Class number one problem for real quadratic fields of a certain type

ENFANT workshop, Hausdorff Center for Mathematics, Bonn

Kostadinka Lapkova

Alfréd Rényi Institute of Mathematics, Budapest, Hungary (Universität Wien, Austria)

$$
\text { July 12, } 2014
$$

Introduction

- $K=\mathbb{Q}(\sqrt{d})$ is a quadratic field
- Class group $=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group

Introduction

- $K=\mathbb{Q}(\sqrt{d})$ is a quadratic field
- Class group $=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group
- Gauss conjectures:
(1) If $d<0$ and $|d| \rightarrow \infty$, then $h(d) \rightarrow \infty$. (solved)
(2) There are infinitely many $d>0$, for which $h(d)=1$. (open)

Introduction

- $K=\mathbb{Q}(\sqrt{d})$ is a quadratic field
- Class group $=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group
- Gauss conjectures:
(1) If $d<0$ and $|d| \rightarrow \infty$, then $h(d) \rightarrow \infty$. (solved)
(2) There are infinitely many $d>0$, for which $h(d)=1$. (open)

Real quadratic fields are harder to deal with it.

Introduction

Dirichlet class number formula

$$
\begin{gathered}
h(d)=\frac{\omega}{2 \pi}|d|^{1 / 2} L\left(1, \chi_{d}\right), \quad d<0 \\
h(d) \log \epsilon_{d}=d^{1 / 2} L\left(1, \chi_{d}\right), \quad d>0
\end{gathered}
$$

where $\chi_{d}=\left(\frac{\dot{d}}{d}\right)$ is the Jacobi symbol, ω is the number of roots of unity in K and ϵ_{d} is the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d>0$.

Introduction

Dirichlet class number formula

$$
\begin{gathered}
h(d)=\frac{\omega}{2 \pi}|d|^{1 / 2} L\left(1, \chi_{d}\right), \quad d<0 \\
h(d) \log \epsilon_{d}=d^{1 / 2} L\left(1, \chi_{d}\right), \quad d>0
\end{gathered}
$$

where $\chi_{d}=(\dot{\bar{d}})$ is the Jacobi symbol, ω is the number of roots of unity in K and ϵ_{d} is the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d>0$.

Siegel's theorem

```
L(1, \chid) >> }|d\mp@subsup{|}{}{-\epsilon}
```


Introduction

Dirichlet class number formula

$$
\begin{gathered}
h(d)=\frac{\omega}{2 \pi}|d|^{1 / 2} L\left(1, \chi_{d}\right), \quad d<0 \\
h(d) \log \epsilon_{d}=d^{1 / 2} L\left(1, \chi_{d}\right), \quad d>0
\end{gathered}
$$

where $\chi_{d}=(\dot{\bar{d}})$ is the Jacobi symbol, ω is the number of roots of unity in K and ϵ_{d} is the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d>0$.

Siegel's theorem

$$
L\left(1, \chi_{d}\right) \ggg_{\epsilon}|d|^{-\epsilon} .
$$

If ϵ_{d} is small, i.e. $\log \epsilon_{d} \asymp \log d$, then $h(d) \gg_{\epsilon} d^{1 / 2-\epsilon}$ and $h(d) \rightarrow \infty$ (just like for $d<0$).

Class Number One Problem for R-D Fields

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

Class Number One Problem for R-D Fields

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

- They have small fundamental units : $\log \epsilon_{d} \asymp \log d$.

Class Number One Problem for R-D Fields

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

- They have small fundamental units: $\log \epsilon_{d} \asymp \log d$.
\Rightarrow R-D class number tends to infinity with $d \rightarrow \infty$.

$$
h(d) \gg_{\epsilon} d^{1 / 2-\epsilon}
$$

Class Number One Problem for R-D Fields

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

- They have small fundamental units : $\log \epsilon_{d} \asymp \log d$.
\Rightarrow R-D class number tends to infinity with $d \rightarrow \infty$.

$$
h(d) \ggg_{\epsilon} d^{1 / 2-\epsilon}
$$

- Recall that Siegel's theorem is ineffective.
- Class number one problem : Find the exact d for which $h(d)=1$.

Class Number One Problem for R-D Fields

Biró solves the class number one problem in the following cases:

Theorem (Biró 2003)

- Yokoi's conjecture is true: Let $d=n^{2}+4$. Then $h(d)>1$ if $n>17$;
- Chowla's conjecture is true : Let $d=4 n^{2}+1$. Then $h(d)>1$ if $n>13$.

Class Number One Problem for R-D Fields

Biró solves the class number one problem in the following cases:

Theorem (Biró 2003)

- Yokoi's conjecture is true : Let $d=n^{2}+4$. Then $h(d)>1$ if $n>17$;
- Chowla's conjecture is true : Let $d=4 n^{2}+1$. Then $h(d)>1$ if $n>13$.

Until now not known results for two-parameter R-D discriminants without GRH, except

Theorem (L., 2012)
If $d=(a n)^{2}+4 a$ is square-free for the odd positive integers a and n and $43 \cdot 181 \cdot 353$ divides n, then $h(d)>1$.

Class Number One Problem for R-D Fields

Theorem (Biró, Gyarmati, L., 2014)
If $d=(a n)^{2}+4 a$ is square-free for a and n odd positive integers and $d>1253$, then $h(d)>1$.

Class Number One Problem for R-D Fields

Theorem (Biró, Gyarmati, L., 2014)

If $d=(a n)^{2}+4 a$ is square-free for a and n odd positive integers and $d>1253$, then $h(d)>1$.

Tools we use to prove the theorem:

- In the R-D fields "small primes are inert".
- Formula for a special value of a "sectorial" Dedekind zeta function (after Biró and Granville).
- Computer calculations.
- If $(43 \cdot 181 \cdot 353) \mid n$, then $h\left((a n)^{2}+4 a\right)>1$.

Proof

From now on assume that $h(d)=1$ for the square-free discriminant $d=(a n)^{2}+4 a$, and $a>1$.

Small primes are inert

We have that a and $a n^{2}+4$ are primes, and for any prime $p \neq a$ such that $2<p<a n / 2$ we have

$$
\left(\frac{d}{p}\right)=-1
$$

Proof

From now on assume that $h(d)=1$ for the square-free discriminant $d=(a n)^{2}+4 a$, and $a>1$.

Small primes are inert

We have that a and $a n^{2}+4$ are primes, and for any prime $p \neq a$ such that $2<p<a n / 2$ we have

$$
\left(\frac{d}{p}\right)=-1
$$

The Condtion $q \rightarrow r$

- χ is an odd primitive character with conductor $q>1$ and $(q, 2 d)=1$.
- The ideal $\Re \in \mathbb{Z}\left[\zeta_{q}\right]$ over the odd prime r is such that

$$
\sum_{1 \leq u \leq q-1} u \chi(u) \in \mathfrak{R} .
$$

Consider the 2-dimensional "Gauss sum"

$$
G_{\chi}(a, n)=\sum_{1 \leq u, v \leq q-1} \chi\left(a u^{2}+a n u v-v^{2}\right) u v
$$

Consider the 2-dimensional "Gauss sum"

$$
G_{\chi}(a, n)=\sum_{1 \leq u, v \leq q-1} \chi\left(a u^{2}+a n u v-v^{2}\right) u v
$$

Main identity
If $q \rightarrow r$ holds and $h(d)=1$, then

$$
4 G_{\chi}(a, n)+n(a+\bar{\chi}(a)) B \equiv 0 \quad(\bmod \mathfrak{R})
$$

for a certain $B \in \mathbb{Z}\left[\zeta_{q}\right]$.

Consider the 2-dimensional "Gauss sum"

$$
G_{\chi}(a, n)=\sum_{1 \leq u, v \leq q-1} \chi\left(a u^{2}+a n u v-v^{2}\right) u v
$$

Main identity

If $q \rightarrow r$ holds and $h(d)=1$, then

$$
4 G_{\chi}(a, n)+n(a+\bar{\chi}(a)) B \equiv 0 \quad(\bmod \mathfrak{R})
$$

for a certain $B \in \mathbb{Z}\left[\zeta_{q}\right]$.

- If $q \rightarrow r$ holds, the main identity "sieves" the couples (a, n) (mod $q r$).
- We check with computer if the main identity holds for suitably chosen q and r.
- $q \rightarrow r$ holds if $r \mid h^{-}(q)$, where $h^{-}(q)$ is the relative class number of the cyclotomic field $\mathbb{Q}\left(\zeta_{q}\right)$.
- $q \rightarrow r$ holds if $r \mid h^{-}(q)$, where $h^{-}(q)$ is the relative class number of the cyclotomic field $\mathbb{Q}\left(\zeta_{q}\right)$.
- Many different parameters q and r, e.g.

$$
\begin{aligned}
5 \times 19 & \rightarrow 13 \\
7 \times 19 & \rightarrow 13,37,73, \\
13 \times 19 & \rightarrow 3,7,73,127, \\
181 & \rightarrow 5,37
\end{aligned}
$$

- $q \rightarrow r$ holds if $r \mid h^{-}(q)$, where $h^{-}(q)$ is the relative class number of the cyclotomic field $\mathbb{Q}\left(\zeta_{q}\right)$.
- Many different parameters q and r, e.g.

$$
\begin{aligned}
5 \times 19 & \rightarrow 13 \\
7 \times 19 & \rightarrow 13,37,73, \\
13 \times 19 & \rightarrow 3,7,73,127, \\
181 & \rightarrow 5,37
\end{aligned}
$$

- We end up with only possible cases for (a, n) such that

$$
n \equiv 0 \quad(\bmod 3 \cdot 5 \cdots 43 \cdot 181 \cdot 353)
$$

if $a n>2 \cdot 3315$ (Jacobi symbol condition).

- $q \rightarrow r$ holds if $r \mid h^{-}(q)$, where $h^{-}(q)$ is the relative class number of the cyclotomic field $\mathbb{Q}\left(\zeta_{q}\right)$.
- Many different parameters q and r, e.g.

$$
\begin{aligned}
5 \times 19 & \rightarrow 13 \\
7 \times 19 & \rightarrow 13,37,73 \\
13 \times 19 & \rightarrow 3,7,73,127 \\
181 & \rightarrow 5,37
\end{aligned}
$$

- We end up with only possible cases for (a, n) such that

$$
n \equiv 0 \quad(\bmod 3 \cdot 5 \cdots 43 \cdot 181 \cdot 353)
$$

if $a n>2 \cdot 3315$ (Jacobi symbol condition).

- This contradicts Theorem L. Therefore an <2.3315.

Effective Lower Bounds for $h(d)$

- Siegel's theorem is ineffective.

Effective Lower Bounds for $h(d)$

- Siegel's theorem is ineffective.
- We find an effective lower bound for a subfamily of $d=n^{2}+4$. It is interesting having in mind that even the class number two problem for $d=n^{2}+4$ is not yet solved without GRH.

Effective Lower Bounds for $h(d)$

- Siegel's theorem is ineffective.
- We find an effective lower bound for a subfamily of $d=n^{2}+4$. It is interesting having in mind that even the class number two problem for $d=n^{2}+4$ is not yet solved without GRH.

Theorem (L., 2012)
Let $n=m\left(m^{2}-3 \cdot 136\right)$ for a positive odd integer m, and
$N=2^{2} \cdot 3^{3} \cdot 7 \cdot 43 \cdot 61 \cdot 137$. If $d=n^{2}+4$ is square-free and $\left(\frac{d}{N}\right)=-1$, then for every $\epsilon>0$ there exists an effective computable constant $c_{\epsilon}>0$, depending only on ϵ, such that

$$
h(d)=h\left(n^{2}+4\right)>c_{\epsilon}(\log d)^{1-\epsilon} .
$$

Effective Lower Bounds for $h(d)$

Theorem (Goldfeld,1976)

Let d be a fundamental discriminant of a real quadratic field. If there exists an elliptic curve E over \mathbb{Q} such that $L(E, s) L\left(E^{d}, s\right)$ has a zero of order ≥ 5 at $s=1$, then for any $\epsilon>0$ there is an effective computable constant $c_{\epsilon}(E)>0$, such that

$$
h(d) \log \epsilon_{d}>c_{\epsilon}(E)(\log d)^{2-\epsilon} .
$$

- Goldfeld's method uses L-functions of elliptic curves.
- Without Birch-Swinnerton-Dyer conjecture for general $d>0$ only $h(d)>(\log d)^{-\epsilon}$.

Effective Lower Bounds for $h(d)$

Theorem (Goldfeld,1976)

Let d be a fundamental discriminant of a real quadratic field. If there exists an elliptic curve E over \mathbb{Q} such that $L(E, s) L\left(E^{d}, s\right)$ has a zero of order ≥ 5 at $s=1$, then for any $\epsilon>0$ there is an effective computable constant $c_{\epsilon}(E)>0$, such that

$$
h(d) \log \epsilon_{d}>c_{\epsilon}(E)(\log d)^{2-\epsilon} .
$$

- Goldfeld's method uses L-functions of elliptic curves.
- Without Birch-Swinnerton-Dyer conjecture for general $d>0$ only $h(d)>(\log d)^{-\epsilon}$.
- Are there modular or automorphic forms whose L-functions have high-order zeroes at the central point (≥ 3) ?

Thank you for your attention!

