Divisibility of class numbers of imaginary quadratic fields with discriminants of only three prime factors

Kostadinka Lapkova

Central European University Budapest, Hungary

August 22, 2011

- $\mathbb{Q}(\sqrt{d}), d = -pqr < 0$
- Class group Cl(d) = free group of fractional ideals/principal fractional ideals
- Class number h(d) = the finite order of the class group

- $\mathbb{Q}(\sqrt{d}), d = -pqr < 0$
- Class group Cl(d) = free group of fractional ideals/principal fractional ideals
- Class number h(d) = the finite order of the class group

Theorem (Belabas, Fouvry, 1999)

There exists a positive density of primes p such that h(p) is not divisible by 3.

- $\mathbb{Q}(\sqrt{d}), d = -pqr < 0$
- Class group Cl(d) = free group of fractional ideals/principal fractional ideals
- Class number h(d) = the finite order of the class group

Theorem (Belabas, Fouvry, 1999)

There exists a positive density of primes p such that h(p) is not divisible by 3.

• Analogous result for negative discriminants that are pseudo primes.

- $\mathbb{Q}(\sqrt{d}), d = -pqr < 0$
- Class group Cl(d) = free group of fractional ideals/principal fractional ideals
- Class number h(d) = the finite order of the class group

Theorem (Belabas, Fouvry, 1999)

There exists a positive density of primes p such that h(p) is not divisible by 3.

- Analogous result for negative discriminants that are pseudo primes.
- Divisibility of class numbers of quadratic fields whose discriminants have small number of prime divisors.

Theorem (Byeon,Lee,2008)

Let $\ell \ge 2$ be an integer. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has only two prime divisors.

Theorem (Byeon,Lee,2008)

Let $\ell \ge 2$ be an integer. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has only two prime divisors.

Theorem (K.L.,2011)

Let $\ell \ge 2$ and $k \ge 3$ be integers. There are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly k different prime divisors.

Extending results of András Biró on Yokoi's conjecture ($d = n^2 + 4$):

Theorem (K.L.,2010)

If $d = (an)^2 + 4a$ is square-free for a and n - odd positive integers such that 43.181.353 divides n, then h(d) > 1.

Extending results of András Biró on Yokoi's conjecture ($d = n^2 + 4$):

Theorem (K.L.,2010)

If $d = (an)^2 + 4a$ is square-free for a and n - odd positive integers such that 43.181.353 divides n, then h(d) > 1.

The parameter 43.181.353 :

$$h(-43.181.353) = 2^9.3$$
.

Main identity

where q

$$qh(-q)h(-qd) = \frac{n}{6}\left(a + \left(\frac{a}{q}\right)\right)\prod_{p|q}(p^2 - 1),$$

where $q \equiv 3 \pmod{4}$ is squarefree, $q \mid n$, $(q, a) = 1$ and
 $h(d) = h((an)^2 + 4a) = 1.$

< 4 → <

Main identity

$$qh(-q)h(-qd) = \frac{n}{6}\left(a + \left(\frac{a}{q}\right)\right)\prod_{p|q}(p^2 - 1),$$

where $q \equiv 3 \pmod{4}$ is squarefree, $q \mid n, (q, a) = 1$ and
 $h(d) = h((an)^2 + 4a) = 1.$

Corollary

h(d) =

There exists an infinite family of parameters q, where q has exactly three distinct prime factors, with the following property. If $d = (an)^2 + 4a$ is square-free for a and n - odd positive integers, and q divides n. then h(d) > 1.

Sketch of the proof

The idea comes from treatment of an additive problem in

```
🔒 A. Balog and K. Ono
```

Ellements of class groups and Shafarevich-Tate groups of elliptic curves

Duke Math. J. 2003, no.1, 35-63

Sketch of the proof

The idea comes from treatment of an additive problem in

```
A. Balog and K. Ono
```

Ellements of class groups and Shafarevich-Tate groups of elliptic curves Duke Math. J. **2003**, no.1, 35–63

They need "Siegel-Walfisz sets".

(Number field generalization of the Siegel-Walfisz theorem for uniform distribution of primes in residue classes.)

Definition (Siegel-Walfisz set for Δ)

Let \mathcal{P} be an infinite set of primes with density $0 < \gamma < 1$ and for (q, b) = 1 let $\mathcal{P}(x, q, b)$ be the number of primes $p \in \mathcal{P}$ with $p \leq x$ and $p \equiv b \pmod{q}$. Then \mathcal{P} is a Siegel-Walfisz set for Δ if for any fixed integer C > 0

$$\mathcal{P}(x,q,b) = rac{\gamma}{\varphi(q)} \pi(x) + \mathcal{O}(rac{x}{\log^{C} x})$$

uniformly for all $(q, \Delta) = 1$ and all b coprime to q.

Find asymptotic formula for the solutions of

$$4m^\ell = p_1 + p_2 p_3$$

for $\ell \geq 2$, *m*-odd positive integer and $p_1 \in \mathcal{P}_1$, $p_2, p_3 \in \mathcal{P}_2$ for the Siegel-Walfisz sets for Δ :

• Every $p \in \mathcal{P}_1$ is $\equiv -5 \pmod{\Delta}$

Find asymptotic formula for the solutions of

$$4m^\ell = p_1 + p_2 p_3$$

for $\ell \geq 2$, *m*-odd positive integer and $p_1 \in \mathcal{P}_1$, $p_2, p_3 \in \mathcal{P}_2$ for the Siegel-Walfisz sets for Δ :

- Every $p \in \mathcal{P}_1$ is $\equiv -5 \pmod{\Delta}$
- Every $r \in \mathcal{P}_2$ is $\equiv 3 \pmod{\Delta}$

Find asymptotic formula for the solutions of

$$4m^\ell = p_1 + p_2 p_3$$

for $\ell \geq 2$, *m*-odd positive integer and $p_1 \in \mathcal{P}_1$, $p_2, p_3 \in \mathcal{P}_2$ for the Siegel-Walfisz sets for Δ :

• Every
$$p \in \mathcal{P}_1$$
 is $\equiv -5 \pmod{\Delta}$
• Every $r \in \mathcal{P}_2$ is $\equiv 3 \pmod{\Delta}$
• $p_1 \le \sqrt{X}$; $X^{1/8} < p_2 \le X^{1/4}, X^{3/8} < p_2 p_3 \le \sqrt{X}$

Find asymptotic formula for the solutions of

$$4m^\ell = p_1 + p_2 p_3$$

for $\ell \geq 2$, *m*-odd positive integer and $p_1 \in \mathcal{P}_1$, $p_2, p_3 \in \mathcal{P}_2$ for the Siegel-Walfisz sets for Δ :

• Every
$$p \in \mathcal{P}_1$$
 is $\equiv -5 \pmod{\Delta}$
• Every $r \in \mathcal{P}_2$ is $\equiv 3 \pmod{\Delta}$
• $p_1 \le \sqrt{X}$; $X^{1/8} < p_2 \le X^{1/4}, X^{3/8} < p_2 p_3 \le \sqrt{X}$

Theorem

Let Δ , ℓ be positive integers for which $16\ell^2 \mid \Delta$ and $(15, \Delta) = 1$. If $R_d(X)$ denotes the number of positive integers $d \leq X$ of the form

$$d = p_1 p_2 p_3 = 4m^{2\ell} - n^2,$$

then

$$R_d(X) \gg \frac{X^{1/2+1/(2\ell)}}{\log^2 X}$$

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$dt^2 = m^{2\ell} - n^2,$$

where *m* and *n* are integers with (m, 2n) = 1 and $m^{\ell} \leq d$. Then Cl(-d) contains an element of order 2ℓ .

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$dt^2 = m^{2\ell} - n^2,$$

where *m* and *n* are integers with (m, 2n) = 1 and $m^{\ell} \leq d$. Then Cl(-d) contains an element of order 2ℓ .

Corollary

Let $\ell \ge 2$ be an integer not divisible by 3 or 5. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly 3 different prime divisors.

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$dt^2 = m^{2\ell} - n^2,$$

where *m* and *n* are integers with (m, 2n) = 1 and $m^{\ell} \leq d$. Then Cl(-d) contains an element of order 2ℓ .

Corollary

Let $\ell \ge 2$ be an integer not divisible by 3 or 5. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly 3 different prime divisors.

•
$$2m^\ell = p_1 + p_2 \dots p_k$$

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$dt^2 = m^{2\ell} - n^2$$

where *m* and *n* are integers with (m, 2n) = 1 and $m^{\ell} \leq d$. Then Cl(-d) contains an element of order 2ℓ .

Corollary

Let $\ell \ge 2$ be an integer not divisible by 3 or 5. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly 3 different prime divisors.

•
$$2m^\ell = p_1 + p_2 \dots p_k$$

• Different Siegel-Walfisz sets $\mathcal{P}_1, \mathcal{P}_2$ for different k, ℓ .

Thank you for your attention!