Divisibility of class numbers
 of imaginary quadratic fields
 with discriminants of only three prime factors

Kostadinka Lapkova

Central European University
Budapest, Hungary

August 22, 2011

- $\mathbb{Q}(\sqrt{d}), d=-p q r<0$
- Class group $C l(d)=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group
- $\mathbb{Q}(\sqrt{d}), d=-p q r<0$
- Class group $C l(d)=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group

Theorem (Belabas,Fouvry, 1999)
There exists a positive density of primes p such that $h(p)$ is not divisible by 3 .

- $\mathbb{Q}(\sqrt{d}), d=-p q r<0$
- Class group $C l(d)=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group

Theorem (Belabas,Fouvry, 1999)

There exists a positive density of primes p such that $h(p)$ is not divisible by 3 .

- Analogous result for negative discriminants that are pseudo primes.
- $\mathbb{Q}(\sqrt{d}), d=-p q r<0$
- Class group $C l(d)=$ free group of fractional ideals/principal fractional ideals
- Class number $h(d)=$ the finite order of the class group

Theorem (Belabas,Fouvry, 1999)

There exists a positive density of primes p such that $h(p)$ is not divisible by 3 .

- Analogous result for negative discriminants that are pseudo primes.
- Divisibility of class numbers of quadratic fields whose discriminants have small number of prime divisors.

Let $\ell \geq 2$ be an integer. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has only two prime divisors.

Theorem (Byeon,Lee,2008)
Let $\ell \geq 2$ be an integer. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has only two prime divisors.

Theorem (K.L., 2011)
Let $\ell \geq 2$ and $k \geq 3$ be integers. There are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly k different prime divisors.

Motivation

Extending results of András Biró on Yokoi's conjecture $\left(d=n^{2}+4\right)$:
Theorem (K.L.,2010)
If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers such that 43.181.353 divides n, then $h(d)>1$.

Motivation

Extending results of András Biró on Yokoi's conjecture ($d=n^{2}+4$):
Theorem (K.L., 2010)
If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers such that 43.181.353 divides n, then $h(d)>1$.

The parameter 43.181.353:

$$
h(-43.181 .353)=2^{9} .3
$$

Motivation

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right)
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

Motivation

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right),
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

Corollary

There exists an infinite family of parameters q, where q has exactly three distinct prime factors, with the following property. If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers, and q divides n, then $h(d)>1$.

Sketch of the proof

The idea comes from treatment of an additive problem in
埥 A. Balog and K. Ono
Ellements of class groups and Shafarevich-Tate groups of elliptic curves
Duke Math. J. 2003, no.1, 35-63

Sketch of the proof

The idea comes from treatment of an additive problem in
埥 A. Balog and K. Ono
Ellements of class groups and Shafarevich-Tate groups of elliptic curves
Duke Math. J. 2003, no.1, 35-63

They need "Siegel-Walfisz sets".
(Number field generalization of the Siegel-Walfisz theorem for uniform distribution of primes in residue classes.)

Definition (Siegel-Walfisz set for Δ)
Let \mathcal{P} be an infinite set of primes with density $0<\gamma<1$ and for $(q, b)=1$ let $\mathcal{P}(x, q, b)$ be the number of primes $p \in \mathcal{P}$ with $p \leq x$ and $p \equiv b(\bmod q)$. Then \mathcal{P} is a Siegel-Walfisz set for Δ if for any fixed integer $C>0$

$$
\mathcal{P}(x, q, b)=\frac{\gamma}{\varphi(q)} \pi(x)+\mathcal{O}\left(\frac{x}{\log ^{C} x}\right)
$$

uniformly for all $(q, \Delta)=1$ and all b coprime to q.

Circle method

Find asymptotic formula for the solutions of

$$
4 m^{\ell}=p_{1}+p_{2} p_{3}
$$

for $\ell \geq 2, m$-odd positive integer and $p_{1} \in \mathcal{P}_{1}, p_{2}, p_{3} \in \mathcal{P}_{2}$ for the Siegel-Walfisz sets for Δ :

- Every $p \in \mathcal{P}_{1}$ is $\equiv-5(\bmod \Delta)$

Circle method

Find asymptotic formula for the solutions of

$$
4 m^{\ell}=p_{1}+p_{2} p_{3}
$$

for $\ell \geq 2, m$-odd positive integer and $p_{1} \in \mathcal{P}_{1}, p_{2}, p_{3} \in \mathcal{P}_{2}$ for the Siegel-Walfisz sets for Δ :

- Every $p \in \mathcal{P}_{1}$ is $\equiv-5(\bmod \Delta)$
- Every $r \in \mathcal{P}_{2}$ is $\equiv 3(\bmod \Delta)$

Circle method

Find asymptotic formula for the solutions of

$$
4 m^{\ell}=p_{1}+p_{2} p_{3}
$$

for $\ell \geq 2, m$-odd positive integer and $p_{1} \in \mathcal{P}_{1}, p_{2}, p_{3} \in \mathcal{P}_{2}$ for the Siegel-Walfisz sets for Δ :

- Every $p \in \mathcal{P}_{1}$ is $\equiv-5(\bmod \Delta)$
- Every $r \in \mathcal{P}_{2}$ is $\equiv 3(\bmod \Delta)$
- $p_{1} \leq \sqrt{X} ; X^{1 / 8}<p_{2} \leq X^{1 / 4}, X^{3 / 8}<p_{2} p_{3} \leq \sqrt{X}$

Circle method

Find asymptotic formula for the solutions of

$$
4 m^{\ell}=p_{1}+p_{2} p_{3}
$$

for $\ell \geq 2, m$-odd positive integer and $p_{1} \in \mathcal{P}_{1}, p_{2}, p_{3} \in \mathcal{P}_{2}$ for the Siegel-Walfisz sets for Δ :

- Every $p \in \mathcal{P}_{1}$ is $\equiv-5(\bmod \Delta)$
- Every $r \in \mathcal{P}_{2}$ is $\equiv 3(\bmod \Delta)$
- $p_{1} \leq \sqrt{X} ; \quad X^{1 / 8}<p_{2} \leq X^{1 / 4}, X^{3 / 8}<p_{2} p_{3} \leq \sqrt{X}$

Theorem
Let Δ, ℓ be positive integers for which $16 \ell^{2} \mid \Delta$ and $(15, \Delta)=1$. If $R_{d}(X)$ denotes the number of positive integers $d \leq X$ of the form

$$
d=p_{1} p_{2} p_{3}=4 m^{2 \ell}-n^{2},
$$

then

$$
R_{d}(X) \gg \frac{X^{1 / 2+1 /(2 \ell)}}{\log ^{2} X}
$$

Apply a statement similar to:
Soundararajan, 2000
Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$
d t^{2}=m^{2 \ell}-n^{2},
$$

where m and n are integers with $(m, 2 n)=1$ and $m^{\ell} \leq d$. Then $C l(-d)$ contains an element of order 2ℓ.

Apply a statement similar to:

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$
d t^{2}=m^{2 \ell}-n^{2},
$$

where m and n are integers with $(m, 2 n)=1$ and $m^{\ell} \leq d$. Then $C l(-d)$ contains an element of order 2ℓ.

Corollary

Let $\ell \geq 2$ be an integer not divisible by 3 or 5 . Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly 3 different prime divisors.

Apply a statement similar to:

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$
d t^{2}=m^{2 \ell}-n^{2},
$$

where m and n are integers with $(m, 2 n)=1$ and $m^{\ell} \leq d$. Then $C l(-d)$ contains an element of order 2ℓ.

Corollary

Let $\ell \geq 2$ be an integer not divisible by 3 or 5 . Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly 3 different prime divisors.

- $2 m^{\ell}=p_{1}+p_{2} \ldots p_{k}$

Apply a statement similar to:

Soundararajan,2000

Let $\ell \geq 2$ be an integer and $d \geq 63$ be a square-free integer for which

$$
d t^{2}=m^{2 \ell}-n^{2},
$$

where m and n are integers with $(m, 2 n)=1$ and $m^{\ell} \leq d$. Then $C l(-d)$ contains an element of order 2ℓ.

Corollary

Let $\ell \geq 2$ be an integer not divisible by 3 or 5 . Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 2ℓ and whose discriminant has exactly 3 different prime divisors.

- $2 m^{\ell}=p_{1}+p_{2} \ldots p_{k}$
- Different Siegel-Walfisz sets $\mathcal{P}_{1}, \mathcal{P}_{2}$ for different k, ℓ.

Thank you for your attention!

