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Abstract

The current thesis deals with class number questions for quadratic number fields. The

main focus of interest is a special type of real quadratic fields with Richaud–Degert dis-

criminants d = (an)2 + 4a, which class number problem is similar to the one for imaginary

quadratic fields.

The thesis contains the solution of the class number one problem for the two-parameter

family of real quadratic fields Q(
√
d) with square-free discriminant d = (an)2 + 4a for pos-

itive odd integers a and n, where n is divisible by 43 · 181 · 353. More precisely, it is shown

that there are no such fields with class number one. This is the first unconditional result

on class number problem for Richaud–Degert discriminants depending on two parameters,

extending a vast literature on one-parameter cases. The applied method follows results

of A. Biró for computing a special value of a certain zeta function for the real quadratic

field, but uses also new ideas relating our problem to the class number of some imaginary

quadratic fields.

Further, the existence of infinitely many imaginary quadratic fields whose discriminant

has exactly three distinct prime factors and whose class group has an element of a fixed

large order is proven. The main tool used is solving an additive problem via the circle

method. This result on divisibility of class numbers of imaginary quadratic fields is ap-

plied to generalize the first theorem: there is an infinite family of parameters q = p1p2p3,

where p1, p2, p3 are distinct primes, and q ≡ 3 (mod 4), with the following property. If

d = (an)2 + 4a is square-free for odd positive integers a and n, and q divides n, then the

class number of Q(
√
d) is greater than one.

The third main result is establishing an effective lower bound for the class number of

the family of real quadratic fields Q(
√
d), where d = n2 + 4 is a square-free positive in-

teger with n = m(m2 − 306) for some odd m, with the extra condition
(
d
N

)
= −1 for

N = 23 ·33 ·103 ·10303. This result can be regarded as a corollary of a theorem of Goldfeld

and some calculations involving elliptic curves and local heights. The lower bound tending

to infinity for a subfamily of the real quadratic fields with discriminant d = n2 +4 could be

interesting having in mind that even the class number two problem for these discriminants

is still an open problem.

The upper three results are described in [35], [36] and [37] respectively. Finally, the

thesis contains a chapter on a joint work in progress with A. Biró and K. Gyarmati, which

tries to solve the class number one problem for the whole family d = (an)2 + 4a.
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Chapter 1

Introduction

The beginning of the class number problem arises as early as works of Euler and Leg-

endre who remarked that certain quadratic forms give prime values for many consecutive

values of the argument. Stepping on ideas of Lagrange for classifying binary quadratic

forms with a fixed discriminant, in Disquisitiones Arithmeticae from 1801 Gauss showed

the group structure of these quadratic forms and stated conjectures about the order of

these groups depending on the growth of the discriminant.

Let K = Q(
√
d) be a quadratic field with a fundamental discriminant d and the

class number h(d) denotes the size of the class group of K, i.e. the quotient group of

the fractional ideals by the principal fractional ideals in K. In modern terms Gauss

conjectured that for negative discriminants we have h(d) →∞ with |d| → ∞. For positive

discriminants he predicted completely different behaviour of the class number, namely

that there are infinitely many real quadratic fields with class number h(d) = 1. Whilst

the first conjecture is known to be true, the second one is still an open problem.

The conjecture for imaginary quadratic fields was shown to be true in a series of

papers by Hecke, and Deuring and Heilbronn in the 1930’s. The intriguing argument

first assumed that the generalized Riemann hypothesis was true and then that it was

false, giving the right answer in both cases. However, the method was ineffective and

despite knowing that the number of discriminants d < 0 for which h(d) = 1 is finite, they

were not known explicitly, so different methods were required to solve the class number

one problem. Something more, the Hecke–Deuring–Heilbronn argument showed that if

the conjectured discriminants d < 0 with h(d) = 1 did not constitute a complete list of

the class number one negative fundamental discriminants, then the generalized Riemann

hypothesis could not be true. This explains the active research that followed on this

topic. The first solution of the Gauss class number one problem was developed in 1952 by
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Heegner [25] with some gaps in his proof that later Stark cleared out, presenting his own

proof with ideas similar to the ones of Heegner. The result also follows by the theorem for

logarithms of algebraic numbers of Baker [1].

The existence of only finitely many negative discriminants with class number one can

be seen by the Dirichlet’s class number formula and the ineffective theorem of Siegel giving

a lower bound for the value of the Dirichlet L-function at 1. Indeed, let χ be the real

primitive character associated to the quadratic field K. Recall the Dirichlet L-function

L(s, χ) =
∞∑
n=1

χ(n)

ns
Re(s) > 1 .

The Dirichlet’s class number formula (§6 [16]) claims that if d < 0 and ω denotes the

number of roots of unity in K, then

h(d) =
ω|d|1/2

2π
L(1, χd) .

On the other hand, for positive d > 0 and the fundamental unit of K denoted by εd, we

have

h(d) log εd = d1/2L(1, χd) . (1.1)

The Dirichlet’s class number formula can be regarded as a special case of a more general

class number formula (Theorem 125 [24]) holding for any number field, according to which

the product of the class number and a certain regulator can be expressed as the residue at

s = 1 of the Dedekind zeta-function for the field. Siegel’s theorem (§21 [16]) says that for

every ε > 0 there exists a positive constant cε such that if χ is a real primitive character

modulo q, then

L(1, χ) > cεq
−ε .

If we take q = |d| it follows that for d < 0 we have

h(d) �ε |d|1/2−ε . (1.2)

If, however, we want to use the same facts for examining positive discriminants we cannot

separate the class number from the fundamental unit of the field K. Thus we limit our

research within quadratic fields with a small fundamental unit, more precisely such that

log εd � log d. These cases would lead to an analogous problem as in the imaginary case,

with finitely many d > 0 of the considered type with h(d) = 1 and class number satisfying
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(1.2). Thus, from one point we exclude discriminants that do not satisfy the Gauss class

number one conjecture for real quadratic fields, and from other point we try to determine

explicitly the class number one cases.

Examples of real quadratic fields with small fundamental units are the fields with

discriminants of Richaud–Degert type. Special cases of these are the square-free discrimi-

nants d = n2 + 4 and d = 4n2 + 1. Their class number one problems were conjectured by

Yokoi and Chowla respectively and were solved by Biró in [4] and [5]. His methods were

further extended in a joint work with Granville [7]. This thesis steps on ideas from these

works and try to resolve some of the open problems stated by Biró in [6]. In a certain

way Biró’s idea is analogous to the Baker’s proof of the class number one problem for

imaginary quadratic fields. The difference is that Biró can avoid working with a linear

form of logarithms of algebraic numbers by using elementary algebraic number theory.

His method is mostly influenced by Beck’s paper [3] where non-trivial residue classes for

the Yokoi’s conjecture were solved.

The main theorems of the thesis, already described in the Abstract, will be stated

precisely in the following chapters. Chapter 2 plays a preparatory role for the next parts.

Its main result, Claim 2.6, is extracted from the paper [35]. The chapter deals with some

elements of Gauss genus theory, defines Richaud–Degert discriminants and investigates

the splitting behaviour of the small primes in some of these real quadratic fields. Chapter

3 presents the rest of the content of [35]. This is a self-contained proof of a class number

one problem for square-free discriminants d = (an)2 + 4a for odd a and n, where n is

divisible by a certain fixed number, and is the first unconditional result on two-parameter

Richaud–Degert discriminants. The proof applies a method on computing a special value

of a zeta-function from [7] and new ideas relating the problem to the class number of

certain imaginary quadratic fields.

The research on Chapter 4 was motivated by the aim to extend the main theorem

of the previous chapter. However, it includes results on divisibility of class numbers on

imaginary quadratic fields which are interesting on their own. We give generalization of

a result from [15] and use the circle method application as used by Balog and Ono in [2].

The content of Chapter 4 is to be published in [36].

In Chapter 5 we give an effective lower bound tending to infinity for the class number

of a subfamily of the Yokoi’s fields. This is interesting having in mind that even the class
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number two problem for these fields has not been solved yet. We apply Goldfeld’s theorem,

so in reality we do not compute exactly the constant in our estimate as Goldfeld himself

does not, though this could be done. A nice explicit expression for the constant is known

only for the imaginary quadratic field case [44]. In this chapter we use techniques from

elliptic curves arithmetic and the biggest part, §5.4, is devoted to prove unconditionally

that a certain elliptic curve has analytic rank not smaller than 3. This is done by

combining classical methods of Buhler–Gross–Zagier [12] and Silverman [47]. These

results are contained in the submitted paper [37].

The last part, Chapter 6, deals with the same discriminants as in Chapter 3. In some

sense these two chapters are complementing each other. This part, and to some extent

§5.4, depend on computation in SAGE. The code, however, is omitted from the exposition

of the last chapter due to its bulk. We hope that combining the methods of Chapter 6

with those of Chapter 3 will lead us to a final solution of the class number one problem for

the whole family of positive square-free discriminants d = (an)2 + 4a. The work on this

chapter is joint with A. Biró and K. Gyarmati.
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Chapter 2

Small Inert Primes in Real Quadratic

Fields

2.1 Some Results from Gauss Genus Theory

In this and in the next chapter we apply some facts from Gauss genus theory. It is

developed for the first time by Gauss in his Disquisitiones Arithmeticae in connection with

representations of integers by quadratic forms. We give a modern language formulation

only of the basic facts we need.

Let K = Q(
√
d) be a quadratic field for a square-free d and denote by I the set of the

fractional ideals of K, and by P the set of principal fractional ideals. Then the class group

H = I/P is also called the wide class group and its order, the class number, is denoted

by h. We will also use the notation Cl(d) := H and h(d) := h when we stress on the

dependence on the discriminant. Similarly to the setting in the wide class group where

a, b ∈ I are equivalent if there is an algebraic number α ∈ K such that a = (α)b, we

consider

a = (α)b with α ∈ K, N(α) > 0 .

We say that ideals satisfying the latter relation are equivalent in the narrow sense. If both

α and its Galois conjugate are positive and d > 0 we call α totally positive and denote this

by α� 0. Introduce the set

P+ = {(α) for α ∈ K, N(α) > 0} .

Note that for d < 0 we have P+ = P as then the norm of an algebraic integer is always

positive. Also P+ = P if d > 0 and the fundamental unit is with a negative norm. The
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narrow class group is H+ = I/P+ and the narrow class number is the order of the narrow

class group denoted by h+ = |H+|. If ε is the fundamental unit of K for d > 0 by §45 [24]

we have the relation

h+ =

{
2h if K is real and N(ε) = 1 ,

h otherwise.

Also recall that the 2-rank for a finite abelian group G is the nonnegative integer rk2(G) = r

such that (G : G2) = 2r. It is easy to see that rk2(G/G
2) = rk2(G). Let the discriminant

of K be divisible by t distinct primes pi, 1 ≤ i ≤ t. Then a basic result of genus theory is

Theorem 132 [24]:

rk2(H
+) = t− 1 .

Another important result for us could be found for example as Corollary in [43]:

Lemma 2.1 (Nemenzo, Wada [43]). For odd discriminants d > 0 we have rk2(H
+) =

rk2(H) if and only if pi ≡ 1 (mod 4), 1 ≤ i ≤ t.

If h(d) = 1 for d > 0 then clearly rk2(H) = 0. If also N(ε) = N(εd) = 1, we have

h+ = 2h = 2 so rk2(H
+) 6= rk2(H). By Lemma 2.1, if d is odd, the discriminant has a

divisor which is congruent to 3 modulo 4.

2.2 Richaud–Degert Discriminants

Let K = Q(
√
d) be a quadratic imaginary field with d < 0 and let OK be its ring

of integers. If h(d) = 1 and a rational prime p splits completely in K then (p) = pp̄

and p = (α) for some α ∈ OK . Then there are integers m,n such that we can write

α = (m + n
√
d)/2. If N is the norm from K to Q then p = N(α) = (m2 − n2d)/4 =

(m2 + n2|d|)/4. Therefore a prime p splits completely in Q(
√
d) only if p ≥ (1 + |d|)/4.

It is clear that we cannot draw the similar conclusion for d > 0 with the same argument

as the norm of p might happen to be negative. That is why with different techniques we

are aiming to give the best possible similar lower bounds for the smallest split prime for

certain real quadratic fields.

Definition 2.2. If the square-free integer d = (an)2 + ka > 0 for positive integers a and n

satisfies ±k ∈ {1, 2, 4}, −n < k ≤ n and d 6= 5, then K = Q(
√
d) is called a real quadratic

field of Richaud–Degert (R-D) type.

One of the main reasons why R-D fields are interesting is the form of their fundamental
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unit. They are with short period of their continued fraction expansion and they are of

”small” size: log εd � log d. More precisely we have the following claim.

Lemma 2.3 (Degert [17]). Let K = Q(
√
d), d = (an)2 +ka > 0, be a real quadratic field

of R-D type. Then the fundamental unit εd and its norm N(εd) are given as follows:

εd = an+
√
d, N(εd) = −sgn(k) if |ka| = 1,

εd =
an+

√
d

2
, N(εd) = −sgn(k) if |ka| = 4,

and

εd =
2an2 + k

|k|
+

2n

|k|
√
d, N(εd) = 1 if |ka| 6= 1, 4 .

In a paper from 1988 about Chowla’s class number one conjecture Mollin gives the

following upper bound implying inert primes, i.e. primes which stay prime in the corre-

sponding number field extension.

Lemma 2.4 (Mollin [39]). Let d be a square-free positive integer, σ = 2 if d ≡ 1 (mod 4)

and σ = 1 otherwise. Suppose that (A + B
√
d)/σ is the fundamental unit of K = Q(

√
d)

and N
(
(A+B

√
d)/σ

)
= δ. If h(d) = 1 then p is inert in K for all primes

p <
(2A/σ)− δ − 1

B2
.

This lemma is one of the results toward a theorem that characterizes the Chowla’s

discriminants of class number one through prime-producing polynomials:

Lemma 2.5 (Mollin [39]). Let d = 4n2 + 1 be square-free and n is a positive integer.

Then the following are equivalent.

(i) h(d)=1.

(ii) p is inert in K = Q(
√
d) for all primes p < n.

(iii) f(x) = −x2 + x+ n2 6≡ 0 (mod p) for all integers x and primes p satisfying 0 < x <

p < n.

(iv) f(x) is equal to a prime for all integers x satisfying 1 < x < n.

Note that while Fact B of Biró [4] gives the same bound for the inert primes in Q(
√
d)

with Yokoi’s discriminant d = n2 + 4 as Lemma 2.4 provides, the analogous Fact B in Biró

[5] already provides better bound. For Chowla’s discriminants d = 4n2 + 1 instead of the

bound n from Lemma 2.4 he gets bound 2n. This suggests to follow Biró’s techniques.
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2.3 The Discriminant d = (an)2 + 4a

For the R-D discriminant of our main interest which we explore in the next chapters we

get

Claim 2.6. If h(d) = 1 for the square-free discriminant d = (an)2 +4a, then a and an2 +4

are primes. Something more, for any prime r 6= a such that 2 < r < an/2 we have(
d

r

)
= −1 .

After Lemma 2.3 the fundamental unit of the quadratic field with the upper discrimi-

nant for a > 1 is εd =
(an2 + 2) + n

√
d

2
. When we apply Lemma 2.4 we get that every

prime p < a is inert. We prove much stronger statement in which both parameters in the

discriminant are included.

We introduce α as the positive root of the equation

x2 + (an)x− a = 0 .

Let α = −(an+
√
d)/2 be the algebraic conjugate of α. We note that (1, α) form a Z-basis

of OK with (
1

α

)
=

(
1 0

−an+1
2

−1

)(
1

√
d+1
2

)
.

For the fundamental unit εd > 1 the system (1, εd) was used in [4] but it forms a basis of

the ring OK over Z only when n = 1. That is why we need to use different base system.

Since (
εd

α

)
=

(
1 −n
0 1

)(
1

α

)

with determinant of transformation equal to 1, we can take (εd, α) as a basis of the ring

OK over Z.

We also have εdεd = 1 and

εd + εd = 1− nα + 1− nα = 2− n(α+ α) = 2 + an2 . (2.1)

Here we will reveal some of the splitting behaviour of the primes in the field K.
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Lemma 2.7. If β is an algebraic integer in K = Q(
√
d) for the square-free d = (an)2 +4a

such that |ββ| < an/2, then |ββ| is either divisible by a square of a rational integer greater

than 1, or equals 1, or equals a.

Proof. It is enough to prove the claim for

1 < |β| < εd . (2.2)

Indeed, if |β| = 1 or |β| = εd we have |ββ| = 1 and the statement is true. If 0 < |β| < 1 or

|β| > εd there is an integer k such that εk−1
d ≤ |β| < εkd, k < 0 in the first case and k > 0 -

in the second. Then γ := ε1−kd β is in the interval [1, εd) and still |γγ̄| = |ββ̄|.

So further we assume (2.2). Then we can write β = eεd + fα. If e = 0 then β = fα,

|ββ̄| = f 2a and the claim is true.

Assume that e > 0, the negative case being analogous. If f = 0 then β = eεd, |ββ̄| = e2

and this fulfills the lemma. If we assume that the coefficient f is negative, from α < 0

we get β = eεd+fα > eεd ≥ εd which is out of our range of consideration. Therefore f > 0.

Also notice that

ββ̄ = (eεd + fα)(eε̄d + fα) = e2 + ef(αεd + ᾱεd)− af 2.

We see that αεd + ᾱεd = α(1 − nᾱ) + ᾱ(1 − nα) = α + ᾱ − 2nαᾱ = −an + 2an = an.

Therefore

ββ̄ = Q(e, f) := e2 + (an)ef − af 2 , (2.3)

where Q(e, f) = f2(e, f) with f2 defined later in (3.11).

We look at the quadratic form Q(x, y). By (2.3) we have that∣∣∣∣∣ Q
′
x = 2x+ any

Q
′
y = anx− 2ay

(2.4)

and this yields that the local extremum of the form is at x = −any/2 and −(an)2y/2 = 2ay.

The latter is true only for y = 0 but this is out of the considered range where x, y ≥ 1.

That is why for any bounded region of interest in R2 the extrema would be at its borders.

Also Q′
x > 0 and therefore for a fixed argument y the function Q(x, y) is increasing. Here

and hereafter by x, y we mean that the variable is fixed. On the other hand Q′′
y = −2a < 0.

9



Thus for fixed x the function Q(x, y) has its maximum at y = nx/2.

We will investigate the form Q(x, y) according to its sign. We show that it depends on

the size of the coefficient f . For example if f = en, then Q(e, f) = e2 + anfe − af 2 =

e2 + af 2 − af 2 = e2 and the lemma is fulfilled. Further we consider

Case I : f < ne . Here we have Q(e, f) = e2 + anfe− af 2 = e2 + af(ne− f) > e2 > 0.

On the other hand from ᾱ < 0 it follows that fᾱ > neᾱ and

β = eεd + fᾱ > eεd + neᾱ = e(1− nᾱ) + enᾱ = e ≥ 1

and β = |β| < εd yields

1 ≤ e < β < εd < 2 + an2 .

The latter estimate follows from (2.1) and 0 < εd < 1. Thus in the case we regard we are

in a region R1

R1 :

∣∣∣∣∣ 1 ≤ e ≤ 1 + an2

1 ≤ f ≤ ne− 1
(2.5)

First assume that n ≥ 3.

We explained earlier that the maximum of Q(x, y) for a fixed argument x is at the line

y = nx/2. Then 1 < n/2 < n − 1 and minR1 Q(x, y) could be at the lines l1 : y = 1 or

l2 : y = nx − 1. We are interested in the behaviour of the quadratic form on the latter

lines. Since Q(x, y) is increasing for fixed positive y we have minl1 Q(x, y) = Q(1, 1). On

the other hand on l2 we have

Q(x, nx− 1) = x2 + anx(nx− 1)− a(nx− 1)2

= x2 + a(nx)2 − anx− a(nx)2 + 2anx− a = x2 + anx− a . (2.6)

The local extrmemum of this function is achieved when Q′
x(x, nx − 1) = 2x + an = 0

and Q′′
x(x, nx − 1) = 2 > 0 so it is minimum at x = −an/2. This means

that for positive x the function Q(x, nx − 1) is increasing and thus by (2.6)

minl2 Q(x, y) = Q(1, n− 1) = 1 + an− a = Q(1, 1). Therefore minR1 Q(x, y) = 1 + an− a.

By the condition of the Lemma we know that an/2 > |ββ̄| = |Q(e, f)| = Q(e, f). This

is true for the smallest value of the quadratic form in the regarded region as well, i.e.

an/2 > 1+ an− a. Then we need a− 1 > an/2. But for n ≥ 3 this gives a− 1 > an/2 > a
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- a contradiction.

From the definition of the discriminant d we know that n is odd, so n 6= 2. Now

assume that n = 1. We cannot have e = 1, otherwise 1 ≤ f < en = 1. Thus e ≥ 2

and we take up the region R1 with this correction. Then 1 ≤ nx/2 ≤ nx − 1 holds since

1 ≤ x/2 ≤ x − 1 for x ≥ 2. Hence again the minimum is at the very left points of l1

and l2, i.e. minR1 Q(x, y) = Q(2, 1). This after (2.6) equals 4 + 2a − a = 4 + a. Clearly

a > a/2 > 4 + a again gives contradiction. We conclude that case I is not possible.

Case II: f > ne , in other words ne − f ≤ −1. Suppose that Q(e, f) > 0. Then

0 < Q(e, f) = e2 + anef − af 2 = e2 + af(ne− f) ≤ e2 − af . Consequently e2 > af > ane

and e > an. On the other hand, using that α > 0, we get β̄ = eεd+fα > e(1−nα)+enα =

e ≥ 1. So after (2.2)

an > an/2 > |ββ̄| = |β|.|β̄| ≥ |β̄| = β̄ > e . (2.7)

We got an > e > an - a contradiction. Therefore always when f > ne the form Q(x, y)

is negative and e < an/2 ≤ an − 1. The last inequality is not fulfilled only when an = 1.

But in this case an/2 = 1/2 > |Q(e, f)| = |ββ̄| implies that β = 0 because β is algebraic

integer and its norm is integer. Therefore an > 2 and we can regard the region

R2 :

∣∣∣∣∣ 1 ≤ e ≤ an− 1

ne+ 1 ≤ f
(2.8)

Clearly |Q(x, y)| = −Q(x, y) = −x2 − anxy + ay2 > 0 and after (2.4) it has extremum

out of R2. Notice that for a fixed x the derivatives −Q′
y(x, y) = −anx + 2ay and

−Q′′
y(x, y) = 2a > 0, so at y = nx/2 < nx + 1 we have minimum of −Q(x, y). Therefore

−Q(x, y) is increasing on the lines x = const and we search for the minimum of −Q(x, y)

on the line l3 : y = xn+ 1.

On the line l3 we have

−Q(x, nx+ 1) = −x2 − anx(nx+ 1) + a(nx+ 1)2 =

= −x2 − a(nx)2 − anx+ a(nx)2 + 2anx+ a = −x2 + anx+ a(2.9)

11



and at x = an/2 we have maximum. So

min
R2

|Q(x, y)| = min (−Q(1, n+ 1),−Q(an− 1, n(an− 1) + 1)) .

From (2.9) we see that −Q(1, n + 1) = −1 + an + a and −Q(an − 1, n(an − 1) + 1) =

−(an− 1)2 + an(an− 1) + a = an− 1 + a, so minR2 |Q(x, y)| = −1 + a+ an. Here by the

lemma condition an > −1 + a+ an and 0 > −1 + a or 1 > a which is impossible.

Remark 2.8. If β is an algebraic integer in K such that |ββ| < n
√
a, then |ββ| is either

divisible by a square of a rational integer, or equals 1, or equals a.

This follows easily if we notice that the finer estimate an/2 > |ββ̄| needed for R1 with

n ≥ 3 could be substituted by

n
√
a > |ββ̄| > 1 + an− a .

Indeed n
√
a > 1+an−a⇔ a− 1 > n

√
a(
√
a− 1) ⇔ (

√
a− 1)(

√
a+1) > n

√
a(
√
a− 1). If

a = 1 then 1.n > 1+1.n− 1 is not true. Then a > 1 and we get by dividing by
√
a− 1 > 0

the inequality
√
a+ 1 > n

√
a. This yields 2 > 1 + 1/

√
a > n ≥ 3.

For the other cases we showed that the stronger an > minQ(e, f) is impossible, so if we

assume the statement of the remark with n
√
a > Q(e, f) it would yield an > minQ(e, f),

again a contradiction.

Here we give

Proof of Claim 2.6. By Gauss genus theory it follows that h(d) = 1 only if the discriminant

d is prime or a product of two primes because h+ equals 1 or 2 depending on the sign of

N(εd). Hence the first statement of the claim.

Now let r be a prime such that 2 < r < an/2 and r 6= a. Assume

(
d

r

)
= 0. This

means that the prime r ramifies in K and there is a prime ideal p ⊂ OK for which

rOK = p2. But as the class number is 1, OK is a PID and there is β ∈ OK such that

p = (β). Then |ββ̄| = N(p) = r < an/2. By Lemma 2.7 there is a square of an integer

dividing the prime r except for |ββ̄| = 1, but then β is a unit and p = OK , a contradiction.

Assume that

(
d

r

)
= 1. Then there exists b ∈ Z such that b2 ≡ d (mod r). We claim

that

(r) =
(
r, b+

√
d
)(

r, b−
√
d
)
. (2.10)
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Indeed, (
r, b+

√
d
)(

r, b−
√
d
)

=
(
r2, r(b+

√
d), r(b−

√
d), b2 − d

)
= (r)

(
r, b+

√
d, b−

√
d,
b2 − d

r

)
.

Now the coprime rational integers r, 2b are in the second ideal I. Therefore there exist

x, y ∈ Z for which xr + y2ba = 1. As 1 ∈ I we have I = OK and (2.10) follows.

Also we have that
(
r, b+

√
d
)
6=
(
r, b−

√
d
)
. If the ideals are equal, again r, 2b are

in each of them, so each of them is the whole ring of integers, which contradicts (2.10)

because 2 < r and r does not generate the whole OK .

Then there are two prime ideals p1 6= p2 such that (r) = p1p2 and N(p1) = N(p2) = r.

But h(d) = 1 and p1 = (β) for some nonzero β ∈ OK . Therefore N(p1) = |ββ| = r < an/2

and by the upper lemma and r 6= a, r > 2, we have that |ββ̄| is divided by a square of

integer z > 1. This contradicts r being prime.

We got that it is impossible to have

(
d

r

)
= 1.

Remark 2.9. When a = 1 we have d = n2 + 4 and h(d) = 1 yields d to be prime and for

any prime 2 < r < n (
n2 + 4

r

)
= −1 .

Something more, n is also prime.

The first part of the claim can be seen after we apply the same argument as in the

proof of Claim 2.6 but with Remark 2.8 instead of Lemma 2.7. Actually in this fashion we

got Fact B from [4]. We see from Corollary 3.16 in [13] that n is prime if the class number

is 1.

2.4 Other R-D Discriminants

Further we want to mention similar results on the inert primes in other R-D fields. Note

that the following fields are always of class number greater than one.

Lemma 2.10 (Byeon, Kim [13]). For the following R-D discriminants we always have

h(d) > 1:
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(i) d = 4n2 − 1, n > 1.

(ii) d = (2n+ 1)2 + 1, n > 1.

(iii) d = (2n+ 1)2 + 2r, r ≡ 1, 3 (mod 4), r | 2n+ 1, r 6= 1.

(iv) d = (2n+ 1)2 − 2r, r ≡ 1, 3 (mod 4), r | 2n+ 1, r > 1.

(v) d = 4n2 + 2r, r ≡ 1, 3 (mod 4), r | n, r 6= 1.

(vi) d = 4n2 − 2r, r ≡ 1, 3 (mod 4), r | n, r > 1.

Therefore the only R-D discriminants d = (an)2 + ka with a > 1 and h(d) = 1 are the

ones with ±k ∈ {1, 4}. We state analogues of Lemma 2.7 which was independent on the

class number of the field Q(
√
d). Note that the proofs are also very similar to the proof of

Lemma 2.7 presented in detail in the previous section, that is why here we only give their

brief sketches.

First consider the discriminant d = (an)2 + a.

Lemma 2.11. Let d = (an)2 + a > 0 be square-free for a > 1 and d ≡ 2, 3 (mod 4). If β

is an algebraic integer in K = Q(
√
d) such that |ββ| < an, then |ββ| is either divisible by

a square of a rational integer greater than 1, or equals 1, or equals a.

Sketch of Proof. We consider the equation

x2 + 2anx− a = 0

and take its negative root α = −an −
√
d. By Lemma 2.3 we have εd = 1 − 2nα. If

d ≡ 2, 3 (mod 4), then OK = Z[εd, α]. In this case take, like in the proof of Lemma 2.7,

β = eεd + fα and then

ββ̄ = Q(e, f) := e2 + 2anef − af 2 .

We conclude the result by assuming that both e, f ≥ 1 and by examining the extremal

values of the quadratic form Q(x, y).

Corollary 2.12. If h(d) = 1 for the square-free discriminant d = (an)2 + a with a > 1,

then a and an2 +4 are primes. Something more, for any prime r 6= a such that 2 < r < an

we have (
d

r

)
= −1 .
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The other discriminant for which we worked out analogous statement is d = (an)2−4a.

Lemma 2.13. Let d = (an)2 − 4a > 0 be square-free with a > 1. If β is an algebraic

integer in K = Q(
√
d) such that |ββ| < an/2, then |ββ| is either divisible by a square of a

rational integer greater than 1, or equals 1, or equals a.

Sketch of Proof. Here we are interested in the equation

x2 + anx+ a = 0

and we take α = −(an +
√
d)/2 be its negative root. Then the fundamental unit εd =

−1− nα and OK = Z[εd, α]. We consider some β = eεd + fα and the quadratic form

ββ̄ = Q(e, f) := e2 − anef + af 2 .

The statement of the lemma is achieved by some (quite technical) examination of the local

extrema of Q(x, y) in different regions on the plane.

Corollary 2.14. If h(d) = 1 for the square-free discriminant d = (an)2 − 4a and a > 1,

then a and an2−4 are primes. Something more, for any prime r 6= a such that 2 < r < an/2

we have (
d

r

)
= −1 .
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Chapter 3

Class Number One Problem for

Certain Real Quadratic Fields

3.1 Introduction

Let us consider the quadratic fields K = Q(
√
d) with class group Cl(d) and order of

the class group denoted by h(d). In this chapter we solve the class number one problem

for a subset of the fields K where d = (an)2 + 4a is square-free and a and n are positive

odd integers. It is known that there are only a finite number of these fields after Siegel’s

theorem but as the latter is ineffective it is not applicable to finding the specific fields.

For this sake we apply the effective methods developed by Biró in [4] and in his joint work

with Granville [7].

We remark that the class number one problem that we consider was already suggested

by Biró in [6] as a possible generalization of his works. The discriminant we regard is

of Richaud–Degert type with k = 4. The class number one problem for special cases of

Richaud–Degert type is solved in [4],[5],[14] and [38] where the parameter a = 1. However

we already cover a subset of Richaud–Degert type that is of positive density and our

problem depends on two parameters.

Under the assumption of a generalized Riemann hypothesis there is a list of princi-

pal quadratic fields of Richaud–Degert type, see [40]. Here, however, our main result is

unconditional:

Theorem 3.1. If d = (an)2 + 4a is square-free for odd positive integers a and n such that

43 · 181 · 353 | n, then h(d) > 1.

In [7] Biró and Granville give a finite formula for a partial zeta function at 0 in the
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case of a general real quadratic field and a general odd Dirichlet character. Basically we

follow their method in a much simpler situation where the field has a specific form as in

Theorem 3.1, the character is real and its conductor divides the parameter n. As it could

be expected, to deduce a formula in this special case is much simpler than in the general

case.

The idea of the proof of Theorem 3.1 is roughly speaking the following. We arrive to

the identity

qh(−q)h(−qd) = n

(
a+

(
a

q

))
1

6

∏
p|q

(p2 − 1) , (3.1)

where q ≡ 3 (mod 4) is square-free, (q, a) = 1 and q | n. We do this by computing

a partial zeta function at 0 at the principal integral ideals for our specific discriminant,

taking a real character modulo q and applying the condition h(d) = 1. When we use Claim

2.6 to determine the value of

(
a

q

)
and see the factorization of q, we can deduce the exact

power of 2 which divides the right-hand side of (3.1). Here comes the place to explain the

limitation 43 · 181 · 353 | n. In the analysis of (3.1) we see that we can get a contradiction

if we choose q in such a way that the class number h(−q) is divisible by a large power

of 2. We choose q = 43 · 181 · 353 and use that h(−43 · 181 · 353) = 29.3 has indeed a

large power of 2 as a factor, e.g. in [11] not only the order but also the group structure

of Cl(−43 · 181 · 353) is given. Then we show that different powers of two divide the two

sides of (3.1) and eventually conclude the proof of Theorem 3.1.

3.2 Notations and Structure of the Chapter

Let χ be a Dirichlet character of conductor q. Consider the fractional ideal I and the zeta

function corresponding to the ideal class of I

ζI(s, χ) :=
∑

a

χ(Na)

(Na)s
(3.2)

where the summation is over all integral ideals a equivalent to I in the ideal class group

Cl(d).

Let f(x, y) ∈ Z[x, y] be a quadratic form f(x, y) = Ax2 +Bxy+Cy2 with discriminant

D = B2 − 4AC.
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Denote by B`(x) the Bernoulli polynomial defined by

TeTx

eT − 1
=
∑
n≥0

Bn(x)
T n

n!

and introduce the generalized Gauss sum

g(χ, f, B`) :=
∑

0≤u,v≤q−1

χ (f(u, v))B`

(
v

q

)
. (3.3)

The symbol χq always denote the real primitive Dirichlet character with conductor

q, i.e. χq(m) =

(
m

q

)
. This way we are interested in square-free q. The notation dxe

signifies the least integer not smaller than x and (x)q – the least nonnegative residue of x

(mod q). Throughout the thesis by (a, b) we denote the greatest common divisor of the

integers a and b. For m ∈ Z and (m, q) = 1 we use the notation m for the multiplicative

inverse of m modulo q. The same over-lining for α ∈ K will denote its algebraic conjugate

α and the exact use should be clear by the context. As usual ϕ(x) and µ(x) mean the

Euler function and the Möbius function. Let us further denote by pα‖l the fact that pα | l
but pα+1 - l. We also remind that B` := B`(0).

OK represents the ring of integers of the quadratic field K ; P (K) – the set of all

nonzero principal ideals of OK and PF (K) – the set of all nonzero principal fractional

ideals of K. Let IF (K) be the set of nonzero fractional ideals of K. The norm of an

integral ideal a in OK is the index [OK : a]. The trace of α ∈ K will be Tr(α) = α + α.

For α, β ∈ K we write α ≡ β (mod q) when (α − β)/q ∈ OK . When I1, I2 ∈ IF (K) are

represented as ratios of two integral ideals as a1b
−1
1 and a2b

−1
2 we say that the ideals I1

and I2 are relatively prime and write (I1, I2) = 1 in the case when (a1b1, a2b2) = 1. We

recall that the element β ∈ K is called totally positive, denoted by β � 0, if β > 0 and its

algebraic conjugate β̄ > 0.

The structure of the chapter is the following: in the next section §3.3 we compute the

generalized Gauss sum (3.3) for real character χq. We need it because in §3.4 we formulate

and prove Lemma 3.5 for the value of ζP (K)(0, χ) in terms of sum (3.3). The main result

there is Corollary 3.7 for the value of ζP (K)(0, χq). In Chapter 2 we developed Lemma 2.7

with the help of which Claim 2.6, the analogue of Fact B in [4], was proven and we apply it

in §3.5 where we prove the main Theorem 3.1. In Appendix A of the thesis for the sake of

completeness we give the proof of Corollary 4.2 from [7] which we state and use in section
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§3.4 as it is in [7].

3.3 On a Generalized Gauss Sum

The main statement in this section is

Lemma 3.2. For (2A, q) = (D, q) = 1 and even ` ≥ 2 we have

g(χq, f, B`) = χq(A)qB`

∏
p|q

(1− p−`) .

Remark 3.3. When ` is odd we have B` = 0 for every ` ≥ 3. By the property of the

Bernoulli polynomials Bn(1 − x) = (−1)nBn(x) one could easily see that g(χ, f, B`) is

divisible by B` and thus equals zero, unless when ` = 1 and χ = χq.

Proof. Take the summation on v in (3.3) at the first place:

g(χq, f, B`) =

q−1∑
v=0

B`

(
v

q

) q−1∑
u=0

χq(f(u, v)) .

Introduce r := 2Au + Bv. Since (2A, q) = 1 the values of r cover a full residue sys-

tem modulo q when u does. Also r2 = 4A(f(u, v) + Dv2/4A) so we get χq(f(u, v)) =

χ̄q(4A)χq(r
2 −Dv2). As χq is of order 2, we have χq = χ̄q and χq(4A) = χq(A). Therefore

χq(f(u, v)) = χq(A)χq(r
2 −Dv2). Then

g(χq, f, B`) = χq(A)

q−1∑
v=0

B`

(
v

q

) q−1∑
r=0

χq(r
2 −Dv2)

= χq(A)

q−1∑
v=0

B`

(
v

q

)
R , (3.4)

where we abbreviated R :=
∑

0≤r≤q−1

χq(r
2 −Dv2). We will show that for g = (v, q)

R = ϕ(g)µ(
q

g
) . (3.5)

Let q =
∏

i pi. Here there is no square of a prime dividing q because χq is a primitive

character modulo q which is of second order and

(
.

p2

)
= 1. After the Chinese Remainder

19



Theorem for any polynomial F (x, y) ∈ Z[x, y] we have

q−1∑
u=0

χq(F (u, v)) =
∏
i

pi−1∑
ui=0

χpi
(F (ui, v)) .

Therefore it is enough to consider the sum in the definition of R for every p | q. In this

way let Rp =
∑

0≤r≤p−1

χp(r
2 −Dv2). Then R =

∏
p|q Rp .

If p | q/g, i.e. (p, v) = 1, we have

(
r2 −Dv2

p

)
=

(
Dv2

p

)(
Dv2r2 − 1

p

)
=

(
D

p

)(
Dv2r2 − 1

p

)

because (D, p) = 1 and then

Rp =

p−1∑
r=0

χp(r
2 −Dv2) =

(
D

p

) p−1∑
r=0

χp(Dr
2 − 1) . (3.6)

If

(
ν

p

)
= −1, then {νr2 − 1 : 0 ≤ r ≤ p − 1} ∪ {r2 − 1 : 0 ≤ r ≤ p − 1} gives us two

copies of the full residue system modulo p. Then
∑

0≤r≤p−1

χp(νr
2− 1)+

∑
0≤r≤p−1

χp(r
2− 1) =

2
∑

0≤r≤p−1

χp(r) = 0 and therefore

p−1∑
r=0

χp(νr
2 − 1) = −

p−1∑
r=0

χp(r
2 − 1) =

(
ν

p

) p−1∑
r=0

χp(r
2 − 1) .

Clearly when

(
ν

p

)
= 1 we have {νr2 − 1 (mod p) : 0 ≤ r ≤ p − 1} ≡ {r2 − 1 (mod p) :

0 ≤ r ≤ p− 1}. We conclude that

p−1∑
r=0

χp(νr
2 − 1) =

(
ν

p

) p−1∑
r=0

χp(r
2 − 1)
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and for the sum on the right-hand side of (3.6) we can finally assume D = 1. So

Rp =

(
D

p

)(
D

p

) p−1∑
r=0

χp(r
2 − 1) =

p−1∑
r=0

χp(r − 1)χp(r + 1)

=

p−1∑
r=0
r 6=1

χp(r − 1)χp(r + 1) =

p−1∑
r=0
r 6=1

χp

(
r + 1

r − 1

)

=

p−1∑
r=0
r 6=1

χp

(
1 +

2

r − 1

)
=

p−1∑
r=1

χp(1 + 2r) = −1 .

On the other hand, if p | g, i.e. p | v, we have Rp =
∑

0≤r≤p−1 χp(r
2) = p − 1 = ϕ(p)

because χp is of second order. Combining the results Rp = −1 when p divides q/g and

Rp = ϕ(p) when p | g we get R = Rq = µ(q/g)ϕ(g) which is exactly (3.5).

When we substitute the value of R in (3.4) we get

g(χq, f, B`) = χq(A)

q−1∑
v=0

µ(q/g)ϕ(g)B`

(
v

q

)
= χq(A)Σ1 , (3.7)

where we write Σ1 for the sum on the right-hand side of (3.7). Further on if V := v/g and

Q := q/g

Σ1 =
∑
g|q

µ(q/g)ϕ(g)

q−1∑
v=0

g=(v,q)

B`

(
v

q

)
=
∑
g|q

µ(q/g)ϕ(g)

Q−1∑
V=0

(V,Q)=1

B`

(
V

Q

)
.

Denote

Σ2 :=

Q−1∑
V=0

(V,Q)=1

B`(
V

Q
) .

Then

Σ2 =

Q−1∑
V=0

B`

(
V

Q

) ∑
d|(V,Q)

µ(d) =
∑
d|Q

µ(d)

Q−1∑
V=0
d|V

B`

(
V

Q

)
=
∑
d|Q

µ(d)

Q/d−1∑
V/d=0

B`

(
V/d

Q/d

)
.
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We make use of the following property of the Bernoulli polynomials §4.1[52]

k−1∑
N=0

B`

(
t+

N

k

)
= k−(`−1)B`(kt) . (3.8)

Then
Q/d−1∑
V/d=0

B`

(
V/d

Q/d

)
= (Q/d)−(`−1)B`(0) = Q−(`−1)B`d

`−1

and

Σ2 = Q−(`−1)B`

∑
d|Q

µ(d)dl−1 = Q−(`−1)B`

∏
p|Q

(1− p`−1) .

Now

Σ1 =
∑
g|q

µ(q/g)ϕ(g)B`Q
−(`−1)

∏
p|Q

(1− p`−1)

= B`q
−(`−1)

∑
g|q

ϕ(g)g`−1µ(q/g)
∏
p|(q/g)

(1− p`−1)

= B`q
−(`−1)

∏
p|q

(ϕ(p)p`−1 − (1− p`−1)) = B`q
−(`−1)

∏
p|q

(p` − 1)

= B`q
∏
p|q

(1− p−`) .

Finally we substitute the value of Σ1 in (3.7) and this proves the lemma.

3.4 Computation of a Partial Zeta Function

A main tool used in this section will be the following (Corollary 4.2 from [7])

Lemma 3.4. Let (e, f) be a Z-basis of I ∈ IF (K) for any real quadratic field K, t be a

positive integer, e∗ = e + tf , and assume that e, e∗ � 0. Furthermore, let ω = Ce + Df

with some rational integers 0 ≤ C,D < q, and write c = C/q, d = D/q, δ = (D − tC)q/q.

Let

ZI,ω,q(s) = Z(s) :=
∑
β∈H

(ββ̄)−s

with H = {β ∈ I : β ≡ ω (mod q) , β = Xe+ Y e∗ with (X,Y ) ∈ Q2, X > 0, Y ≥ 0}. Then

Z(0) = A(1− c) +
t

2
(c2 − c− 1

6
) +

d− δ

2
+ Tr

(
−f
4e∗

)
B2(δ) + Tr

(
f

4e

)
B2(d) ,

22



where A = dtc− de.

For the sake of our argument’s completeness we give the lemma’s proof in Appendix A.

We use that d ≡ 1 (mod 4), so the ring of integers OK of the field K is of the type

OK = Z
[
1, (
√
d+ 1)/2

]
. Introduce α := (

√
d− an)/2 which is the positive root of

x2 + (an)x− a = 0 . (3.9)

Then α+ ᾱ = −an and αᾱ = −a.

We will also come across the quadratic forms

f1(x, y) = ax2 + anxy − y2 (3.10)

and

f2(x, y) = x2 + anxy − ay2 , (3.11)

both of which with discriminant d = (an)2 + 4a.

Recall that P (K) is the set of all nonzero principal ideals in OK and define the zeta

function

ζP (K)(s, χ) =
∑

a∈P (K)

χ(Na)

(Na)s
.

We have

Lemma 3.5. Let d = (an)2 +4a be square-free for odd positive integers a and n with a > 1

and K = Q(
√
d). If q is such a positive integer that q | n and (q, 2a) = 1, then for any odd

Dirichlet character χ (mod q) we have

ζP (K)(0, χ) = n.g(χ, f1, B2) + an.g(χ, f2, B2) .

Proof. We know that for a > 1 the fundamental unit of K is εd = 1− nα > 1, see Lemma

2.3. Thus εd = ε+ = 1− nα satisfies 0 < ε+ < 1.

Let us take I ∈ IF (K) with (I, q) = 1 and consider the zeta function

ζ+
I (s, χ) = ζ+

Cl(I)(s, χ) :=
∑

a

χ(Na)

(Na)s
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where the sum is over all integral ideals of K which are equivalent to I in the sense that

a = (β)I for some β � 0. We have N(εd) = 1 and then

ζI(s, χ) = ζ+
I (s, χ) + ζ+

(α)I(s, χ) .

It is also clear that ζ+
Cl(I)(s, χ) = ζ+

Cl(I−1)(s, χ) and for the latter

ζ+
I−1(s, χ) =

∑
b∈PI

χ(N(bI−1))

(N(bI−1))s
= (NI−1)−s

∑
b∈PI

χ

(
Nb

NI

)
(Nb)−s

where PI = {b ∈ PF (K) : b = (β) for some β ∈ I , β � 0}. We also introduce V = {ν
(mod q) : ν ∈ I and (ν, q) = 1} and PI,ν,q = {b ∈ PF (K) : b = (β) for some β ∈ I , β ≡ ν

(mod q) and β � 0}. Since q | n we get εd = 1 − nᾱ ≡ 1 (mod q) and ε+ = 1 − nα ≡ 1

(mod q). Thus every b ∈ PI given by b = (β) = (βεj+) belongs to exactly one residue class

ν ∈ V . Then we have

ζ+
I (s, χ) = (NI−1)−s

∑
ν∈V

∑
b∈PI,ν,q

χ

(
Nb

NI

)
(Nb)−s .

If we take into account that (I, q) = 1 and therefore (NI, q) = 1, also Nb = ββ, we get

ζ+
I (s, χ) = (NI−1)−s

∑
ν∈V

χ
( νν̄
NI

) ∑
b∈PI,ν,q

(ββ)−s .

Now assume that the Z-basis of the fractional ideal I is of the form (e, f) where e > 0

is a rational integer and e∗ = eε+ = e + tf � 0. Then for every principal ideal b ∈ PI,ν,q

there is a unique β such that b = (β) = (βεj+) for any j ∈ Z, and ε2
+ < β/β̄ ≤ 1. As

ε+ is irrational number for every β ∈ K there is a unique pair (X, Y ) ∈ Q2 such that

β = Xe+ Y eε+ = e(X + Y ε+). Then from β̄ε2
+ < β ≤ β̄ we get

(X + Y εd)ε
2
+ < X + Y ε+ ≤ X + Y εd .

Now it follows easily that X > 0 and Y ≥ 0. Thus any b ∈ PI,ν,q can be presented

uniquely like b = (β) for β = e(X+Y ε+) where X, Y are nonnegative rationals with X > 0.

Note also that for 0 ≤ C,D ≤ q − 1 the elements ν = Ce + Df ∈ I give a complete
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system of resdues ν (mod q). Then we have

ζ+
I (0, χ) =

q−1∑
C,D=0

χ

(
(Ce+Df)(Ce+Df)

NI

)
ZI,ν,q(0)

where ZI,ν,q(s) is defined in Lemma 3.4.

Observe that ζP (K)(s, χ) = ζOK
(s, χ) and take I = OK = Z[1,−α]. Clearly (OK , q) = 1.

Apply Lemma 3.4 with e∗ = ε+ = 1 + n(−α) so t = n. Also NOK = 1 and νν̄ =

(C − Dα)(C − Dα) = C2 − (α + ᾱ)CD + αᾱD = C2 + anCD − aD2 = f2(C,D). Since

q | t we have δ = (D − tC)q/q = D/q = d and dtc− de = tC/q = tc. Here Tr(α/4ε+) =

Tr(−α/4) = an/4. Hence

ZOK ,ν,q(0) = nc(1− c) +
n

2
(c2 − c− 1

6
) +

an

2
B2(d)

= −n
2
c2 +

n

2
c− n

2

1

6
+
an

2
B2(d)

= −n
2
(c2 − c+

1

6
) +

an

2
B2(d) = −n

2
B2(c) +

an

2
B2(d)

and

ζ+
I (0, χ) =

q−1∑
C,D=0

χ(C2 − aD2)
(
−n

2
B2(c) +

an

2
B2(d)

)

= −n
2

q−1∑
C,D=0

χ(C2 − aD2)B2(c) +
an

2

q−1∑
C,D=0

χ(C2 − aD2)B2(d) .

Now in the first sum make the change of notation C ↔ D and take into account that

χ(−1) = −1. Then

ζ+
I (0, χ) =

n

2

q−1∑
C,D=0

χ(−D2 + aC2)B2(d) +
an

2

q−1∑
C,D=0

χ(C2 − aD2)B2(d)

=
n

2

q−1∑
C,D=0

χ(f1(C,D))B2(
D

q
) +

an

2

q−1∑
C,D=0

χ(f2(C,D))B2(
D

q
)

=
an

2
g(χ, f2, B2) +

n

2
g(χ, f1, B2) . (3.12)

Next we find ζ+
(α)I(0, χ) after we again apply Lemma 3.4 for (α)I. Here again

((α)OK , q) = 1. Clearly this follows from αα = a ∈ (α)OK and (a, q) = 1. We
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can take OK = Z[−α,−1]. Then (α)OK = Z[−αα,−α] = Z[a,−α]. In this case

νν̄ = (Ca+D(−α))(Ca+D(−α)) = αα(Cᾱ+D)(Cα+D) = −a(−aC2− anCD+D2) =

af1(C,D). Here N((α)OK) = |αᾱ| = a and χ (νν̄/N((α)I)) = χ(f1(C,D)) = χ(aC2−D2).

Also e∗ = aε+ = a + an(−α) = a(1 − nα) so t = an. Note that again q | t. Here

Tr(α/4aε+) = Tr(−α/4a) = n/4 and therefore

Z(α)OK ,ν,q(0) = anc(1− c) +
an

2
(c2 − c− 1

6
) +

n

2
B2(d)

= −an
2
c2 +

an

2
c− an

2

1

6
+
n

2
B2(d)

= −an
2

(c2 − c+
1

6
) +

n

2
B2(d) = −an

2
B2(c) +

n

2
B2(d) .

Thus we get

ζ+
(α)I(0, χ) = −an

2

q−1∑
C,D=0

χ(aC2 −D2)B2(c) +
n

2

q−1∑
C,D=0

χ(aC2 −D2)B2(d)

=
n

2
g(χ, f1, B2) +

an

2
(−1)

q−1∑
C,D=0

χ(aD2 − C2)B2(d)

=
n

2
g(χ, f1, B2) +

an

2
g(χ, f2, B2) . (3.13)

Note that we got the equality ζ+
I (0, χ) = ζ+

(α)I(0, χ), an equation that holds true in

most general real quadratic fields with N(εd) = 1 and an odd character χ. When we sum

up the two zeta functions (3.12) and (3.13) we obtain the statement of the lemma.

Remark 3.6. Here the result on the zeta function at the class of principal integral ideal is

for any odd Dirichlet character modulo q. If a = 1 we have that N(εd) = −1. In this case

ζI(s, χ) = ζ+
I (s, χ) because for any principal ideal there is a totally positive generator.

From q – odd square-free, q | n and (q, a) = 1 it follows that (q, d) = 1. When we

combine Lemma 3.2 with Lemma 3.5 with the remark B2 = 1/6 we arrive at

Corollary 3.7. Let d = (an)2 + 4a be a square-free discriminant for odd positive integers

a, n with a > 1 and K = Q(
√
d). If q ≡ 3 (mod 4) is such a square-free positive integer

that q | n and (q, 2a) = 1, then

ζP (K)(0, χq) =
q

6
n(a+ χq(a))

∏
p|q

(1− p−2) .
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3.5 Proof of Theorem 3.1

Assume that we are in a field K = Q(
√
d) with d = (an)2 + 4a with a, n – odd positive

integers, 43 ·181 ·353 divides n and the class number h(d) equals 1. Then all integral ideals

are principal and for the Dedekind zeta function

ζK(s, χ) =
∑

a⊂OK

χ(Na)

(Na)s

we have ζK(s, χ) = ζP (K)(s, χ). We know from §4.3 of [52] that

ζK(s, χ) = L(s, χ)L(s, χχd) .

By the class number formula for imaginary quadratic fields /Theorem 152 in [24]/, again

§4.3 of [52], and by χq(−1) = −1 because q ≡ 3 (mod 4), we get

−L(0, χq) =
∑

1≤x≤q−1

x

q

(
x

q

)
= h(−q) . (3.14)

For d ≡ 1 (mod 4) we have

(
−1

d

)
= (−1)(d−1)/2 = 1 and thus χd is an even characater.

Hence χqχd is odd character and L(0, χqχd) = −h(−qd). Therefore

ζP (K)(0, χq) = L(0, χq)L(0, χqχd) = h(−q)h(−qd) . (3.15)

First think of a general parameter q 6= a that is a prime number, q | n and 2 < q < an/2.

Then after Claim 2.6 we have

(
d

q

)
= −1. When q | n we get

(
an2 + 4

q

)
=

(
4

q

)
= 1 and

(
d

q

)
=

(
a

q

)(
an2 + 4

q

)
=

(
a

q

)
= −1 .

That is why the case a = 1 is not possible : clearly

(
1

q

)
=

(
a

q

)
=

(
d

q

)
= 1. So we have

a > 1.

Now, assume that 43 · 181 · 353 | n and 353 < an/2. Notice that above the prime

a = q was not considered because of Claim 2.6. However

(
43

181

)
= 1, thus a = 43 is not

possible;

(
181

43

)
= 1 and

(
353

43

)
= 1, so a = 181 and a = 353 are also excluded from our
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assumptions. Hence, if 353 < an/2 and 43, 181, 353 | n, the class number h(d) = 1 only if( a
43

)
=
( a

181

)
=
( a

353

)
= −1.

Now we take the parameter q = 43·181·353. Again consider the real primitive character

χq(m) =

(
m

q

)
modulo q. As 43 ≡ 3 (mod 4), 181 ≡ 1 (mod 4) and 353 ≡ 1 (mod 4) we

have q ≡ 3 (mod 4) and χq(−1) = −1. Also a > 1 and we can apply (3.15) and Corollary

3.7 and multiply both sides of its equation by q. This way we arrive at the promised

equation (3.1)

qh(−q)h(−qd) = n

(
a+

(
a

q

))
1

6

∏
p|q

(p2 − 1) .

In this case

B :=
1

6

∏
p|q

(p2 − 1) =
1

6
42 · 44 · 180 · 182 · 352 · 354 = 21133 . . .

and 211‖B.

As a > 1 we have that d = a(an2 + 4) is a product of two different primes. Notice as

well that a ≡ an2 + 4 (mod 4). By Gauss genus theory and Lemma 2.1, as d is odd, we

know that if a ≡ an2 + 4 ≡ 1 (mod 4) for the real quadratic field K = Q(
√
a(an2 + 4)),

then the 2-rank of the class group is the same as the 2-rank of the narrow class group,

i.e. 2 − 1 = 1. This contradicts h(d) = 1. Therefore a ≡ 3 (mod 4). But in this case

a +

(
a

q

)
= a − 1 and a − 1 ≡ 2 (mod 4) so 2‖

(
a+

(
a

q

))
. Here Claim 2.6 has a great

importance, also q being a product of three primes, for then

(
a

q

)
= −1. The parameter

n is odd by definition. It follows that for the right-hand side of (3.1) we have

212‖n
(
a+

(
a

q

))
B . (3.16)

We regard the left-hand side of (3.1). As we pointed out in §3.1 we have

h(−43 · 181 · 353) = 29.3. Again by genus theory the 2-class group of Cl(−qd) has

a rank 5 − 1 = 4 since qd has 5 distinct prime divisors. Indeed, we showed that

a 6∈ {43, 181, 353}, also an2 + 4 > an/2 > 353 and clearly a 6= an2 + 4. Therefore

29+4 = 213 | qh(−q)h(−qd). This contradicts (3.16).
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We conclude that h(d) > 1 for an/2 > 353. But then for discriminants d = (an)2 + 4a

for positive odd a and n and 43·181·353 | n we cannot have class number 1. This concludes

the proof of Theorem 3.1.

Remark 3.8. The main idea used in this section, a comparison of 2-parts in (3.1), can be

utilized toward other results of this type. For example, if d = a(an2 + 4) for odd positive

integers a and n where 5 · 359 · 541 | n, then h(d) > 1. The exact divisors of n are chosen

according to Table 12 in [11]: h(−5 · 359 · 541) = 29 and again we have a bigger power

of 2 on the left-hand side of (3.1). Also 5 · 359 · 541 ≡ 3 (mod 4) so when we take up a

real character we have formula (3.14). Also a ∈ {5, 359, 541} are not covered by Claim 2.6

for each prime in the set, but these a’s are excluded by a simple check of the Legendre

symbols of each other.

In this sense if we know a result similar to [15] but for discriminant with three prime

divisors, we would have our theorem extended for an infinite family of n such that pqr | n.

This we achieve in the next chapter.
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Chapter 4

Divisibility of Class Numbers of

Imaginary Quadratic Fields

4.1 Introduction

In this chapter we establish the existence of infinitely many imaginary quadratic

fields Q(
√
−d) with a discriminant −d, such that d has only three distinct prime

factors and in the class group Cl(−d) there is an element of order 2` for any integer

` ≥ 2 and 5, 3 - `. The result extends naturally the one in [15], where the same

problem is considered for d = pq, a product of two distinct primes. We show without

a proof how with the same techniques an analogous result can be stated for any fixed

number of prime divisors of d and any ` ≥ 2. Whereas in [15] the infinite number of

solutions of a certain additive problem is borrowed by a strong estimate in [10], we

will derive a weaker asymptotic formula following closely the method of §5 in [2]. The

idea of generating such imaginary quadratic fields comes from [2] and [48], as stated in [15].

The main motivation for considering the questions of the present chapter was The-

orem 3.1 which solves class number one problem for a certain type of real quadratic

fields. We recall that for the square-free d = (an)2 + 4a with odd positive integers

a and n such that n is divisible by 43 · 181 · 353, one has h(d) > 1. The particular

parameter dividing n was chosen from a table of class numbers which showed that

the 2-part of the class group Cl(−43 · 181 · 353) has a high order. More specifically,

h(−43 · 181 · 353) = 29 · 3, and we also needed that 43 · 181 · 353 ≡ 3 (mod 4). We

will show how the main result of this chapter implies existence of an infinite family

of parameters q = p1p2p3, where pi are distinct primes, and q ≡ 3 (mod 4), such that

for square-free d = (an)2+4a with odd positive a and n, and q dividing n, we have h(d) > 1.
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Let ` ≥ 2 be any integer. Consider the additive problem

4m` = p1 + p2p3 , (4.1)

where m is an odd integer and the primes p1, p2, p3 are different. Let ∆ be a fixed positive

integer such that (15,∆) = 1 and the variables in (4.1) satisfy

x1/8 < p1 ≤ x, p1 ≡ −5 (mod ∆) ;

x1/8 < p2 ≤ x1/4 < p3, p2p3 ≤ x, p2, p3 ≡ 3 (mod ∆) . (4.2)

If we write

4m` = U + V (4.3)

for any positive integers U, V and assume that U > V , then for n = (U − V )/2 we have

4m2` − n2 = (2m` − n)(2m` + n) =

(
U + V

2
− U − V

2

)(
U + V

2
+
U − V

2

)
= V · U.

This way having infinitely many solutions of (4.1) we will find infinitely many

corresponding discriminants d = p1p2p3 = 4m2` − n2.

The following statement shows that under some conditions, which are satisfied from

the solutions of (4.1), discriminants of the type d = 4m2`−n2 yield existence of an element

of a large order in the class group Cl(−d). The lemma is implicitly shown in the proof of

the main result in [15].

Lemma 4.1. For integer ` ≥ 2 let m and n be integers with (n, 2) = 1 and 2m` − n > 1.

If d is a square-free integer for which

d = 4m2` − n2 ,

then Cl(−d) contains an element of order 2`.

With the notation e(α) = e2πiα we introduce the generating functions

f1(α) =
∑
p1

e(p1α) =
∑
n≤x

bne(nα), (4.4)

f2(α) =
∑
p2,p3

e(p2p3α) =
∑
n≤x

cne(nα), (4.5)
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g(α) =
∑
m

`m`−1e(m`α) =
∑
m≤M

ωme(m
`α), (4.6)

where pi satisfy (4.2) and

m ≤M =
(x

2

)1/`

and (m,∆) = 1. (4.7)

Remark that we will generally omit all the conditions on the parameters at which we make

the summation in (4.4), (4.5), (4.6), but they will always satisfy (4.2) or (4.7), unless it

is specified otherwise. We will use the circle method and in its setting it is sensible to

consider

R(x) :=
∑

p1+p2p3=4m`

`m`−1 =

∫ 1

0

f1(α)f2(α)g(−4α)dα. (4.8)

For this integral we state the following asymptotic formula whose proof will be the main

focus of this chapter starting from section §4.3.

Theorem 4.2. Suppose that ∆, ` are positive integers for which 16`2 | ∆ and (15,∆) = 1.

Then

R(x) = 4`(2, `)
∏
p|∆

(`, p− 1)f1(0)f2(0) +O
(

x2

log3 x

)
.

Note that the main term in the upper formula is larger than the error term. Indeed,

the Prime Number Theorem for arithmetic progressions implies

π(x, q, b) =
π(x)

ϕ(q)
+O

(
x

logC x

)
(4.9)

for any fixed integers C > 0, b coprime to q. Here π(x) ∼ x/ log x is the usual prime

counting function, and π(x, q, b) counts the primes p ≤ x in the residue class b modulo q.

Therefore, taking C = 2,

f1(0) =
∑

x1/8<p1≤x
p1≡−5 (mod ∆)

1 = π(x,∆,−5)− π(x1/8,∆,−5) =
π(x)

ϕ(∆)
+O

(
x

log2 x

)
,

hence

f1(0) �
x

log x
. (4.10)

We also have

f2(0) =
∑
p2,p3

1 � x

log x
. (4.11)

32



This estimate follows from a more general result, Lemma 4.5, which is stated and proven

in the next section.

Estimates (4.10) and (4.11) show that the main term in Theorem 4.2 exceeds the error

term. Note that the primes p1, p2, p3, counted in R(x), are growing to infinity with x.

In a similar way as in [2], taking into account that the weights in g(α) are �M `−1 �
x1−1/`, we can finally deduce

Corollary 4.3. Let ` ≥ 2 and ∆ be positive integers for which 16`2 | ∆ and (15,∆) = 1.

If R](X) denotes the number of positive integers d ≤ X of the form

d = p1p2p3 = 4m2` − n2 ,

where p1, p2, p3 are distinct primes which satisfy (4.2) with x =
√
X, then

R](X) � X1/2+1/(2`)

log2X
.

Now the result of Theorem 3.1 can be extended:

Corollary 4.4. There is an infinite family of parameters q = p1p2p3, where p1, p2, p3 are

distinct primes, and q ≡ 3 (mod 4), with the following property. If d = (an)2 + 4a is

square-free for odd positive integers a and n, and q divides n, then h(d) > 1.

Proof. The main identity to prove Theorem 3.1 was

q.h(−q).h(−qd) = n

(
a+

(
a

q

))
1

6

∏
p|q

(p2 − 1) , (4.12)

which holds if we assume that h(d) = 1 and q ≡ 3 (mod 4). According to Claim

2.6 if h(d) = 1 for the square-free discriminant d = (an)2 + 4a, then a and an2 + 4

are primes. Something more, for any prime r 6= a such that 2 < r < an/2 we have(
d

r

)
= −1. Then by Lemma 2.1 it follows that a ≡ 3 (mod 4). Also, if we further assume

an/2 > max(p1, p2, p3), we get

(
a

q

)
= −1, so a +

(
a

q

)
= a − 1 ≡ 2 (mod 4). This is

always true because p1p2p3 divides n and therefore n ≥ p1p2p3.

Now consider q = p1p2p3 from Corollary 4.3. Take ` such that ` = 2g for g ≥ 9. From

conditions (4.2) and 16 | ∆ we see that pi ≡ 3 (mod 8), q ≡ 3 (mod 4), and 29‖
∏

pi
(p2
i−1).
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Then the right-hand side of the above identity has 2-part exactly 29. The left-hand side,

on the other hand, is divisible by the class number h(−p1p2p3) and 2` divides this class

number. This is a contradiction. Therefore h(d) > 1.

At this point it becomes clear why we solve the additive problem (4.1) with a factor 4

instead of the original equation

2m` = AU +BV (4.13)

from [2]. We need a discriminant d which is a product of exactly three primes, thus in our

application we take A = B = 1. Something more, we want to control the 2-part in the

right-hand side of (4.12). We do this by imposing pi ≡ 3 (mod 8). Then p1 + p2p3 ≡ 4

(mod 8) but 2m` 6≡ 4 (mod 8). So we need to change the coefficient 2 to 4 in (4.13).

We can still keep the skeleton of the proof the same as in [2] and only work out slight

modifications in the corresponding estimates.

4.2 Generalizations: Divisibility of Class Numbers

Let us fix any integers ` ≥ 2 and k ≥ 3. Consider the additive problem

4m` = p1 + p2 . . . pk , (4.14)

where m is an odd integer and the primes p1, p2, . . . , pk are different. Let ∆ be an integer

such that (c0(4 − ck−1
0 ),∆) = 1 and for the variables in (4.14) assume that p1 ≡ 4 −

ck−1
0 (mod ∆) and p2, . . . , pk ≡ c0 (mod ∆). Denote y = x1/2`+2

and first assume that

y < p1 ≤ x. Clearly there are positive real numbers 1 < α2 < . . . < αk−1 such that∑
2≤i≤k−1 αi < 2`+2 − 1 and letting them being fixed we further require

y < p2 ≤ yα2 < p3 ≤ yα3 < . . . ≤ yαk−1 < pk and p2p3 . . . pk ≤ x . (4.15)

The latter guarantees that p2, . . . , pk are different while the lower bound x1/2`+2
for each

of them is applied during the proof of Theorem 4.2.

Here we show a statement we already used in the previous section:

Lemma 4.5. Let n ≥ 2 be an integer and q1, q2, . . . , qn be primes from the same arithmetic
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progression that also satisfy

y < q1 ≤ yα1 < q2 ≤ yα2 < . . . ≤ yαn−1 < qn and q1q2 . . . qn ≤ x,

where y = x1/β for some real β > 1 and
∑

1≤i≤n−1 αi < β − 1. Then if fn(α) =∑
q1,...,qn

e(q1 . . . qnα), we have

fn(0) =
∑

q1,...,qn

1 � x

log x
.

Proof. We note that

x1− 1
β

(α1+...+αn−1) =
x

yα1+...+αn−1
≤ x

q1 . . . qn−1

≤ x

y1+α1+...+αn−2
= x1− 1

β
(1+α1+...+αn−2) .

Then, since β and α1, . . . , αn−1 are fixed, we have log
x

q1 . . . qn−1

� log x. In that case after

the Prime Number Theorem, similarly to (4.10), we get

fn(0) =
∑

q1,...,qn−1

x/(q1...qn−1)∑
qn>x

αn−1
β

1 �
∑

q1,...,qn−1

x/(q1 . . . qn−1)

log x
.

Obviously, with the notation α0 = 1,

∑
q1,...,qn−1

1

q1 . . . qn−1

=
n−1∏
i=1

∑
yαi−1<qi≤yαi

1

qi

and every interval (yαi−1 , yαi ] can be divided into � log x intervals of type (A, 2A]. If the

primes p run over an arithmetic progression modulo some fixed q, then

∑
A<p≤2A

1

p
� 1

ϕ(q)

1

A

A

logA
� 1

logA
.

Therefore every factor
∑

qi
1
qi
� 1 and

∑
q1,...,qn−1

1

q1 . . . qn−1

� 1 .

This finishes the proof of the lemma.

From all these we can conclude that without much effort, following literally the method

in this chapter for discriminants of only three prime factors, one can show an analogue of
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Corollary 4.3 for the solutions of (4.14). Then from Lemma 4.1 it follows

Lemma 4.6. If for any fixed integers k ≥ 3 and ` ≥ 2 there exist integers c0,∆ with 16`2 |
∆ and

(
c0(4− ck−1

0 ),∆
)

= 1, then there are infinitely many discriminants d = p1p2 . . . pk

such that the group Cl(−d) consists of an element of order 2`.

Observe that when 3 | ` and k − 1 is even, we always have 1 ≡ 4 ≡ ck−1
0 (mod 3) for

any (c0, 3) = 1. Therefore (4− ck−1
0 , `) > 1 and we cannot use the same methods for (4.14).

The situation can be remedied by considering

2m` = p1 + p2 . . . pk . (4.16)

We require m to be an odd integer and the primes p1, . . . , pk to be different elements of

the same arithmetic progression with difference ∆ and pi ≡ 1 (mod ∆). Let the variables

in (4.16) satisfy x1/2`+1
< p1 ≤ x and conditions (4.15), with the difference that y = x1/2`+1

and we demand in extra 2`+1 − 1 < 1 + α2 + . . . + αk−1 < 2`+1. This way we assure

d = p1 . . . pk ≥ m` and the different power in the definition of y comes from the difference

between our Lemma 4.13 and the corresponding estimate in [2].

Proceeding exactly like in the paper of Balog and Ono we can show

Lemma 4.7. For any fixed integers k ≥ 3 and ` ≥ 2 there exists ∆ with 4`2 | ∆ such that

there are infinitely many solutions of the equation (4.16).

In order to apply the original lemmata from [2] we also need Proposition 1 [48]:

Lemma 4.8 (Soundararajan [48]). Let ` ≥ 2 be an integer and let d ≥ 63 be a square-

free integer for which

dt2 = m2` − n2 ,

where m and n are integers with (m, 2n) = 1 and m` ≤ d. Then Cl(−d) contains an

element of order 2`.

We can conclude

Theorem 4.9. Let ` ≥ 2 and k ≥ 3 be integers. Then there are infinitely many imag-

inary quadratic fields whose ideal class group has an element of an order 2` and whose

discriminant has exactly k distinct prime divisors.

On the one hand, in order to generalize Theorem 3.1 for real quadratic fields we have

to solve equation (4.1) and modify some lemmata from [2]. On the other hand, to obtain

36



Theorem 4.9 for imaginary quadratic fields we have to define the proper additive problem

(4.13), which, however, we can solve after direct application of the statements from §5 of

[2].

4.3 Preliminary Lemmata

For the integers u , q we denote by u(q) the fact that u runs through a whole system of

residues modulo q. For integers q ≥ 1 and a we require the Gaussian sum

G(q, a) =
∑
u(q)

(u,q,∆)=1

e

(
au`

q

)

and the auxiliary function

V (η) =
∑
n≤x/2

e(nη).

In this section we state the lemmata required for the estimate on the ‘minor arcs’ and

more refined expressions of g(α) and G(q, a). These are variants of Lemma 5.2 to Lemma

5.8 from §5 of [2] and some statements needed for the Hardy-Littlewood’s circle method

application taken from [51].

We start with the Dirichlet’s approximation lemma

Lemma 4.10. Let α denote a real number. Then for each real number N ≥ 1 there exists

a rational number a/q with (a, q) = 1, 1 ≤ q ≤ N and∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qN
.

Proof. This is Lemma 2.1 from [51] .

Lemma 4.11 (Weyl). Let α denote a real number and a/q is a rational number with

(a, q) = 1 and |α− a/q| ≤ 1/q2. Then for any positive ε we have

∑
m≤y

e(αm`) � y1+ε

(
1

q
+

1

y
+
q

y`

)21−`

.

Proof. This is Lemma 2.4 from [51] .
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Lemma 4.12. If a and q ≥ 1 are integers and η is a real number, then

g

(
a

q
+ η

)
=

(q,∆)ϕ(∆)

qϕ(q,∆)∆
G(q, a)V (η) +O

(
qM `−1(1 + |η|M `)

)
Here and afterwards in the chapter we mean ϕ(a, b) := ϕ((a, b)).

Proof. This is Lemma 5.2 from [2] without any modifications.

Lemma 4.13. Let M1/2 < q ≤ N := M `−1/2, (a, q) = 1 and |α− a/q| ≤ 1/qN . Then we

have

g(4α) �M `−2−(`+2)

Proof. We give here modified version of the proof of Lemma 5.3 [2]. Note that we could

only show the slightly weaker estimate g(4α) � M `−2−(`+2)
than g(2α) � M `−2−(`+1)

from

[2]. Also there is a slight difference in the approximation we make below that comes

from considering g(4α) in our case instead of g(2α). The inequality we want to prove is

essentially Weyl’s inequality from Lemma 4.11.

Recall that

g(4α) =
∑
m≤M

(m,∆)=1

`m`−1e(4αm`) =
∑
d|∆

µ(d)`d`−1
∑

m≤M/d

m`−1e(4αd`m`)

and applying summation by parts we get

g(4α) =
∑
d|∆

µ(d)`d`−1

[M/d]`−1Σ[M/d] −
[M/d]−1∑
y=1

(
(y + 1)`−1 − y`−1

)
Σy

 , (4.17)

where

Σy :=
∑
m≤y

e(4αd`m`) .

Notice that when y ≤M1−2−(`+1)
trivially

|Σy| ≤M1−2−(`+1)

< M1−2−(`+2)

.

Now assume that y > M1−2−(`+1)
. To estimate Σy we will apply Weyl’s inequality with

some rational approximation of 4αd`. To find such we apply Lemma 4.10 – there exist
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(a′, q′) = 1 and 1 ≤ q′ ≤ 2N such that∣∣∣∣4d`α− a′

q′

∣∣∣∣ < 1

q′(2N)
<

1

(q′)2
.

Now we consider the two possibilities

1. 4d`a/q = a′/q′. Here we can write 4d`a = a′r and q = q′r for r = 4d`a/a′ ∈ Z. If

there is a prime p such that p | a but p - a′ it follows that p | r, so p | q. But this

yields the contradiction p | (a, q) = 1. In the same way we see that if pk | a we need

to have pk | a′. Therefore a | a′ and a/a′ ≤ 1. So r ≤ 4d`, q = q′r ≤ q′4d` and

q′ ≥ q/(4d`). By the assumptions on q we get

M1/2

4d`
< q′ ≤ 2N . (4.18)

2. 4d`a/q 6= a′/q′. In this case we form the difference

1

qq′
≤

∣∣∣∣4d`aq − a′

q′

∣∣∣∣ =

∣∣∣∣4d`α− 4d`α+ 4d`
a

q
− a′

q′

∣∣∣∣ ≤ ∣∣∣∣4d`α− a′

q′

∣∣∣∣+ 4d`
∣∣∣∣α− a

q

∣∣∣∣
≤ 1

q′(2N)
+

4d`

qN
=
q + 8q′d`

2Nqq′
.

When we multiply both sides of the outermost members of the inequality by qq′2N

we get 2N ≤ q + 8d`q′. Again by the lemma’s assumptions q ≤ N and we should

have 8d`q′ ≥ N , otherwise q + 8d`q′ < 2N . We conclude that

N

8d`
≤ q′ ≤ 2N . (4.19)

Now we apply Weyl’s inequality for
∣∣4d`α− a′/q′

∣∣ < 1/(q′)2 where we combine (4.18)

and (4.19) for the lower bound of q′ : min(M1/2/(4d`), N/(8d`)) ≤ q′ ≤ 2N and we take

ε = 2−(`+2). Then

Σy � y1+2−(`+2)

(
1

q′
+

1

y
+
q′

y`

)21−`

.

We have

(q′)−1 ≤ max

(
4d`

M1/2
,

8d`

M `−1.M1/2

)
=

4d`

M1/2
max

(
1,

2

M `−1

)
=

4d`

M1/2
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when ` ≥ 2 and x is large enough, and 1/y < 1/M1−2−(`+1)
. It follows that

Σy � y1+2−(`+2)

(
1

q′
+

1

y
+
q′

y`

)2/2`

�M1+2−(`+2)

(
1

q′
+

1

y
+
q′

y`

)2/2`

.

The expression in the brackets is

� 1

M1/2
+

1

y
+
N

y`
� 1

M1/2
+

1

y
+

M `

M1/2(M1−1/2`+1)`
=

1

M1/2
+

1

y
+
M `/2`+1

M1/2

� M−1/2 +M−1+1/2`+1

+M−1/2+`/2`+1 �M−1/4 ,

because for l ≥ 2 the last summand makes the biggest contribution. But then

Σy �M1+2−(`+2)

M−1/2`+1

= M1−2−(`+2)

.

Now we insert the last estimate into (4.17). Using that
∑

d|∆ � 1 , d� 1, (y+ 1)`−1−
y`−1 � y`−2, we get

g(4α) �M `−2−(`+2)

.

Lemma 4.14. If (q1, q2) = 1, then G(q1, a1)G(q2, a2) = G(q1q2, a1q2 + a2q1).

Proof. This is Lemma 5.4 from [2] and follows from Lemma 2.10, [51].

Lemma 4.15. If p is prime and a is integer coprime to p, then |G(p, a)| ≤ (`, p− 1)p1/2

Proof. This is Lemma 5.5 of [2] and follows from Lemma 4.3, [51].

Lemma 4.16. Suppose that p | ∆ is prime and let s := ordp(4`). If p - a and k ≥
max(2, 2s+ 1), then G(pk, a) = G(pk, 4a) = 0.

Proof. First we show that G(pk, 4a) = 0. From the assumptions we have k−s−1 ≥ s ≥ 0,

so we can represent the residues modulo pk in the form u+ vpk−s−1 where u runs through

the residues modulo pk−s−1 and v – the residues modulo ps+1.

Since p | ∆, the condition (u, p,∆) = 1 is equivalent to p - u, and

G(pk, 4a) =
∑
u(pk)
p-u

e

(
4au`

pk

)
=

∑
u(pk−s−1)

p-u

∑
v(ps+1)

e

(
4a(u+ vpk−s−1)`

pk

)
.

By the binomial polynomial theorem (u+vpk−s−1)` =
∑`

m=0

(
`
m

)
u`−m(vpk−s−1)m. Consider

the possibilities
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1. s = 0, m ≥ 2. Here m(k − s− 1) = m(k − 1) ≥ 2(k − 1) ≥ 2 whenever k ≥ 2, which

is true.

2. s ≥ 1, m ≥ 3. Now m(k − s− 1) ≥ 3(k − s− 1) ≥ k if 2k ≥ 3s + 3. We know that

k ≥ max(2, 2s + 1), hence 2k ≥ 4s + 2 ≥ 3s + 3 if and only if s ≥ 1. This is true in

the regarded case.

3. s ≥ 1, m = 2. We can have 2(k − s − 1) ≥ k following from k ≥ 2s + 2. The only

possible problem might arise for k = 2s+ 1. However in this case

4a
(
`
2

)
u`−2(vps)2

p2s+1
=
au`−2(2`)(`− 1)v2

p

and, as ordp(4`) = s ≥ 1, in any case p | 2`.

All these show that for m ≥ 2 the summands from the binomial polynomial contribute

integers as arguments of the exponent e(x) so we can write

G(pk, 4a) =
∑

u(pk−s−1)
p-u

e

(
4au`

pk

) ∑
v(ps+1)

e

(
4`au`−1v

ps+1

)
.

Now p - a, p - u, and ordp(4`) = s. Therefore, if we write 4` = ps`1 with (`1, p) = 1,

∑
v(ps+1)

e

(
4`au`−1v

ps+1

)
=
∑

v(ps+1)

e

(
`1au

`−1v

p

)
= ps.0 = 0 .

Hence G(pk, 4a) = 0.

The proof that G(pk, a) = 0 is identical for p 6= 2. If p = 2, notice that

∑
u(2k)
2-u

e

(
4au`

2k

)
= 4

∑
u(2k−2)

2-u

e

(
au`

2k−2

)
, (4.20)

i.e. G(2k, a) = G(2k+2, 4a)/4. When k is not smaller than max(2, 2s+ 1), so is k+ 2. This

shows that G(pk, a) = 0.

Lemma 4.17. If (q, a) = 1, then

G(q, 4a) � q1−1/` .
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Proof. Using Lemma 4.14, 4.15, 4.16 we reduce the statement to Theorem 4.2 from [51] .

In [51] one considers the sum

S(a, q) =
∑
x(q)

e

(
ax`

q

)
and for it we have S(q, a) � q1−1/` when (q, a) = 1.

We can reformulate Lemma 4.14: for (q1, q2) = 1 and q1q̄1 ≡ 1 (mod q2), q2q̄2 ≡ 1

(mod q1) we have

G(q1q2, a) = G(q1, aq̄2)G(q2, aq̄1) . (4.21)

Still (q1, aq̄2) = (q2, aq̄1) = 1 and the desired estimate of G(q, 4a) does not depend on the

second argument, so it suffices to consider only G(pk, 4a).

Let p 6= 2. Then (p, 4a) = 1. If p - ∆ the condition (u, pk,∆) = 1 is trivial, so

G(pk, 4a) = S(pk, 4a) and Theorem 4.2 [51] applies. When p | ∆ we consider only, because

of Lemma 4.16, k < max(2, 2s + 1). When this maximum is 2, then k = 1. In that case,

as ` ≥ 2, we have

G(p, 4a) � p
1
2 � p1− 1

`

after Lemma 4.15. Now assume that s > 0, i.e. s ≥ 1. Then

G(pk, 4a) =
∑
u(pk)
p-u

e

(
4au`

pk

)
=
∑
u(pk)

e

(
4au`

pk

)
−
∑
u(pk)
p|u

e

(
4au`

pk

)
= S(pk, 4a) +O(pk−1) .

(4.22)

By Theorem 4.2 [51] S(pk, 4a) � pk(1−1/`). Obviously we will have G(pk, 4a) � pk(1−1/`) if

k ≤ `.

Assume that k > `. As p is odd we have 3s ≤ ` < k ≤ 2s, which is not true for s ≥ 1.

When p = 2 we can show in an analogous way as in (4.20) that G(2k, 4a) = 4G(2k−2, a)

for k ≥ 2. We could freely omit to consider the smaller powers of 2 since they contribute

small constants to the upper bound we try to show. Also, if 2 - ∆, then again G(2k−2, a) =

S(2k−2, a). So further regard 2 | ∆. Like in (4.22), if k − 2 ≤ ` the estimate follows.

Assume the contrary – then 2s−2 ≤ ` < k − 2 ≤ 2s − 2 which holds only for s ≤ 4. But

this gives k ≤ 8 – again these contribute only constant to the whole estimate of G(q, 4a).

This proves the Lemma.
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Lemma 4.18. Suppose that |β| ≤ 1/2 and n is a positive integer. Then for

ν(β) =
n∑

m=1

e(βm)

we have ν(β) � min(n, |β|−1).

Proof. This is Lemma 2.8 from [51] when k = 1.

The following is Bombieri’s theorem on the large sieve.

Lemma 4.19. For any complex numbers cn we have

∑
q≤Q

∑
(a,q)=1

∣∣∣∣∣∑
n≤x

cne

(
an

q

)∣∣∣∣∣
2

≤ (x+Q2)
∑
n≤x

|cn|2 .

Proof. This is Theorem 2 of §23 in [16].

We also recall the following basic facts. The functions bellow are complex-valued

L2([0, 1])-functions.

Cauchy-Schwartz inequality: For the square-integrable functions f and g we have the

inequality ∣∣∣∣∫ f(x)g(x)dx

∣∣∣∣2 ≤ ∫ |f(x)|2dx
∫
|g(x)|2dx .

Parseval’s identity: For the Fourier transform of f(x) =
∞∑

n=−∞

cne
inx we have cn =

1

2π

∫ π

−π
f(x)e−inxdx and

1

2π

∫ π

−π
|f(x)|2dx =

∞∑
n=−∞

|cn|2 .

If f(α) =
∑
n≤x

cne(nα), then f(α) is periodic with period 1 and

∫ 1

0

|f(α)|2dα =
∑
n≤x

|cn|2 .
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4.4 The Circle Method

With the conditions from Theorem 4.2 our main aim in this section is to prove the

following

Theorem 4.20. For any 1 ≤ Q ≤Mmin(1/6,`/2`+2) we have

R(x) =
∑
q≤Q

∑
(a,q)=1

(q,∆)ϕ(∆)

qϕ(q,∆)∆
G(q,−4a)f1

(
a

q

)
f2

(
a

q

)
+O

(
x2

Q1/`

)
.

Proof. We recall that we search for the number of solutions of (4.1) satisfying conditions

(4.2) and

p1 ≡ −5 (mod ∆), p2, p3 ≡ 3 (mod ∆) ,

so that p1 + p2p3 ≡ 4 (mod 8) because 16`2 | ∆. We also use the parameters

M =
(x

2

)1/`

, N = M `−1/2 � x

M1/2
, Q ≤Mmin(1/6,`/2(`+2)) . (4.23)

By Lemma 4.10 for any real α such that 1/N ≤ α < 1+1/N there exists approximation

|α− a/q| < 1/(qN) with 1 ≤ a ≤ q ≤ N and (a, q) = 1. We denote this ‘major arc’ by

M(a/q) =

(
a

q
− 1

qN
,
a

q
+

1

qN

)
.

One easily sees that the major arcs are non-overlapping. Let q, q′ ≤ M1/2. Then for

a/q 6= a′/q′ we have M(a/q) ∩M(a′/q′) = ∅. This can be seen taking the difference∣∣∣∣aq − a′

q′

∣∣∣∣ ≥ 1

qq′
>
q + q′

qq′N
=

1

qN
+

1

q′N
.

We used that N = M `−1/2 > 2M1/2 ≥ q+ q′ because M `−1 > 2 for ` ≥ 2 and large enough

x. Thus the centers of different major arcs are at a distance larger than the half-lengths

of the corresponding intervals. Now we can also define the set of the ‘minor arcs’

m =

[
1

N
, 1 +

1

N

)
\
⋃

q≤M1/2

⋃
(a,q)=1

M(a/q) .

Later we will also need the orthogonality relation

∫ 1

0

e(αh)dα =

{
1 when h = 0 ,

0 when h 6= 0 .
(4.24)
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As f1, f2 and g are periodic functions with period 1, we have

R(x) =

∫ 1+1/N

1/N

f1(α)f2(α)g(−4α)dα =
∑

q≤M1/2

∑
(a,q)=1

∫
M(a/q)

f1(α)f2(α)g(−4α)dα

+

∫
m

f1(α)f2(α)g(−4α)dα .

When α is in m, it is approximated by a/q where M1/2 < q < N and we use Lemma

4.13 to get g(−4α) �M `−2−(`+2)
. Then∫

m

f1(α)f2(α)g(−4α)dα�M `−2−(`+2)

∫
m

|f1(α)f2(α)| dα

By Cauchy-Schwarz inequality, Parseval’s identity and the fact that in (4.4) and (4.5)

bn, cn ≤ 2 � 1, we have

∫
m

|f1(α)f2(α)| dα <

∫ 1

0

|f1(α)f2(α)| dα <
(∫ 1

0

|f1(α)|2dα
∫ 1

0

|f2(α)|2dα
)1/2

=

(∑
n≤x

|bn|2
∑
n≤x

|cn|2
)1/2

� (x.x)1/2 = x .

Thus ∫
m

f1(α)f2(α)g(−4α)dα�M `−2−(`+2)

x = M `x.M−2−(`+2) � x2

M2−(`+2)
. (4.25)

On the ‘major arc’ M(a/q) we use the bound in Lemma 4.12. Note that when q ≤
M1/2 and a/q + η ∈ M(a/q) we have |η| < 1/(qN). Then the error term from Lemma

4.12 is O(qM `−1(1+ |η|x)) = O
(
qM `−1(1 +M `/(qM `−1/2))

)
= O

(
qM `−1 +M `−1M1/2

)
=

O(M `−1/2). Then, by Cauchy-Schwarz inequality and Parseval’s identity, for the error term

we get

∑
q≤M1/2

∑
(a,q)=1

∫
M(a/q)

∣∣∣∣f1(
a

q
+ η)f2(

a

q
+ η)

∣∣∣∣M `−1q(1 + |η|x)dη

� M `−1/2

∫ 1

0

|f1(α)f2(α)| dα�M `−1/2x� x2

M1/2
.
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The latter error term is smaller than the one in (4.25). Therefore, after Lemma 4.12

R(x) =
∑

q≤M1/2

∑
(a,q)=1

(q,∆)ϕ(∆)

qϕ(q,∆)∆
G(q,−4a)

∫ 1/qN

−1/qN

f1

(
a

q
+ η

)
f2

(
a

q
+ η

)
V (−4η)dη

+O
(

x2

M2−(`+2)

)
We will use Lemma 4.18: for |β| ≤ 1/2 we have V (β) � min(x, |β|−1). As |4η| ≤ 4/qN ≤
1/2, because N � x1−1/2` is greater than 8 for large enough x, we get

V (−4η) � min(x, |η|−1) .

To estimate the contribution of the terms with Q < q ≤ M1/2 we use the latter

inequality and Lemma 4.17:

∑
Q<q≤M1/2

∑
(a,q)=1

(q,∆)ϕ(∆)

qϕ(q,∆)∆
G(q,−4a)

∫ 1/qN

−1/qN

f1

(
a

q
+ η

)
f2

(
a

q
+ η

)
V (−4η)dη

�
∑

Q<q≤M1/2

∑
(a,q)=1

(q,∆)ϕ(∆)

qϕ(q,∆)∆
q1−1/`

∫ 1/qN

−1/qN

∣∣∣∣f1

(
a

q
+ η

)
f2

(
a

q
+ η

)
V (−4η)

∣∣∣∣ dη
� Q−1/`

∑
Q<q≤M1/2

∑
(a,q)=1

∫ 1/2

−1/2

|. . .| dη

� Q−1/`

∫ 1/2

−1/2

min(x, |η|−1)
∑

Q<q≤M1/2

∑
(a,q)=1

∣∣∣∣f1

(
a

q
+ η

)
f2

(
a

q
+ η

)∣∣∣∣ dη
� Q−1/`

∫ 1/2

−1/2

min(x, |η|−1)
∑

Q<q≤M1/2

∑
(a,q)=1

∣∣∣∣f1

(
a

q
+ η

)∣∣∣∣2 dη
1/2

.

∫ 1/2

−1/2

min(x, |η|−1)
∑

Q<q≤M1/2

∑
(a,q)=1

∣∣∣∣f2

(
a

q
+ η

)∣∣∣∣2 dη
1/2

As

f1

(
a

q
+ η

)
=
∑
n≤x

bne(nη)e

(
n
a

q

)
and f2

(
a

q
+ η

)
=
∑
n≤x

cne(nη)e

(
n
a

q

)
,

when we apply the large sieve for the sum in the upper integrals and use the trivial estimate∑
n≤x |bne(nη)|2 � x/ log x after (4.10), and

∑
n≤x |cne(nη)|2 � x/ log x after (4.11), we
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see that the last considered error term is

� Q−1/`

∫ 1/2

−1/2

min(x, |η|−1)(x+M)
x

log x
dη � Q−1/` x2

log x

∫ 1/2

−1/2

min(x, |η|−1)dη .

The latter integral is � log x. Indeed, for |η|−1 ≥ x, i.e. 1/x ≥ |η|, we have min(x, |η|−1) =

x. So ∫ 1/2

−1/2

min(x, |η|−1)dη =

∫ 1/x

−1/x

xdη +

∫ −1/x

−1/2

dη

−η
+

∫ 1/2

1/x

dη

η
= x

(
1

x
+

1

x

)
+ 2

∫ 1/2

1/x

dη

η
= 2− 2 log 2 + 2 log x� log x .

Hence the contribution to R(x) of the terms with Q < q ≤M1/2 is O(x2Q−1/`).

We are left with q ≤ Q. When we extend the range of integration in the corresponding

integral from (−1/qN, 1/qN) to (−1/2, 1/2) we get an error term which we estimate by

Parseval’s identity, Lemma 4.17, and using that V (−4η) � |η|−1 ≤ qN for 1/(qN) ≤ |η| ≤
1/2. The error term in question is

2
∑
q≤Q

∑
(a,q)=1

(q,∆)ϕ(∆)

qϕ(q,∆)∆
|G(q,−4a)|

∫ 1/2

1/qN

∣∣∣∣f1

(
a

q
+ η

)
f2

(
a

q
+ η

)
V (−4η)

∣∣∣∣ dη
� N

∑
q≤Q

∑
(a,q)=1

q1−1/`

∫ 1

0

∣∣∣∣f1

(
a

q
+ η

)
f2

(
a

q
+ η

)∣∣∣∣ dη � Nx
∑
q≤Q

∑
(a,q)=1

q1−1/`

� Nx
∑
q≤Q

q1−1/`.q = Nx
∑
q≤Q

q2−1/` ≤ NxQ2−1/`
∑
q≤Q

1 ≤ NxQ3−1/` .

Now recall that the parameters satisfy (4.23). It follows that

NxQ3−1/` � x2M−1/2M1/2Q−1/` = x2Q−1/` .

Until now we got the error terms O
(
x2/M2−(`+2)

)
and O(x2Q−1/`). After (4.23) Q ≤

M `.2−(`+2)
, so Q−1/` ≥M−2−(`+2)

and the larger error term is O(x2Q−1/`). Collecting all up

to now we arrive at

R(x) =
∑
q≤Q

∑
(a,q)=1

(q,∆)ϕ(∆)

qϕ(q,∆)∆
G(q,−4a)

∫ 1

0

f1

(
a

q
+ η

)
f2

(
a

q
+ η

)
V (−4η)dη+O

(
x2

Q1/`

)
.

The integral, after the orthogonality property, counts e(p1
a
q
)e(p2p3

a
q
) exactly when p1 +
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p2p3 = 4n ≤ 2x, thus its value is exactly f1(a/q)f2(a/q) and this proves the theorem.

Further we need to compute f1 (a/q) and f2 (a/q). For q ≤ Q we write q = dq′, where

d is composed only from primes dividing ∆ and (q′,∆) = 1. If pk | d but pk - ∆, then from

16`2 | ∆ and s = ordp(4`) we have k ≥ 2s+ 1. Clearly there is no p | d such that p - ∆, so

k ≥ 2. Thus k ≥ max(2, 2s + 1) and after Lemma 4.16 we get G(pk, 4a) = 0. Combining

this with Lemma 4.14, and (4.21), we get G(q, 4a) = 0 unless d | ∆.

Recall that p1 ≡ −5 (mod ∆) and p2p3 ≡ 9 (mod ∆). Let us write r1 ≡ −5 (mod ∆)

and r2 ≡ 9 (mod ∆). If d | ∆ we have

f1

(
a

q

)
=

∑
x1/8<p1≤x

e

(
p1
a

q

)
=
∑

(b,q)=1

e

(
b
a

q

) ∑
x1/8<p1≤x
p1≡b(q)

1 =
∑

(b,q)=1
b≡r1(d)

e

(
b
a

q

) ∑
x1/8<p1≤x
p1≡b(q′)

1

and

f2

(
a

q

)
=
∑
n≤x

cne

(
n
a

q

)
=
∑

(b,q)=1

e

(
b
a

q

) ∑
n≤x
n≡b(q)

cn =
∑

(b,q)=1
b≡r2(d)

e

(
b
a

q

) ∑
n≤x

n≡b(q′)

cn

because cn = 0 unless n = p2p3 ≡ 32 ≡ r2 (mod ∆). Also in the two functions always

(b, q) = 1, as x1/8 < p1, p2, p3 and q ≤ Q ≤ M
`

2`+2 < x1/2`+2
< x1/8 for ` ≥ 2 . Thus

(p1, q) = 1 and n = p2p3 is composed by primes larger than q and (n, q) = 1.

Similarly to (4.9) we see that

∑
x1/8<p1≤x
p1≡b(q′)

1 =
1

ϕ(q′)

∑
x1/8<p1≤x

1 +O
(

x

logC x

)
=

1

ϕ(q′)
f1(0) +O

(
x

logC x

)
.

The analogous sum, again by (4.9), is

∑
n≤x

n≡b(q′)

cn =
∑
p2

∑
x1/4<p3≤x/p2
p3≡b/p2(q′)

1 =
1

ϕ(q′)

∑
p2

∑
p3

1 +O
(

x

logC x

)
=

1

ϕ(q′)
f2(0) +O

(
x

logC x

)
.

Here we again used that
∑

x1/8<p2≤x1/4
1
p2
� 1 as was shown in the proof of Lemma 4.5.

The latter estimates with fi(0) are uniform in b and the main term is independent on b.
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Thus for i = 1, 2 we can write

fi

(
a

q

)
=

1

ϕ(q′)
fi(0)

∑
(b,q)=1
b≡ri(d)

e

(
ab

q

)
+O

(
q′x

logC x

)
. (4.26)

Each b in the sum above can be written as b = riq
′q′ + b′d, where (b′, q′) = 1 and

q′q′ ≡ 1 (mod d). Also recall that for the Ramanujan sum for any positive integer q we

have (Theorem 272 [23])

∑
(b,q)=1

e

(
ab

q

)
= ϕ(q)

µ(q/(a, q))

ϕ(q/(a, q))
.

Then, since (a, q) = (a, q′) = 1, we have

∑
(b,q)=1
b≡ri(d)

e

(
ab

q

)
=

∑
(b′,q′)=1

e

(
a(riq

′q′ + b′d)

q

)
= e

(
ariq′

d

) ∑
(b′,q′)=1

e

(
ab′

q′

)

= e

(
ariq′

d

)
ϕ(q′)

µ(q′/(a, q′))

ϕ(q′/(a, q′))
= µ(q′)e

(
ariq′

d

)
.

Recall also Theorem 327 [23] stating that for every positive δ we have ϕ(n)/n1−δ →∞ .

Thus n/ϕ(n) < nδ for large enough n.

Let us take Q ≤ logC/2 x. Then for q ≤ Q we have q/ϕ(q) � log x and when we

multiply f1 (a/q) with f2 (a/q) from (4.26) the error terms are

O
(
fi(0)

ϕ(q′)
.
q′x

logC x

)
= O

(
x

log x
log x

x

logC x

)
= O

(
x2

logC x

)
and

O
(

q′x

logC x

)2

= O

(
x logC/2 x

logC x

)2

= O
(

x2

logC x

)
.

Also note that r1 + r2 ≡ −5 + 9 ≡ 4 (mod ∆), thus

f1

(
a

q

)
f2

(
a

q

)
=
µ(q′)2

ϕ(q′)2
e

(
4aq′

d

)
f1(0)f2(0) +O

(
x2

logC x

)
.
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Then Theorem 4.20 transforms into

R(x) = f1(0)f2(0)
ϕ(∆)

∆

∑
d|∆

∑
q′≤Q/d
(q′,∆)=1

µ(q′)2(q′,∆)

q′ϕ(q′)2ϕ(d)ϕ(q′,∆)

∑
(a,dq′)=1

G(dq′,−4a)e

(
4aq′

d

)

+ O
(
x2

Q1/`

)
+O

(
x2Q2−1/`

logC x

)
.

The last error term comes from

∑
q≤Q

∑
(a,q)=1

1

q
G(q,−4a) �

∑
q≤Q

∑
(a,q)=1

q1−1/`

q
�
∑
q≤Q

q.q−1/` ≤ Q.Q1−1/` .

Of course (q′,∆) = 1. At this stage we also take Q = log3` x with C = 6`. Then

x2Q2−1/`

logC x
=
x2(log3` x)2−1/`

log6` x
=

x2

log3 x

and

R(x) = f1(0)f2(0)
ϕ(∆)

∆

∑
d|∆

∑
q′≤Q/d
(q′,∆)=1

µ(q′)2

q′ϕ(q′)2ϕ(d)

∑
(a,dq′)=1

G(dq′,−4a)e

(
4aq′

d

)
+O

(
x2

log3 x

)
(4.27)

In order to examine further the asymptotic formula for R(x) we need to investigate the

innermost sum in (4.27). Let us introduce a notation for it:

κ(q) =

{ ∑
(a,q)=1G(q,−4a)e

(
4aq′

d

)
for q = dq′ , (q′,∆) = 1 , µ(q′)2 = 1 , and d | ∆ ,

0 otherwise .

4.5 The Sum κ(q)

We can easily check that κ(q) is a multiplicative function using Chinese remainder

theorem. In particular, κ(q′d) = κ(q′)κ(d). Observe that because of the factor µ(q′)2 in

(4.27) we will have a contribution of 0 always when q′ - ∆ and q′ is not square-free. Thus

for every p - ∆ we need to compute only κ(p), and for every pk | ∆ we will look at κ(pk) .
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p - ∆ Here p should be odd and

κ(p) =
∑

(a,p)=1

G(p,−4a)e (4ap/1) =
∑

(a,p)=1

∑
u(p)

(u,p,∆)=1

e

(
−4au`

p

)

=
∑
u(p)

(u,(p,∆))=1

∑
(a,p)=1

e

(
−4au`

p

)
=
∑
u(p)

∑
(a,p)=1

e

(
−4au`

p

)

=
∑

(u,p)=1

∑
(a,p)=1

e

(
−4au`

p

)
+
∑

(a,p)=1

e
(
−4ap`−1

)
=

∑
(u,p)=1

(−1) + ϕ(p) = −ϕ(p) + ϕ(p) = 0 .

But then in (4.27) we actually have only q′ = 1 and

R(x) = f1(0)f2(0)
ϕ(∆)

∆

∑
d|∆

κ(d)

ϕ(d)
+O

(
x2

log3 x

)
. (4.28)

When d | ∆ we have

κ(d) =
∑

(a,d)=1

∑
u(d)

(u,d,∆)=1

e

(
−4au`

d

)
e

(
4a

d

)
=
∑

(a,d)=1

∑
(u,d)=1

e

(
−4au`

d

)
e

(
4a

d

)

=
∑

(a,d)=1

∑
(u,d)=1

e

(
−4a(u` − 1)

d

)

We introduce the notation

ρ(pk) = #{u(pk) : u` ≡ 1 (mod pk)} .

We have the following

Lemma 4.21.

ρ(pk) = (`, p− 1)(`, pk−1) if p 6= 2 ,

ρ(2k) =

{
1 if 2 - `
(2`, 2k−1) if 2 | ` .

Proof. See the discussion before Lemma 2.13 in §2.6, [51].
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p | ∆ , p 6= 2

∑
(a,p)=1

∑
(u,p)=1

e

(
−4a(u` − 1)

p

)
=

∑
(u,p)=1

u`≡1(p)

∑
(a,p)=1

e

(
−4a(u` − 1)

p

)

+
∑

(u,p)=1

u` 6≡1(p)

∑
(a,p)=1

e

(
−4a(u` − 1)

p

)

= ρ(p)ϕ(p) + (p− 1− ρ(p)) (−1) = ρ(p)(p− 1)− (p− 1) + ρ(p) = p(`, p− 1)− (p− 1)

or

κ(p) = p(`, p− 1)− (p− 1) . (4.29)

pk | ∆ , k ≥ 2 , p - 2` If p - 2`, we have ordp(4`) = s = 0 and, as k ≥ 2, from Lemma 4.16

it follows that G(pk,−4a) = 0. Thus

κ(pk) = 0 . (4.30)

So further we assume that s ≥ 1:

pk | ∆ , k ≥ 2 , p | ` , p 6= 2 Here we have

κ(pk) =
∑

(u,pk)=1

∑
(a,pk)=1

e

(
−4a(u` − 1)

pk

)
=

∑
(u,pk)=1

u`≡1(pk)

. . .+
∑

(u,pk)=1

u` 6≡1(pk)

. . .

= ρ(pk)ϕ(pk) +
k−1∑
n=0

∑
(u,pk)=1

pn‖u`−1

∑
(a,pk)=1

e

(
−4a(u` − 1)

pk

)
.

Obviously 4(u`−1) = Upn with some p - U , and the inner sum becomes pn copies of the

Ramanujan sum regarding pk−n(,i.e. pnµ(pk−n)). Therefore, as µ(pk−n) = 0 for n ≤ k − 2
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and µ(p) = −1, we have

κ(pk) = ρ(pk)ϕ(pk) +
k−1∑
n=0

∑
(u,pk)=1

pn‖u`−1

pnµ(pk−n) = ρ(pk)ϕ(pk)− pk−1
∑

(u,pk)=1

pk−1‖u`−1

1

= ρ(pk)ϕ(pk)− pk−1
(
pρ(pk−1)− ρ(pk)

)
= ρ(pk)pk−1(p− 1)− pkρ(pk−1)

+pk−1ρ(pk) = pk(ρ(pk)− ρ(pk−1)) .

After Lemma 4.21 in our case we have ρ(pk) = (`, p− 1)(`, pk−1) and

κ(pk) = pk(`, p− 1)
(
(`, pk−1)− (`, pk−2)

)
.

Regard the case 2 ≤ k ≤ s + 1. Then 1 ≤ k − 1 ≤ s = ordp(4`) and as p 6= 2, we have

(`, pk−1) = pk−1 and (`, pk−2) = pk−2. If k ≥ s+2, then k−2 ≥ s and (`, pk−2) = (`, pk−1) =

ps. We combine the results in the considered case:

κ(pk) =

{
(`, p− 1)(p2k−1 − p2k−2) if 2 ≤ k ≤ s+ 1 ,

0 if k ≥ s+ 2 .
(4.31)

p = 2 We will show that

κ(2k) =



1 if k = 1 ,

4 if k = 2 ,

16 if k = 3 ,

22k−2 if 4 ≤ k ≤ s+ 2 and 2 | `,
0 otherwise ,

(4.32)

where ‘otherwise’ means either k ≥ 4 and 2 - `, or k ≥ s+ 3 and 2 | `.

Clearly

κ(2) =
∑

(u,2)=1

∑
(a,2)=1

e

(
−4a(u` − 1)

2

)
= e(2.1.(1− 1)) = 1 .

Similarly

κ(4) =
∑

(u,4)=1

∑
(a,4)=1

e

(
−4a(u` − 1)

4

)
= 2.2 = 4
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and

κ(8) =
∑

(u,8)=1

∑
(a,8)=1

e

(
−4a(u` − 1)

8

)
=
∑

(u,8)=1

∑
(a,8)=1

e

(
−a(u` − 1)

2

)
= 4.4 = 16 .

For k ≥ 4

κ(2k) =
∑

(u,2k)=1

∑
(a,2k)=1

e

(
−4a(u` − 1)

2k

)
=

∑
(u,2k)=1

∑
(a,2k)=1

e

(
−a(u` − 1)

2k−2

)
=

∑
(u,2k)=1

u`≡1(2k−2)

. . .+
∑

(u,2k)=1

u` 6≡1(2k−2)

. . .

= 22ρ(2k−2)ϕ(2k) +
k−3∑
n=0

∑
(u,2k)=1

2n‖u`−1

∑
(a,2k)=1

e

(
a(u` − 1)

2k−2

)

= 4ρ(2k−2)ϕ(2k) +
k−3∑
n=0

∑
(u,2k)=1

2n‖u`−1

2n+2µ(2k−2−n) = 4ρ(2k−2)ϕ(2k)− 2k−1
∑

(u,2k)=1

2k−3‖u`−1

1

= 4ρ(2k−2)ϕ(2k)− 2k−1
(
23ρ(2k−3)− 22ρ(2k−2)

)
.

According to Lemma 4.21 ρ(2k) = 1 if 2 - `, so in this case κ(2k) = 4ϕ(2k)− 2k−1(8− 4) =

4.2k−1 − 2k−1.4 = 0.

If 2 divides ` we have ρ(2k) = (2`, 2k−1),so κ(2k) = 4(2`, 2k−3).2k−1 −
2k−1

(
23(2`, 2k−4)− 22(2`, 2k−3)

)
. If k − 3 ≤ s − 1, then (2`, 2k−3) = 2k−3

because 2s−1 | 2` and 2k−3 | 2s−1. Similarly (2`, 2k−4) = 2k−4. Then

κ(2k) = 4.2k−3.2k−1 − 2k−1(23.2k−4 − 22.2k−3) = 22k−2.

If k − 3 > s− 1, then also k − 4 ≥ s− 1 and (2`, 2k−3) = (2`, 2k−4) = 2s−1. Then

κ(2k) = 22.2s−1.2k−1 − 2k−1(23.2s−1 − 22.2s−1) = 0,

and finally this proves (4.32).
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4.6 Proof of Theorem 4.2

Here we complete the proof of the main theorem. We need to compute the sum in

(4.28). Let us use the shorter notation

κ =
∑
d|∆

κ(d)

ϕ(d)
.

We only have to combine the results of (4.29), (4.30), (4.31) and (4.32). We get

κ =
∏
p|∆
p-2`

(
1 +

κ(p)

ϕ(p)

)∏
p|2`

(
1 +

κ(p)

ϕ(p)
+

κ(p2)

ϕ(p2)
+ . . .

)
.

The first product equals

∏
p|∆
p-2`

(
1 +

p(`, p− 1)− ϕ(p)

ϕ(p)

)
=
∏
p|∆
p-2`

p

ϕ(p)
(`, p− 1) .

According to the cases considered in §4.5 we split the other product into two factors∏
p|2`

=
∏
p|2`
p6=2

.
∏
p=2

=: Π1Π2 .
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For the first factor we have

Π1 =
∏
p|2`
p6=2

(
1 +

p(`, p− 1)− ϕ(p)

ϕ(p)
+

s+1∑
k=2

(`, p− 1)(p2k−1 − p2k−2)

ϕ(pk)

)

=
∏
p|2`
p6=2

(
p

ϕ(p)
(`, p− 1) + (`, p− 1)

s+1∑
k=2

p2k−2(p− 1)

pk−1(p− 1)

)

=
∏
p|2`
p6=2

(`, p− 1)

(
p

ϕ(p)
+

s+1∑
k=2

pk−1

)

=
∏
p|2`
p6=2

(`, p− 1)

(
p

ϕ(p)
+ p

ps − 1

p− 1

)
=
∏
p|2`
p6=2

(`, p− 1)

(
p

ϕ(p)
+

p

ϕ(p)
(ps − 1)

)

=
∏
p|2`
p6=2

(`, p− 1)
p

ϕ(p)
ps

For p = 2 and 2 - ` the factor Π2 is of the form 1 + 1/ϕ(2) + 4/ϕ(22) + 16/ϕ(23) =

1 + 1 + 2 + 4 = 8. For 2 | ` we have the factor

Π2 = 1 + 1 + 2 + 4 +
s+2∑
k=4

22k−2

ϕ(2k)
= 8 +

s+2∑
k=4

2k−1

= 8 + 8
s+2∑
k=4

2k−4 = 8 + 8(2s−1 − 1) = 4.2s

Notice that in any case we have

Π2 =
2

ϕ(2)
(2, `)2s ,

because for (2, `) = 1 we have s = ord2(4`) = 2 and 2s = 4. Putting all these together we

arrive at

κ =
2

ϕ(2)
(2, `)2s

∏
p|∆
p-2`

p

ϕ(p)
(`, p− 1)

∏
p|2`
p6=2

p

ϕ(p)
(`, p− 1)ps = 4`(2, `)

∏
p|∆

p

ϕ(p)
(`, p− 1) .

Note that ϕ(∆)/∆ =
∏

p|∆ ϕ(p)/p because for any k ≥ 2 we have ϕ(pk)/pk =

pk−1ϕ(p)/pk = ϕ(p)/p. That is why when we substitute the expression for κ we achieved
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above into (4.28), we get

R(x) = f1(0)f2(0)
ϕ(∆)

∆
4`(2, `)

∏
p|∆

p

ϕ(p)
(`, p− 1) +O

(
x2

log3 x

)

= 4`(2, `)
∏
p|∆

(`, p− 1)f1(0)f2(0) +O
(

x2

log3 x

)
.

This completes the proof of Theorem 4.2.

Remark 4.22. In [2] the archetype of Theorem 4.2 originally was proven for primes from

Siegel-Walfisz sets and for a different additive problem. Let P be an infinite set of primes

and q and b be coprime integers so that P(x, q, b) denotes the number of primes p ∈ P with

p ≤ x and p ≡ b (mod q). We say that P satisfies Siegel-Walfisz condition for an integer

∆ if for any fixed integer C > 0

P(x, q, b) =
γ

ϕ(q)
π(x) +O(

x

logC x
) (4.33)

uniformly for all (q,∆) = 1 and all b coprime to q. Here π(x) ∼ x/ log x is the usual prime

counting function and 0 < γ ≤ 1 is the density of the primes in P .

The notion of Siegel-Walfisz condition in [2] comes from dealing with conjugacy classes

in the Galois group of a number field. The primes whose Frobenius automorphism is in

a given conjugacy class correspond to the same residue class modulo a certain ∆. After

Chebotarev’s density theorem these primes satisfy the Siegel-Walfisz’ condition. Further

notice that all primes in an arithmetic progression satisfy Siegel-Walfisz theorem (Corollary

5.29 [31]), so a Siegel-Walfisz set could be the set of all primes, but also it could be much

smaller. The lower theorem assures that the additive problem (4.1) with primes from

Siegel-Walfisz sets has still infinitely many solutions with the same asymptotic formula.

The proof of the theorem is identical to the one of Theorem 4.2 and comes from the fact

that the corresponding functions f1(0) and f2(0) also satisfy (4.10) and (4.11).

Theorem 4.23. Suppose that ∆, ` are positive integers for which 16`2 | ∆ and (15,∆) = 1.

Let P1,P2 be infinite sets of primes satisfying Siegel-Walfisz condition for ∆ such that for

every p ∈ P1 we have p ≡ −5 (mod ∆) and for every r ∈ P2 we have r ≡ 3 (mod ∆).

If p1, p2, p3 satisfy the additive problem (4.1) with the conditions (4.2) and in addition
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p1 ∈ P1, p2, p3 ∈ P2, we have

R(x) = 4`(2, `)
∏
p|∆

(`, p− 1)f1(0)f2(0) +O
(

x2

log3 x

)
.
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Chapter 5

Effective Lower Bound for the Class

Number of a Certain Family of Real

Quadratic Fields

5.1 Introduction

In this chapter we give a lower bound for the class number of the real quadratic fields

of Yokoi type d = n2 + 4 where n is a certain third degree polynomial. This is a special

case of the extensively examined Richaud–Degert discriminants with a = 1. There are

already lower bounds for the class number of R-D fields described in [41]. They however

depend on the number of divisors of n at least. We present an analytic lower bound

depending on the discriminant and since Goldfeld’s theorem and Gross–Zagier formula are

applied the bound will be of the magnitude these theorems could provide, i.e. (log d)1−ε.

Note that the expected growth (1.2) is much faster, unfortunately it is ineffective. Our

result is also interesting bearing in mind that there is still no effective solution of the class

number two problem for discriminants d = n2 + 4.

We consider elliptic curves over the field of rational numbers given by the Weierstrass

equation

E : y2 = x3 + Ax+B (5.1)

with a discriminant ∆ = −16(4A3 + 27B2) 6= 0 and a conductor N . We denote the group

of rational points with the usual E(Q). If E is regarded over any other field or ring K the

group of the rational points on E over K is denoted by E(K). By a quadratic twist of the
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elliptic curve we understand the curve

ED : Dy2 = x3 + Ax+B . (5.2)

After replacing (x, y) by (x/D, y/D2) we get the Weierstrass equation of the twisted elliptic

curve

ED,W : y2 = x3 + (AD2)x+ (BD3) (5.3)

with a discriminant ∆D = D6∆. Note that (x0, y0) ∈ ED(Q) if and only if

(Dx0, D
2y0) ∈ ED,W (Q) .

The main result of Goldfeld from 1976 is

Theorem (Goldfeld [18]). Let E be an elliptic curve over Q with conductor N . If E

has complex multiplication and the L-function associated to E has a zero of order g at

s = 1, then for any real primitive Dirichlet character χ (mod d) with (d,N) = 1 and

d > exp exp(c1Ng
3), we have

L(1, χ) >
c2

g4gN13

(log d)g−µ−1 exp
(
−21g1/2(log log d)1/2

)
√
d

,

where µ = 1 or 2 is suitably chosen so that χ(−N) = (−1)g−µ, and the constants c1, c2 > 0

can be effectively computed and are independent of g ,N and d.

If the condition (d,N) = 1 is dropped, then the upper theorem still holds. In this case,

however, the relation χ(−N) = (−1)g−µ will have to be replaced by a more complicated

one. In our argument we will consider only coprime d and N .

Denote as usual by h(d) the class number of the real quadratic field Q(
√
d) for the

positive fundamental discriminant d. When we plug Dirichlet class number formula (1.1)

in the above estimate for L(1, χ) we get an inequality of the type

h(d) log εd � (log d)g−µ−1e−21
√
g(log log d) ,

where εd denotes the fundamental unit of Q(
√
d). Also the exponent on the right-hand

side of the upper inequality is greater than (log d)−ε for any ε > 0 and big enough d. Note

that if g ≤ 3 the theorem in this form gives a trivial estimate on the class number for

d > 0 because log εd � log d.
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The method of Goldfeld however allows to consider the analytic rank of an elliptic

curve over quadratic field (the function ϕ(s) defined in [18] has a zero of high order at

s = 1/2). This way we aim simultaneously toward high order zero of the L-function of

E over Q and of the twisted L-function by the corresponding real quadratic character.

The requirement for complex multiplication of E comes from the level of knowledge on

Taniyama–Shimura–Weil conjecture at the time of Goldfeld’s work. It was known that the

L-function of elliptic curves with complex multiplication equals a certain Hecke L-function

with ”Größencharakter”, thus satisfying a functional equation required for the argument.

As Goldfeld himself remarks on p.624 after Theorem 1 [18], a modular elliptic curve would

do the work for the proof just the same. In the light of the Modularity theorem from 2001

(Wiles, Taylor et al. [8], [50], [54]) every elliptic curve over Q is modular (this term and

the Modularity theorem will be discussed in a greater detail in the next section). Thus we

can omit the original condition on complex multiplication of the elliptic curve in Goldfeld’s

theorem. The theorem can be reformulated as in [19] where the real quadratic case is

explained in the remarks following Theorem 1 [19].

Theorem 5.1 (Goldfeld). Let d be a fundamental discriminant of a real quadratic field. If

there exists an elliptic curve E over Q whose associated base change Hasse-Weil L-function

LE/Q(
√
d)(s) = L(E, s)L(Ed, s)

has a zero of order g ≥ 5 at s = 1, then for every ε > 0 there exists an effective computable

constant cε(E) > 0, depending only on ε and E, such that

h(d) log εd > cε(E)(log d)2−ε .

Let us look at Yokoi’s discriminants d = n2 + 4. In that case the fundamental unit is

small, i.e.

log d� log εd � log d .

If we use this fact and we can find an elliptic curve as in Theorem 5.1 we could obtain an

effective lower bound of the type

h(d) > cε(E)(log d)1−ε .

The question whether Goldfelds’s theorem can be used for a possible extension of the

class number problem for Yokoi’s discriminants solved in [4] was raised by Biró in [6].

Unfortunately we can assure existence of such elliptic curve only for a small subset of
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d = n2 + 4. More precisely, the main result of this chapter is

Theorem 5.2. Let n = m(m2−306) for a positive odd integer m, and N = 23·33·103·10303.

If d = n2 + 4 is square-free and

(
d

N

)
= −1, then for every ε > 0 there exists an effective

computable constant cε > 0, depending only on ε, such that

h(d) = h(n2 + 4) > cε (log d)
1−ε .

Remark 5.3. We expect that there are infinitely many discriminants d satisfying the

assumptions of Theorem 5.2. Let

d(x) = x6 − 612x4 + 93636x2 + 4

be the polynomial defining the discriminant d for odd positive x = m. The polynomial is

irreducible in Z[x] so there are not obvious reasons for it not to be square-free infinitely

often. Something more, if we introduce

M(X) = #{0 < m ≤ X : m is odd , µ (d(m)) 6= 0 and

(
d(m)

N

)
= −1} , (5.4)

we check numerically that M(X)/X ≈ 0.221, i.e. the odd positive integers m defining

square-free discriminants d(m), which are also quadratic nonresidues modulo N , seem to

be of positive density.

A construction similar to the one in the present chapter was already made in [20], where

the quadratic twists of E from (5.1) are of the form D = u.f(u, v) for the homogeneous

binary polynomial f(u, v) = u3 +Au2v+Bv3. In [20] by a ‘square-free sieve’ argument the

authors give a density to a similar quantity as (5.4). However, we are strictly interested

in discriminants d = n2 + 4 = d(m) where d(m) is a polynomial in one variable of degree

6. There exists a lot of literature on estimating square-free, or k-free, polynomials, e.g.

[9], [21], [26], [28], [29], [30], but there are no results on one-variable polynomials of degree

higher than three.

62



5.2 Theoretical Background

We remind that the Hasse-Weil L-function associated with the elliptic curve E over Q
given with (5.1) is the series

L(E, s) =
∏
p|∆

(1− tpp
−s)−1

∏
p-∆

(1− tpp
−s + p1−2s)−1 ,

where

tp = p−Np

and

Np = #{(x, y) (mod p) : y2 ≡ x3 + Ax+B (mod p)} .

By the Riemann hypothesis for curves over finite fields one has |tp| ≤ 2
√
p and from this

it follows that the series L(E, s) converges absolutely for Re(s) > 3/2.

Introduce the Hecke congruence subgroup

Γ0(N) =

{(
α β

γ δ

)
∈ SL(2,Z) : γ ≡ 0 (mod N)

}
,

with the usual action on the upper complex half-plane H. Then for the integer k the

holomorphic function f : H → C is called a modular form of weight k and level N if

f

(
αz + β

γz + δ

)
= (γz + δ)kf(z), ∀

(
α β

γ δ

)
∈ Γ0(N)

and is holomorphic at all cusps of Γ0(N) (the finite number of intersections of a funda-

mental domain of Γ0(N) \H =: X0(N) with R ∪∞).

The former Taniyama–Shimura–Weil conjecture, nowadays the Modularity theorem

(Theorem 14.6 [31]), states that for every elliptic curve E over the rationals with conductor

N there exists a modular form

f(z) =
∞∑
n=1

λ(n)n1/2e(nz)
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of weight 2 and level N , actually a primitive cusp form, such that

L(E, s+ 1/2) = L(f, s) =
∞∑
n=1

λ(n)n−s .

It follows that L(E, s) has a holomorphic continuation to the entire complex plane and

the completed function Λ(E, s) = (
√
N/2π)sΓ(s)L(E, s) satisfies a functional equation

Λ(E, s) = ±Λ(E, 2 − s). Such elliptic curves are called modular, in other words the

Modularity theorem asserts that every elliptic curve over the rationals is modular.

If we denote by ω the invariant differential form f(z)dz for the congruence group

of level N and z ∈ X0(N), then the modular parametrization is a non-constant map

of Riemann surfaces π : X0(N) → E(C) induced by the holomorphic function π(z) =
∫∞
z
ω.

Now, fix d < 0 such that d ≡ r2 (mod 4N) for some integer r > 0, and fix (a, b, c) ∈ Z3

and z ∈ H satisfying b2 − 4ac = d, a ≡ 0 (mod N), b ≡ r (mod 2N), az2 + bz + c = 0.

We call these d’s Heegner discriminants. There will be h(d) such points z1, z2, . . . , zh. The

Heegner point Pd is defined as the trace

Pd = π(z1) + π(z2) + . . .+ π(zh) ∈ E(Q(
√
d)) .

Note that P ′d depending on r′ 6= r could differ from Pd only by a sign and a rational torsion

point, so its canonical height is correctly defined.

Gross–Zagier Formula: Gross and Zagier’s famous result [22], and Theorem 23.4 [31]

for more elementary approach, claims that if E is an elliptic curve over Q with L(E, 1) = 0,

then for every Heegner discriminant d < 0 satisfying the upper conditions there exists a

Heegner point Pd ∈ E(Q(
√
d)) such that

L′(E, 1)L(Ed, 1) = cE,dĥ(Pd) (5.5)

for some real non-zero constant cE,d depending on the elliptic curve E and d. Gross and

Zagier give the precise formula for cE,d which, however, we do not need in our argument.

Here ĥ denotes the canonical height on elliptic curve over a number field (§9.VIII [46]).

We also want to draw attention of a Kolyvagin’s result [32]. If for a modular elliptic

curve over Q there is a complex quadratic extension Q(
√
d) for which the Heegner point Pd

is of infinite order, Kolyvagin shows that the Mordell-Weil group E(Q) is finite. Combining
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this with Gross–Zagier formula we get

L(E, 1) 6= 0 ⇒ E(Q) is finite . (5.6)

This is one part of Theorem 1 [33].

5.3 Proof of Theorem 5.2

Recall that for the Hasse-Weil L-function associated to the elliptic curve E we consider

a root number ω = (−1)t, where ords=1L(E, s) = t . Let ωD be the root number for ED.

If (D,N) = 1 for the conductor N , and χ = χD =
(
D
.

)
is the real quadratic character

of Q(
√
D), we have ωD = χ(−N)ω (e.g. (23.48) [31]). The character χ is even, so

ωD = χ(N)ω.

Let E be an elliptic curve with ords=1L(E, s) ≥ 3 and ω = −1. Then ωD = −χ(N). If

further we require χ(N) = −1 we will have ωD = 1. If there is a rational point in ED(Q)

that is not a torsion point, then the rank of the Mordell-Weil group ED(Q) is positive

and ED(Q) is a group of infinite order. After statement (5.6) we have L(ED, 1) = 0, i.e.

ords=1L(ED, s) ≥ 1. From ωD = 1 it will follow that ords=1L(ED, s) ≥ 2 and the order is

even.

We will construct such an elliptic curve for which certain quadratic twists of it satisfy

the upper conditions. Then ords=1L(E, s)L(ED, s) ≥ 5 and this would allow us to apply

Theorem 5.1.

From now on d = n2 +4 is a square-free odd integer. Look at the twist (5.2) with y = 1

and assume that d satisfies the equation

d = x3
0 + Ax0 +B (5.7)

for some x0 ∈ Z. Then we have (x0, 1) ∈ Ed(Q). The equation (5.7) reads as n2 + 4 =

x3
0 +Ax0 +B or n2 = x3

0 +Ax0 +B − 4. Let us choose the coefficients A and B in such a

way that g(x) = x3 + Ax+B − 4 = (x− k)2(x− l) for some integers k and l. This yields

g(k) = g(l) = 0 and g′(k) = 0. Then g′(k) = 3k2 + A = 0, so A = −3k2 and therefore

0 = g(k) = k3 − 3k2 · k +B − 4. Thus B = 2k3 + 4 and finally

g(x) = x3 − 3k2x+ (2k3 + 4)− 4 = x3 − 3k2x+ 2k3 = (x− k)2(x+ 2k) .
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This means that d satisfies (5.7) if and only if

n2 = g(x0) = (x0 − k)2(x0 + 2k) (5.8)

for some integer x0.

Look at the curve

Ck : y2 = (x− k)2(x+ 2k) .

It is well-known/see [46].III.2.5/ that its non-singular points are in one-to-one correspon-

dence with Q∗. What can be easily seen is that if we put m = y/(x − k), we have

m2 = x + 2k, so x = m2 − 2k and y = m(x − k) = m(m2 − 3k). Hence n satisfies (5.8)

exactly when

x0 = m2 − 2k

n = m(m2 − 3k) ,

where m is an odd integer.

We are led to the following claim.

Lemma 5.4. Let

Ek : y2 = x3 − 3k2x+ (2k3 + 4) (5.9)

be an elliptic curve over Q with ords=1L(Ek, s) ≥ 3 and odd, and a conductor Nk. Let Ed
k

be the quadratic twist of Ek with d = n2 + 4 such that

(
d

Nk

)
= −1. If k is even, then for

any n = m(m2 − 3k), where m is an odd integer, we have

ords=1L(Ed
k , s) ≥ 2

with a root number ωd = 1.

Proof. By the argument presented in the beginning of the section it is enough to find a

point in Ed
k(Q) which is not a torsion point. We take Q = (x0, 1) = (m2 − 2k, 1) ∈ Ed

k(Q).

Clearly, by (5.3), we have P = (dx0, d
2) = (d(m2 − 2k), d2) ∈ Ed,W

k (Q). By Lutz-Nagell

theorem/see [46].VIII.7.2/ if P is a torsion point, both the x(P ) and y(P ) coordinates of

P should be integers. We also use the simple fact that if P is a torsion point so is any

multiple of it. Let us look at [2]P .
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The duplication formula [46].III.2.3d, for an elliptic curve given with (5.1), reads

x([2]P ) =
x4 − 2Ax2 − 8Bx+ A2

4(x3 + Ax+B)
=

φ(x)

4ψ(x)
.

We are interested in

Ed,W
k : y2 = x3 + (−3k2)d2x+ (2k3 + 4)d3 (5.10)

and in this case ψ(dx0) = ψ (d(m2 − 2k)) = d3(x3
0− 3k2x0 +(2k3 +4)) = d3 ·d = d4 , where

we used (5.7). On the other hand

φ(dx0) = d4
(
x4

0 − 2(−3k2)x2
0 − 8(2k3 + 4)x0 + (−3k2)2

)
and clearly ψ(dx0) divides φ(dx0). Note, however, that x0 is an odd integer for m–odd, and

when k is even, as d is also odd, we have φ(dx0) ≡ 1 (mod 4). This means that x([2]P ) is

not an integer, thus according to Lutz-Nagell theorem [2]P is not a torsion point, so P is

not torsion either.

Remark 5.5. Note that φ(dx0) ≡ 0 (mod 4) when k is odd, so we could not use the same

easy argument to prove that P is not torsion for odd k.

We can finalize the proof if we find an elliptic curve Ek with an odd analytic rank

not less than 3 and even k. In the last section we prove unconditionally that the analytic

rank of E102 is odd and at least 3 by giving a lower bound for the canonical height of any

non-torsion point on the curve. The conductor of E102 is N = 23 · 33 · 103 · 10303, therefore

the statement of Theorem 5.2 follows from Lemma 5.4 and Goldfeld’s theorem.

5.4 Analytic Rank of E102

All computer calculations in this section are made in SAGE [49] if not stated otherwise.

Through the function analytic rank, which does not return a provably correct result in

all cases, we run positive values for k smaller than 200. The data we find is presented in

Table 5.1. Note that k = 102 is not the only good choice, since after Lemma 5.4 any even

integer k that gives Ek with analytic rank three would work for us. Probably in the family

given with (5.9) there are infinitely many even k for which ords=1L(Ek, s) = 3.

Assuming Birch and Swynnerton-Dyer conjecture, which predicts that the analytic and

geometric ranks of an elliptic curve over Q coincide, and by examining the Mordell-Weil
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k conductor Nk

65 25 · 33 · 11 · 19 · 73
102 23 · 33 · 103 · 10303
114 23 · 33 · 5 · 13 · 23 · 991
129 25 · 33 · 5 · 7 · 13 · 337
136 22 · 33 · 7 · 43 · 61 · 137
141 25 · 33 · 19 · 71 · 1039
145 25 · 33 · 7 · 19 · 73 · 157
162 23 · 33 · 163 · 26083
184 22 · 33 · 5 · 37 · 151 · 223
187 24 · 33 · 7 · 47 · 4969
191 24 · 33 · 12097

Table 5.1: Elliptic curves Ek of analytic rank 3

group E102(Q), the analytic rank of E102 is 3. However, we want to show an unconditional

proof for the fact that this analytic rank is odd and at least 3. This can be achieved if we

proceed in a similar way like in [12].

More precisely, SAGE unconditionally returns ω = −1 and L(E102, 1) = 0. It

also gives (−2.80575576483894 · 10−13, 4.32590860129513 · 10−33) as the value of

L.deriv at1(200000). Here the first value is an upper bound for L′(E102, 1), and the

second term is the error size.

There are lower bounds for the canonical height of non-torsion points of elliptic curves

like the bound of Hindry–Silverman given in Theorem 0.3 [27]. It says that if N is the

conductor of E, ∆ – the discriminant of its minimal model, and σ = log |∆|/ logN , then

for any non-torsion point P ∈ E(Q) we have

ĥ(P ) ≥ 2 log |∆|
(20σ)8101.1+4σ

.

The discriminant of E102 is ∆ = −28 · 33 · 103 · 10303 so the Weierstrass equation (5.9)

coincides with its minimal global model. We compute the Hindry–Silverman’s bound in

our case. It is 7.14186994767245 ·10−16. Unfortunately it is ‘too close’ to zero compared to

the approximate value of L′(E102, 1) to be able to use it with Gross–Zagier formula. What

we do is to find a better lower bound for the rational points on E102(Q).

Lemma 5.6. For all rational points P ∈ E102(Q)/{0} where

E102 : y2 = x3 − 31212x+ 2122420
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we have

ĥ(P ) ≥ 0.38744 ,

in particular the torsion subgroup of E102(Q) is the trivial group. Something more, for all

non-integral rational points P ∈ E102(Q)/{0} we have

ĥ(P ) ≥ 1.48606 .

Note that we use the Silverman’s definition for Néron-Tate height [46], which is

normalized as being twice smaller than the height given in SAGE. We will denote the

latter as ĥS. Also recall that the infinite point O on elliptic curve is given with the

projective coordinates (0 : 1 : 0) and its canonical height equals zero.

Before we present the proof of Lemma 5.6 we show how to apply it to prove that

L′(E102, 1) = 0 and hence ords=1L(E102, s) ≥ 3. By list of the Heegner discriminants

for E102 we take the point H corresponding to the imaginary quadratic field Q(
√
−71).

Recall that Gross–Zagier formula (5.5) claims that if L(E, 1) = 0 and d < 0 is a Heegner

discriminant, then there is a Heegner point Pd ∈ E(Q(
√
d)) for which

L′(E, 1)L(Ed, 1) = cE,dĥ(Pd)

for some real non-zero constant cE,d. Through the function heegner point height, which

uses Gross–Zagier formula and computation of L-series with some precision, we see that

the canonical height ĥS of H = P−71 is in the interval [−0.00087635965, 0.00087636244] :

E102.heegner_discriminants_list(4)

[-71, -143, -191, -263]

a71=E102.heegner_point_height(-71,prec=3)

a71.str(style=’brackets’)

’[-0.00087635965 .. 0.00087636244]’

This means that 0 ≤ ĥS(H) ≤ 0.00087636244. Also, by Corollary 3.3 [42] and ω = −1, it

follows that H equals its complex conjugate. Therefore not only H lies on E102(Q(
√
−71))

but it is a rational point: H ∈ E102(Q). By Lemma 5.6 it is clear that the Heegner point

H is actually the infinite point, because ĥS(H) = 2ĥ(H) ≤ 0.00087636244. We also check

that L(E−71
102 , 1) 6= 0:

E71=E102.quadratic_twist(-71)

E71.lseries().at1(10^7)
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gives L(E−71
102 , 1) = 0.682040095555640 ± 1.40979860223528 · 10−20. Now from ĥ(H) = 0

and (5.5) it follows L′(E102, 1) = 0.

We will use the Néron’s definition of local heights (Theorem 18.1 [46]) such that the

canonical height is expressed like the sum ĥ(P ) =
∑

ν∈MQ
λν(P ) (Theorem 18.2 [46]) and

the valuation ν arises from a rational prime or is the usual absolute value at the real field.

We will write the finite primes with p and for any integer n and x = x1/x2 ∈ Q such that

(x1, x2) = (x1, p) = (x2, p) = 1, we introduce ordν(p
nx) = ordp(p

nx) := n, |pnx|ν := p−n

and ν(pnx) := n log p .

Let E be an elliptic curve defined over the field of rational numbers with the Weierstrass

equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (5.11)

and the quantities b2, b4, b6, b8, c4 are the ones defined in III.1 [46]. In this notation the

duplication formula for the point P = (x, y) ∈ E(Q) reads

x(2P ) =
x4 − b4x

2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

.

Let t = 1/x and

z(x) = 1− b4t
2 − 2b6t

3 − b8t
4 =

x4 − b4x
2 − 2b6x− b8
x4

.

Let also

ψ2 = 2y + a1x+ a3

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8 . (5.12)

We formulate Theorem 1.2 [47] into the following lemma

Lemma 5.7. (Local Height at the Archimedean Valuation) Let E(R) does not contain a

point P with x(P ) = 0. Then for all P ∈ E(R)/{O}

λ∞(P ) =
1

2
log |x(P )|+ 1

8

∞∑
n=0

4−n log |z(2nP )| .

The following lemma combines Theorem 4.2 [34] and Theorem 5.2b), c), d) [47]:

Lemma 5.8. (Local Height at Non-Archimedean Valuations) Let E/Q be an elliptic curve

70



given with a Weierstrass equation (5.11) which is minimal at ν and let P ∈ E(Qν). Also

let ψ2 and ψ3 are defined by (5.12).

(a) If

ordν(3x
2 + 2a2x+ a4 − a1y) ≤ 0 or ordν(2y + a1x+ a3) ≤ 0 ,

then

λν(P ) =
1

2
max(0, log |x(P )|ν) .

(b) Otherwise, if ordν(c4) = 0, then for N = ordν(∆) and n = min (ordν(ψ2(P )), N/2)

λν(P ) =
n(N − n)

2N2
log |∆|ν .

(c) Otherwise, if ordν (ψ3(P )) ≥ 3ordν (ψ2(P )), then

λν(P ) =
1

3
log |ψ2(P )|ν .

(d) Otherwise

λν(P ) =
1

8
log |ψ3(P )|ν .

The discussion in §5 of [47] verifies the correctness of all possible conditions in the

different cases.

We see that in our case a1 = a2 = a3 = 0, a4 = −3k2, a6 = 2k3 + 4 and ∆ =

(−16)(4(−3k2)3 + 27(2k3 + 4)2) = −16.16.27.(k3 + 1) = −28 · 33 · 103 · 10303. We also need

the quantities

b2 = a2
1 + 4a2 = 0 ,

b4 = 2a4 + a1a3 = −6k2 ,

b6 = a2
3 + 4a6 = 8(k3 + 2) ,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 = −9k4 ,

c4 = b22 − 24b4 = −24(−6k2) = 24 · 32 · k2 = 26 · 34 · 172

because k = 102 = 2 · 3 · 17. Also

ψ2 = 2y

ψ3 = 3x4 − 18k2x2 + 24(k3 + 2)x− 9k4 .

Now we are ready to present the proof of Lemma 5.6.
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Proof of Lemma 5.6. First we translate Lemma 5.8 for our curve E102 defined with (5.9)

for k = 102. As we mentioned before by the form of the discriminant ∆, such that

for any non-Archimedean valuation ν we have ν(∆) < 12, and ai ∈ Z, it follows that

the Weierstrass equation (5.9) is minimal at any ν/ see [46].VII.Remark 1.1/. Then we have

(a) If

ordν(3x
2 − 3k2) ≤ 0 or ordν(2y) ≤ 0 ,

then

λν =
1

2
max(0, log |x(P )|ν) .

(b) Otherwise we are in a case where P does not have a good reduction modulo p and we

have p | ∆. So, if ordν(c4) = ordν(2
6 · 34 · 172) = 0, i.e. ν comes from 103 or 10303, then

N = ordν(∆) = 1 and n = min(ordν (ψ2(P )) , N/2) = min(ordν(2y), 1/2) = 1/2. Therefore

λν(P ) =
1/2(1− 1/2)

2
log |∆|ν =

1

8
log |∆|ν .

(c) Otherwise, i.e. ν is the valuation at the primes 2 or 3 and P fails the conditions of (a),

if ordν (ψ3(P )) ≥ 3ordν (ψ2(P )), then

λν(P ) =
1

3
log |ψ2(P )|ν =

1

3
log |2y|ν .

(d) Otherwise

λν(P ) =
1

8
log |ψ3(P )|ν .

For any non-torsion point P on E102(Q) let x(P ) = a/b for (a, b) = 1 and b > 0, and

y(P ) = y = c/d with (c, d) = 1, d > 0. From equation (5.9) we have( c
d

)2

=
(a
b

)3

− 3k2a

b
+ 2(k3 + 2)

or the equivalent

b3c2 = d2
(
a3 − 3k2ab2 + 2(k3 + 2)b3

)
. (5.13)

In (a) max(0, log |x(P )|ν) = max(0, log |a/b|ν) > 0 only if log |a/b|ν = ordν(b) log p >

0. If the local heights of P at the primes p | ∆ are in cases (b),(c) and (d) we have

ordν
(
3(x2 − k2)

)
= ordν

(
3(a2 − k2)/b2

)
> 0. Let ν comes from 2 or 3 and consider

cases (c) and (d). If ordν(b) > 0, then ordν(a) = 0, and since 2, 3 | k, we will have

ordν(3(x
2 − k2)) < 0 which is impossible. Thus ord2(b) = ord3(b) = 0.

If we are in case (b) ν comes from q ∈ {103, 10303} and we also use that ordν(2y) > 0.
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This means that q divides c. If we assume that q divides b, i.e. ordq(b) > 0, after (5.13) it

follows that q divides a as well - a contradiction. Hence in case (b) ord103(b) = ord10303(b) =

0.

In any case ordν(b) = 0 if P is into (b), (c) or (d) , so in these cases we can add toward

the local height expression (ordν(b) log p)/2. Combining these we get

∑
ν 6=∞

λν(P ) =
1

2
log b+ λ̃2 + λ̃3 + λ̃103 + λ̃10303 , (5.14)

where λ̃p for p | ∆ are non-zero only if the point P falls into some of the corresponding

cases (b), (c) or (d) and then λ̃p = λp(P ).

Clearly for any P ∈ E102(Q) falling in case (b) we have

λ103(P ) =
1

8
log |∆|ν = −1

8
log 103 (5.15)

λ10303(P ) =
1

8
log |∆|ν = −1

8
log 10303 (5.16)

Next we estimate from below λ2 and λ3 from cases (c) or (d). Note that in these cases

we have both ordν
(
3(x2 − k2)

)
> 0 and ordν(2y) > 0.

Case p = 2. Here ν(3(a2 − k2b2)/b2) > 0 and 2 | k, so we get 2 | a. From ν(2y) > 0 it

follows that 2 does not divide d. If 22 divides c, then the right-hand side of the equality

(5.13) should be divisible by 24. Note that 8 | a3, 3k2ab2 but 4 ‖ 2(k3 + 2)b3. As 2 - d, then

the right-hand side of (5.13) is ≡ 4 (mod 8). Therefore we could have at most 2 ‖ c. The

left-hand side of (5.13) is surely divisible by 2 and hence 2 | c. Then the only possibility

is ord2(2y) = 2.

Let us take a look at ψ3(P ). As 2 - b we are interested in the 2-order of b4ψ3:

3a4 − 18k2a2b2 + 24(k3 + 2)ab3 − 9k4b4 . (5.17)

The exact power of two dividing the summand 9k4b4 is 4. If 22 | a we will have 25 |
b4ψ3 + 9k4b4, thus 24 ‖ ψ3. If 2 ‖ a, then 24 ‖ 3a4, 9k4b4 and hence 25 | b4ψ3. Therefore in

any case ord2(ψ3) ≥ 4. We conclude that for ord2(2y) = 2 with ord2 (ψ3) ≥ 6 we are in

case (c) and

λ2(P ) =
1

3
log |ψ2(P )|ν =

1

3
log |2y|ν = −2

3
log 2 .
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If ord2(ψ3) is 4 or 5, then according to (d)

λ2(P ) =
1

8
log |ψ3(P )|ν = −1

8
· 4 log 2 = −1

2
log 2

or

λ2(P ) =
1

8
log |ψ3(P )|ν = −1

8
· 5 log 2 = −5

8
log 2 .

In any case we get

λ2(P ) ≥ −2

3
log 2 . (5.18)

Case p = 3. Again from ν(3(a2 − k2b2)/b2) > 0 and ν(2c/d) > 0 it follows that 3 | c and

3 - b, d. Look at b4ψ3(P ) at (5.17). We see that ψ3/3 ≡ a4 + 16ab3 ≡ a(a3 + b3) (mod 3)

because 3 | k. If we use 3 | c in (5.13) we see that 32 | a3 + 4b3. If 3 | a we should have

3 | b – a contradiction, hence 3 - a. If 32 | a3 + b3, then as it already divides a3 + 4b3, it

would follow 32 | 3b3 which is impossible. Therefore at most 3 ‖ a3 + b3 and finally at most

32 ‖ ψ3, i.e. ord3(ψ3(P )) ≤ 2. In this case we always have ordν (ψ3(P )) < 3ordν (ψ2(P )),

that is situation (d) with λ3(P ) = log |ψ3(P )|ν/8 = − (ord3(ψ3) log 3) /8. Then, since the

3-order of ψ3(P ) is at most 2, in any case

λ3(P ) ≥ −1

4
log 3 . (5.19)

When we combine the estimates (5.15), (5.16), (5.18) and (5.19) into equation (5.14)

we come to∑
ν 6=∞

λν(P ) ≥ 1

2
log b− 2

3
log 2− 1

4
log 3− 1

8
log 103− 1

8
log 10303 ≥ 1

2
log b−2.47112 . (5.20)

Case p = ∞. For computing λ∞ we apply Lemma 5.7. It can be seen from the graphic

of E102 that there are points on E102(R) with x(P ) = 0. So we want to translate x→ x+ r

such that x + r > 0 for every x ∈ E102(R). On page 340 of [47] Silverman calls this

transformation the shifting trick. Indeed, by Theorem 18.3.a) [46] it follows that the local

height at Archimedean valuations depends only on the isomorphism class of E/Qν .

If after the translation with r we denote E102 → E ′
102 and P → P ′, by the above-

mentioned property of the local height λ∞(P ) = λ∞(P ′). Note that with the change

x→ x+ r the discriminant stays the same. Then

λ∞(P ) =
1

2
log(x+ r) +

1

2

∞∑
n=0

log (z(2nP ′))

4n+1
.
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Figure 5.1: Graphics of E102

Figure 5.2: Graphics of E ′
102 translated to the right

We take r = 516 after we check numerically that with this r we achieve the best lower

bound of z(x) for x ≥ x0 where x0 is the only real root of the equation (x−r)3−31212(x−
r) + 2122420 = 0. More precisely we run the MATHEMATICA procedure

Proc[r_] := (

f[x_] := x^3 - 3*102^2*x + 2*102^3 + 4;

f1[x_] := f[x - r];

Clear[a];

b2 := 4*Coefficient[f1[a], a, 2];

b4 := 2*Coefficient[f1[a], a, 1];

b6 := 4*Coefficient[f1[a], a, 0];

b8 := 4*Coefficient[f1[a], a, 2]*Coefficient[f1[a], a, 0] -

Coefficient[f1[a], a, 1]^2;

P1[x_] := x^4 - b4*x^2 - 2*b6*x - b8;

x0 = x /. Last[N[FindInstance[f1[x] == 0, x, Reals]]];

minZ = Log[First[NMinimize[{P1[x]/x^4 , x >= x0}, x]]];
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Return [(minZ/3 + Log[x0])/2];

).

and we check with

For[r = 205, r < 1000, r += 50, Print[r, " ", Proc[r]]]

and

For[r = 515, r < 525, r ++, Print[r, " ", Proc[r]]]

that r = 516 gives the best lower bound

λ∞(P ) ≥ 1

2

{
log x0 +

1

3
log

(
min
x≥x0

z(x)

)}
≥ 2.85856 . (5.21)

If we straight apply this estimate for any point P ∈ E102(Q)/{0} including the integral

points, we have b ≥ 1, so after (5.20)

ĥ(P ) ≥
∑
ν 6=∞

λν(P ) + λ∞(P ) ≥ −2.47112 + 2.85856 ≥ 0.38744 .

This lower bound is already much better than Hindry-Silverman’s bound. Note that it

holds for all integral points as well, including the torsion points different from the infinite

point. It follows that the only torsion point on E102(Q) is O = (0 : 1 : 0).

We still try to achieve better lower bound at the non-Archimedean local heights for

non-integral points. Looking at (5.13), we see that for any prime power q ‖ b we get q3 ‖ d2

and it follows that every q is on even power, i.e. b is a perfect square. If 2 | b we have

b ≥ 4. As from 2 | b it follows that the local height λ2(P ) cannot fall into cases (c) and

(d), it is given with case (a). Then

∑
ν 6=∞

λν(P ) ≥ 1

2
log 4− 1

4
log 3− 1

8
log 103− 1

8
log 10303 ≥ −1.31587 .

If 2 - b we should have b ≥ 32 and

∑
ν 6=∞

λν(P ) ≥ 1

2
log 9− 2

3
log 2− 1

4
log 3− 1

8
log 103− 1

8
log 10303 ≥ −1.3725 .

From the latter estimates and (5.21) we have

ĥ(P ) ≥ 2.85856− 1.3725 = 1.48606
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for any non-integral point P ∈ E102(Q). This proves the lemma.

We check that L(3)(E, 1) 6= 0 by E102.analytic rank(leading coefficient=True),

because the coefficient is far from zero: SAGE gives

lim
s→1

L(E, s)

(s− 1)3
≈ 264.870335957636575 .

For our goal ords=1L(E102, s) ≥ 3 is enough so we do not delve more in the precision of

the last computation. It suggests that ords=1L(E102, s) = 3, as predicted by Birch and

Swinnerton-Dyer conjecture.

In SAGE we get a list of (half of) the integral points in E(Z):

E102=EllipticCurve([-31212,2122420])

int=E102.integral_points(); int

[(-204 : 2 : 1), (-90 : 2050 : 1), (57 : 727 : 1), (102 : 2 : 1), (108 :

106 : 1), (114 : 214 : 1), (618 : 14794 : 1)]

[E102.point(p).height() for p in int]

[5.03043808899566, 4.49202786617760, 4.32825858449646, 1.25760952224891,

2.52198481475949, 2.70002260714301, 5.48053264226463]

This way we find the point with the minimal height on E102. This is M = (102, 2), and its

negative, with a canonical height ĥ(M) = ĥS(M)/2 ≈ 0.628804761.
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Chapter 6

Class Number One Problem for

Certain Real Quadratic Fields II

6.1 Introduction

The last chapter of the thesis introduces results from a joint work with András Biró

and Katalin Gyarmati which is still in progress. A huge part of the work is a computer

calculation in SAGE which is not presented here but we try to give the theoretical

background in bigger detail. The reason of omitting the code is that it is quite bulky. Still

it is an important part of the proof, so its effect will be explained later in the chapter.

Let us consider the quadratic fields K = Q(
√
d) with class group Cl(d) and order of

the class group h(d). Like in Chapter 3 we investigate the class number one problem

for square-free d = (an)2 + 4a and positive odd integers a and n. The aim of this

joint work is to solve effectively the class number one problem for all R-D discrim-

inants d = (an)2 + 4a. What we succeeded till now is to solve the problem for a

huge class of residues of a and n modulo some certain fixed parameter. We believe that

in the future we can achieve our final goal in a similar way using more ‘arrows’ like in [4], [5].

Our main result up to this moment says:

Theorem 6.1. There is a set

H0 ⊆ H := {(A,N) : 0 ≤ A,N ≤ 5 · 7 · 13 · 19− 1}

satisfying |H0| = 17718 and the following property: if d = (an)2 + 4a is square-free for odd

positive integers a and n with a > 19 and an > 2 · 7 · 13 · 19, and h(d) = 1, then there is
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an element (A,N) ∈ H0 such that

a ≡ A (mod 5 · 7 · 13 · 19) ,

n ≡ N (mod 5 · 7 · 13 · 19) .

Note that |H0|/|H| is approximately 0.00024, so the theorem shows that we can

exclude most of the pairs (a, n) of the residue classes modulo 5 · 7 · 13 · 19. By Claim 2.6

and a ≡ 3 (mod 4) we still have the remaining possibilities a = 3, 11. However these cases

are of the same depth as Yokoi’s conjecture and we have solved their class number one

problem in identical way as in [4].

6.2 Biró-Granville’s Theorem

In [7] Biró and Granville give a finite formula for a partial zeta function at 0. They

illustrate its efficiency with successful solving of the class number one problem for some

one parameter R-D discriminants where a = 1. Here we restate their main theorem.

Let χ is a Dirichlet character of conductor q. Recall the sectoral zeta function we

introduced in (3.2) – for the fractional ideal I and the zeta function corresponding to the

ideal class of I

ζI(s, χ) :=
∑

a

χ(Na)

(Na)s

where the summation is over all integral ideals a equivalent to I in the ideal class group

Cl(d). Let us also consider a quadratic form f with discriminant d and introduce the sum

G(f, χ) :=
∑

1≤u,v≤q−1

χ (f(u, v))
u

q

v

q
. (6.1)

Let the element β ∈ K be totally positive, i.e. β � 0. Then according to the theory of

cycles of reduced forms corresponding to a given ideal, e.g. §53 in [24], the ideal I of K has

a Z-basis (ν1, ν2) for which ν1 � 0 and α = ν2/ν1 satisfies 0 < α < 1. Something more,

the regular continued fraction expansion of α is purely periodic:

α = [0, a1, . . . , a`]

for some positive ` (which is the least period) and a1, . . . , a`. Here aj+` = aj for every
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j ≥ 1. Further for n ≥ 1 denote

pn
qn

= [0, a1, . . . , an]

and write αn := pn − qnα with α−1 = 1 and α0 = −α. Define also for j = 1, 2, . . .

Qj(x, y) =
1

NI
(ν1αj−1x+ ν1αjy)

(
ν1αj−1x+ ν1αjy

)
and

fj(x, y) = (−1)jQj(x, y).

Now for the Gauss sum

τ(χ) :=
∑
a(q)

χ(a)e

(
a

q

)
introduce the expression

βχ :=
1

π2
χ(−1)τ(χ)2L(2, χ2). (6.2)

Also recall that a character χ is called odd if χ(−1) = −1.

In [7] the following main result is proven

Theorem 6.2 (Biró, Granville [7]). Suppose that χ is an odd primitive character with

conductor q > 1 and (q, 2d) = 1. With the notations as above we have

1

2
ζI(0, χ) =

∑̀
j=1

G(fj, χ) +
1

2
χ(d)

(
d

q

)
βχ
∑̀
j=1

ajχ (fj(1, 0)) .

Let Lχ be the field formed by adjoining to Q all the values of the character χ and OLχ

be its ring of integers. Recall that in §4.3 of [52] we can find the following equation for the

L-function and odd character χ:

L(0, χ) = −
∑

1≤a≤q

χ(a)
a

q
. (6.3)

Also consider the quadratic real character χd =
( .
d

)
. Note that d ≡ 1 (mod 4), so(

−1

d

)
= (−1)(d−1)/2 = 1 and χd is an even character. Then we can state

Claim 6.3. For the odd character χ with conductor q and d ≡ 1 (mod 4) such that (q, d) =

1 the quantity L(0, χχd) is an algebraic integer in the number field Lχ.
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This can be shown in the same way as the corresponding statement above Fact A [4],

using formula (6.3) for the odd character χχd and the fact that q and d are coprime. The

other result generalizing Fact B [4] is Claim 2.6.

The structure of the chapter is the following: in the next section §6.3 we apply Theorem

6.2 for the specific discriminant we use. For this purpose we need some results for continued

fractions and techniques regarding their arithmetic. The main result we get is stated in

Lemma 6.5. In section §6.4 we investigate the different factors in the equation of Lemma

6.5 that would be of later use. The proof of Theorem 6.1 is explained in §6.5 and in the

last section we show how to compute faster the sum G(f1, χ), something very useful for

the huge calculations we perform.

6.3 Application of Theorem 6.2 for Our Special Dis-

criminant

We use that d ≡ 1 (mod 4), so the ring of integers OK of the field K is of the type

OK = Z
[
1, (
√
d+ 1)/2

]
. Introduce

α =

√
d− an

2
.

We have 0 < α < 1 and we take the fractional ideal I = Z[1, α]. Clearly I = OK and we

apply Theorem 6.2 to compute the partial zeta function for the class of principal ideals

corresponding to I.

However to apply the upper formula for the function ζI we need the continued fraction

expansion of α.

By the paper of Schinzel [45] we have that

√
d = [an,

1

2
(n− 1), 1, 1,

1

2
(an− 1), 2n,

1

2
(an− 1), 1, 1,

1

2
(n− 1), 2an ]. (6.4)

Let γ =
√
d − an. Then we need to find the expansion of γ/2 = α. For this sake we

use the following rules which are part of the algorithm described without a proof by Beck

in [3], page 78. We give three of the operations – the only ones we actually need to apply.
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Lemma 6.4. Let H mean ”Halving”, D - ”Doubling” and S - ”Special operation” applied

after D. In order to find the half of a number given in a regular continued fraction expansion

with m – some coefficient in the expansion, we have the rules:

a) H(2m) = mD (halving 2m gives m; next double the following pattern);

b) D(m, 1) = (2m+ 1)S (after D we apply the ”Special operation”);

c) S(1,m) = (2m+ 1)H.

Proof. Let ν and µ denote part of the expansion in the form

1

n+
1
. . .

for some positive integer n. It is clear that ν < 1 and µ < 1.

When we want to halve the denominator of the fraction in the form
1

2m+ ν
we have

1
1

2
(2m+ ν)

=
1

m+
1

2

(
n+

1
. . .

)

so the next part of the expansion should be doubled. This proves a).

To show b) we double the denominator of an expression of the type
1

m+
1

1 + ν

. So we

have

1

2

(
m+

1

1 + ν

) =
1

2m+
2

1 + ν

=
1

2m+
1 + ν + 1− ν

1 + ν

=
1

(2m+ 1) +
1− ν

1 + ν

.

We showed what S means exactly: it transforms expression of the type
1− ν

1 + ν
.

In the case c) we consider ν =
1

1 +
1

m+ µ

.
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Then

1− ν

1 + ν
=

1− 1

1 +
1

m+ µ

1 +
1

1 +
1

m+ µ

=

1− m+ µ

m+ µ+ 1

1 +
m+ µ

m+ µ+ 1

=
m+ µ+ 1−m− µ

m+ µ+ 1 +m+ µ
=

1

(2m+ 1) + 2µ
=

1

(2m+ 1) +
1

1

2

(
n+

1
. . .

) .

This proves c).

To obtain the expansion of α = γ/2 we now apply Lemma 6.4 for (6.4) with the integer

part an replaced by 0. We have

γ = [ 0︸︷︷︸
H

,
1

2
(n− 1), 1︸ ︷︷ ︸

D

, 1,
1

2
(an− 1)︸ ︷︷ ︸
S

, 2n︸︷︷︸
H

,
1

2
(an− 1), 1︸ ︷︷ ︸

D

, 1,
1

2
(n− 1)︸ ︷︷ ︸
S

, 2an︸︷︷︸
H

].

Thus
γ

2
= [0, n, an ]. (6.5)

Using the notation from §6.2 we have ` = 2, since we consider a > 1, and

1

2
ζI(0, χ) =

2∑
j=1

G(fj, χ) +
1

2
χ(d)

(
d

q

)
βχ

2∑
j=1

ajχ(fj(1, 0)). (6.6)

Here p1/q1 = [0;n] = 1/n and p2/q2 = 1/(n + 1/an) = an/(an2 + 1) and α1 = 1 − nα,

α2 = an− (an2 + 1)α.

By the choice of the ideal I = OK we have that NI = 1 and ν1 = 1 and so

Qj(x, y) = αj−1αj−1x
2 + (αj−1αj + αjαj−1)xy + αjαjy

2 . (6.7)

We recall that α is the positive root of the equation (3.9): x2 + (an)x − a = 0. Then
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α+ ᾱ = −an and αᾱ = −a. We use these to compute

Q1(x, y) = α0ᾱ0x
2 + (α0ᾱ1 + α1ᾱ0)xy + α1ᾱ1y

2

= αᾱx2 + (−α(1− nᾱ)− ᾱ(1− nα))xy + (1− nα)(1− nᾱ)y2

= −ax2 − anxy + y2.

The coefficient in front of y2 is 1 and it follows also from the fact that 1− nᾱ = εd > 1 is

the fundamental unit of OK (see §2.3). Similarly

Q2(x, y) = α1ᾱ1x
2 + (α1ᾱ2 + α2ᾱ1)xy + α2ᾱ2y

2

= (1− nα)(1− nᾱ)x2

+
{
(1− nα)

(
an− (an2 + 1)ᾱ

)
+ (1− nᾱ)

(
an− (an2 + 1)α

)}
xy

+
(
an− (an2 + 1)α

) (
an− (an2 + 1)ᾱ

)
y2

= x2 + anxy − ay2.

So

f1(x, y) = ax2 + anxy − y2 (6.8)

and

f2(x, y) = x2 + anxy − ay2 . (6.9)

It is no surprise that these are the same quadratic forms as (3.10) and (3.11). We see that

f1(1, 0) = a and f2(1, 0) = 1. Introduce

ca := a+ χ(a) . (6.10)

When we substitute in (6.6) we get

1

2
ζI(0, χ) = G(f1, χ) +G(f2, χ) +

n

2
χ(d)

(
d

q

)
βχca . (6.11)

Now assume that we are in a field K where h(d) = 1. Then all integral ideals are

principal. So our ideal class zeta function equals the Dedekind zeta function:

ζI(s, χ) =
∑
a/OK

χ(Na)

(Na)s
= ζK(s, χ) . (6.12)

We need also the following equality for the L-function and odd character χ which can be
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found in §4.3 of [52]:

ζK(s, χ) = L(s, χ)L(s, χχd) . (6.13)

Let us further denote

mχ :=
∑

1≤a<q

aχ(a) = −qL(0, χ) . (6.14)

Then from (6.12) and (6.13) we have

qζI(0, χ) = qL(0, χ)L(0, χχd) = −mχL(0, χχd) .

Plugging in the latter equality (6.11) we get

−1

2
mχL(0, χχd) = q

(
G(f1, χ) +G(f2, χ) +

n

2
χ(d)

(
d

q

)
βχca)

)
. (6.15)

Introduce the notation

Cχ(a, n) := q

(
G(f1, χ) +G(f2, χ)

)
. (6.16)

Then (6.15) transforms into

Lemma 6.5. With the upper notations, if h(d) = 1, we have

−mχL(0, χχd) = 2Cχ(a, n) + nqχ(d)

(
d

q

)
βχca .

Take a prime ideal R in OLχ lying above a rational prime r such that mχ ∈ R. We get

a formula that in some sense generalizes formula (2.10) in [4] just like Yokoi’s discriminant

d = n2 + 4 is a special case of the discriminant we consider. Indeed, by Claim 6.3 we have

L(0, χχd) ∈ OLχ so −mχL(0, χχd) ≡ 0 (mod R). Then by Lemma 6.5 we have

0 ≡ 2Cχ(a, n) + nχ(d)

(
d

q

)
qβχca (mod R) . (6.17)

Require also (R, qβχ) = 1 and (R, ca) = 1. Then we transform (6.17) into

n ≡ −2χ(d)

(
d

q

)
Cχ(a, n)

caqβχ
(mod R) . (6.18)

One can check that if we substitute a = 1 in (6.18) we arrive at the same formula,

as if we apply Theorem 6.2 for a = 1. Then (6.18) is exactly formula (2.10) in [4].
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This also follows from the fact that the two formulae for the residue n modulo R in

[4] and [7] for Yokoi’s discriminants are equivalent, though this is not explicitly noted in [7].

Let us assume that the parameter a in the formula (6.18) is congruent to 1 modulo R

and modulo q. Then

ca = a+ χ̄(a) ≡ 1 + χ̄(1) ≡ 2 (mod R)

and in this case we have

n ≡ −χ(d)

(
d

q

)
Cχ(1, n)

qβχ
(mod R) . (6.19)

We notice that this is formula (10.1) in [7] with the change of notation: our Cχ(1, n) is

twice the value of Cχ defined in [7]. For the proof of the Yokoi’s conjecture the original

Biró’s graph have been used

175

�� ""FFFFFFFF

1861 61oo // 41

(6.20)

and we checked that the graph

175

�� ""FFFFFFFF

1861 61 // 41 // 11

also proves Yokoi’s conjecture. A meaning of ‘graph’ close to the original definition in [4]

would be explained in §6.5.

Now denote M := 41 · 61 · 175 · 1861. If a ≡ 1 (mod M) the formula (6.19) is valid

for all members of the graph (6.20) and this is exactly formula (10.1) from [7] where the

Yokoi’s case is solved. Therefore this solves the class number one problem for the infinite

class of discriminants d = (an)2 + 4a with a ≡ 1 (mod M). Notice that the vertices in

the second graph are the same as in (6.20) plus one more, 11. Therefore having resolved

a ≡ 1 (mod M), the case a ≡ 1 (mod M · 11) is also included in it.

Remark 6.6. If q and r divide n in the general case where a > 1 the congruence (6.17)

yields only the trivial 0 ≡ 0 (mod R) because in that case Cχ(a, n) = 0 ( this will be shown
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in Lemma 6.11 in the next section). This was the motivation for using real character χ in

Chapter 3 and investigating only the case q | n. But in the case q - n we can exclude a lot

of residue classes on the basis of (6.17), as we will explain in §6.5.

6.4 Further Remarks on Lemma 6.5

First we find a more simple finite form for βχ. Let

γχ :=

q−1∑
n=1

χ2(n)
n2

q2
(6.21)

and consider the Jacobi sum

Jχ :=
∑

a,b (mod q)
a+b≡1 (mod q)

χ(a)χ(b) .

The following claim shows that βχ is actually not only algebraic integer but also computable

in finitely many steps which is not at all evident from definition (6.2). The claim is proven

in §6 of [7].

Lemma 6.7. Let χ be a primitive character of order greater than 2. For the unique way

to write χ = χ+χ− where χ+, χ− are primitive characters of coprime conductors q+, q−

respectively, such that χ− has order 2, and χ2
+ is also primitive, we have

βχ = χ+(−1)Jχ+γχµ(q−)
∏
p|q−

p2χ2
+(p)− 1

pχ2
+(p)− 1

.

The following statement(§9 in [7]) reduces with a half the required checks in the com-

puter calculations performed for this chapter. As the exposition in [7] is somewhat sketchy

we give here a detailed proof.

Lemma 6.8. For odd complex character χ with conductor q > 2 such that (q, 2d) = 1 we

have

G(f1, χ) = G(f2, χ) .

Proof. In (6.1) we change the summation by u→ v , v → q−u. Then for the new variables
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again 1 ≤ v, q − u ≤ q − 1. Now

G(f1, χ) =
∑

1≤u,v≤q−1

χ(av2 + anv(q − u)− u2)
v

q

q − u

q

=
∑

1≤u,v≤q−1

χ(av2 − anvu− u2)
v

q

−u
q

+
∑

1≤u,v≤q−1

χ(av2 − anvu− u2)
v

q

=
∑

1≤u,v≤q−1

χ(−1)χ(−av2 + anvu+ u2)
v

q

−u
q
−

∑
1≤u,v≤q−1

χ(f2(u, v))
v

q

=
∑

1≤u,v≤q−1

χ(f2(u, v))
u

q

v

q
−

∑
1≤u,v≤q−1

χ(f2(u, v))
v

q
.

We use the notation

g(χ, f, h) :=
∑

1≤m,n≤q−1

χ(f(m,n))h(
n

q
) (6.22)

for the quadratic form f(x, y) = Ax2 + Bxy + Cy2 with square-free discriminant

∆ = B2 − 4AC and h(x) ∈ Z[x].

Therefore we have

G(f1, χ) = G(f2, χ)− g(χ, f2, t) .

We will prove that

g(χ, f2, t) = 0 . (6.23)

We will make it by showing that g(χ, f2, 1) = 0 and g(χ, f2, t− 1/2) = 0.

First notice that there is a g with (g, q) = 1 such that χ(g) 6= 0, 1 and one can find r, s

for which g ≡ r2 − ∆s2 (mod q). The argument that follows is for square-free q and the

one for general q follows easily. The existence of such r and s follows from the theory of

norm residues modulo q in Q(
√

∆) for (q,∆) = 1, see Theorem 138 and Lemma from §47

in [24]. Basically we use that the group of norm residues modulo q is big, take element g1

from it and then choose g to be g1 or 4g1 depending on the residue of the discriminant

of the field modulo 4. In this case r2 − ∆s2 is the norm, or four times the norm, of an

algebraic integer in Q(
√

∆).

Now if we choose M and N satisfying

(2AM +BN) +
√

∆N =
(
(2Am+Bn) +

√
∆n
)

(r +
√

∆s)
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we get(
(2AM +BN) +

√
∆N

)(
(2AM +BN)−

√
∆N

)
= 4Af(M,N) = 4Af(m,n)(r2−∆s2) .

From definition (3.11) the coefficient A of f2 equals 1, i.e. (A, q) = 1, so we get f2(M,N) ≡
f2(m,n)g (mod q). One checks that(

M

N

)
=

(
r −Bs −2Cs

2As r +Bs

)(
m

n

)

with determinant of the upper matrix, denoted by T, equal to r2 − ∆s2 6= 0. Since T is

invertible and m and n are linear forms of M and N , if some of the latter do not take

each residue modulo q exactly q times, then some of the residues m or n will not either.

Therefore when 0 ≤ m,n ≤ q − 1 also 0 ≤M,N (mod q) ≤ q − 1. Notice as well that

g(χ, f, 1) =
∑

0≤m,n≤q−1

χ(f(m,n))

because χ is not a real character and∑
0≤m≤q−1

χ(Am2) =
∑

0≤n≤q−1

χ(Cn2) = 0 .

That is why we can substitute m and n with M and N in the sum g(χ, f2, 1). We get

g(χ, f2, 1) = χ(g)g(χ, f2, 1). Hence

g(χ, f2, 1) =
∑

1≤m,n≤q−1

χ(f(m,n)) = 0 . (6.24)

Further, consider the Bernoulli polynomial B1(x) := x − 1

2
. We notice that B1(1 − x) =

1

2
− x = −B1(x). Therefore χ(f(m,n))B1

(
n

q

)
= −χ (f(q −m, q − n))B1

(
q − n

q

)
and

g(χ, f, B1) =
∑

1≤m,n≤q−1

χ(f(m,n))B1(
n

q
) = −

∑
1≤m,n≤q−1

χ(f(q −m, q − n))B1(
q − n

q
)

= −g(χ, f, B1) .

We got that g(χ, f, B1) = 0. This and (6.24) yield (6.23) and therefore we complete the

proof.
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If we apply real characters we get:

Remark 6.9. It could be checked that for odd real character χ =

(
.

q

)
with conductor

q ≡ 3 (mod 4) such that (q, d) = 1 we have

G(f1, χ) = G(f2, χ)− 1

2

(
1−

(
a

q

))
ϕ(q)

where ϕ(q) is the Euler function. Thus G(f1, χ) = G(f2, χ) only if χ(a) = 1. This is only

one of the many reasons why simply taking χ to be a real character does not seem to solve

the whole class number one problem for d = (an)2 + 4a via Lemma 6.5 .

Further we state

Lemma 6.10. For any odd character χ with conductor q > 2 we have

Cχ(a, q − n) = −Cχ(a, n) .

Proof. To show this we substitute n→ q − n in the definition of G(f1, χ):

G(f1, χ)q−n =
∑

1≤x,y≤q−1

χ(ax2 + a(q − n)xy − y2)
x

q

y

q

=
∑

1≤x,y≤q−1

χ(ax2 − anxy − y2)
x

q

y

q

=
∑

1≤x,y≤q−1

χ(−1)χ(−ax2 + anxy + y2)
x

q

y

q

= −G(f2, χ)n .

Thus we have that

1

q
Cχ(a, q − n) = G(f1, χ)q−n +G(f2, χ)q−n = −G(f2, χ)n −G(f1, χ)n = −1

q
Cχ(a, n) .

Applying this lemma we can always compute only the first half of the residues n modulo

q whenever we need the value of Cχ(a, n). As an immediate corollary we also get

Lemma 6.11. For any integer a we have

Cχ(a, 0) = 0 .
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Indeed, Cχ(a, 0) = Cχ(a, q − 0) = −Cχ(a, 0) and therefore the claim. This also means

that for any n divisible by q we have Cχ(a, n) = 0.

We also asked ourselves how the equation of Lemma 6.5 behaves when R divides (q)

itself. Let q be a prime number, gq be a primitive root modulo q and ζq = e (1/(q − 1)) be

a root of unity of order ϕ(q) = q − 1. Consider the primitive character χq with conductor

q such that χq(gq) = ζq. Then χ(−1) = −1, Lχq = Q(ζq) and OLχq
= Z[ζq] by Theorem

2.6 [52]. Also it is clear that βχq = −γχqJχq after Lemma 6.7 .

From Lemma 6.5, (6.16) and Lemma 6.8 we get

−qmχqL(0, χqχd) = 4q2G(f1, χq) + nq2χq(d)

(
d

q

)
γχqJχqca .

By the ideal decomposition of the Jacobi sum in Z[ζq] we know that Jχq is in some of

the ideals above q. This could be seen in [53], a paper which is a good reference on the

properties of Jacobi sums. Further one can show that mχq , q
2γχq are in almost all prime

ideals in Z[ζq] over q. Thus one wants to check

4q2G(f1, χq) ≡ 0 (mod R2
q)

for such a prime ideal Rq over q where mχq , Jχq , q
2γχq ∈ Rq. Unfortunately computer

checks show that the upper congruence on G(f1, χq) is trivially fulfilled for any prime q.

Therefore it is certainly necessary to take R over a prime rational r different from q.

6.5 On the Proof of Theorem 6.1 and Further Plans

Suppose now that χ is an odd primitive character modulo q > 1 and (q, 2d) = 1.

Assume, in addition, that χ is a complex character, i.e. χ2 6= 1. In this case below we will

use Lemma 6.8 and Lemma 6.7. By (6.16) and (6.17) we get

4q2

∏
p|q−

(
pχ2

+(p)− 1
)G (f1, χ) +

+nχ(d)

(
d

q

)
caq

2Jχ+γχµ(q−)χ+(−1)

∏
p|q−

(
p2χ2

+(p)− 1
) ≡ 0 (mod R) ,(6.25)
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where the ideal R lies above the rational prime r, mχ ∈ R and (r, q) = 1. Then it is clear,

using (6.1), the definition of f1 (6.8) and (6.10) that the truth of (6.25) depends only on

the residues of a and n modulo qr.

Let us now define a directed graph in a similar but slightly different way than in [4].

Let us denote by an arrow

q → r

that the following conditions are true: q > 1 is an odd integer, there is an odd primitive

character χ modulo q such that χ2 6= 1, and there is a prime ideal R of Lχ such that R

lies above the odd rational prime r, which satisfies (r, q) = 1 and mχ ∈ R. The latter

condition can arise for example for an odd character if r | h−(q), where h−(q) is the

relative class number of the cyclotomic field Q(ζq) for ζq = e (1/ϕ(q)) (Theorem 4.17 [52]).

All arrows we use are derived from Table §3 for relative class numbers in [52].

Let q → r holds. Then by the considerations above and by Claim 2.6 we get that if

h(d) = 1 for the square-free discriminant d = (an)2 + 4a satisfying qr < an/2, and a is

greater than any prime factor of qr, then(
(an)2 + 4a

p

)
= −1 (6.26)

for every prime divisor p of qr, and (6.25) also holds. We see that (6.26), similarly to

(6.25), depends only on the residues of a and n modulo qr.

Our Theorem 6.1 follows by using the concrete arrows

5× 19

##GG
GG

GG
GG

G 7× 19

{{www
ww

ww
ww

13

Indeed, 5 · 19 · 13 and 7 · 19 · 13 divides 5 · 7 · 13 · 19, so if we fix the residues of a and n

modulo 5 · 7 · 13 · 19, then the residues of a and n modulo qr are determined for both of the

two concrete arrows. Checking (6.25) and (6.26) for both arrows and for every (a, n) ∈ H
(see Theorem 6.1 for the set H) we obtain Theorem 6.1.

We explained above the theoretical background of the proof of Theorem 6.1. However,

very hard computations were also needed to get the result, and we used SAGE for these

92



computations. We also used a slight simplification of the formula for G (f1, χ) in or-

der to make the computations faster. We will present this simplification in the next section.

We outline finally our future plans. Besides the arrows already used we want to apply

also the following ones:

13× 19 → 3, 5, 7, 73,

3× 5× 19 → 37, 73,

7× 13 → 37,

7× 19 → 3, 37, 73.

By heuristic considerations we hope that these arrows will yield that h(d) = 1 is possible

only in the case when n is divisible by all the prime factors involved, i.e. if 3, 5, 7, 13, 19, 37

and 73 divide n. In case there are a few exceptions, there are still a lot of possibilities with

numbers q, r already mentioned and also with

q = 32 · 19, 33 · 7, 5 · 72, 32 · 72 ,

r = 109, 127, 163, 181 .

We remark that we use these specific arrows because this part of the graph is fairly dense

(i.e. there are many arrows connecting the above-mentioned vertices), and this gives good

chance to exclude residue classes.

So we expect that we will be able to prove a theorem that h(d) = 1 is possible only if a

certain large integer divides n. But as Remark 6.6 shows, it is unavoidable (using only the

method of the present chapter) that such exceptional cases remain. However, we have also

a method (see Chapter 3) to exclude cases m | n for certain fixed integers m. Therefore the

methods of Chapter 3 and the present chapter are complementary in some sense. So we

can hope that combining these two methods and choosing the parameters in a lucky way

finally we will be able to determine every field with h(d) = 1 in the family d = (an)2 + 4a.
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6.6 Quicker Computation of G (f1, χ)

Let q be a square-free positive integer. If χ is a character modulo q and A,B,C are

integers, let

Tχ,q (A,B,C) :=
∑

0≤u,v≤q−1

χ
(
Au2 +Buv + Cv2

)
uv . (6.27)

We are interested in this sum in order to compute G (f, χ) from (6.1), but we divide it

into smaller parts according to the greatest common divisors (u, q) and (v, q), and we first

compute these smaller parts. We introduce a definition.

Let q be a square-free positive integer, and let d1 and d2 be two positive divisors of

q. If χ is a character modulo q and A,B,C are integers, let Sχ,q,d1,d2 (A,B,C) denote the

following sum: ∑
u∈R(q/d1)

∑
v∈R(q/d2)

χ
(
A (d1u)

2 +B (d1u) (d2v) + C (d2v)
2)uv , (6.28)

where

R(m) := {a : 0 ≤ a ≤ m− 1, (a,m) = 1} .

By (6.27) and (6.28), and taking (u, q) = d1 and (v, q) = d2, we get

Tχ,q (A,B,C) =
∑

d1|q, d1<q

∑
d2|q, d2<q

d1d2Sχ,q,d1,d2 (A,B,C) , (6.29)

so it is enough to deal with (6.28) in order to compute (6.27).

Let us assume now that (d1, d2) = 1 and with the definition d3 := q/d1d2 we also have

(d1, d3) = (d2, d3) = 1. Then there are characters χdi
modulo di for 1 ≤ i ≤ 3 such that

χ = χd1χd2χd3 . (6.30)

We regard Sχ,q,d1,d2 (A,B,C) as the inner product of the functions

f1 (u, v) = f1 (u, v;χ) = χ
(
A (d1u)

2 +B (d1u) (d2v) + C (d2v)
2) (6.31)

and

f2(u, v) = uv ,
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and we compute this inner product using the dual group, i.e. the group of characters.

Denote by X (n) the group of characters modulo n, then by the orthogonality relations for

characters we see that Sχ,q,d1,d2 (A,B,C) equals

∑
u1,u2∈R(q/d1)
v1,v2∈R(q/d2)

f1(u1, v1)u2v2


∑

χ1∈X
(

q
d1

)
,χ2∈X

(
q

d2

) χ1

(
u2

u1

)
χ2

(
v2
v1

)
ϕ
(
q
d1

)
ϕ
(
q
d2

)
 .

Here ϕ(x) is the Euler function. For ψ ∈ X (n) let m (n, ψ) = mψ =
n−1∑
a=0

aψ (a). Then

changing the order of summations we get that Sχ,q,d1,d2 (A,B,C) equals

∑
χ1∈X

(
q

d1

)
,χ2∈X

(
q

d2

)m( q
d1
, χ1

)
m
(
q
d2
, χ2

)
ϕ
(
q
d1

)
ϕ
(
q
d2

) Σ , (6.32)

where

Σ =
∑

u1∈R(q/d1),v1∈R(q/d2)

χ
(
A (d1u1)

2 +B (d1d2u1v1) + C (d2v1)
2)

χ1 (u1)χ2 (v1)
. (6.33)

Now, χ1 is a character modulo d2d3, and (d2, d3) = 1, so there are characters χ1,d2 modulo

d2 and χ1,d3 modulo d3 such that

χ1 = χ1,d2χ1,d3 . (6.34)

Similarly, there are characters χ2,d1 modulo d1 and χ2,d3 modulo d3 such that

χ2 = χ2,d1χ2,d3 . (6.35)

Then using (6.30) and the notation (6.31) we see that Σ equals

∑
u1∈R(q/d1),v1∈R(q/d2)

χd1
(
C (d2v1)

2)χd2 (A (d1u1)
2) f1 (u1, v1;χd3)

χ1,d2 (u1)χ1,d3 (u1)χ2,d1 (v1)χ2,d3 (v1)
.

Let

u1 = Xd2 + Y d3,

v1 = Zd1 + V d3,
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then Σ equals the product of the following three lines:

∑
X,Z∈R(d3)

χd3
(
A (d1Xd2)

2 +B (d1d2Xd2Zd1) + C (d2Zd1)
2)

χ1,d3 (Xd2)χ2,d3 (Zd1)
, (6.36)

∑
Y ∈R(d2)

χd2
(
A (d1Y d3)

2)
χ1,d2 (Y d3)

, (6.37)

∑
V ∈R(d1)

χd1
(
C (d2V d3)

2)
χ2,d1 (V d3)

. (6.38)

By the orthogonality property of characters we have (6.37) is 0 unless

χ1,d2 = χ2
d2
, (6.39)

and (6.38) is 0 unless

χ2,d1 = χ2
d1
. (6.40)

And if (6.39) and (6.40) are true, then the product of (6.37) and (6.38) equals

ϕ (d2)χd2
(
A (d1)

2)ϕ (d1)χd1
(
C (d2)

2) . (6.41)

We see by the substitution r = X/Z that (6.36) is 0 unless

χ2
d3

= χ1,d3χ2,d3 , (6.42)

and if (6.42) is true, then (6.36) equals

ϕ (d3)
χd3
(
(d1d2)

2)
χ1,d3 (d2)χ2,d3 (d1)

∑
r∈R(d3)

χd3 (Ar2 +Br + C)

χ1,d3 (r)
,

which can be written as

ϕ (d3)χ1,d3 (d1)χ2,d3 (d2)Ud3 (χd3 , χ1,d3 , A,B,C) , (6.43)

using, in general, the notation

Un (ψ1, ψ2, A,B,C) =
∑
r∈R(n)

ψ1 (Ar2 +Br + C)

ψ2 (r)
(6.44)
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for ψ1, ψ2 ∈ X (n). From (6.30), (6.34) and (6.35) we see that (6.39), (6.40) and (6.42) are

true if and only if χ2 = χ1χ2. And if χ2 = χ1χ2, then we have by (6.36), (6.37), (6.38),

(6.41) and (6.43) that

Σ = ϕ (q)χd2
(
A (d1)

2)χd1 (C (d2)
2)χ1,d3 (d1)χ2,d3 (d2)Ud3 (χd3 , χ1,d3 , A,B,C) .

Therefore finally we get by (6.32) and (6.33) that Sχ,q,d1,d2 (A,B,C) equals

χd2
(
A (d1)

2)χd1 (C (d2)
2)

ϕ (d3)
(6.45)

times ∑
m

(
q

d1

, χ1

)
m

(
q

d2

, χ2

)
χ1,d3 (d1)χ2,d3 (d2)Ud3 (χd3 , χ1,d3 , A,B,C) , (6.46)

where the summation is over characters χ1, χ2 satisfying the following conditions:

χ1 ∈ X
(
q

d1

)
, χ2 ∈ X

(
q

d2

)
, χ1χ2 = χ2.

We now make some minor remarks before stating our lemma.

Assume that χ2 is not the principal character. Then we may assume that χ1 and χ2

are odd. Indeed, it is clear that either both of them are odd or both of them are even,

and that at least one of them is nonprincipal. If, for example, χ1 is even and nonprincipal,

then it is easy to see that m (q/d1, χ1) = 0. It follows that if d3 = 1, then the whole sum

is 0, since in that case χ1χ2 = χ2 and (q/d1, q/d2) = 1 imply that χ1 and χ2 are squares,

hence they are even.

Observe also that if (d1, d2) > 1, then Sχ,q,d1,d2 (A,B,C) = 0 by (6.28), as any value of

the character χ in the definition of the sum is 0.

Let n be a positive integer and ψ1, ψ2 ∈ X (n). We show a multiplicativity property

of the function Un. Let n =
∏k

i=1 ni, where the integers ni are pairwise relatively prime.

Then

ψj =
k∏
i=1

ψj,i

for 1 ≤ j ≤ 2, where ψj,i is a character mod ni for 1 ≤ j ≤ 2, 1 ≤ i ≤ k. Any r ∈ R (n)
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can be uniquely written in this way:

r ≡
k∑
i=1

ri
n

ni
(mod n) ,

where ri ∈ R (ni). Then we see using (6.44) that Un (ψ1, ψ2, A,B,C) equals

∑
r1∈R(n1)

∑
r2∈R(n2)

. . .
∑

rk∈R(nk)

∏k
i=1 ψ1,i

(
A
(
ri

n
ni

)2

+Bri
n
ni

+ C

)
∏k

i=1 ψ2,i

(
ri

n
ni

) ,

hence

Un (ψ1, ψ2, A,B,C) =
k∏
i=1

Uni
(ψ1,i, ψ2,i, A,B,C) .

From (6.29), (6.45), (6.46) and the considerations above we get the following lemma.

Lemma 6.12. Assume that χ2 is not principal, and q is square-free. Remember that X (n)

denotes the group of characters modulo n, let X− (n) denote the group of odd characters

modulo n, and recall m (n, ψ) =
∑n−1

a=0 aψ (a) and the notations (6.27), (6.44). Then

Tχ,q (A,B,C) =
∑

(d1,d2)∈H

d1d2χd2
(
A (d1)

2)χd1 (C (d2)
2)

ϕ (d3)
Σd1,d2 , (6.47)

where

Σd1,d2 =
∑

m

(
q

d1

, χ1

)
m

(
q

d2

, χ2

)
χ1,d3 (d1)χ2,d3 (d2)

∏
p|d3

Up (χp, χ1,p, A,B,C) , (6.48)

and the summation here is over characters χ1, χ2 satisfying the following conditions:

χ1 ∈ X−
(
q

d1

)
, χ2 ∈ X−

(
q

d2

)
, χ1χ2 = χ2.

Here, with Z+ denoting the set of positive integers,

H = {(d1, d2) ∈ Z2
+ : d1d2 |q , d1d2 < q, (d1, d2) = 1},

d3 = q/d1d2, and

χ =
∏
p|q

χp, χ1 =
∏
p|q

χ1,p, χ2 =
∏
p|q

χ2,p,
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where χp, χ1,p, χ2,p are characters modulo p, and if d is a divisor of q, then

χd :=
∏
p|d

χp, χ1,d :=
∏
p|d

χ1,p, χ2,d =
∏
p|d

χ2,p.

Remark 6.13. The statement of the lemma is not very simple, but our computations

become shorter using this lemma. Indeed, for the computation of G (f1, χ) for every

possible pair of parameters we have to compute Tχ,q (A,AN,−1) for given χ and q, for

every pair 0 ≤ A,N ≤ q − 1. Using the definition of Tχ,q, i.e. formula (6.27), we can do it

in around q4 steps: the number of (A,N) pairs is q2, and for every pair we have a sum of

q2 terms in (6.27).

For simplicity let us assume that q has boundedly many prime factors. Then for given

A and N the sum (6.47) has boundedly many terms, and (6.48) has O (q) terms. So using

Lemma 6.12 we can compute Tχ,q (A,AN,−1) for all the pairs 0 ≤ A,N ≤ q − 1 in O (q3)

terms (instead of the trivial way of computation in O (q4) steps mentioned above). Of

course, at the beginning we have to compute the building blocks

m
(q
d
, ψ
)

for d |q, 1 ≤ d < q, ψ ∈ X
(q
d

)
and

Up (χp, ψ, A,B,−1) for p |q, ψ ∈ X (p) , 0 ≤ A ≤ p− 1, 0 ≤ B ≤ 1

(it is easy to see from the definition (6.44) that we can indeed assume 0 ≤ B ≤ 1, since

the case of a general B can be computed from these cases), and these building blocks can

also be computed in O (q3) steps.
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Appendix A

Proof of Lemma 3.4

The proof here represents word for word the proof of Corollary 4.2 in [7] which we use

in Chapter 3. We give it in order to keep the presentation of Chapter 3 as self-contained

as possible.

Proof of Lemma 3.4. As it was first realized in [4], the value of the function ZI,ω,q(0) in

the Yokoi’s case a = 1 can be computed using a result of Shintani. This is also the way in

the most general case of real quadratic field K that Lemma 3.4 treats.

Let for the matrix

(
a b

c d

)
with positive elements and x > 0, y ≥ 0 we define the

zeta function

ζ

(
s,

(
a b

c d

)
, (x, y)

)
:=

∞∑
n1,n2=0

(a(n1 + x) + b(n2 + y))−s(c(n1 + x) + d(n2 + y))−s .

Then we have

Claim A.1 (Shintani). For any a, b, c, d, x > 0 and y ≥ 0 the function

ζ

(
s,

(
a b

c d

)
, (x, y)

)
is absolutely convergent for <s > 1, extends meromorphically to

the whole complex plane and

ζ

(
s,

(
a b

c d

)
, (x, y)

)
= B1(x)B1(y) +

1

4

(
B2(x)

( c
d

+
a

b

)
+B2(y)

(
d

c
+
b

a

))
.

Note that A =
⌈
tC−D
q

⌉
= tC−D+qδ

q
= tc − d + δ and therefore 0 ≤ A ≤ t. Let

β = Xe + Y e∗ for some rationals X > 0, Y ≥ 0. Write X = qx + qn1 and Y = qy + qn2

for some nonnegative integers n1 and n2 and rational numbers 0 < x ≤ 1 , 0 ≤ y < 1 which
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can be done in a unique way. Then on the one hand,

ββ̄ = q2 (e(n1 + x) + e∗(n2 + y)) (ē(n1 + x) + e∗(n2 + y))

and on the other hand we have that β ∈ I and β ≡ ω (mod q) hold if and only if xe +

ye∗ − (ce+ df) ∈ I. Therefore

Z(s) =
1

q2s

∑
(x,y)∈R(C,D)

ζ

(
s,

(
e e∗

ē e∗

)
, (x, y)

)

where R(C,D) := {(x, y) ∈ Q2 : 0 < x ≤ 1 , 0 ≤ y < 1 , xe+ye∗− (ce+df) ∈ I}. Therefore

by Claim A.1 we get

Z(0) =
∑

(x,y)∈R(C,D)

(
B1(x)B1(y) + Tr

( e

4e∗

)
B2(x) + Tr

(
e∗

4e

)
B2(y)

)
.

We observe that for any m,n we have

mf + ne

q
=

(n− m
t
)e+ m

t
e∗

q

and so it is easy to see that the possibilities for (m,n) having (x, y) ∈ R(C,D) with

(x, y) =

(
1

q

(
n− m

t

)
,
1

q

m

t

)
are

mj = D + jq , nj = C + q

[
1 +

j

t
− (tC −D)/q

t

]
with an integer 0 ≤ j ≤ t − 1. This is so because the possible values of m are obviously

these t values, and once m is fixed, n is unique. Now

0 < 1 +
j

t
− (tC −D)/q

t
< 2, so nj =

{
C if 0 ≤ j < A

C + q if A ≤ j < t
,

and therefore

Z(0) =
t−1∑
j=0

(
B1(xj)B1(yj) + Tr

( e

4e∗

)
B2(xj) + Tr

(
e∗

4e

)
B2(yj)

)
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where yj = d+j
t

for 0 ≤ j < t and xj =

{
c− yj if 0 ≤ j < A

c+ 1− yj if A ≤ j < t

Now, by (3.8) we have

t−1∑
j=0

B2(yj) =
t−1∑
j=0

B2(
d+ j

t
) =

1

t
B2(d)

and

t−1∑
j=0

B2(xj) =
A−1∑
j=0

B2

(
A− j − δ

t

)
+

t−1∑
j=A

B2

(
t+ A− j − δ

t

)

=
t∑

k=1

B2

(
k − δ

t

)
=

t−1∑
l=0

B2

(
δ + l

t

)
=

1

t
B2(δ) .

Now since B2(x) +B2(y) + 2B1(x)B1(y) = (x+ y − 1)2 − 1/6 we easily deduce that

t−1∑
j=0

(B2(xj) +B2(yj) + 2B1(xj)B1(yj)) = A(c− 1)2 + (t− A)c2 − t

6
.

The result then follows from the last four displayed equations, and the facts that

Tr
( e

4te∗

)
− 1

2t
= Tr

(
−f
4e∗

)
and Tr

(
e∗

4te

)
− 1

2t
= Tr

(
f

4e

)
.
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