On the k-free values of the polynomial $x y^{k}+C$

Joint Austrian-Hungarian Mathematical Conference 2015, Győr

Kostadinka Lapkova

Alfréd Rényi Institute of Mathematics, Budapest
25.08 .2015

Introduction

For integer $k \geq 2$ and $n \in \mathbb{Z}$ we say that n is k-free if there is no prime p such that $p^{k} \mid n$.

Introduction

For integer $k \geq 2$ and $n \in \mathbb{Z}$ we say that n is k-free if there is no prime p such that $p^{k} \mid n$.

Conjecture

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z})=\{f(n), n \in \mathbb{Z}\}$ contains infinitely many k-free values.

Introduction

For integer $k \geq 2$ and $n \in \mathbb{Z}$ we say that n is k-free if there is no prime p such that $p^{k} \mid n$.

Conjecture

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z})=\{f(n), n \in \mathbb{Z}\}$ contains infinitely many k-free values.

Aim for an asymptotic formula for the quantity

$$
N_{f}(H, k):=\#\{n \leq H: f(n) \text { is } k \text {-free }\}
$$

Introduction

For integer $k \geq 2$ and $n \in \mathbb{Z}$ we say that n is k-free if there is no prime p such that $p^{k} \mid n$.

Conjecture

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z})=\{f(n), n \in \mathbb{Z}\}$ contains infinitely many k-free values.

Aim for an asymptotic formula for the quantity

$$
N_{f}(H, k):=\#\{n \leq H: f(n) \text { is } k \text {-free }\}
$$

- (Ricci, 1933) $k \geq d, d$ is the degree of $f(x)$;
- (Hooley, 1967) $k=d-1$;
- (Browning, 2011) $k \geq(3 d+1) / 4$.

Introduction

Conjecture

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z}, \mathbb{Z})=\left\{f(m, n),(m, n) \in \mathbb{Z}^{2}\right\}$ contains infinitely many k-free values.

Introduction

Conjecture

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z}, \mathbb{Z})=\left\{f(m, n),(m, n) \in \mathbb{Z}^{2}\right\}$ contains infinitely many k-free values.

Define the quantity

$$
S_{f}(H, k):=\#\{m, n \leq H: f(m, n) \text { is } k \text {-free }\} .
$$

Introduction

Conjecture

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z}, \mathbb{Z})=\left\{f(m, n),(m, n) \in \mathbb{Z}^{2}\right\}$ contains infinitely many k-free values.

Define the quantity

$$
S_{f}(H, k):=\#\{m, n \leq H: f(m, n) \text { is } k \text {-free }\} .
$$

Asymptotic formula for binary forms:

- (Greaves, 1992) $k \geq(d-1) / 2$.

Introduction

Conjecture

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ with no fixed k-th power prime divisor the set $f(\mathbb{Z}, \mathbb{Z})=\left\{f(m, n),(m, n) \in \mathbb{Z}^{2}\right\}$ contains infinitely many k-free values.

Define the quantity

$$
S_{f}(H, k):=\#\{m, n \leq H: f(m, n) \text { is } k \text {-free }\} .
$$

Asymptotic formula for binary forms:

- (Greaves, 1992) $k \geq(d-1) / 2$.

Positive lower bound of the expected order of magnitude for general inhomogeneous polynomials:

- (Hooley, 2009) $k \geq 3 d / 4-1$;
- (Browning, 2011) $k>39 d / 64$.

Introduction

Asymptotic formulas for specific two-variable polynomials, e.g.

$$
x y-1, \quad x^{2}+y^{2}+1 \quad(k=d)
$$

Introduction

Asymptotic formulas for specific two-variable polynomials, e.g.

$$
x y-1, \quad x^{2}+y^{2}+1 \quad(k=d)
$$

Expected asymptotic formula for $S_{f}(H, k)$ when $k \geq d-1$.

Introduction

Asymptotic formulas for specific two-variable polynomials, e.g.

$$
x y-1, \quad x^{2}+y^{2}+1 \quad(k=d)
$$

Expected asymptotic formula for $S_{f}(H, k)$ when $k \geq d-1$.

Theorem(Hooley, 1976)

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree d there exist constants $\delta=\delta(d), 0<\delta<1$, and $c_{f}>0$, such that the following asymptotic formula holds:

$$
N_{f}(H, d-1)=c_{f} H+\mathcal{O}\left(\frac{H}{\log ^{\delta} H}\right)
$$

Introduction

In the two-variable case Hooley's result should be read as

Conjecture(?)

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ of degree d there exist constants $\delta=\delta(d), 0<\delta<1$, and $c_{f}>0$, such that the following asymptotic formula holds:

$$
S_{f}(H, d-1)=c_{f} H^{2}+\mathcal{O}\left(\frac{H^{2}}{\log ^{\delta} H}\right)
$$

Introduction

In the two-variable case Hooley's result should be read as

Conjecture(?)

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ of degree d there exist constants $\delta=\delta(d), 0<\delta<1$, and $c_{f}>0$, such that the following asymptotic formula holds:

$$
S_{f}(H, d-1)=c_{f} H^{2}+\mathcal{O}\left(\frac{H^{2}}{\log ^{\delta} H}\right)
$$

Can we get a positive power saving in the error term?

k-free values of $x y^{k}+C$

Theorem (L.,2015)

Let $f(x, y)=x y^{k}+C \in \mathbb{Z}[x, y]$ for $k \geq 2$ and $C \neq 0$. Let $S(H)$ count the k-free values of $f(x, y)$ when $1 \leq x, y \leq H$. Then, for some real $\delta=\delta(k)>0$, we have

$$
S(H)=c_{f, k} H^{2}+\mathcal{O}\left(H^{2-\delta}\right)
$$

where

$$
c_{f, k}=\prod_{p}\left(1-\frac{\rho\left(p^{k}\right)}{p^{2 k}}\right)
$$

and

$$
\rho(m)=\#\left\{(\mu, \nu) \in(\mathbb{Z} / m \mathbb{Z})^{2}: \quad m \mid f(\mu, \nu)\right\} .
$$

k-free values of $x y^{k}+C$

Theorem (L., 2015)

Let $f(x, y)=x y^{k}+C \in \mathbb{Z}[x, y]$ for $k \geq 2$ and $C \neq 0$. Let $S(H)$ count the k-free values of $f(x, y)$ when $1 \leq x, y \leq H$. Then, for some real
$\delta=\delta(k)>0$, we have

$$
S(H)=c_{f, k} H^{2}+\mathcal{O}\left(H^{2-\delta}\right),
$$

where

$$
c_{f, k}=\prod_{p}\left(1-\frac{\rho\left(p^{k}\right)}{p^{2 k}}\right)
$$

and

$$
\rho(m)=\#\left\{(\mu, \nu) \in(\mathbb{Z} / m \mathbb{Z})^{2}: \quad m \mid f(\mu, \nu)\right\} .
$$

Actually $\delta(k)=1 /(7 k)$ for $k \geq 3$ and for $k=2$ the error term is a bit worse: $\mathcal{O}\left(H^{1.979}\right)$.

Proof of Theorem 1

Use the identity

$$
\sum_{d^{k} \mid n} \mu(d)= \begin{cases}1 & , n \text { is } k \text {-free } \\ 0 & , \text { otherwise }\end{cases}
$$

Proof of Theorem 1

Use the identity

$$
\sum_{d^{k} \mid n} \mu(d)= \begin{cases}1 & , n \text { is } k \text {-free } \\ 0 & , \text { otherwise }\end{cases}
$$

Then we can write

$$
\begin{aligned}
S(H) & =\sum_{\substack{1 \leq x, y \leq H \\
x y^{k}+C-k \text {-free }}} 1=\sum_{1 \leq x, y \leq H} \sum_{d^{k} \mid f(x, y)} \mu(d) \\
& =\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right),
\end{aligned}
$$

where

$$
S\left(d^{k}, H\right)=\sum_{\substack{1 \leq x, y \leq H \\ d^{k} \mid f(x, y)}} 1 .
$$

Proof of Theorem 1 (Cont.)

$$
S(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right)=S_{1}+S_{2}+S_{3}+S_{4}
$$

Proof of Theorem 1 (Cont.)

$$
S(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right)=S_{1}+S_{2}+S_{3}+S_{4}
$$

- $1 \leq d \leq H^{1 / k}$ in S_{1} - main term in the asmptotic formula;

Proof of Theorem 1 (Cont.)

$$
S(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right)=S_{1}+S_{2}+S_{3}+S_{4}
$$

- $1 \leq d \leq H^{1 / k}$ in S_{1} - main term in the asmptotic formula;
- $H^{1 / k}<d \leq H^{1-\delta}$ in S_{2} for a small enough $\delta>0$;

Proof of Theorem 1 (Cont.)

$$
S(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right)=S_{1}+S_{2}+S_{3}+S_{4}
$$

- $1 \leq d \leq H^{1 / k}$ in S_{1} - main term in the asmptotic formula;
- $H^{1 / k}<d \leq H^{1-\delta}$ in S_{2} for a small enough $\delta>0$;
- $H^{1+\delta}<d \ll H^{1+1 / k}$ in S_{4};

Proof of Theorem 1 (Cont.)

$$
S(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right)=S_{1}+S_{2}+S_{3}+S_{4}
$$

- $1 \leq d \leq H^{1 / k}$ in S_{1} - main term in the asmptotic formula;
- $H^{1 / k}<d \leq H^{1-\delta}$ in S_{2} for a small enough $\delta>0$;
- $H^{1+\delta}<d \ll H^{1+1 / k}$ in S_{4};

For the interval $H^{1-\delta}<d \leq H^{1+\delta}$ of the sum S_{3} we further bound trivially the contributions when $1 \leq x \leq H^{\eta}$ for small enough $\eta>0$ and $1 \leq y \leq H^{1-2 \delta}$.

Proof of Theorem 1 (Cont.)

$$
S(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S\left(d^{k}, H\right)=S_{1}+S_{2}+S_{3}+S_{4}
$$

- $1 \leq d \leq H^{1 / k}$ in S_{1} - main term in the asmptotic formula;
- $H^{1 / k}<d \leq H^{1-\delta}$ in S_{2} for a small enough $\delta>0$;
- $H^{1+\delta}<d \ll H^{1+1 / k}$ in S_{4};

For the interval $H^{1-\delta}<d \leq H^{1+\delta}$ of the sum S_{3} we further bound trivially the contributions when $1 \leq x \leq H^{\eta}$ for small enough $\eta>0$ and $1 \leq y \leq H^{1-2 \delta}$.
We finally need to estimate the sum

$$
\tilde{S}_{3}=\sum_{H^{1-\delta}<d \leq H^{1+\delta}} \sum_{\substack{H^{\eta}<x \leq H \\ H^{1-2 \delta}<y \leq H}} \sum_{x y^{k}+C=a d^{k}} 1 .
$$

Counting solutions

In other words we need to count the solutions of the Diophantine equation

$$
x y^{k}-a d^{k}=-C
$$

for

$$
\begin{aligned}
& H^{1-\delta}<d \\
& H^{\eta}<H^{1+\delta} \\
& H^{1-2 \delta}<y \\
& 1 \leq H \\
& 1 \leq H^{k+1} / d^{k} \leq H^{1+k \delta}
\end{aligned}
$$

Counting solutions

In other words we need to count the solutions of the Diophantine equation

$$
x y^{k}-a d^{k}=-C
$$

for

$$
\begin{aligned}
H^{1-\delta} & <d \\
H^{\eta} & \leq H^{1+\delta} \\
H^{1-2 \delta} & <y \\
1 & \leq H \\
\leq a & \leq H^{k+1} / d^{k} \leq H^{1+k \delta}
\end{aligned}
$$

Trivial bounding would give error term $H^{2+\delta}$.

Counting solutions

In other words we need to count the solutions of the Diophantine equation

$$
x y^{k}-a d^{k}=-C
$$

for

$$
\begin{aligned}
& H^{1-\delta}<d \\
& H^{\eta}<H^{1+\delta} \\
& H^{1-2 \delta}<y \\
& 1 \leq H \\
& 1 \leq H^{k+1} / d^{k} \leq H^{1+k \delta}
\end{aligned}
$$

Trivial bounding would give error term $H^{2+\delta}$. Write

- $x \sim X$ when $X<x<2 X$;
- $x \asymp X$ when there are constants $A, B>0$, independent of X, such that $A X \leq|x| \leq B X$.

Theorem of Reuss, 2014

Let $D, Y, z>1$ and $\varepsilon>0$. Let k, ℓ, h be integers such that $1 \leq \ell<k$ and $h \neq 0$. Let
$\mathcal{N}(z ; D, Y):=\left\{(d, y, a, x) \in \mathbb{N}^{4}: d \sim D, y \sim Y, a \sim A, x \sim X, x^{\ell} y^{k}-a^{\ell} d^{k}=h\right\}$, where $X^{\ell} Y^{k}=A^{\ell} D^{k}=z$. Let $M>1$ be defined by

$$
\log M=\frac{9}{8} \frac{\log (D Y) \log (A X)}{\log z},
$$

and suppose the following conditions are satisfied:
(1) $\log (D Y) \asymp \log (A X) \asymp \log z$;
(2) $\ell \geq 2$, or $D Y \gg_{k, \ell, h} z^{1 / k}$.

Then, if z is large enough in terms of ε,

$$
\mathcal{N}(z ; D, Y)<_{\varepsilon, k, \ell, h} z^{\varepsilon} \min \left\{(D Y M)^{1 / 2}+D+Y,(A X M)^{1 / 2}+A+X\right\}
$$

Proof of Theorem 1(Cont.)

From Reuss' theorem, and choosing $\delta=1 /(7 k)$, we get

$$
\tilde{S}_{3} \ll H^{\varepsilon+G_{k}},
$$

where

$$
G_{k}=\left(1+\frac{1}{14 k}\right)\left(1+\frac{9 \cdot 17}{7 \cdot 8} \frac{1}{k+1}\right) .
$$

We have $G_{k}<2$ for any $k \geq 2$.

Proof of Theorem 1(Cont.)

From Reuss' theorem, and choosing $\delta=1 /(7 k)$, we get

$$
\tilde{S}_{3} \ll H^{\varepsilon+G_{k}}
$$

where

$$
G_{k}=\left(1+\frac{1}{14 k}\right)\left(1+\frac{9 \cdot 17}{7 \cdot 8} \frac{1}{k+1}\right) .
$$

We have $G_{k}<2$ for any $k \geq 2$.
For $k=2$ the error term $H^{\varepsilon+G_{k}}$ is the largest, for $k \geq 3$ the expression G_{k} is smaller than $2-1 /(7 k)$.

Prime arguments

Conjecture (Erdős, 1953)

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P})=\{f(p), p-$ prime $\}$ contains infinitely many $(d-1)$-free values.

Prime arguments

Conjecture (Erdős, 1953)

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P})=\{f(p), p-$ prime $\}$ contains infinitely many $(d-1)$-free values.

- (Helfgott, Heath-Brown, Browning,...)
- (Reuss, 2013) $d \geq 3$

Prime arguments

Conjecture (Erdős, 1953)

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P})=\{f(p), p-$ prime $\}$ contains infinitely many $(d-1)$-free values.

- (Helfgott, Heath-Brown, Browning,...)
- (Reuss, 2013) $d \geq 3$

Conjecture

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P}, \mathbb{P})=\{f(p, q), p, q-$ prime $\}$ contains infinitely many $(d-1)$-free values.

Prime arguments

Conjecture (Erdős, 1953)

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P})=\{f(p), p-$ prime $\}$ contains infinitely many $(d-1)$-free values.

- (Helfgott, Heath-Brown, Browning,...)
- (Reuss, 2013) $d \geq 3$

Conjecture

For the irreducible polynomial $f(x, y) \in \mathbb{Z}[x, y]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P}, \mathbb{P})=\{f(p, q), p, q-$ prime $\}$ contains infinitely many $(d-1)$-free values.

We resolve the conjecture for our specific polynomial $x y^{k}+C$.

Theorem for prime arguments

Theorem (L., 2015)

Let $f(x, y)=x y^{k}+C \in \mathbb{Z}[x, y]$ for $k \geq 2$ and $C \neq 0$. Let $S^{\prime}(H)$ count the k-free values of $f(p, q)$ for prime numbers $1<p, q \leq H$. Then, for any real $K>2$, we have the asymptotic formula

$$
S^{\prime}(H)=c_{f, k}^{\prime} \pi(H)^{2}+\mathcal{O}\left(\frac{H^{2}}{(\log H)^{K}}\right)
$$

where

$$
c_{f, k}^{\prime}=\prod_{p}\left(1-\frac{\rho^{\prime}\left(p^{k}\right)}{\varphi\left(p^{k}\right)^{2}}\right)
$$

and

$$
\rho^{\prime}(m)=\#\left\{(\mu, \nu) \in(\mathbb{Z} / m \mathbb{Z})^{2}: \quad(\mu, m)=(\nu, m)=1 \text { and } m \mid f(\mu, \nu)\right\} .
$$

Proof of Theorem 2

We split the sum $S^{\prime}(H)$ into three parts:

$$
S^{\prime}(H)=\sum_{1 \leq d \ll H^{1+1 / k}} \mu(d) S^{\prime}\left(d^{k}, H\right)=S_{1}^{\prime}+S_{2}^{\prime}+S_{3}^{\prime},
$$

where

$$
S^{\prime}\left(d^{k}, H\right)=\sum_{\substack{p, q \leq H \\ d^{k} \mid f(p, q)}} 1
$$

Proof of Theorem 2

We split the sum $S^{\prime}(H)$ into three parts:

$$
S^{\prime}(H)=\sum_{1<d<H^{1+1 / k}} \mu(d) S^{\prime}\left(d^{k}, H\right)=S_{1}^{\prime}+S_{2}^{\prime}+S_{3}^{\prime},
$$

where

$$
S^{\prime}\left(d^{k}, H\right)=\sum_{\substack{p, q \leq H \\ d^{k} \mid f(p, q)}} 1
$$

- $1 \leq d \leq(\log H)^{2 K}$ in S_{1}^{\prime} - main term $\asymp H^{2} / \log ^{2} H$, use of Siegel-Walfisz theorem;

Proof of Theorem 2

We split the sum $S^{\prime}(H)$ into three parts:

$$
S^{\prime}(H)=\sum_{1<d<H^{1+1 / k}} \mu(d) S^{\prime}\left(d^{k}, H\right)=S_{1}^{\prime}+S_{2}^{\prime}+S_{3}^{\prime},
$$

where

$$
S^{\prime}\left(d^{k}, H\right)=\sum_{\substack{p, q \leq H \\ d^{k} \mid f(p, q)}} 1
$$

- $1 \leq d \leq(\log H)^{2 K}$ in S_{1}^{\prime} - main term $\asymp H^{2} / \log ^{2} H$, use of Siegel-Walfisz theorem;
- $(\log H)^{2 K}<d \leq H^{1 / k}$ in S_{2}^{\prime};

Proof of Theorem 2

We split the sum $S^{\prime}(H)$ into three parts:

$$
S^{\prime}(H)=\sum_{1<d \ll H^{1+1 / k}} \mu(d) S^{\prime}\left(d^{k}, H\right)=S_{1}^{\prime}+S_{2}^{\prime}+S_{3}^{\prime},
$$

where

$$
S^{\prime}\left(d^{k}, H\right)=\sum_{\substack{p, q \leq H \\ d^{k} \mid f(p, q)}} 1
$$

- $1 \leq d \leq(\log H)^{2 K}$ in S_{1}^{\prime} - main term $\asymp H^{2} / \log ^{2} H$, use of Siegel-Walfisz theorem;
- $(\log H)^{2 K}<d \leq H^{1 / k}$ in S_{2}^{\prime};
- $H^{1 / k}<d \ll H^{1+1 / k}$ in S_{3}^{\prime} - use the bounds from Theorem 1 .

Speculations

The determinant method estimates

Reuss' equation
 $x^{k} y^{\ell}-a^{k} b^{\ell}=h$ for $k>\ell \geq 1, h \neq 0$.

Speculations

The determinant method estimates

Reuss' equation

$x^{k} y^{\ell}-a^{k} b^{\ell}=h$ for $k>\ell \geq 1, h \neq 0$.
Reduction to analyses of the curve $t=s^{k / \ell}$ for $t=b / y$ and $s=x / a$, rather than a three-dimensional variety.

Speculations

The determinant method estimates

Reuss' equation

$x^{k} y^{\ell}-a^{k} b^{\ell}=h$ for $k>\ell \geq 1, h \neq 0$.
Reduction to analyses of the curve $t=s^{k / \ell}$ for $t=b / y$ and $s=x / a$, rather than a three-dimensional variety.
Can the determinant method tackle more

General equation

$x^{k} y^{\ell}-a^{d-1} b=h$ for $k \geq \ell \geq 1$ and $k+\ell=d, h \neq 0$?

Speculations

The determinant method estimates

Reuss' equation

$x^{k} y^{\ell}-a^{k} b^{\ell}=h$ for $k>\ell \geq 1, h \neq 0$.
Reduction to analyses of the curve $t=s^{k / \ell}$ for $t=b / y$ and $s=x / a$, rather than a three-dimensional variety.
Can the determinant method tackle more

General equation

$x^{k} y^{\ell}-a^{d-1} b=h$ for $k \geq \ell \geq 1$ and $k+\ell=d, h \neq 0$?
Then the power-saving in the error term can solve the two-dimensional Erdős' conjecture!

Thank you for your attention!

