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Introduction

K = Q(
√

d) is a quadratic field

Class group = free group of fractional ideals/principal fractional ideals

Class number h(d) = the finite order of the class group

Gauss conjectures:
1 If d < 0 and |d | → ∞, then h(d) →∞. (solved)
2 There are infinitely many d > 0, for which h(d) = 1. (open)

Real quadratic fields are harder to deal with it.
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Introduction

Dirichlet class number formula

h(d) =
ω

2π
|d |1/2L(1, χd), d < 0,

h(d) log εd = d1/2L(1, χd), d > 0,

where χd =
( .

d

)
is the Jacobi symbol, ω is the number of roots of unity

in K and εd is the fundamental unit of Q(
√

d) for d > 0.

Siegel’s theorem

L(1, χd) �ε |d |−ε.

If εd is small, i.e. log εd � log d , then h(d) �ε d1/2−ε and h(d) →∞
(just like for d < 0).
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K. Lapkova (Rényi Institute) Class Number One Problem July 12, 2014 3 / 12



Introduction

Dirichlet class number formula

h(d) =
ω

2π
|d |1/2L(1, χd), d < 0,

h(d) log εd = d1/2L(1, χd), d > 0,

where χd =
( .

d

)
is the Jacobi symbol, ω is the number of roots of unity

in K and εd is the fundamental unit of Q(
√

d) for d > 0.

Siegel’s theorem

L(1, χd) �ε |d |−ε.

If εd is small, i.e. log εd � log d , then h(d) �ε d1/2−ε and h(d) →∞
(just like for d < 0).
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Class Number One Problem for R-D Fields

Richaud-Degert (R-D) discriminants:

d = (an)2 + ka with a, n > 0 , ±k ∈ {1, 2, 4} .

They have small fundamental units : log εd � log d .

⇒ R-D class number tends to infinity with d →∞.

h(d) �ε d1/2−ε

Recall that Siegel’s theorem is ineffective.

Class number one problem : Find the exact d for which h(d) = 1.
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Class Number One Problem for R-D Fields

Biró solves the class number one problem in the following cases:

Theorem (Biró 2003)

Yokoi’s conjecture is true : Let d = n2 + 4. Then h(d) > 1 if n > 17;

Chowla’s conjecture is true : Let d = 4n2 + 1. Then h(d) > 1 if
n > 13.

Until now not known results for two-parameter R-D discriminants without
GRH, except

Theorem (L.,2012)

If d = (an)2 + 4a is square-free for the odd positive integers a and n and
43 · 181 · 353 divides n, then h(d) > 1.
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Class Number One Problem for R-D Fields

Theorem (Biró, Gyarmati, L., 2014)

If d = (an)2 + 4a is square-free for a and n odd positive integers and
d > 1253, then h(d) > 1.

Tools we use to prove the theorem:

In the R-D fields ”small primes are inert”.

Formula for a special value of a ”sectorial” Dedekind zeta function
(after Biró and Granville).

Computer calculations.

If (43 · 181 · 353) | n, then h
(
(an)2 + 4a

)
> 1.
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Proof

From now on assume that h(d) = 1 for the square-free discriminant
d = (an)2 + 4a, and a > 1.

Small primes are inert

We have that a and an2 + 4 are primes, and for any prime p 6= a such that
2 < p < an/2 we have (

d

p

)
= −1 .

The Condtion q → r
χ is an odd primitive character with conductor q > 1 and (q, 2d) = 1.

The ideal R ∈ Z[ζq] over the odd prime r is such that∑
1≤u≤q−1

uχ(u) ∈ R.
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Consider the 2-dimensional ”Gauss sum”

Gχ(a, n) =
∑

1≤u,v≤q−1

χ(au2 + anuv − v2)uv .

Main identity

If q → r holds and h(d) = 1, then

4Gχ(a, n) + n (a + χ̄(a))B ≡ 0 (mod R)

for a certain B ∈ Z[ζq].

If q → r holds, the main identity ”sieves” the couples (a, n)
(mod qr).

We check with computer if the main identity holds for suitably chosen
q and r .
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q → r holds if r | h−(q), where h−(q) is the relative class number of
the cyclotomic field Q(ζq).

Many different parameters q and r , e.g.

5× 19 → 13,

7× 19 → 13, 37, 73,

13× 19 → 3, 7, 73, 127,

181 → 5, 37 .

We end up with only possible cases for (a, n) such that

n ≡ 0 (mod 3 · 5 · · · 43 · 181 · 353),

if an > 2 · 3315(Jacobi symbol condition).

This contradicts Theorem L. Therefore an < 2.3315.
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Effective Lower Bounds for h(d)

Siegel’s theorem is ineffective.

We find an effective lower bound for a subfamily of d = n2 + 4. It is
interesting having in mind that even the class number two problem
for d = n2 + 4 is not yet solved without GRH.

Theorem (L., 2012)

Let n = m(m2 − 3 · 136) for a positive odd integer m, and

N = 22 · 33 · 7 · 43 · 61 · 137. If d = n2 + 4 is square-free and

(
d

N

)
= −1,

then for every ε > 0 there exists an effective computable constant cε > 0,
depending only on ε, such that

h(d) = h(n2 + 4) > cε (log d)1−ε .
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Effective Lower Bounds for h(d)

Theorem (Goldfeld,1976)

Let d be a fundamental discriminant of a real quadratic field. If there
exists an elliptic curve E over Q such that L(E , s)L(Ed , s) has a zero of
order ≥ 5 at s = 1, then for any ε > 0 there is an effective computable
constant cε(E ) > 0, such that

h(d) log εd > cε(E )(log d)2−ε .

Goldfeld’s method uses L-functions of elliptic curves.

Without Birch-Swinnerton-Dyer conjecture for general d > 0 only
h(d) > (log d)−ε.

Are there modular or automorphic forms whose L-functions have
high-order zeroes at the central point (≥ 3)?
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Thank you for your attention!
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