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Abstract

In this work we establish an effective lower bound for the class number of the family of real
quadratic fields Q(

√
d), where d = n2 + 4 is a square-free positive integer with n = m(m2 − 306)

for some odd m, with the extra condition
(

d
N

)
= −1 for N = 23 · 33 · 103 · 10303. This result can

be regarded as a corollary of a theorem of Goldfeld and some calculations involving elliptic curves
and local heights. The lower bound tending to infinity for a subfamily of the real quadratic fields
with discriminant d = n2 +4 could be interesting having in mind that even the class number two
problem for these discriminants is still an open problem.

1 Introduction

In this paper we give a lower bound for the class number of the real quadratic fields of
Yokoi type d = n2 + 4 where n is a certain third degree polynomial. This is a special case of the
extensively examined Richaud-Degert discriminants. There are already lower bounds for their
class number described in [11]. They however depend on the number of divisors of n at least.
We present an analytic lower bound depending on the discriminant and since Goldfeld’s theorem
and Gross-Zagier formula are applied the bound will be of the magnitude these theorems could
provide: (log d)1−ε. The result of this paper is also interesting bearing in mind that there is still
no effective solution of the class number two problem for discriminants d = n2 + 4.

We consider elliptic curves over the field of rational numbers given by the Weierstrass equation

E : y2 = x3 +Ax+B (1.1)

with discriminant ∆ = −16(4A3 +27B2) 6= 0 and conductor N . We denote the group of rational
points with the usual E(Q). By a quadratic twist of the elliptic curve we understand the curve

ED : Dy2 = x3 +Ax+B . (1.2)

Key words and phrases: class number, real quadratic fields, elliptic curves.
MSC2010 : Primary 11R29; Secondary 11R11 , 11G50 , 14H52.
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After replacing (x, y) by (x/D, y/D2) we get the Weierstrass equation of the twisted elliptic curve

ED,W : y2 = x3 + (AD2)x+ (BD3) (1.3)

with discriminant ∆D = D6∆. Note that (x0, y0) ∈ ED(Q) if and only if
(Dx0, D

2y0) ∈ ED,W (Q) .

The important result from [4] that we refer to in our work is explained in the remarks following
Theorem 1 in [5]. We formulate it as

Theorem 1.1 (Goldfeld). Let d be a fundamental discriminant of a real quadratic field. If
there exists an elliptic curve E over Q whose associated base change Hasse-Weil L-function

LE/Q(
√

d)(s) = L(E, s)L(Ed, s)

has a zero of order g ≥ 5 at s = 1, then for every ε > 0 there exists an effective computable
constant cε(E) > 0, depending only on ε and E, such that

h(d) log εd > cε(E)(log d)2−ε ,

where h(d) is the class number of Q(
√
d) and εd is the fundamental unit.

Note that after the Modularity theorem every elliptic curve over Q is modular, so we omitted
the original condition on modularity of the elliptic curve in Goldfeld’s theorem.

Let us look at Yokoi’s discriminants d = n2 + 4. In that case the fundamental unit is small,
i.e.

log d� log εd � log d .

If we use this fact and we can find an elliptic curve as in Theorem 1.1 we could obtain an effective
lower bound of the type

h(d) > cε(E)(log d)1−ε .

The question whether Goldfelds’s theorem can be used for a possible extension of the class
number one problem for Yokoi’s discriminants solved in [1] was raised by Biró [2] . Unfortunately
we can assure existence of such elliptic curve only for a small subset of d = n2+4. More precisely,
the main result of this paper is

Theorem 1.2. Let n = m(m2 − 306) for a positive odd integer m, and N = 23 · 33 · 103 · 10303.

If d = n2 + 4 is square-free and
(
d

N

)
= −1, then for every ε > 0 there exists an effective

computable constant cε > 0, depending only on ε, such that

h(d) = h(n2 + 4) > cε (log d)1−ε
.

Remark 1.3. We expect that there are infinitely many discriminants d satisfying the assump-
tions of Theorem 1.2. Let

d(x) = x6 − 612x4 + 93636x2 + 4

be the polynomial defining the discriminant d for odd positive x = m. The polynomial is
irreducible in Z[x] so there are not obvious reasons for it not to be square-free infinitely often.
Something more, if we introduce

M(X) = #{0 < m ≤ X : m is odd , µ (d(m)) 6= 0 and
(
d(m)
N

)
= −1} , (1.4)
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we check numerically that M(X)/X ≈ 0.221, i.e. the odd positive integers m defining square-free
discriminants d(m), which are also quadratic nonresidues modulo N , seem to be of positive
density.

Construction similar to the one in the present paper was already done in [6], where the
quadratic twists of E from (1.1) are of the form D = u.f(u, v) for the homogeneous binary
polynomial f(u, v) = u3 + Au2v + Bv3. In [6] by a ‘square-free sieve’ argument the authors
give a density to a similar quantity as (1.4). However, we are strictly interested in discriminants
d = n2 + 4 = d(m) where d(m) is a polynomial in one variable of degree 6. There exists a
lot of literature on estimating square-free /or k-free/ polynomials but there are no results on
one-variable polynomials of degree higher than three.

2 Proof of Theorem 1.2

Recall that for the Hasse-Weil L-function associated to the elliptic curve E we consider
a root number ω = (−1)t, where ords=1L(E, s) = t . Let ωD be the root number for
ED. If (D,N) = 1 for the conductor N , and χ = χD =

(
D
.

)
is the real quadratic charac-

ter of Q(
√
D), we have ωD = χ(−N)ω (e.g. [9].(23.48)). The character χ is even, so ωD = χ(N)ω.

Let E be an elliptic curve with ords=1L(E, s) ≥ 3 and ω = −1. Then ωD = −χ(N). If further
we require χ(N) = −1 we will have ωD = 1. If there is a rational point in ED(Q) that is not a
torsion point, then the rank of the Mordell-Weil group ED(Q) is positive. Applying Kolyvagin
and Gross-Zagier theorems like in [13].C.16.5.5 we get L(ED, 1) = 0, i.e. ords=1L(ED, s) ≥ 1.
From ωD = 1 it will follow that ords=1L(ED, s) ≥ 2 and the order is even.

We will construct such an elliptic curve for which certain quadratic twists of it satisfy the
upper conditions. Then ords=1L(E, s)L(ED, s) ≥ 5 and this would allow us to apply Theorem
1.1.

From now on d = n2 + 4 is a square-free odd integer. Look at the twist (1.2) with y = 1 and
assume that d satisfies the equation

d = x3
0 +Ax0 +B (2.1)

for some x0 ∈ Z. Then we have (x0, 1) ∈ Ed(Q). The equation (2.1) reads as n2+4 = x3
0+Ax0+B

or n2 = x3
0 + Ax0 + B − 4. Let us choose the coefficients A and B in such a way that g(x) =

x3 + Ax + B − 4 = (x − k)2(x − l) for some integers k and l. This yields g(k) = g(l) = 0 and
g′(k) = 0. Then g′(k) = 3k2 +A = 0, so A = −3k2 and therefore 0 = g(k) = k3− 3k2 ·k+B− 4.
Thus B = 2k3 + 4 and finally

g(x) = x3 − 3k2x+ (2k3 + 4)− 4 = x3 − 3k2x+ 2k3 = (x− k)2(x+ 2k) .

This means that d satisfies (2.1) if and only if

n2 = g(x0) = (x0 − k)2(x0 + 2k) (2.2)

for some integer x0.

Look at the curve
Ck : y2 = (x− k)2(x+ 2k) .
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It is well-known/see [13].III.2.5/ that its non-singular points are in one-to-one correspondence
with Q∗. What can be easily seen is that if we put m = y/(x − k), we have m2 = x + 2k, so
x = m2 − 2k and y = m(x− k) = m(m2 − 3k). Hence n satisfies (2.2) exactly when

x0 = m2 − 2k
n = m(m2 − 3k) ,

where m is an odd integer.

We are led to the following claim.

Lemma 2.1. Let
Ek : y2 = x3 − 3k2x+ (2k3 + 4) (2.3)

be an elliptic curve over Q with ords=1L(Ek, s) ≥ 3 and odd, and a conductor Nk. Let Ed
k be

the quadratic twist of Ek with d = n2 + 4 such that
(
d

Nk

)
= −1. If k is even, then for any

n = m(m2 − 3k), where m is an odd integer, we have

ords=1L(Ed
k , s) ≥ 2

with root number ωd = 1.

Proof. By the argument presented in the beginning of the section it is enough to find a point
in Ed

k(Q) which is not a torsion point. We take Q = (x0, 1) = (m2 − 2k, 1) ∈ Ed
k(Q). Clearly,

by (1.3), we have P = (dx0, d
2) = (d(m2 − 2k), d2) ∈ Ed,W

k (Q). By Lutz-Nagell theorem/see
[13].VIII.7.2/ if P is a torsion point, both the x(P ) and y(P ) coordinates of P should be integers.
We also use the simple fact that if P is a torsion point so is any multiple of it. Let us look at [2]P .

The duplication formula [13].III.2.3d, for an elliptic curve given with (1.1), reads

x([2]P ) =
x4 − 2Ax2 − 8Bx+A2

4(x3 +Ax+B)
=

φ(x)
4ψ(x)

.

We are interested in
Ed, W

k : y2 = x3 + (−3k2)d2x+ (2k3 + 4)d3 (2.4)

and in this case ψ(dx0) = ψ
(
d(m2 − 2k)

)
= d3(x3

0 − 3k2x0 + (2k3 + 4)) = d3 · d = d4 , where we
used (2.1). On the other hand

φ(dx0) = d4
(
x4

0 − 2(−3k2)x2
0 − 8(2k3 + 4)x0 + (−3k2)2

)
and clearly ψ(dx0) divides φ(dx0). Note, however, that x0 is an odd integer for m–odd, and
when k is even, as d is also odd, we have φ(dx0) ≡ 1 (mod 4). This means that x([2]P ) is not
an integer, thus according to Lutz-Nagell theorem [2]P is not a torsion point, so P is not torsion
either.

Remark 2.2. Note that φ(dx0) ≡ 0 (mod 4) when k is odd, so we cannot use the same easy
argument to prove that P is not torsion.

We can finalize the proof if we find an elliptic curve Ek with odd analytic rank not less than
3 and even k. In the last section we prove unconditionally that the analytic rank of E102 is odd
and at least three by giving a lower bound for the canonical height of any non-torsion point on
the curve. The conductor of E102 is N = 23 · 33 · 103 · 10303, therefore the statement of Theorem
1.2 follows from Lemma 2.1 and Goldfeld’s theorem.
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3 Analytic rank of E102

All computer calculations in this section are made in SAGE if not stated otherwise. Through
the function analytic rank, which does not return a provably correct result in all cases, we run
positive values for k smaller than 200. The data we find is presented in Table 1. Note that
k = 102 is not the only good choice, since after Lemma 2.1 any even integer k that gives Ek

with analytic rank three would work for us. Probably in the family given with (2.3) there are
infinitely many even k for which ords=1L(Ek, s) = 3.

k conductor Nk

65 25 · 33 · 11 · 19 · 73
102 23 · 33 · 103 · 10303
114 23 · 33 · 5 · 13 · 23 · 991
129 25 · 33 · 5 · 7 · 13 · 337
136 22 · 33 · 7 · 43 · 61 · 137
141 25 · 33 · 19 · 71 · 1039
145 25 · 33 · 7 · 19 · 73 · 157
162 23 · 33 · 163 · 26083
184 22 · 33 · 5 · 37 · 151 · 223
187 24 · 33 · 7 · 47 · 4969
191 24 · 33 · 12097

Table 1: Elliptic curves Ek of analytic rank 3

Assuming Birch and Swynnerton-Dyer conjecture, as one can see by examining the Mordell-
Weil group E102(Q), the analytic rank is 3. However we want to show unconditional proof for
the fact that this analytic rank is odd and at least 3. This can be achieved if we proceed in a
similar way like in [3].

More precisely, SAGE unconditionally returns ω = −1 and L(E102, 1) = 0. It also gives
(−2.80575576483894 · 10−13, 4.32590860129513 · 10−33) as the value of L.deriv at1(200000).
Here the first value is an upper bound for L′(E102, 1), and the second term is the error size.

There are lower bounds for the canonical height of non-torsion points of elliptic curves like
the bound of Hindry-Silverman given in Theorem 0.3 [8]. It says that if N is the conductor of
E, ∆ – the discriminant of its minimal model, and σ = log |∆|/ logN , then for any non-torsion
point P ∈ E(Q) we have

ĥ(P ) ≥ 2 log |∆|
(20σ)8101.1+4σ

.

The discriminant of E102 is ∆ = −28 · 33 · 103 · 10303 so the Weierstrass equation (2.3) coincides
with its minimal global model. We compute the Hindry-Silverman’s bound in our case. It is
7.14186994767245 · 10−16. Unfortunately it is ‘too close’ to zero compared to the approximate
value of L′(E102, 1) to be able to use it with Gross-Zagier formula. What we do is to find a better
lower bound for the rational points on E102(Q).

Lemma 3.1. For all rational points P ∈ E102(Q)/{0} where

E102 : y2 = x3 − 31212x+ 2122420
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we have
ĥ(P ) ≥ 0.38744 ,

in particular the torsion subgroup of E102(Q) is the trivial group. Something more, for all non-
integral rational points P ∈ E102(Q)/{0} we have

ĥ(P ) ≥ 1.48606 .

Note that we use the Silverman’s definition for Néron-Tate height [13], which is normalized
as being twice smaller than the height given in SAGE. We will denote the latter as ĥS .

Before we present the proof of Lemma 3.1 we show how to apply it to prove that L′(E102, 1) =
0 and hence ords=1L(E102, s) ≥ 3. By list of the Heegner discriminants for E102 we take the point
H corresponding to the imaginary quadratic field Q(

√
−71). Recall that Gross-Zagier formula

([7] and Theorem 23.4 [9] for more elementary approach) claims that if L(E, 1) = 0, then there
are infinitely many twists with d < 0 satisfying certain conditions, such that for a Heegner point
Pd ∈ E(Q(

√
d)) we have

L′(E, 1)L(Ed, 1) = cE,dĥ(Pd) (3.1)

for some real non-zero constant cE,d depending on the elliptic curve E and d. Through the
function heegner point height, which uses Gross-Zagier formula and computation of L-series
with some precision, we see that the canonical height ĥS of H = P−71 is in the interval
[−0.00087635965, 0.00087636244] :

E102.heegner_discriminants_list(4)
[-71, -143, -191, -263]
a71=E102.heegner_point_height(-71,prec=3)
a71.str(style=’brackets’)

’[-0.00087635965 .. 0.00087636244]’

This means that 0 ≤ ĥS(H) ≤ 0.00087636244. Also, by Corollary 3.3 [12] and ω = −1, it follows
that H equals its complex conjugate. Therefore not only H lies on E102(Q(

√
−71)) but it is a

rational point: H ∈ E102(Q). By Lemma 3.1 it is clear that the Heegner point H is actually the
infinite point, because ĥS(H) = 2ĥ(H) ≤ 0.00087636244. We also check that L(E−71

102 , 1) 6= 0:

E71=E102.quadratic_twist(-71)
E71.lseries().at1(10^7)

gives L(E−71
102 , 1) = 0.682040095555640 ± 1.40979860223528 · 10−20. Now from ĥ(H) = 0 and

(3.1) it follows L′(E102, 1) = 0.

We will use the Néron’s definition of local heights (Theorem 18.1[13]) such that the canonical
height is expressed like the sum ĥ(P ) =

∑
ν∈MQ

λν(P ) (Theorem 18.2[13]) and the valuation ν
arises from a rational prime or is the usual absolute value at the real field. We will write the finite
primes with p and for any integer n and x = x1/x2 ∈ Q such that (x1, x2) = (x1, p) = (x2, p) = 1,
we introduce ordν(pnx) = ordp(pnx) := n, |pnx|ν := p−n and ν(pnx) := n log p .

Let E is an elliptic curve defined over the field of rational numbers with the Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.2)

and the quantities b2, b4, b6, b8, c4 are the ones defined in III.1 [13]. In this notation the duplication
formula for the point P = (x, y) ∈ E(Q) reads

x(2P ) =
x4 − b4x

2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

.
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Let t = 1/x and

z(x) = 1− b4t
2 − 2b6t3 − b8t

4 =
x4 − b4x

2 − 2b6x− b8
x4

.

Let also

ψ2 = 2y + a1x+ a3

ψ3 = 3x4 + b2x
3 + 3b4x2 + 3b6x+ b8 . (3.3)

We formulate Theorem 1.2 [14] into the following lemma

Lemma 3.2. (Local Height at the Archimedean Valuation) Let E(R) does not contain a point P
with x(P ) = 0. Then for all P ∈ E(R)/{O}

λ∞(P ) =
1
2

log |x(P )|+ 1
8

∞∑
n=0

4−n log |z(2nP )| .

The following lemma combines Theorem 4.2 [10] and Theorem 5.2b), c), d) [14]:

Lemma 3.3. (Local Height at Non-Archimedean Valuations) Let E/Q be an elliptic curve given
with a Weierstrass equation (3.2) which is minimal at ν and let P ∈ E(Qν). Also let ψ2 and ψ3

are defined by (3.3).
(a) If

ordν(3x2 + 2a2x+ a4 − a1y) ≤ 0 or ordν(2y + a1x+ a3) ≤ 0 ,

then
λν(P ) =

1
2

max(0, log |x(P )|ν) .

(b) Otherwise, if ordν(c4) = 0, then for N = ordν(∆) and n = min (ordν(ψ2(P )), N/2)

λν(P ) =
n(N − n)

2N2
log |∆|ν .

(c) Otherwise, if ordν (ψ3(P )) ≥ 3ordν (ψ2(P )), then

λν(P ) =
1
3

log |ψ2(P )|ν .

(d) Otherwise

λν(P ) =
1
8

log |ψ3(P )|ν .

The discussion in §5 of [14] verifies the correctness of all possible conditions in the different
cases.

We see that in our case a1 = a2 = a3 = 0, a4 = −3k2, a6 = 2k3+4 and ∆ = (−16)(4(−3k2)3+
27(2k3 + 4)2) = −16.16.27.(k3 + 1) = −28 · 33 · 103 · 10303. We also need the quantities

b2 = a2
1 + 4a2 = 0 ,

b4 = 2a4 + a1a3 = −6k2 ,

b6 = a2
3 + 4a6 = 8(k3 + 2) ,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 = −9k4 ,

c4 = b22 − 24b4 = −24(−6k2) = 24 · 32 · k2 = 26 · 34 · 172

7



because k = 102 = 2 · 3 · 17. Also

ψ2 = 2y
ψ3 = 3x4 − 18k2x2 + 24(k3 + 2)x− 9k4 .

Now we are ready to present the proof of Lemma 3.1.

Proof. (Lemma 3.1) First we translate Lemma 3.3 for our curve E102 defined with (2.3) for
k = 102. As we mentioned before by the form of the discriminant ∆, such that for any
non-Archimedean valuation ν we have ν(∆) < 12, and ai ∈ Z, it follows that the Weierstrass
equation (2.3) is minimal at any ν/ see [13].VII.Remark 1.1/. Then we have

(a) If
ordν(3x2 − 3k2) ≤ 0 or ordν(2y) ≤ 0 ,

then
λν =

1
2

max(0, log |x(P )|ν) .

(b) Otherwise we are in a case where P does not have a good reduction modulo p and we
have p | ∆. So, if ordν(c4) = ordν(26 · 34 · 172) = 0, i.e. ν comes from 103 or 10303, then
N = ordν(∆) = 1 and n = min(ordν (ψ2(P )) , N/2) = min(ordν(2y), 1/2) = 1/2. Therefore

λν(P ) =
1/2(1− 1/2)

2
log |∆|ν =

1
8

log |∆|ν .

(c) Otherwise, i.e. ν is the valuation at the primes 2 or 3 and P fails the conditions of (a), if
ordν (ψ3(P )) ≥ 3ordν (ψ2(P )), then

λν(P ) =
1
3

log |ψ2(P )|ν =
1
3

log |2y|ν .

(d) Otherwise

λν(P ) =
1
8

log |ψ3(P )|ν .

For any non-torsion point P on E102(Q) let x(P ) = a/b for (a, b) = 1 and b > 0, and
y(P ) = y = c/d with (c, d) = 1, d > 0. From equation (2.3) we have( c

d

)2

=
(a
b

)3

− 3k2 a

b
+ 2(k3 + 2)

or the equivalent
b3c2 = d2

(
a3 − 3k2ab2 + 2(k3 + 2)b3

)
. (3.4)

In (a) max(0, log |x(P )|ν) = max(0, log |a/b|ν) > 0 only if log |a/b|ν = ordν(b) log p > 0. If the
local heights of P at the primes p | ∆ are in cases (b),(c) and (d) we have ordν

(
3(x2 − k2)

)
=

ordν

(
3(a2 − k2)/b2

)
> 0. Let ν comes from 2 or 3 and consider cases (c) and (d). If ordν(b) > 0,

then ordν(a) = 0, and since 2, 3 | k, we will have ordν(3(x2− k2)) < 0 which is impossible. Thus
ord2(b) = ord3(b) = 0.

If we are in case (b) ν comes from q ∈ {103, 10303} and we also use that ordν(2y) > 0. This
means that q divides c. If we assume that q divides b, i.e. ordq(b) > 0, after (3.4) it follows that
q divides a as well - a contradiction. Hence in case (b) ord103(b) = ord10303(b) = 0.
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In any case ordν(b) = 0 if P is into (b), (c) or (d) , so in these cases we can add toward the
local height expression (ordν(b) log p)/2. Combining these we get∑

ν 6=∞

λν(P ) =
1
2

log b+ λ̃2 + λ̃3 + λ̃103 + λ̃10303 , (3.5)

where λ̃p for p | ∆ are non-zero only if the point P falls into some of the corresponding cases
(b), (c) or (d) and then λ̃p = λp(P ).

Clearly for any P ∈ E102(Q) falling in case (b) we have

λ103(P ) =
1
8

log |∆|ν = −1
8

log 103 (3.6)

λ10303(P ) =
1
8

log |∆|ν = −1
8

log 10303 (3.7)

Next we estimate from below λ2 and λ3 from cases (c) or (d). Note that in these cases we
have both ordν

(
3(x2 − k2)

)
> 0 and ordν(2y) > 0.

p = 2 Here ν(3(a2 − k2b2)/b2) > 0 and 2 | k, so we get 2 | a. From ν(2y) > 0 it follows
that 2 does not divide d. If 22 divides c, then the right-hand side of the equality (3.4)
should be divisible by 24. Note that 8 | a3, 3k2ab2 but 4 ‖ 2(k3 + 2)b3. As 2 - d, then the
right-hand side of (3.4) is ≡ 4 (mod 8). Therefore we could have at most 2 ‖ c. The left-
hand side of (3.4) is surely divisible by 2 and hence 2 | c. Then the only possibility is ord2(2y) = 2.

Let us take a look at ψ3(P ). As 2 - b we are interested in the 2-order of b4ψ3:

3a4 − 18k2a2b2 + 24(k3 + 2)ab3 − 9k4b4 . (3.8)

The exact power of two dividing the summand 9k4b4 is 4. If 22 | a we will have 25 | b4ψ3 +9k4b4,
thus 24 ‖ ψ3. If 2 ‖ a, then 24 ‖ 3a4, 9k4b4 and hence 25 | b4ψ3. Therefore in any case
ord2(ψ3) ≥ 4. We conclude that for ord2(2y) = 2 with ord2 (ψ3) ≥ 6 we are in case (c) and

λ2(P ) =
1
3

log |ψ2(P )|ν =
1
3

log |2y|ν = −2
3

log 2 .

If ord2(ψ3) is 4 or 5, then according to (d)

λ2(P ) =
1
8

log |ψ3(P )|ν = −1
8
· 4 log 2 = −1

2
log 2

or
λ2(P ) =

1
8

log |ψ3(P )|ν = −1
8
· 5 log 2 = −5

8
log 2 .

In any case we get

λ2(P ) ≥ −2
3

log 2 . (3.9)

p = 3 Again from ν(3(a2 − k2b2)/b2) > 0 and ν(2c/d) > 0 it follows that 3 | c and 3 - b, d.
Look at b4ψ3(P ) at (3.8). We see that ψ3/3 ≡ a4 + 16ab3 ≡ a(a3 + b3) (mod 3) because
3 | k. If we use 3 | c in (3.4) we see that 32 | a3 + 4b3. If 3 | a we should have 3 | b – a
contradiction, hence 3 - a. If 32 | a3 + b3, then as it already divides a3 + 4b3, it would follow
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32 | 3b3 which is impossible. Therefore at most 3 ‖ a3 + b3 and finally at most 32 ‖ ψ3, i.e.
ord3(ψ3(P )) ≤ 2. In this case we always have ordν (ψ3(P )) < 3ordν (ψ2(P )), that is situation
(d) with λ3(P ) = log |ψ3(P )|ν/8 = − (ord3(ψ3) log 3) /8. Then, since the 3-order of ψ3(P ) is at
most 2, in any case

λ3(P ) ≥ −1
4

log 3 . (3.10)

When we combine the estimates (3.6), (3.7), (3.9) and (3.10) into equation (3.5) we come to∑
ν 6=∞

λν(P ) ≥ 1
2

log b− 2
3

log 2− 1
4

log 3− 1
8

log 103− 1
8

log 10303 ≥ 1
2

log b− 2.47112 . (3.11)

p = ∞ For computing λ∞ we apply Lemma 3.2. It can be seen from the graphic of E102 that
there are points on E102(R) with x(P ) = 0. So we want to translate x → x + r such that
x + r > 0 for every x ∈ E102(R). On page 340 of [14] Silverman calls this transformation the
shifting trick. Indeed, by Theorem 18.3.a)[13] it follows that the local height at Archimedean
valuations depends only on the isomorphism class of E/Qν .

If after the translation with r we denote E102 → E′102 and P → P ′, by the above-mentioned
property of the local height λ∞(P ) = λ∞(P ′). Note that with the change x → x + r the
discriminant stays the same. Then

λ∞(P ) =
1
2

log(x+ r) +
1
2

∞∑
n=0

log (z(2nP ′))
4n+1

.

We take r = 516 after we check numerically that with this r we achieve the best lower bound of
z(x) for x ≥ x0 where x0 is the only real root of the equation (x−r)3−31212(x−r)+2122420 = 0.
More precisely we run the MATHEMATICA procedure

Proc[r_] := (
f[x_] := x^3 - 3*102^2*x + 2*102^3 + 4;
f1[x_] := f[x - r];
Clear[a];
b2 := 4*Coefficient[f1[a], a, 2];
b4 := 2*Coefficient[f1[a], a, 1];
b6 := 4*Coefficient[f1[a], a, 0];
b8 := 4*Coefficient[f1[a], a, 2]*Coefficient[f1[a], a, 0] -
Coefficient[f1[a], a, 1]^2;

P1[x_] := x^4 - b4*x^2 - 2*b6*x - b8;
x0 = x /. Last[N[FindInstance[f1[x] == 0, x, Reals]]];
minZ = Log[First[NMinimize[{P1[x]/x^4 , x >= x0}, x]]];
Return [(minZ/3 + Log[x0])/2];
).

Then r = 516 gives the best lower bound

λ∞(P ) ≥ 1
2

{
log x0 +

1
3

log
(

min
x≥x0

z(x)
)}

≥ 2.85856 . (3.12)

If we straight apply this estimate for any point P ∈ E102(Q)/{0} including the integral points,
we have b ≥ 1, so after (3.11)

ĥ(P ) ≥
∑
ν 6=∞

λν(P ) + λ∞(P ) ≥ −2.47112 + 2.85856 ≥ 0.38744 .
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This lower bound is already much better than Hindry-Silverman’s bound. Note that it holds
for all integral points as well, including the torsion points different from the infinite point. It
follows that the only torsion point on E102(Q) is 0 = (0 : 1 : 0).

We still try to achieve better lower bound at the non-Archimedean local heights for non-
integral points. Looking at (3.4), we see that for any prime power q ‖ b we get q3 ‖ d2 and it
follows that every q is on even power, i.e. b is a perfect square. If 2 | b we have b ≥ 4. As from
2 | b it follows that the local height λ2(P ) cannot fall into cases (c) and (d), it is given with case
(a). Then ∑

ν 6=∞

λν(P ) ≥ 1
2

log 4− 1
4

log 3− 1
8

log 103− 1
8

log 10303 ≥ −1.31587 .

If 2 - b we should have b ≥ 32 and∑
ν 6=∞

λν(P ) ≥ 1
2

log 9− 2
3

log 2− 1
4

log 3− 1
8

log 103− 1
8

log 10303 ≥ −1.3725 .

From the latter estimates and (3.12) we have

ĥ(P ) ≥ 2.85856− 1.3725 = 1.48606

for any non-integral point P ∈ E102(Q). This proves the lemma.

We check that L(3)(E, 1) 6= 0 by E102.analytic rank(leading coefficient=True), be-
cause the coefficient is far from zero: SAGE gives

lim
s→1

L(E, s)
(s− 1)3

≈ 264.870335957636575 .

For our goal ords=1L(E102, s) ≥ 3 is enough so we do not delve more in the precision of the last
computation. It suggests that ords=1L(E102, s) = 3, as predicted by Birch and Swinnerton-Dyer
conjecture.
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