Analytic Number Theory WS14/15
 Homework 3 (Due 9.01.2015)

December 15, 2014

Problem 1.(Orthogonality relations)

i. Let q be an odd prime. Prove that

$$
\frac{1}{q} \sum_{\ell=0}^{q-1} e^{2 \pi i k \ell / q}= \begin{cases}1 & \text { if } k \equiv 0 \quad(\bmod q) \\ 0 & \text { otherwise }\end{cases}
$$

ii. Prove that for any integer k

$$
\int_{0}^{1} e^{2 \pi i k x} d x= \begin{cases}1 & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2. Let as usual p denotes a prime number and

$$
P(n)=\prod_{\substack{p \mid n \\ p>\log n}}\left(1-\frac{1}{p}\right)
$$

Prove that $\lim _{n \rightarrow \infty} P(n)=1$.
(Hint: It might help to take logarithm on both sides and use an upper bound for the number of prime divisors of n, which are $>\log n$.)

Problem 3.(Mertens formula)

i. Prove that for some constant C

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)=\frac{e^{-C}}{\log x}\left(1+\mathcal{O}\left(\frac{1}{\log x}\right)\right)
$$

ii*. Prove that $C=\gamma$, where γ is the Euler constant.

