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Abstract

We solve the class number one problem for the 2-parameter family of real quadratic fields
Q(
√

d) with square-free discriminant d = (an)2 +4a for a and n – positive odd integers, where
n is divisible by 43 · 181 · 353. More precisely, we show that there are no such fields with class
number one.

1 Introduction

Let us consider the quadratic fields K = Q(
√

d) with class group Cl(d) and order of the class

group denoted by h(d). In this paper we solve the class number one problem for a subset of the

fields K = Q(
√

d) where d = (an)2 + 4a is square-free and a and n are positive odd integers

with class number h(d) = 1. It is known that there are only a finite number of these fields after

Siegel’s theorem but as the latter is ineffective it is not applicable to finding the specific fields. For

this sake we apply the methods developed by Biró in [B1] and in his joint work with Granville [BG].

We remark that the class number one problem that we consider was already suggested by Biró

in [B3] as a possible generalization of his works. The discriminant we regard is of Richaud-Degert

type with k = 4, i.e. d = (an)2 + ka for ±k ∈ {1, 2, 4}. The class number one problem for special

cases of Richaud-Degert type is solved in [B1],[B2],[BY1] and [L] where the parameter a = 1. How-

ever we already cover a subset of Richaud-Degert type that is of positive density and our problem

depends on two parameters. Something more, we believe that in the future we can solve the class

number one problem for all the rest discriminants of Richaud-Degert type in a similar way using

complex characters and computer check as in [B1], [B2].
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Under the assumption of a Generalized Riemann hypothesis there is a list of principal quadratic

fields of Richaud-Degert type, see [M]. Here, however, our main result is unconditional:

Theorem 1.1. If d = (an)2 + 4a is square-free for a and n – odd positive integers such that

43 · 181 · 353 | n, then h(d) > 1.

In [BG] Biró and Granville give a finite formula for a partial zeta function at 0 in the case of a

general real quadratic field and a general odd Dirichlet character. Basically we follow their method

in a much simpler situation where the field has a specific form as in Theorem 1.1, the character is

real and its conductor divides the parameter n. As it could be expected, to deduce a formula in

this special case is much simpler than in the general case.

The idea of the proof of Theorem 1.1 is roughly speaking the following. We arrive to the identity

qh(−q)h(−qd) = n

(
a +

(
a

q

))
1

6

∏
p|q

(p2 − 1) , (1.1)

where q ≡ 3 (mod 4) is square-free, (q, a) = 1 and q | n. We do this after we compute a partial

zeta function at 0 at the principal integral ideals for our specific discriminant, take a real character

(mod q) and apply the condition h(d) = 1. When we use an analogue of Fact B [B1] to determine

the value of

(
a

q

)
and see the factorization of q, we can deduce the exact power of 2 which divides

the right-hand side of (1.1). Here comes the place to explain the limitation 43 · 181 · 353 | n. In

the analysis of (1.1) we see that we can get a contradiction if we choose q in such a way that the

class number h(−q) is divisible by a large power of 2. We choose q = 43 · 181 · 353 and use that

h(−43 · 181 · 353) = 29 · 3 has indeed a large power of 2 as a factor, e.g. in [BU] not only the order

but also the group structure of Cl(−43 · 181 · 353) is given. Then we show that different powers of

two divide the two sides of (1.1) and eventually conclude the proof of Theorem 1.1.

2 Notations and structure of the paper

Let χ be a Dirichlet character of conductor q. Consider the fractional ideal I and the zeta function

corresponding to the ideal class of I

ζI(s, χ) :=
∑

a

χ(Na)

(Na)s
(2.1)

where the summation is over all integral ideals a equivalent to I in the ideal class group Cl(d).
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Let f(x, y) ∈ Z[x, y] be a quadratic form f(x, y) = Ax2 + Bxy + Cy2 with discriminant

D = B2 − 4AC.

Denote by B`(x) the Bernoulli polynomial defined by

TeTx

eT − 1
=
∑
n≥0

Bn(x)
T n

n!

and introduce the generalized Gauss sum

g(χ, f, B`) :=
∑

0≤u,v≤q−1

χ (f(u, v)) B`

(
v

q

)
. (2.2)

Always by writing χq we mean the real primitive Dirichlet character with conductor q, i.e.

χq(m) =

(
m

q

)
. This way we are interested in square-free q. The notation dxe signifies the least

integer not smaller than x and (x)q – the least nonnegative residue of x (mod q). Throughout the

paper by (a, b) we denote the greatest common divisor of the integers a and b. For m ∈ Z and

(m, q) = 1 we use the notation m for the multiplicative inverse of m modulo q. The same overlining

for α ∈ K will denote its agebraic conjugate α and the exact use should be clear by the context.

As usual ϕ(x) and µ(x) mean the Euler function and the Möbius function. Let us further denote

by pα‖l the fact that pα | l but pα+1 - l. We also remind that B` := B`(0).

OK represents the ring of integers of the quadratic field K ; P (K) – the set of all nonzero

principal ideals of OK and PF (K) – the set of all nonzero principal fractional ideals of K. Let

IF (K) be the set of nonzero fractional ideals of K. The norm of an integral ideal a in OK is the

index [OK : a]. The trace of α ∈ K will be Tr(α) = α + α. For α, β ∈ K we write α ≡ β (mod q)

when (α−β)/q ∈ OK . When I1, I2 ∈ IF (K) are represented as ratios of two integral ideals as a1b
−1
1

and a2b
−1
2 we say that the ideals I1 and I2 are relatively prime and write (I1, I2) = 1 in the case

when (a1b1, a2b2) = 1. The element β ∈ K is called totally positive, denoted by β � 0, if β > 0

and its algebraic conjugate β̄ > 0.

The structure of the paper is the following : in the next section §3 we compute (2.2) for real

character χq. We need it because in §4 we formulate and prove Claim 4.2 for the value of ζP (K)(0, χ)

in terms of sum (2.2). The main result there is Corollary 4.4 for the value of ζP (K)(0, χq). Further

on in §5 we develop a lemma with the help of which Claim 5.1 - the analogue of Fact B in [B1]

is proved and at the end in §6 we prove the main Theorem 1.1. We have an Appendix where for

the sake of completeness we give the proof of Corrolary 4.2 from [BG] which we state and use in

section §4 as it is in [BG].
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3 On a generalized Gauss sum

The main statement in this section is

Claim 3.1. For (2A, q) = (D, q) = 1 and even ` ≥ 2 we have

g(χq, f, B`) = χq(A)qB`

∏
p|q

(1− p−`) .

Remark 3.2. When ` is odd we have B` = 0 for every ` ≥ 3. By the property of the Bernoulli

polynomials Bn(1 − x) = (−1)nBn(x) one could easily see that g(χ, f, B`) is divisible by B` and

thus equals zero, unless when ` = 1 and χ = χq.

Proof. Take the summation on v in (2.2) at the first place –

g(χq, f, B`) =

q−1∑
v=0

B`

(
v

q

) q−1∑
u=0

χq(f(u, v)) .

Introduce r := 2Au + Bv. Since (2A, q) = 1 the values of r cover a full residue system modulo q

when u does. Also r2 = 4A(f(u, v) + Dv2/4A) so we get χq(f(u, v)) = χ̄q(4A)χq(r
2 −Dv2). As χq

is of order 2, we have χq = χ̄q and χq(4A) = χq(A). Therefore χq(f(u, v)) = χq(A)χq(r
2 − Dv2).

Then

g(χq, f, B`) = χq(A)

q−1∑
v=0

B`

(
v

q

) q−1∑
r=0

χq(r
2 −Dv2)

= χq(A)

q−1∑
v=0

B`

(
v

q

)
R , (3.1)

where we abbreviated R :=
∑

0≤r≤q−1

χq(r
2 −Dv2). We will show that for g = (v, q)

R = ϕ(g)µ(
q

g
) . (3.2)

Let q =
∏

i pi. Here there is no square of a prime dividing q because χq is a primitive character

(mod q) which is of second order and

(
.

p2

)
= 1. After the Chinese Remainder Theorem for any

polynomial F (x, y) ∈ Z[x, y] we have

q−1∑
u=0

χq(F (u, v)) =
∏

i

pi−1∑
ui=0

χpi
(F (ui, v)) .
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Therefore it is enough to consider the sum in (3.2) for every p | q. In this way let Rp =∑
0≤r≤p−1

χp(r
2 −Dv2). Then R =

∏
p|q Rp .

If p | q/g, i.e. (p, v) = 1, we have(
r2 −Dv2

p

)
=

(
Dv2

p

)(
Dv2r2 − 1

p

)
=

(
D

p

)(
Dv2r2 − 1

p

)

because (D, p) = 1 and then

Rp =

p−1∑
r=0

χp(r
2 −Dv2) =

(
D

p

) p−1∑
r=0

χp(Dr2 − 1) . (3.3)

If

(
ν

p

)
= −1, then {νr2−1 : 0 ≤ r ≤ p−1}∪{r2−1 : 0 ≤ r ≤ p−1} gives us two copies of the

full resdiue system (mod p). Then
∑

0≤r≤p−1

χp(νr2 − 1) +
∑

0≤r≤p−1

χp(r
2 − 1) = 2

∑
0≤r≤p−1

χp(r) = 0

and therefore
p−1∑
r=0

χp(νr2 − 1) = −
p−1∑
r=0

χp(r
2 − 1) =

(
ν

p

) p−1∑
r=0

χp(r
2 − 1) .

Clearly when

(
ν

p

)
= 1 we have {νr2 − 1 (mod p) : 0 ≤ r ≤ p − 1} ≡ {r2 − 1 (mod p) : 0 ≤ r ≤

p− 1}. We conclude that
p−1∑
r=0

χp(νr2 − 1) =

(
ν

p

) p−1∑
r=0

χp(r
2 − 1)

and for the sum on the right-hand side of (3.3) we can finally assume D = 1. So

Rp =

(
D

p

)(
D

p

) p−1∑
r=0

χp(r
2 − 1) =

p−1∑
r=0

χp(r − 1)χp(r + 1)

=

p−1∑
r=0
r 6=1

χp(r − 1)χp(r + 1) =

p−1∑
r=0
r 6=1

χp

(
r + 1

r − 1

)

=

p−1∑
r=0
r 6=1

χp

(
1 +

2

r − 1

)
=

p−1∑
r=1

χp(1 + 2r) = −1 .

On the other hand, if p | g, i.e. p | v, we have Rp =
∑

0≤r≤p−1 χp(r
2) = p− 1 = ϕ(p) because χp

is of second order. Combining the results Rp = −1 when p | q/g and Rp = ϕ(p) when p | g we get
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R = Rq = µ(q/g)ϕ(g) which is exactly (3.2).

When we substitute the value of R in (3.1) we get

g(χq, f, B`) = χq(A)

q−1∑
v=0

µ(q/g)ϕ(g)B`

(
v

q

)
= χq(A)Σ1 , (3.4)

where we write Σ1 for the sum on the right-hand side of (3.4). Further on if V := v/g and Q := q/g

Σ1 =
∑
g|q

µ(q/g)ϕ(g)

q−1∑
v=0

g=(v,q)

B`

(
v

q

)
=
∑
g|q

µ(q/g)ϕ(g)

Q−1∑
V =0

(V,Q)=1

B`

(
V

Q

)
.

Denote

Σ2 :=

Q−1∑
V =0

(V,Q)=1

B`(
V

Q
) .

Then

Σ2 =

Q−1∑
V =0

B`

(
V

Q

) ∑
d|(V,Q)

µ(d) =
∑
d|Q

µ(d)

Q−1∑
V =0
d|V

B`

(
V

Q

)
=
∑
d|Q

µ(d)

Q/d−1∑
V/d=0

B`

(
V/d

Q/d

)
.

We make use of the following property of the Bernoulli polynomials §4.1[W]

k−1∑
N=0

B`

(
t +

N

k

)
= k−(`−1)B`(kt) . (3.5)

Then
Q/d−1∑
V/d=0

B`

(
V/d

Q/d

)
= (Q/d)−(`−1)B`(0) = Q−(`−1)B`d

`−1

and

Σ2 = Q−(`−1)B`

∑
d|Q

µ(d)dl−1 = Q−(`−1)B`

∏
p|Q

(1− p`−1) .

Now

Σ1 =
∑
g|q

µ(q/g)ϕ(g)B`Q
−(`−1)

∏
p|Q

(1− p`−1)

= B`q
−(`−1)

∑
g|q

ϕ(g)g`−1µ(q/g)
∏

p|(q/g)

(1− p`−1)

= B`q
−(`−1)

∏
p|q

(ϕ(p)p`−1 − (1− p`−1)) = B`q
−(`−1)

∏
p|q

(p` − 1)

= B`q
∏
p|q

(1− p−`) .
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Finally we substitute the value of Σ1 in (3.4) and this proves the claim.

4 Computation of a partial zeta function

A main tool used in this section will be the following (Corollary 4.2 from [BG])

Lemma 4.1. Let (e, f) be a Z-basis of I ∈ IF (K) for any real quadratic field K, t be a positive

integer, e∗ = e + tf , and assume that e, e∗ � 0. Furthermore, let ω = Ce + Df with some rational

integers 0 ≤ C, D < q, and write c = C/q, d = D/q, δ = (D − tC)q/q. Let

ZI,ω,q(s) = Z(s) :=
∑
β∈H

(ββ̄)−s

with H = {β ∈ I : β ≡ ω (mod q) , β = Xe + Y e∗ with (X,Y ) ∈ Q2, X > 0, Y ≥ 0}. Then

Z(0) = A(1− c) +
t

2
(c2 − c− 1

6
) +

d− δ

2
+ Tr

(
−f

4e∗

)
B2(δ) + Tr

(
f

4e

)
B2(d) ,

where A = dtc− de.

For the sake of the paper’s completeness we give the lemma’s proof in the Appendix.

We use that d ≡ 1 (mod 4), so the ring of integers OK of the field K is of the type OK =

Z
[
1, (
√

d + 1)/2
]
. Introduce α := (

√
d− an)/2 – the positive root of

x2 + (an)x− a = 0 . (4.1)

Then α + ᾱ = −an and αᾱ = −a.

We will also come across the quadratic forms

f1(x, y) = x2 + anxy − ay2 (4.2)

and

f2(x, y) = ax2 + anxy − y2 , (4.3)

both of which with discriminant d = (an)2 + 4a.

Recall that P (K) is the set of all nonzero principal ideals in OK and define the zeta function

ζP (K)(s, χ) =
∑

a∈P (K)

χ(Na)

(Na)s
.

We have
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Claim 4.2. Let d = (an)2 + 4a be square-free for a, n – odd positive integers with a > 1 and

K = Q(
√

d). If q is such a positive integer that q | n and (q, 2a) = 1, then for any odd Dirichlet

character χ (mod q) we have

ζP (K)(0, χ) = an.g(χ, f1, B2) + n.g(χ, f2, B2) .

Proof. We know that for a > 1 the fundamental unit of K is εd = 1 − nα > 1, see [BK]. Thus

εd = ε+ = 1− nα satisfies 0 < ε+ < 1.

Let us take I ∈ IF (K) with (I, q) = 1 and consider the zeta function

ζ+
I (s, χ) = ζ+

Cl(I)(s, χ) :=
∑

a

χ(Na)

(Na)s

where the sum is over all integral ideals of K which are equivalent to I in the sense that a = (β)I

for some β � 0. We have Nεd = 1 and then

ζI(s, χ) = ζ+
I (s, χ) + ζ+

(α)I(s, χ) .

It is also clear that ζ+
Cl(I)(s, χ) = ζ+

Cl(I−1)(s, χ) and for the latter

ζ+
I−1(s, χ) =

∑
b∈PI

χ(N(bI−1))

(N(bI−1))s
= (NI−1)−s

∑
b∈PI

χ

(
Nb

NI

)
(Nb)−s

where PI = {b ∈ PF (K) : b = (β) for some β ∈ I , β � 0}. We also introduce V = {ν (mod q) :

ν ∈ I and (ν, q) = 1} and PI,ν,q = {b ∈ PF (K) : b = (β) for some β ∈ I , β ≡ ν (mod q) and β �
0}. Since q | n we get εd = 1− nᾱ ≡ 1 (mod q) and ε+ = 1− nα ≡ 1 (mod q). Thus every b ∈ PI

given by b = (β) = (βεj
+) belongs to exactly one residue class ν ∈ V . Then we have

ζ+
I (s, χ) = (NI−1)−s

∑
ν∈V

∑
b∈PI,ν,q

χ

(
Nb

NI

)
(Nb)−s .

If we take into account that (I, q) = 1 and therefore (NI, q) = 1, also Nb = ββ, we get

ζ+
I (s, χ) = (NI−1)−s

∑
ν∈V

χ
( νν̄

NI

) ∑
b∈PI,ν,q

(ββ)−s .

Now assume that the Z-basis of the fractional ideal I is of the form (e, f) where e > 0 is a

rational integer and e∗ = eε+ = e + tf � 0. Then for every principal ideal b ∈ PI,ν,q there is a

unique β such that b = (β) = (βεj
+) for any j ∈ Z, and ε2

+ < β/β̄ ≤ 1. As ε+ is irrational number
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for every β ∈ K there is a unique pair (X, Y ) ∈ Q2 such that β = Xe+Y eε+ = e(X +Y ε+). Then

from β̄ε2
+ < β ≤ β̄ we get

(X + Y εd)ε
2
+ < X + Y ε+ ≤ X + Y εd .

Now it follows easily that X > 0 and Y ≥ 0. Thus any b ∈ PI,ν,q can be presented uniquely like

b = (β) for β = e(X + Y ε+) where X,Y are nonnegative rationals with X > 0.

Note also that for 0 ≤ C, D ≤ q − 1 the elements ν = Ce + Df ∈ I give a complete system of

resdues ν (mod q). Then we have

ζ+
I (0, χ) =

q−1∑
C,D=0

χ

(
(Ce + Df)(Ce + Df)

NI

)
ZI,ν,q(0)

where ZI,ν,q(s) is defined in Lemma 4.1.

Observe that ζP (K)(s, χ) = ζOK
(s, χ) and take I = OK = Z[1,−α]. Clearly (OK , q) = 1. Apply

Lemma 4.1 with e∗ = ε+ = 1+n(−α) so t = n. Also NOK = 1 and νν̄ = (C−Dα)(C−Dα) = C2−
(α+ ᾱ)CD+αᾱD = C2 +anCD−aD2 = f1(C, D). Since q | t we have δ = (D−tC)q/q = D/q = d

and dtc− de = tC/q = tc. Here Tr(α/4ε+) = Tr(−α/4) = an/4. Hence

ZOK ,ν,q(0) = nc(1− c) +
n

2
(c2 − c− 1

6
) +

an

2
B2(d)

= −n

2
c2 +

n

2
c− n

2

1

6
+

an

2
B2(d)

= −n

2
(c2 − c +

1

6
) +

an

2
B2(d) = −n

2
B2(c) +

an

2
B2(d)

and

ζ+
I (0, χ) =

q−1∑
C,D=0

χ(C2 − aD2)
(
−n

2
B2(c) +

an

2
B2(d)

)

= −n

2

q−1∑
C,D=0

χ(C2 − aD2)B2(c) +
an

2

q−1∑
C,D=0

χ(C2 − aD2)B2(d) .

Now in the first sum make the change of notation C ↔ D and take into account that χ(−1) = −1.
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Then

ζ+
I (0, χ) =

n

2

q−1∑
C,D=0

χ(−D2 + aC2)B2(d) +
an

2

q−1∑
C,D=0

χ(C2 − aD2)B2(d)

=
n

2

q−1∑
C,D=0

χ(f2(C, D))B2(
D

q
) +

an

2

q−1∑
C,D=0

χ(f1(C, D))B2(
D

q
)

=
an

2
g(χ, f1, B2) +

n

2
g(χ, f2, B2) . (4.4)

Next we find ζ+
(α)I(0, χ) after we again apply Lemma 4.1 for (α)I. Here again ((α)OK , q) = 1.

Clearly this follows from αα = a ∈ (α)OK and (a, q) = 1. We can take OK = Z[−α,−1].

Then (α)OK = Z[−αα,−α] = Z[a,−α]. In this case νν̄ = (Ca + D(−α))(Ca + D(−α)) =

αα(Cᾱ + D)(Cα + D) = −a(−aC2 − anCD + D2) = af2(C, D). Here N((α)OK) = |αᾱ| = a and

χ (νν̄/N((α)I)) = χ(f2(C, D)) = χ(aC2−D2). Also e∗ = aε+ = a+an(−α) = a(1−nα) so t = an.

Note that again q | t. Here Tr(α/4aε+) = Tr(−α/4a) = n/4 and therefore

Z(α)OK ,ν,q(0) = anc(1− c) +
an

2
(c2 − c− 1

6
) +

n

2
B2(d)

= −an

2
c2 +

an

2
c− an

2

1

6
+

n

2
B2(d)

= −an

2
(c2 − c +

1

6
) +

n

2
B2(d) = −an

2
B2(c) +

n

2
B2(d) .

Thus we get

ζ+
(α)I(0, χ) = −an

2

q−1∑
C,D=0

χ(aC2 −D2)B2(c) +
n

2

q−1∑
C,D=0

χ(aC2 −D2)B2(d)

=
n

2
g(χ, f2, B2) +

an

2
(−1)

q−1∑
C,D=0

χ(aD2 − C2)B2(d)

=
n

2
g(χ, f2, B2) +

an

2
g(χ, f1, B2) . (4.5)

Note that we got the equality ζ+
I (0, χ) = ζ+

(α)I(0, χ) – an equation that holds true in most

general real quadratic fields with Nε = 1 and χ – an odd character. When we sum up the two zeta

functions (4.4) and (4.5) we obtain the statement of the claim.

Remark 4.3. Here the result on the zeta function at the class of principal integral ideal is for any

odd Dirichlet character modulo q. If a = 1 we have that Nε = −1. In this case ζI(s, χ) = ζ+
I (s, χ)

because for any principal ideal there is a totally positive generator.



Class number one problem 11

From q – odd square-free, q | n and (q, a) = 1 it follows that (q, d) = 1. When we combine

Claim 3.1 with Claim 4.2 with the remark B2 = 1/6 we arrive at

Corollary 4.4. Let d = (an)2 + 4a be a square-free discriminant for a, n – odd positive integers

with a > 1 and K = Q(
√

d). If q ≡ 3 (mod 4) is such a square-free positive integer that q | n and

(q, 2a) = 1, then

ζP (K)(0, χq) =
q

6
n(a + χq(a))

∏
p|q

(1− p−2) .

5 Small primes are inert when h(d) = 1

In this section we will prove the following result generalizing Fact B in [B1]

Claim 5.1. If h(d) = 1 for the square-free discriminant d = (an)2 + 4a, then a and an2 + 4 are

primes. Something more, for any prime r 6= a such that 2 < r < an/2 we have(
d

r

)
= −1 .

We introduced α as the positive root of equation (4.1). Let α = −(an +
√

d)/2 be the algebraic

conjugate of α. We note that (1, α) form a Z-basis of Ok with(
1
α

)
=

(
1 0

−an+1
2

−1

)(
1√
d+1
2

)
.

For the fundamental unit εd > 1 the system (1, εd) was used in [B1] but it forms a basis of the ring

OK over Z only when n = 1. That is why we need to use different base system. Since(
εd

α

)
=

(
1 −n
0 1

)(
1
α

)

with determinant of transformation equal to 1 we can take (εd, α) as a basis of the ring OK over Z.

We also have εdεd = 1 and

εd + εd = 1− nα + 1− nα = 2− n(α + α) = 2 + an2 . (5.1)

Here we will reveal some of the splitting behaviour of the primes in the field K.

Lemma 5.2. If β is an algebraic integer in K such that |ββ| < an/2, then |ββ| is either divisible

by a square of a rational integer greater than 1, or equals 1, or equals a.
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Proof. It is enough to prove the claim for

1 < |β| < εd . (5.2)

Indeed, if |β| = 1 or |β| = εd we have |ββ| = 1 and the statement is true. If 0 < |β| < 1 or |β| > εd

there is an integer k such that εk−1
d ≤ |β| < εk

d, k < 0 in the first case and k > 0 - in the second.

Then γ := ε1−k
d β is in the interval [1, εd) and still |γγ̄| = |ββ̄|.

So further we assume (5.2). Then we can write β = eεd + fα. If e = 0 then β = fα, |ββ̄| = f 2a

and the claim is true.

Assume that e > 0, the negative case being analogous. If f = 0 then β = eεd, |ββ̄| = e2

and this fulfils the lemma. If we assume that the coefficient f is negative, from α < 0 we get

β = eεd + fα > eεd ≥ εd which is out of our range of consideration. Therefore f > 0.

Also notice that

ββ̄ = (eεd + fα)(eε̄d + fα) = e2 + ef(αεd + ᾱεd)− af 2.

We see that αεd + ᾱεd = α(1− nᾱ) + ᾱ(1− nα) = α + ᾱ− 2nαᾱ = −an + 2an = an. Therefore

ββ̄ = Q(e, f) := e2 + (an)ef − af 2 . (5.3)

where Q(e, f) = f2(e, f).

We look at the quadratic form Q(x, y). By (5.3) we have that∣∣∣∣ Q
′
x = 2x + any

Q
′
y = anx− 2ay

(5.4)

and this yields that the local extremum of the form is at x = −any/2 and −(an)2y/2 = 2ay. The

latter is true only for y = 0 but this is out of the considered range where x, y ≥ 1. That is why for

any bounded region of interest in R2 the extrema would be at its borders. Also Q′
x > 0 and there-

fore for a fixed argument y the function Q(x, y) is increasing. On the other hand Q′′
y = −2a < 0.

Thus for fixed x the function Q(x, y) has its maximum at y = nx/2.

We will investigate the form Q(x, y) according to its sign. We show that it depends on the size

of the coefficient f . For example if f = en, then Q(e, f) = e2 + anfe− af 2 = e2 + af 2 − af 2 = e2

and the lemma is fufilled. Further we consider
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Case I : f < ne . Here we have Q(e, f) = e2 + anfe− af 2 = e2 + af(ne− f) > e2 > 0. On the

other hand from ᾱ < 0 it follows that fᾱ > neᾱ and

β = eεd + fᾱ > eεd + neᾱ = e(1− nᾱ) + enᾱ = e ≥ 1

and β = |β| < εd yields

1 ≤ e < β < εd < 2 + an2 .

The latter estimate follows from (5.1) and 0 < εd < 1. Thus in the case we regard we are in a

region R1

R1 :

∣∣∣∣ 1 ≤ e ≤ 1 + an2

1 ≤ f ≤ ne− 1
(5.5)

First assume that n ≥ 3.

We explained earlier that the maximum of Q(x, y) for a fixed argument x is at the line y = nx/2.

Then 1 < n/2 < n− 1 and minR1 Q(x, y) could be at the lines l1 : y = 1 or l2 : y = nx− 1. We are

interested in the behaviour of the quadratic form on the latter lines. Since Q(x, y) is increasing for

fixed positive y we have minl1 Q(x, y) = Q(1, 1). On the other hand on l2 we have

Q(x, nx− 1) = x2 + anx(nx− 1)− a(nx− 1)2

= x2 + a(nx)2 − anx− a(nx)2 + 2anx− a = x2 + anx− a . (5.6)

The local extrmemum of this function is achieved when Q′
x(x, nx − 1) = 2x + an = 0 and

Q′′
x(x, nx− 1) = 2 > 0 so it is minimum at x = −an/2. This means that for positive x the function

Q(x, nx − 1) is increasing and thus by (5.6) minl2 Q(x, y) = Q(1, n − 1) = 1 + an − a = Q(1, 1).

Therefore minR1 Q(x, y) = 1 + an − a. By the condition of the Lemma we know that an/2 >

|ββ̄| = |Q(e, f)| = Q(e, f). This is true for the smallest value of the quadratic form in the regarded

region as well, i.e. an/2 > 1 + an − a. Then we need a − 1 > an/2. But for n ≥ 3 this gives

a− 1 > an/2 > a - a contradiction.

From the definition of the discrimnant d we know that n is odd, so n 6= 2. Now assume that

n = 1. We cannot have e = 1, otherwise 1 ≤ f < en = 1. Thus e ≥ 2 and we take up the region

R1 with this correction. Then 1 ≤ nx/2 ≤ nx − 1 holds since 1 ≤ x/2 ≤ x − 1 for x ≥ 2. Hence

again the minimum is at the very left points of l1 and l2, i.e. minR1 Q(x, y) = Q(2, 1). This after

(5.6) equals 4 + 2a − a = 4 + a. Clearly a > a/2 > 4 + a again gives contradiction. We conclude

that case I is not possible.
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Case II: f > ne , in other words ne− f ≤ −1. Suppose that Q(e, f) > 0. Then 0 < Q(e, f) =

e2 + anef − af 2 = e2 + af(ne − f) ≤ e2 − af . Consequently e2 > af > ane and e > an. On the

other hand, using that α > 0, we get β̄ = eεd + fα > e(1− nα) + enα = e ≥ 1. So after (5.2)

an > an/2 > |ββ̄| = |β|.|β̄| ≥ |β̄| = β̄ > e . (5.7)

We got an > e > an - a contradiction. Therefore always when f > ne the form Q(x, y) is negative

and e < an/2 ≤ an − 1. The last inequality is not fulfilled only when an = 1. But in this case

an/2 = 1/2 > |Q(e, f)| = |ββ̄| implies that β = 0 because β is algebraic integer and its norm is

integer. Therefore an > 2 and we can regard the region

R2 :

∣∣∣∣ 1 ≤ e ≤ an− 1
ne + 1 ≤ f

(5.8)

Clearly |Q(x, y)| = −Q(x, y) = −x2 − anxy + ay2 > 0 and after (5.4) it has extremum out of R2.

Notice that for a fixed x the derivatives −Q′
y(x, y) = −anx + 2ay and −Q′′

y(x, y) = 2a > 0, so at

y = nx/2 < nx + 1 we have minimum of −Q(x, y). Therefore −Q(x, y) is increasing on the lines

x = const and we search for the minimum of −Q(x, y) on the line l3 : y = xn + 1.

On the line l3 we have

−Q(x, nx + 1) = −x2 − anx(nx + 1) + a(nx + 1)2 =

= −x2 − a(nx)2 − anx + a(nx)2 + 2anx + a = −x2 + anx + a (5.9)

and at x = an/2 we have maximum. So

min
R2

|Q(x, y)| = min (−Q(1, n + 1),−Q(an− 1, n(an− 1) + 1)) .

From (5.9) we see that −Q(1, n + 1) = −1 + an + a and −Q(an − 1, n(an − 1) + 1) = −(an −
1)2 + an(an− 1) + a = an− 1 + a, so minR2 |Q(x, y)| = −1 + a + an. Here by the lemma condition

an > −1 + a + an and 0 > −1 + a or 1 > a which is impossible.

Remark 5.3. If β is an algebraic integer in K such that |ββ| < n
√

a then |ββ| is either divisible

by a square of a rational integer, or equals 1, or equals a.

This follows easily if we notice that the finer estimate an/2 > |ββ̄| needed for R1 with n ≥ 3

could be substituted by

n
√

a > |ββ̄| > 1 + an− a .

Indeed n
√

a > 1 + an− a ⇔ a− 1 > n
√

a(
√

a− 1) ⇔ (
√

a− 1)(
√

a + 1) > n
√

a(
√

a− 1). If a = 1

then 1.n > 1+1.n− 1 is not true. Then a > 1 and we get by dividing by
√

a− 1 > 0 the inequality
√

a + 1 > n
√

a. This yields 2 > 1 + 1/
√

a > n ≥ 3.
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For the other cases we showed that the stronger an > min Q(e, f) is impossible, so if we assume

the statement of the remark with n
√

a > Q(e, f) it would yield an > min Q(e, f) - again a contra-

diction.

Here we give

Proof of Claim 5.1. By Gauss genus theory/e.g. [H]/ it follows that h(d) = 1 only if the discrimi-

nant d is prime or a product of two primes. Hence the first statement of the claim.

Now let r is prime such that 2 < r < an/2 and r 6= a. Assume

(
d

r

)
= 0. This means that the

prime r ramifies in K and there is a prime ideal p ⊂ OK for which rOK = p2. But as the class

number is 1, OK is a PID and there is β ∈ OK such that p = (β). Then |ββ̄| = N(p) = r < an/2.

By Lemma 3 there is a square of an integer dividing the prime r except for |ββ̄| = 1, but then β is

a unit and p = OK - contradiction.

Assume that

(
d

r

)
= 1. Then there are two prime ideals p1 6= p2 such that (r) = p1p2

and N(p1) = N(p2) = r. But h(d) = 1 and p1 = (β) for some nonzero β ∈ OK . Therefore

N(p1) = |ββ| = r < an/2 and by the upper lemma and r 6= a, r > 2, we have that |ββ̄| is divided

by a square of integer z > 1. This contradicts the choice of r to be prime.

We got that it is impossible to have

(
d

r

)
= 1.

Remark 5.4. When a = 1 we have d = n2 +4 and h(d) = 1 yields d to be prime and for any prime

2 < r < n (
n2 + 4

r

)
= −1 .

Something more, n is also prime.

The first part of the claim can be seen after we apply the same argument as in the proof of

Claim 5.1 but with Remark 5.3 instead of Lemma 5.2. Actually in this fashion we got Fact B from

[B1]. We see from Corollary 3.16 in [BK] that n is prime if the class number is 1.

6 Proof of Theorem 1.1

Assume that we are in a field K = Q(
√

d) with d = (an)2 +4a with a, n – odd positive integers,

43 · 181 · 353 divides n and the class number h(d) equals 1. Then all integral ideals are principal
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and for the Dedekind zeta function

ζK(s, χ) =
∑

a⊂OK

χ(Na)

(Na)s

we have ζK(s, χ) = ζP (K)(s, χ). We know from §4.3 of [W] that

ζK(s, χ) = L(s, χ)L(s, χχd) .

By the class number formula for imaginary quadratic fields /Theorem 152 in [H]/, again §4.3 of

[W], and by χq(−1) = −1 because q ≡ 3 (mod 4), we get

−L(0, χq) =
∑

1≤x≤q−1

x

q

(
x

q

)
= h(−q) . (6.1)

For d ≡ 1 (mod 4) we have

(
−1

d

)
= (−1)(d−1)/2 = 1 and thus χd is an even characater. Hence

χqχd is odd character and L(0, χqχd) = −h(−qd). Therefore

ζP (K)(0, χq) = L(0, χq)L(0, χqχd) = h(−q)h(−qd) . (6.2)

First think of a general parameter q 6= a that is a prime number, q | n and 2 < q < an/2.

Then after Claim 5.1 we have

(
d

q

)
= −1. When q | n we get

(
an2 + 4

q

)
=

(
4

q

)
= 1 and(

d

q

)
=

(
a

q

)(
an2 + 4

q

)
=

(
a

q

)
= −1 . That is why the case a = 1 is not possible : clearly(

1

q

)
=

(
a

q

)
=

(
d

q

)
= 1. So we have a > 1.

Now, assume that 43 · 181 · 353 | n and 353 < an/2. Notice that above the prime a = q was not

considered because of Claim 5.1. However

(
43

181

)
= 1, thus a = 43 is not possible;

(
181

43

)
= 1 and(

353

43

)
= 1, so a = 181 and a = 353 are also excluded from our assumptions. Hence, if 353 < an/2

and 43, 181, 353 | n, the class number h(d) = 1 only if
( a

43

)
=
( a

181

)
=
( a

353

)
= −1.

Now we take the parameter q = 43 · 181 · 353. Again consider the real primitive character

χq(m) =

(
m

q

)
modulo q. As 43 ≡ 3 (mod 4), 181 ≡ 1 (mod 4) and 353 ≡ 1 (mod 4) we have

q ≡ 3 (mod 4) and χq(−1) = −1. Also a > 1 and we can apply (6.2) and Corollary 4.4 and

multiply both sides of its equation by q. This way we arrive at the promised equation (1.1)

qh(−q)h(−qd) = n

(
a +

(
a

q

))
1

6

∏
p|q

(p2 − 1) .
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In this case

B :=
1

6

∏
p|q

(p2 − 1) =
1

6
42 · 44 · 180 · 182 · 352 · 354 = 21133 . . .

and 211‖B.

As a > 1 we have that d = a(an2 + 4) is product of two different primes. Notice as well

that a ≡ an2 + 4 (mod 4). By the genus theory /e.g. Theorem 134 in [H]/ we know that if

a ≡ an2 + 4 ≡ 1 (mod 4) for the real quadratic field K = Q(
√

a(an2 + 4)), then the 2-rank of the

class group is the same as of the 2-rank of the narrow class group, i.e. 2− 1 = 1. This contradicts

h(d) = 1. Therefore a ≡ 3 (mod 4). But in this case a +

(
a

q

)
= a− 1 and a− 1 ≡ 2 (mod 4) so

2‖
(

a +

(
a

q

))
. Here Claim 5.1 plays a great importance, also q being factor of three primes, for

then

(
a

q

)
= −1. The parameter n is odd by definition. It follows that for the right-hand side of

(1.1) we have

212‖n
(

a +

(
a

q

))
B . (6.3)

We regard the left-hand side of (1.1). As we pointed out in §1 we have h(−43 ·181 ·353) = 29 ·3.

Again by genus theory/Theorem 132, [H]/ the 2-class group of Cl(−qd) has a rank 5−1 = 4 since qd

has 5 distinct prime divisors. Indeed, we showed that a 6∈ {43, 181, 353}, also an2 +4 > an/2 > 353

and clearly a 6= an2 + 4. Therefore 29+4 = 213 | qh(−q)h(−qd). This contradicts (6.3).

We conclude that h(d) > 1 for an/2 > 353. But then for discriminants d = (an)2 + 4a for

positive odd a and n and 43 · 181 · 353 | n we cannot have class number 1. This concludes the proof

of Theorem 1.1.

Remark 6.1. The main idea used in this paper - comparison of 2-parts in (1.1), can be utilized

toward other results of this type. For example, if d = a(an2 +4) for a and n – odd positive integers

where 5 · 359 · 541 | n, then h(d) > 1. The exact divisors of n are chosen according to Table 12 in

[BU]: h(−5 · 359 · 541) = 29 and again we have a bigger power of 2 on the left-hand side of (1.1).

Also 5 · 359 · 541 ≡ 3 (mod 4) so when we take up a real character we have formula (6.1). Also

a ∈ {5, 359, 541} are not covered by Claim 5.1 for each prime in the set, but these a’s are excluded

by a simple check of the Legendre symbols of each other.
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In this sense in an upcoming paper we generalize the result in [BY2] for discriminant with three

prime divisors, thus extending our Theorem 1.1 for an infinite family of n such that pqr | n.

7 Appendix

The proof here represents word for word the proof of Corollary 4.2 in [BG]. We give it in order to

keep the present paper as self-contained as possible.

Proof of Lemma 4.1. As it was first realized in [B1], the value of the function ZI,ω,q(0) in the Yokoi’s

case a = 1 can be computed using a result of Shintani. This is also the way in the most general

case of real quadratic field K that Lemma 4.1 treats.

Let for the matrix

(
a b
c d

)
with positive elements and x > 0, y ≥ 0 we define the zeta function

ζ

(
s,

(
a b
c d

)
, (x, y)

)
:=

∞∑
n1,n2=0

(a(n1 + x) + b(n2 + y))−s(c(n1 + x) + d(n2 + y))−s .

Then we have

Claim 7.1 (Shintani). For any a, b, c, d, x > 0 and y ≥ 0 the function ζ

(
s,

(
a b
c d

)
, (x, y)

)
is

absolutely convergent for <s > 1, extends meromorphically to the whole complex plane and

ζ

(
s,

(
a b
c d

)
, (x, y)

)
= B1(x)B1(y) +

1

4

(
B2(x)

( c

d
+

a

b

)
+ B2(y)

(
d

c
+

b

a

))
.

Note that A =
⌈

tC−D
q

⌉
= tC−D+qδ

q
= tc− d + δ and therefore 0 ≤ A ≤ t. Let β = Xe + Y e∗ for

some rationals X > 0, Y ≥ 0. Write X = qx+ qn1 and Y = qy + qn2 for some nonnegative integers

n1 and n2 and rational numbers 0 < x ≤ 1 , 0 ≤ y < 1 which can be done in a unique way. Then

on the one hand,

ββ̄ = q2 (e(n1 + x) + e∗(n2 + y)) (ē(n1 + x) + e∗(n2 + y))

and on the other hand we have that β ∈ I and β ≡ ω (mod q) hold if and only if xe+ye∗−(ce+df) ∈
I. Therefore

Z(s) =
1

q2s

∑
(x,y)∈R(C,D)

ζ

(
s,

(
e e∗

ē e∗

)
, (x, y)

)
where R(C, D) := {(x, y) ∈ Q2 : 0 < x ≤ 1 , 0 ≤ y < 1 , xe + ye∗ − (ce + df) ∈ I}. Therefore by

Claim 7.1 we get

Z(0) =
∑

(x,y)∈R(C,D)

(
B1(x)B1(y) + Tr

( e

4e∗

)
B2(x) + Tr

(
e∗

4e

)
B2(y)

)
.
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We observe that for any m, n we have

mf + ne

q
=

(n− m
t
)e + m

t
e∗

q

and so it is easy to see that the possibilities for (m,n) having (x, y) ∈ R(C, D) with

(x, y) =

(
1

q

(
n− m

t

)
,
1

q

m

t

)
are

mj = D + jq , nj = C + q

[
1 +

j

t
− (tC −D)/q

t

]
with an integer 0 ≤ j ≤ t − 1. This is so because the possible values of m are obviously these t

values, and once m is fixed, n is unique. Now

0 < 1 +
j

t
− (tC −D)/q

t
< 2, so nj =

{
C if 0 ≤ j < A
C + q if A ≤ j < t

,

and therefore

Z(0) =
t−1∑
j=0

(
B1(xj)B1(yj) + Tr

( e

4e∗

)
B2(xj) + Tr

(
e∗

4e

)
B2(yj)

)

where yj = d+j
t

for 0 ≤ j < t and xj =

{
c− yj if 0 ≤ j < A
c + 1− yj if A ≤ j < t

Now, by (3.5) we have
t−1∑
j=0

B2(yj) =
t−1∑
j=0

B2(
d + j

t
) =

1

t
B2(d)

and
t−1∑
j=0

B2(xj) =
A−1∑
j=0

B2

(
A− j − δ

t

)
+

t−1∑
j=A

B2

(
t + A− j − δ

t

)

=
t∑

k=1

B2

(
k − δ

t

)
=

t−1∑
l=0

B2

(
δ + l

t

)
=

1

t
B2(δ) .

Now since B2(x) + B2(y) + 2B1(x)B1(y) = (x + y − 1)2 − 1/6 we easily deduce that

t−1∑
j=0

(B2(xj) + B2(yj) + 2B1(xj)B1(yj)) = A(c− 1)2 + (t− A)c2 − t

6
.

The result then follows from the last four displayed equations, and the facts that

Tr
( e

4te∗

)
− 1

2t
= Tr

(
−f

4e∗

)
and Tr

(
e∗

4te

)
− 1

2t
= Tr

(
f

4e

)
.
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[B2] A. Biró, Chowla’s conjecture, Acta Arith. 107 (2003), no. 2, 179–194
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