Class number one problem for real quadratic fields of certain type

Kostadinka Lapkova
Central European University
Budapest, Hungary

June 27, 2011

- $K=\mathbb{Q}(\sqrt{d})$
- Class group $=$ free group of fractional ideals/principal fractional ideals
- Class number $=h(d)$ (the finite order of the class group)
- $K=\mathbb{Q}(\sqrt{d})$
- Class group $=$ free group of fractional ideals/principal fractional ideals
- Class number $=h(d)$ (the finite order of the class group)

Gauss conjectures:
(1) If $d<0$ and $|d| \rightarrow \infty$, then $h(d) \rightarrow \infty$. (solved)

- $K=\mathbb{Q}(\sqrt{d})$
- Class group $=$ free group of fractional ideals/principal fractional ideals
- Class number $=h(d)$ (the finite order of the class group)

Gauss conjectures:
(1) If $d<0$ and $|d| \rightarrow \infty$, then $h(d) \rightarrow \infty$. (solved)
(2) There are infinitely many $d>0$, for which $h(d)=1$. (open)

Dirichlet class number formula
For positive d we have

$$
h(d) \log \epsilon_{d}=d^{1 / 2} L\left(1, \chi_{d}\right)
$$

where ϵ_{d} is the fundamental unit of K and $\chi_{d}=(\dot{\cdot})$.

Dirichlet class number formula
For positive d we have

$$
h(d) \log \epsilon_{d}=d^{1 / 2} L\left(1, \chi_{d}\right)
$$

where ϵ_{d} is the fundamental unit of K and $\chi_{d}=(\dot{\cdot})$.

Siegel's theorem
$L\left(1, \chi_{d}\right) \gg_{\epsilon}|d|^{-\epsilon}$.
If ϵ_{d} is small, then $h(d) \rightarrow \infty$.

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

- They have small fundamental units : $\log \epsilon_{d} \asymp \log d$.

Richaud-Degert (R-D) discriminants:

$$
d=(a n)^{2}+k a \text { with } a, n>0, \pm k \in\{1,2,4\}
$$

- They have small fundamental units: $\log \epsilon_{d} \asymp \log d$.
\Rightarrow R-D class number tends to infinity with $d \rightarrow \infty$.
- Siegel's theorem is ineffective.
- Siegel's theorem is ineffective.
- Class number one problem : Find the exact d for which $h(d)=1$.
- Siegel's theorem is ineffective.
- Class number one problem : Find the exact d for which $h(d)=1$. Biró solves the class number one problem in the following cases:

Theorem (Biró 2003)

- Yokoi's conjecture is true: Let $d=n^{2}+4$. Then $h(d)>1$ if $n>17$;
- Chowla's conjecture is true : Let $d=4 n^{2}+1$. Then $h(d)>1$ if $n>13$.
- Siegel's theorem is ineffective.
- Class number one problem : Find the exact d for which $h(d)=1$. Biró solves the class number one problem in the following cases:

Theorem (Biró 2003)

- Yokoi's conjecture is true : Let $d=n^{2}+4$. Then $h(d)>1$ if $n>17$;
- Chowla's conjecture is true : Let $d=4 n^{2}+1$. Then $h(d)>1$ if $n>13$.

Until now not known results for two-parameter R-D discriminants without GRH.

We use Biró's methods, without any computer work, to obtain Theorem
If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers such that 43.181.353 divides n, then $h(d)>1$.

We use Biró's methods, without any computer work, to obtain
Theorem
If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers such that 43.181.353 divides n, then $h(d)>1$.

The parameter 43.181.353:

$$
h(-43.181 .353)=2^{9} .3
$$

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right)
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right)
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

- $a \equiv 3(\bmod 4)$ (genus theory)

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right)
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

- $a \equiv 3(\bmod 4)$ (genus theory)
- $\left(\frac{a}{q}\right)=-1$ (small primes are inert)

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right)
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

- $a \equiv 3(\bmod 4)$ (genus theory)
- $\left(\frac{a}{q}\right)=-1$ (small primes are inert)
\Rightarrow Right-hand side is with fixed 2-part

Main identity

$$
q h(-q) h(-q d)=\frac{n}{6}\left(a+\left(\frac{a}{q}\right)\right) \prod_{p \mid q}\left(p^{2}-1\right)
$$

where $q \equiv 3(\bmod 4)$ is squarefree, $q \mid n,(q, a)=1$ and $h(d)=h\left((a n)^{2}+4 a\right)=1$.

- $a \equiv 3(\bmod 4)$ (genus theory)
- $\left(\frac{a}{q}\right)=-1$ (small primes are inert)
\Rightarrow Right-hand side is with fixed 2-part
! Take $h(-q)$ with big 2-part

Another possible choice of parameter is 5.359.541:

$$
h(-5.359 .541)=2^{9} .
$$

Another possible choice of parameter is 5.359.541:

$$
h(-5.359 .541)=2^{9} .
$$

Theorem

If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers such that 5.359.541 divides n, then $h(d)>1$.

Theorem (Byeon,Lee 2008)

If $n \geq 1$ is integer, then there are infinitely many imaginary quadratic fields with discriminant of only two prime divisors and an element of order 2^{n} in their class group.

Theorem (Byeon,Lee 2008)

If $n \geq 1$ is integer, then there are infinitely many imaginary quadratic fields with discriminant of only two prime divisors and an element of order 2^{n} in their class group.

Using application of the circle method from Balog\&Ono[1]:

Theorem

Let $n \geq 1$ be an integer. There are infinitely many imaginary quadratic fields with discriminant of only three prime divisors, each of which is congruent to 3 modulo 8, such that in their class group there is an element of order 2^{n}.

Theorem

There exists an infinite family of parameters q, which have exactly three distinct prime factors, with the following property. If $d=(a n)^{2}+4 a$ is square-free for a and n-odd positive integers, and q divides n, then $h(d)>1$.

Problem

Solve the class number one problem for all R - D discriminants of square-free $d=(a n)^{2}+4 a$, a and n-odd positive integers.

- Partial zeta function at 0 after Biró\&Granville[3] for the particular R-D discriminant.
- Results with computer for some residue classes of a, computer work on pregress.

Theorem

Let Δ, ℓ be positive integers for which $16 \ell^{2} \mid \Delta$ and $(15, \Delta)=1$. Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be infinite sets of primes satisfying Siegel-Walfisz condition for Δ such that every $p \in \mathcal{P}_{1}$ is $\equiv-5(\bmod \Delta)$ and every $r \in \mathcal{P}_{2}$ is $\equiv 3$ $(\bmod \Delta)$. If $R_{d}(X)$ denotes the number of positive integers $d \leq X$ of the form

$$
d=p_{1} p_{2} p_{3}=4 m^{2 \ell}-n^{2},
$$

where $p_{1} \in \mathcal{P}_{1}$ and $p_{2}, p_{3} \in \mathcal{P}_{2}$ are distinct and satisfy
$p_{1} \leq x, p_{1} \in \mathcal{P}_{1} ; \quad x^{1 / 4}<p_{2} \leq x^{1 / 2}, x^{3 / 4}<p_{2} p_{3} \leq x \quad$ and $\quad p_{2}, p_{3} \in \mathcal{P}_{2}$
with $x=\sqrt{X}$, then

$$
R_{d}(X) \gg \frac{X^{1 / 2+1 /(2 \ell)}}{\log ^{2} X}
$$

- $4 m^{\ell}=p_{1}+p_{2} p_{3}$

埥 A. Balog and K. Ono
Ellements of class groups and Shafarevich-Tate groups of elliptic curves
Duke Math. J. 2003, no.1, 35-63

- A. Biró,

Yokoi's conjecture
Acta Arith. 106(2003), no.1, 85-104
R A. Biró, A. Granville,
Zeta function for ideal classes in real quadratic fields, at $s=0$
preprint
D. Byeon, Sh. Lee

Divisibility of class numbers of imaginary quadratic fields whose discriminant has only two prime factors
Proc. Japan Acad., 84, Ser. A (2008), 8-10

Thank you for your attention!

