Analytic Number Theory WS14/15
 Homework 1 (Due 24.10.2014)

October 13, 2014

Problem 1. Show that $f(n)$ is multiplicative iff $S_{f}(n)$ is multiplicative. (You can use Lemma 1.(i) from Lecture 1 in the one direction and induction on n in the other.)

Problem 2. Define the Dirichlet product of the arithmetic functions f and g by

$$
f * g(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

Let

$$
e(n)= \begin{cases}1 & , \text { if } n=1 \\ 0 & , \text { if } n>1\end{cases}
$$

and

$$
I(n)=1 \text { for all } n \in \mathbb{N}
$$

Let \mathcal{M} denote the set of all multiplicative arithmetic functions.

1. Prove that for $f, g \in \mathcal{M}$ we have $f * g \in \mathcal{M}$. Deduce again that if $f \in \mathcal{M}$, then $S_{f} \in \mathcal{M}$.
2. Show that the Dirichlet product is associative, commutative and $e(n)$ is the identity element.
3. Show that every function $f \in \mathcal{M} \backslash\{f: f(1)=0\}$ has an inverse element. (You can do it recursively expressing $f^{-1}(n)$ by $f^{-1}(k)$ for some $k<n$.) This shows that the set $\mathcal{M} \backslash\{f \equiv 0\}$ is a group under the Dirichlet product.

Problem 3. Prove the Möbius inversion formula $f=\mu * S_{f}$.

