is
equivalent to the statement

lim inf
T→∞

µT (ω)(G) ≥ µ0(G) for all open sets G.

On the other hand, the following simple lemma holds:

Lemma A. Let (M,M, ρ) be a separable complete metric space with the σ-algebra M
generated by the topology induced by the metric ρ in M . Let µ be a probability measure
on (M,M). There is a sequence of (countably many) open subsets Gn, n = 1, 2, . . . , of
the space M in such a way that

µ(G) = sup
Gn:Gn⊂G

µ(Gn) for all open sets G ⊂ M.

Applying this lemma for the space C([0, 1]) or D([0, 1]) and the measure µ0 the
proof of the weak convergence of the probability measures µT (ω) to µ0 for almost all
ω ∈ Ω, as T → ∞ can be reduced to the statement

lim inf
T→∞

µT (ω)(Gn) ≥ µ0(Gn) for almost all ω ∈ Ω and n = 1, 2, . . . , (A1)

where Gn, n = 1, 2, . . . , are the open sets appearing in Lemma A. Indeed, this statement
implies that for all open sets G and ε > 0 there exists a set Gn ⊂ G such that
µ0(G) ≤ µ0(Gn) + ε, and

µ0(G) ≤ µ0(Gn) + ε ≤ lim inf
T→∞

µT (ω)(Gn) + ε ≤ lim inf
T→∞

µT (ω)(G) + ε

for almost all ω ∈ Ω. Then, by letting ε tend to zero we get the almost sure functional
limit theorem.

On the other hand, defining the functionals Fn in the space C([0, 1]) or D([0, 1]) as
Fn(x) = 1 if x ∈ Gn, and Fn(x) = 0 if x /∈ Gn we get the following relation by means
of formula (3.2).

lim
T→∞

µT (ω)(Gn) = lim
T→∞

∫

Fn(x)µT (ω)( dx) =

∫

Fn(x)µ0( dx) = µ0(Gn)

for almost all ω ∈ Ω, i.e. even a stronger version of formula (A1) holds. This implies
the weak convergence formulated in Theorem 1.
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Proof of Lemma A. Let xk, k = 1, 2, . . . , be an everywhere dense sequence in the space
M . Let Hk,m denote the open ball with center xk and radius 1

m in the space (M,M).
Let us consider all sets Hk,m, k = 1, 2, . . . , m = 1, 2, . . . , and all finite union of the sets
Hk,m. This a countable collection Gn of open sets, and we claim that such a choice of
the open sets Gn satisfies Lemma A.

Indeed, for all open sets G ⊂ M and ε > 0 there exists a compact set K ⊂ G

such that µ(G) ≤ µ(K) + ε. Since all points x ∈ K have a positive distance from the
complement of the set G, for all x ∈ K there is a set Hk,m such that x ∈ Hk,m ⊂ G.
Hence the union of those sets Hk,m which are contained in G supply a cover of the set
K. The compact set K also has a finite cover consisting of such sets Hk,m. This means
that there exists a set Gn such that K ⊂ Gn ⊂ G. This relation also implies that
µ(Gn) ≥ µ(K) ≥ µG) − ε. Since such a construction can be made for all ε > 0 these
relations imply Lemma A.

Appendix 2.

The argument below gives a possible measure theoretical justification of the procedure
leading to the proof of formula (3.2).

We need the following results in Billingsley book [1] (the discussion after Theorem 8.3
for the space C([0, 1]) and Theorem 14.5 for the space D([0, 1])). Put (X,A) =
(

R[0,1], C[0,1]
)

, where R[0,1] is the direct product of the real line with indices 0 ≤ t ≤ 1

and C[0,1] is the direct product of the usual topology on the real line with indices
0 ≤ t ≤ 1. Beside this, let us denote by (Y,B) the space C([0, 1]) or D([0, 1]) with the
usual topology. The results quoted from Billingsley’s book state that if we denote by M
the σ-algebra generated by the open sets in (X,A) and by N the σ-algebra generated
by the open sets in (Y,B), then all B ∈ N can be written in the form B = A ∩ Y with
some A ∈ M. Billingsley’s book also proves that A ∩ Y ∈ N for all A ∈ M.

Given any probability measure µ on the space (Y,B) we can define its extension µ̄
by defining µ̄(C) = µ(C ∩ Y ) for all C ⊂ X such that C ∩ Y ∈ N . The class of sets C
with the property C ⊂ X and C ∩ Y ∈ M is a σ-algebra G such that M ⊂ G, N ⊂ G,
and µ̄ is a probability measure in G. Let us remark that since all B ∈ N can be written
in the form B = A∩Y with A ∈ M, the restriction of the measure µ̄ to M, determines
the measure µ̄. This implies that the finite dimensional distributions of the C([0, 1]) or
D([0, 1]) valued stochastic process determine the distribution µ of the process and its
extension µ̄. Given a measurable function F on the space (Y,B) we call its extension
any measurable function F̄ on the space (X,G) such that F̄(y) = F(y) for all y ∈ Y .
For instance we can define the extension of F by the formula F̄(y) = F(y) if y ∈ Y ,
and F̄(y) = 0 if y /∈ Y .

We can prove formula (3.2) if the functional F and measures µ0 and µT (ω) are
replaced by their extensions defined in the way described above. Observe that since all
trajectories Xt(·, ω) defined in (2.4) are in the space C([0, 1]) or D([0, 1]) the measures
µT (ω) are concentrated on the set Y . Then both the left and right-hand side of (3.2)
remain the same if we rewrite the original functional F and measures µ0 and µT (ω) on
the space (Y,B) in this formula.
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