Effective lower bound for the class number of a certain family of real quadratic fields

Kostadinka Lapkova
Central European University
Department of Mathematics and its Applications
Nador u. 9, 1051 Budapest, HUNGARY
Email: lapkova_kostadinka@ceu-budapest.edu

February 14, 2012

Abstract

In this work we establish an effective lower bound for the class number of the family of real quadratic fields $\mathbb{Q}(\sqrt{d})$, where $d=n^{2}+4$ is a square-free positive integer with $n=m\left(m^{2}-306\right)$ for some odd m, with the extra condition $\left(\frac{d}{N}\right)=-1$ for $N=2^{3} \cdot 3^{3} \cdot 103 \cdot 10303$. This result can be regarded as a corollary of a theorem of Goldfeld and some calculations involving elliptic curves and local heights. The lower bound tending to infinity for a subfamily of the real quadratic fields with discriminant $d=n^{2}+4$ could be interesting having in mind that even the class number two problem for these discriminants is still an open problem.

1 Introduction

In this paper we give a lower bound for the class number of the real quadratic fields of Yokoi type $d=n^{2}+4$ where n is a certain third degree polynomial. This is a special case of the extensively examined Richaud-Degert discriminants. There are already lower bounds for their class number described in [11]. They however depend on the number of divisors of n at least. We present an analytic lower bound depending on the discriminant and since Goldfeld's theorem and Gross-Zagier formula are applied the bound will be of the magnitude these theorems could provide: $(\log d)^{1-\epsilon}$. The result of this paper is also interesting bearing in mind that there is still no effective solution of the class number two problem for discriminants $d=n^{2}+4$.

We consider elliptic curves over the field of rational numbers given by the Weierstrass equation

$$
\begin{equation*}
E: y^{2}=x^{3}+A x+B \tag{1.1}
\end{equation*}
$$

with discriminant $\Delta=-16\left(4 A^{3}+27 B^{2}\right) \neq 0$ and conductor N. We denote the group of rational points with the usual $E(\mathbb{Q})$. By a quadratic twist of the elliptic curve we understand the curve

$$
\begin{equation*}
E^{D}: D y^{2}=x^{3}+A x+B \tag{1.2}
\end{equation*}
$$

[^0]After replacing (x, y) by $\left(x / D, y / D^{2}\right)$ we get the Weierstrass equation of the twisted elliptic curve

$$
\begin{equation*}
E^{D, W}: y^{2}=x^{3}+\left(A D^{2}\right) x+\left(B D^{3}\right) \tag{1.3}
\end{equation*}
$$

with discriminant $\Delta_{D}=D^{6} \Delta$. Note that $\left(x_{0}, y_{0}\right) \in E^{D}(\mathbb{Q})$ if and only if $\left(D x_{0}, D^{2} y_{0}\right) \in E^{D, W}(\mathbb{Q})$.

The important result from [4] that we refer to in our work is explained in the remarks following Theorem 1 in [5]. We formulate it as
Theorem 1.1 (Goldfeld). Let d be a fundamental discriminant of a real quadratic field. If there exists an elliptic curve E over \mathbb{Q} whose associated base change Hasse-Weil L-function

$$
L_{E / \mathbb{Q}(\sqrt{d})}(s)=L(E, s) L\left(E^{d}, s\right)
$$

has a zero of order $g \geq 5$ at $s=1$, then for every $\epsilon>0$ there exists an effective computable constant $c_{\epsilon}(E)>0$, depending only on ϵ and E, such that

$$
h(d) \log \epsilon_{d}>c_{\epsilon}(E)(\log d)^{2-\epsilon}
$$

where $h(d)$ is the class number of $\mathbb{Q}(\sqrt{d})$ and ϵ_{d} is the fundamental unit.
Note that after the Modularity theorem every elliptic curve over \mathbb{Q} is modular, so we omitted the original condition on modularity of the elliptic curve in Goldfeld's theorem.

Let us look at Yokoi's discriminants $d=n^{2}+4$. In that case the fundamental unit is small, i.e.

$$
\log d \ll \log \epsilon_{d} \ll \log d
$$

If we use this fact and we can find an elliptic curve as in Theorem 1.1 we could obtain an effective lower bound of the type

$$
h(d)>c_{\epsilon}(E)(\log d)^{1-\epsilon} .
$$

The question whether Goldfelds's theorem can be used for a possible extension of the class number one problem for Yokoi's discriminants solved in [1] was raised by Biró [2] . Unfortunately we can assure existence of such elliptic curve only for a small subset of $d=n^{2}+4$. More precisely, the main result of this paper is

Theorem 1.2. Let $n=m\left(m^{2}-306\right)$ for a positive odd integer m, and $N=2^{3} \cdot 3^{3} \cdot 103 \cdot 10303$. If $d=n^{2}+4$ is square-free and $\left(\frac{d}{N}\right)=-1$, then for every $\epsilon>0$ there exists an effective computable constant $c_{\epsilon}>0$, depending only on ϵ, such that

$$
h(d)=h\left(n^{2}+4\right)>c_{\epsilon}(\log d)^{1-\epsilon}
$$

Remark 1.3. We expect that there are infinitely many discriminants d satisfying the assumptions of Theorem 1.2. Let

$$
d(x)=x^{6}-612 x^{4}+93636 x^{2}+4
$$

be the polynomial defining the discriminant d for odd positive $x=m$. The polynomial is irreducible in $\mathbb{Z}[x]$ so there are not obvious reasons for it not to be square-free infinitely often. Something more, if we introduce

$$
\begin{equation*}
M(X)=\#\left\{0<m \leq X: m \text { is odd }, \mu(d(m)) \neq 0 \text { and }\left(\frac{d(m)}{N}\right)=-1\right\} \tag{1.4}
\end{equation*}
$$

we check numerically that $M(X) / X \approx 0.221$, i.e. the odd positive integers m defining square-free discriminants $d(m)$, which are also quadratic nonresidues modulo N, seem to be of positive density.

Construction similar to the one in the present paper was already done in [6], where the quadratic twists of E from (1.1) are of the form $D=u \cdot f(u, v)$ for the homogeneous binary polynomial $f(u, v)=u^{3}+A u^{2} v+B v^{3}$. In [6] by a 'square-free sieve' argument the authors give a density to a similar quantity as (1.4). However, we are strictly interested in discriminants $d=n^{2}+4=d(m)$ where $d(m)$ is a polynomial in one variable of degree 6 . There exists a lot of literature on estimating square-free /or k-free/ polynomials but there are no results on one-variable polynomials of degree higher than three.

2 Proof of Theorem 1.2

Recall that for the Hasse-Weil L-function associated to the elliptic curve E we consider a root number $\omega=(-1)^{t}$, where $\operatorname{ord}_{s=1} L(E, s)=t$. Let ω_{D} be the root number for E^{D}. If $(D, N)=1$ for the conductor N, and $\chi=\chi_{D}=\left(\frac{D}{.}\right)$ is the real quadratic character of $\mathbb{Q}(\sqrt{D})$, we have $\omega_{D}=\chi(-N) \omega$ (e.g. [9].(23.48)). The character χ is even, so $\omega_{D}=\chi(N) \omega$.

Let E be an elliptic curve with $\operatorname{ord}_{s=1} L(E, s) \geq 3$ and $\omega=-1$. Then $\omega_{D}=-\chi(N)$. If further we require $\chi(N)=-1$ we will have $\omega_{D}=1$. If there is a rational point in $E^{D}(\mathbb{Q})$ that is not a torsion point, then the rank of the Mordell-Weil group $E^{D}(\mathbb{Q})$ is positive. Applying Kolyvagin and Gross-Zagier theorems like in [13].C.16.5.5 we get $L\left(E^{D}, 1\right)=0$, i.e. $\operatorname{ord}_{s=1} L\left(E^{D}, s\right) \geq 1$. From $\omega_{D}=1$ it will follow that $\operatorname{ord}_{s=1} L\left(E^{D}, s\right) \geq 2$ and the order is even.

We will construct such an elliptic curve for which certain quadratic twists of it satisfy the upper conditions. Then $\operatorname{ord}_{s=1} L(E, s) L\left(E^{D}, s\right) \geq 5$ and this would allow us to apply Theorem 1.1.

From now on $d=n^{2}+4$ is a square-free odd integer. Look at the twist (1.2) with $y=1$ and assume that d satisfies the equation

$$
\begin{equation*}
d=x_{0}^{3}+A x_{0}+B \tag{2.1}
\end{equation*}
$$

for some $x_{0} \in \mathbb{Z}$. Then we have $\left(x_{0}, 1\right) \in E^{d}(\mathbb{Q})$. The equation (2.1) reads as $n^{2}+4=x_{0}^{3}+A x_{0}+B$ or $n^{2}=x_{0}^{3}+A x_{0}+B-4$. Let us choose the coefficients A and B in such a way that $g(x)=$ $x^{3}+A x+B-4=(x-k)^{2}(x-l)$ for some integers k and l. This yields $g(k)=g(l)=0$ and $g^{\prime}(k)=0$. Then $g^{\prime}(k)=3 k^{2}+A=0$, so $A=-3 k^{2}$ and therefore $0=g(k)=k^{3}-3 k^{2} \cdot k+B-4$. Thus $B=2 k^{3}+4$ and finally

$$
g(x)=x^{3}-3 k^{2} x+\left(2 k^{3}+4\right)-4=x^{3}-3 k^{2} x+2 k^{3}=(x-k)^{2}(x+2 k) .
$$

This means that d satisfies (2.1) if and only if

$$
\begin{equation*}
n^{2}=g\left(x_{0}\right)=\left(x_{0}-k\right)^{2}\left(x_{0}+2 k\right) \tag{2.2}
\end{equation*}
$$

for some integer x_{0}.
Look at the curve

$$
C_{k}: y^{2}=(x-k)^{2}(x+2 k) .
$$

It is well-known/see [13].III.2.5/ that its non-singular points are in one-to-one correspondence with \mathbb{Q}^{*}. What can be easily seen is that if we put $m=y /(x-k)$, we have $m^{2}=x+2 k$, so $x=m^{2}-2 k$ and $y=m(x-k)=m\left(m^{2}-3 k\right)$. Hence n satisfies (2.2) exactly when

$$
\begin{aligned}
x_{0} & =m^{2}-2 k \\
n & =m\left(m^{2}-3 k\right)
\end{aligned}
$$

where m is an odd integer.
We are led to the following claim.
Lemma 2.1. Let

$$
\begin{equation*}
E_{k}: y^{2}=x^{3}-3 k^{2} x+\left(2 k^{3}+4\right) \tag{2.3}
\end{equation*}
$$

be an elliptic curve over \mathbb{Q} with $\operatorname{ord}_{s=1} L\left(E_{k}, s\right) \geq 3$ and odd, and a conductor N_{k}. Let E_{k}^{d} be the quadratic twist of E_{k} with $d=n^{2}+4$ such that $\left(\frac{d}{N_{k}}\right)=-1$. If k is even, then for any $n=m\left(m^{2}-3 k\right)$, where m is an odd integer, we have

$$
\operatorname{ord}_{s=1} L\left(E_{k}^{d}, s\right) \geq 2
$$

with root number $\omega_{d}=1$.
Proof. By the argument presented in the beginning of the section it is enough to find a point in $E_{k}^{d}(\mathbb{Q})$ which is not a torsion point. We take $Q=\left(x_{0}, 1\right)=\left(m^{2}-2 k, 1\right) \in E_{k}^{d}(\mathbb{Q})$. Clearly, by (1.3), we have $P=\left(d x_{0}, d^{2}\right)=\left(d\left(m^{2}-2 k\right), d^{2}\right) \in E_{k}^{d, W}(\mathbb{Q})$. By Lutz-Nagell theorem/see [13].VIII.7.2/ if P is a torsion point, both the $x(P)$ and $y(P)$ coordinates of P should be integers. We also use the simple fact that if P is a torsion point so is any multiple of it. Let us look at [2] .

The duplication formula [13].III.2.3d, for an elliptic curve given with (1.1), reads

$$
x([2] P)=\frac{x^{4}-2 A x^{2}-8 B x+A^{2}}{4\left(x^{3}+A x+B\right)}=\frac{\phi(x)}{4 \psi(x)} .
$$

We are interested in

$$
\begin{equation*}
E_{k}^{d, W}: y^{2}=x^{3}+\left(-3 k^{2}\right) d^{2} x+\left(2 k^{3}+4\right) d^{3} \tag{2.4}
\end{equation*}
$$

and in this case $\psi\left(d x_{0}\right)=\psi\left(d\left(m^{2}-2 k\right)\right)=d^{3}\left(x_{0}^{3}-3 k^{2} x_{0}+\left(2 k^{3}+4\right)\right)=d^{3} \cdot d=d^{4}$, where we used (2.1). On the other hand

$$
\phi\left(d x_{0}\right)=d^{4}\left(x_{0}^{4}-2\left(-3 k^{2}\right) x_{0}^{2}-8\left(2 k^{3}+4\right) x_{0}+\left(-3 k^{2}\right)^{2}\right)
$$

and clearly $\psi\left(d x_{0}\right)$ divides $\phi\left(d x_{0}\right)$. Note, however, that x_{0} is an odd integer for m-odd, and when k is even, as d is also odd, we have $\phi\left(d x_{0}\right) \equiv 1(\bmod 4)$. This means that $x([2] P)$ is not an integer, thus according to Lutz-Nagell theorem [2] P is not a torsion point, so P is not torsion either.

Remark 2.2. Note that $\phi\left(d x_{0}\right) \equiv 0(\bmod 4)$ when k is odd, so we cannot use the same easy argument to prove that P is not torsion.

We can finalize the proof if we find an elliptic curve E_{k} with odd analytic rank not less than 3 and even k. In the last section we prove unconditionally that the analytic rank of E_{102} is odd and at least three by giving a lower bound for the canonical height of any non-torsion point on the curve. The conductor of E_{102} is $N=2^{3} \cdot 3^{3} \cdot 103 \cdot 10303$, therefore the statement of Theorem 1.2 follows from Lemma 2.1 and Goldfeld's theorem.

3 Analytic rank of E_{102}

All computer calculations in this section are made in SAGE if not stated otherwise. Through the function analytic_rank, which does not return a provably correct result in all cases, we run positive values for k smaller than 200. The data we find is presented in Table 1. Note that $k=102$ is not the only good choice, since after Lemma 2.1 any even integer k that gives E_{k} with analytic rank three would work for us. Probably in the family given with (2.3) there are infinitely many even k for which $\operatorname{ord}_{s=1} L\left(E_{k}, s\right)=3$.

k	conductor N_{k}
65	$2^{5} \cdot 3^{3} \cdot 11 \cdot 19 \cdot 73$
102	$2^{3} \cdot 3^{3} \cdot 103 \cdot 10303$
114	$2^{3} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 23 \cdot 991$
129	$2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 337$
136	$2^{2} \cdot 3^{3} \cdot 7 \cdot 43 \cdot 61 \cdot 137$
141	$2^{5} \cdot 3^{3} \cdot 19 \cdot 71 \cdot 1039$
145	$2^{5} \cdot 3^{3} \cdot 7 \cdot 19 \cdot 73 \cdot 157$
162	$2^{3} \cdot 3^{3} \cdot 163 \cdot 26083$
184	$2^{2} \cdot 3^{3} \cdot 5 \cdot 37 \cdot 151 \cdot 223$
187	$2^{4} \cdot 3^{3} \cdot 7 \cdot 47 \cdot 4969$
191	$2^{4} \cdot 3^{3} \cdot 12097$

Table 1: Elliptic curves E_{k} of analytic rank 3
Assuming Birch and Swynnerton-Dyer conjecture, as one can see by examining the MordellWeil group $E_{102}(\mathbb{Q})$, the analytic rank is 3 . However we want to show unconditional proof for the fact that this analytic rank is odd and at least 3. This can be achieved if we proceed in a similar way like in [3].

More precisely, SAGE unconditionally returns $\omega=-1$ and $L\left(E_{102}, 1\right)=0$. It also gives $\left(-2.80575576483894 \cdot 10^{-13}, 4.32590860129513 \cdot 10^{-33}\right)$ as the value of L.deriv_at1(200000). Here the first value is an upper bound for $L^{\prime}\left(E_{102}, 1\right)$, and the second term is the error size.

There are lower bounds for the canonical height of non-torsion points of elliptic curves like the bound of Hindry-Silverman given in Theorem 0.3 [8]. It says that if N is the conductor of E, Δ - the discriminant of its minimal model, and $\sigma=\log |\Delta| / \log N$, then for any non-torsion point $P \in E(\mathbb{Q})$ we have

$$
\hat{h}(P) \geq \frac{2 \log |\Delta|}{(20 \sigma)^{8} 10^{1.1+4 \sigma}}
$$

The discriminant of E_{102} is $\Delta=-2^{8} \cdot 3^{3} \cdot 103 \cdot 10303$ so the Weierstrass equation (2.3) coincides with its minimal global model. We compute the Hindry-Silverman's bound in our case. It is $7.14186994767245 \cdot 10^{-16}$. Unfortunately it is 'too close' to zero compared to the approximate value of $L^{\prime}\left(E_{102}, 1\right)$ to be able to use it with Gross-Zagier formula. What we do is to find a better lower bound for the rational points on $E_{102}(\mathbb{Q})$.
Lemma 3.1. For all rational points $P \in E_{102}(\mathbb{Q}) /\{0\}$ where

$$
E_{102}: y^{2}=x^{3}-31212 x+2122420
$$

we have

$$
\hat{h}(P) \geq 0.38744
$$

in particular the torsion subgroup of $E_{102}(\mathbb{Q})$ is the trivial group. Something more, for all nonintegral rational points $P \in E_{102}(\mathbb{Q}) /\{0\}$ we have

$$
\hat{h}(P) \geq 1.48606
$$

Note that we use the Silverman's definition for Néron-Tate height [13], which is normalized as being twice smaller than the height given in SAGE. We will denote the latter as \hat{h}_{S}.

Before we present the proof of Lemma 3.1 we show how to apply it to prove that $L^{\prime}\left(E_{102}, 1\right)=$ 0 and hence ord ${ }_{s=1} L\left(E_{102}, s\right) \geq 3$. By list of the Heegner discriminants for E_{102} we take the point H corresponding to the imaginary quadratic field $\mathbb{Q}(\sqrt{-71})$. Recall that Gross-Zagier formula ([7] and Theorem 23.4 [9] for more elementary approach) claims that if $L(E, 1)=0$, then there are infinitely many twists with $d<0$ satisfying certain conditions, such that for a Heegner point $P_{d} \in E(\mathbb{Q}(\sqrt{d}))$ we have

$$
\begin{equation*}
L^{\prime}(E, 1) L\left(E^{d}, 1\right)=c_{E, d} \hat{h}\left(P_{d}\right) \tag{3.1}
\end{equation*}
$$

for some real non-zero constant $c_{E, d}$ depending on the elliptic curve E and d. Through the function heegner_point height, which uses Gross-Zagier formula and computation of L-series with some precision, we see that the canonical height \hat{h}_{S} of $H=P_{-71}$ is in the interval [$-0.00087635965,0.00087636244]$:

```
E102.heegner_discriminants_list(4)
[-71, -143, -191, -263]
a71=E102.heegner_point_height(-71,prec=3)
a71.str(style='brackets')
    '[-0.00087635965 .. 0.00087636244]'
```

This means that $0 \leq \hat{h}_{S}(H) \leq 0.00087636244$. Also, by Corollary 3.3 [12] and $\omega=-1$, it follows that H equals its complex conjugate. Therefore not only H lies on $E_{102}(\mathbb{Q}(\sqrt{-71}))$ but it is a rational point: $H \in E_{102}(\mathbb{Q})$. By Lemma 3.1 it is clear that the Heegner point H is actually the infinite point, because $\hat{h}_{S}(H)=2 \hat{h}(H) \leq 0.00087636244$. We also check that $L\left(E_{102}^{-71}, 1\right) \neq 0$:
E71=E102.quadratic_twist (-71)
E71.lseries().at1 (10^7)
gives $L\left(E_{102}^{-71}, 1\right)=0.682040095555640 \pm 1.40979860223528 \cdot 10^{-20}$. Now from $\hat{h}(H)=0$ and (3.1) it follows $L^{\prime}\left(E_{102}, 1\right)=0$.

We will use the Néron's definition of local heights (Theorem 18.1[13]) such that the canonical height is expressed like the sum $\hat{h}(P)=\sum_{\nu \in M_{0}} \lambda_{\nu}(P)$ (Theorem 18.2[13]) and the valuation ν arises from a rational prime or is the usual absolute value at the real field. We will write the finite primes with p and for any integer n and $x=x_{1} / x_{2} \in \mathbb{Q}$ such that $\left(x_{1}, x_{2}\right)=\left(x_{1}, p\right)=\left(x_{2}, p\right)=1$, we introduce $\operatorname{ord}_{\nu}\left(p^{n} x\right)=\operatorname{ord}_{p}\left(p^{n} x\right):=n,\left|p^{n} x\right|_{\nu}:=p^{-n}$ and $\nu\left(p^{n} x\right):=n \log p$.

Let E is an elliptic curve defined over the field of rational numbers with the Weierstrass equation

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{3.2}
\end{equation*}
$$

and the quantities $b_{2}, b_{4}, b_{6}, b_{8}, c_{4}$ are the ones defined in III. 1 [13]. In this notation the duplication formula for the point $P=(x, y) \in E(\mathbb{Q})$ reads

$$
x(2 P)=\frac{x^{4}-b_{4} x^{2}-2 b_{6} x-b_{8}}{4 x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6}} .
$$

Let $t=1 / x$ and

$$
z(x)=1-b_{4} t^{2}-2 b_{6} t^{3}-b_{8} t^{4}=\frac{x^{4}-b_{4} x^{2}-2 b_{6} x-b_{8}}{x^{4}} .
$$

Let also

$$
\begin{align*}
\psi_{2} & =2 y+a_{1} x+a_{3} \\
\psi_{3} & =3 x^{4}+b_{2} x^{3}+3 b_{4} x^{2}+3 b_{6} x+b_{8} . \tag{3.3}
\end{align*}
$$

We formulate Theorem 1.2 [14] into the following lemma
Lemma 3.2. (Local Height at the Archimedean Valuation) Let $E(\mathbb{R})$ does not contain a point P with $x(P)=0$. Then for all $P \in E(\mathbb{R}) /\{O\}$

$$
\lambda_{\infty}(P)=\frac{1}{2} \log |x(P)|+\frac{1}{8} \sum_{n=0}^{\infty} 4^{-n} \log \left|z\left(2^{n} P\right)\right|
$$

The following lemma combines Theorem 4.2 [10] and Theorem 5.2b), c), d) [14]:
Lemma 3.3. (Local Height at Non-Archimedean Valuations) Let E / \mathbb{Q} be an elliptic curve given with a Weierstrass equation (3.2) which is minimal at ν and let $P \in E\left(\mathbb{Q}_{\nu}\right)$. Also let ψ_{2} and ψ_{3} are defined by (3.3).
(a) If

$$
\operatorname{ord}_{\nu}\left(3 x^{2}+2 a_{2} x+a_{4}-a_{1} y\right) \leq 0 \text { or } \operatorname{ord}_{\nu}\left(2 y+a_{1} x+a_{3}\right) \leq 0,
$$

then

$$
\lambda_{\nu}(P)=\frac{1}{2} \max \left(0, \log |x(P)|_{\nu}\right)
$$

(b) Otherwise, if $\operatorname{ord}_{\nu}\left(c_{4}\right)=0$, then for $N=\operatorname{ord}_{\nu}(\Delta)$ and $n=\min \left(\operatorname{ord}_{\nu}\left(\psi_{2}(P)\right), N / 2\right)$

$$
\lambda_{\nu}(P)=\frac{n(N-n)}{2 N^{2}} \log |\Delta|_{\nu}
$$

(c) Otherwise, if $\operatorname{ord}_{\nu}\left(\psi_{3}(P)\right) \geq 3 \operatorname{ord}_{\nu}\left(\psi_{2}(P)\right)$, then

$$
\lambda_{\nu}(P)=\frac{1}{3} \log \left|\psi_{2}(P)\right|_{\nu}
$$

(d) Otherwise

$$
\lambda_{\nu}(P)=\frac{1}{8} \log \left|\psi_{3}(P)\right|_{\nu}
$$

The discussion in $\S 5$ of [14] verifies the correctness of all possible conditions in the different cases.

We see that in our case $a_{1}=a_{2}=a_{3}=0, a_{4}=-3 k^{2}, a_{6}=2 k^{3}+4$ and $\Delta=(-16)\left(4\left(-3 k^{2}\right)^{3}+\right.$ $\left.27\left(2 k^{3}+4\right)^{2}\right)=-16 \cdot 16.27 \cdot\left(k^{3}+1\right)=-2^{8} \cdot 3^{3} \cdot 103 \cdot 10303$. We also need the quantities

$$
\begin{aligned}
b_{2} & =a_{1}^{2}+4 a_{2}=0, \\
b_{4} & =2 a_{4}+a_{1} a_{3}=-6 k^{2}, \\
b_{6} & =a_{3}^{2}+4 a_{6}=8\left(k^{3}+2\right), \\
b_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}=-9 k^{4}, \\
c_{4} & =b_{2}^{2}-24 b_{4}=-24\left(-6 k^{2}\right)=2^{4} \cdot 3^{2} \cdot k^{2}=2^{6} \cdot 3^{4} \cdot 17^{2}
\end{aligned}
$$

because $k=102=2 \cdot 3 \cdot 17$. Also

$$
\begin{aligned}
& \psi_{2}=2 y \\
& \psi_{3}=3 x^{4}-18 k^{2} x^{2}+24\left(k^{3}+2\right) x-9 k^{4}
\end{aligned}
$$

Now we are ready to present the proof of Lemma 3.1.
Proof. (Lemma 3.1) First we translate Lemma 3.3 for our curve E_{102} defined with (2.3) for $k=102$. As we mentioned before by the form of the discriminant Δ, such that for any non-Archimedean valuation ν we have $\nu(\Delta)<12$, and $a_{i} \in \mathbb{Z}$, it follows that the Weierstrass equation (2.3) is minimal at any $\nu /$ see [13].VII.Remark 1.1/. Then we have
(a) If

$$
\operatorname{ord}_{\nu}\left(3 x^{2}-3 k^{2}\right) \leq 0 \text { or } \operatorname{ord}_{\nu}(2 y) \leq 0
$$

then

$$
\lambda_{\nu}=\frac{1}{2} \max \left(0, \log |x(P)|_{\nu}\right)
$$

(b) Otherwise we are in a case where P does not have a good reduction modulo p and we have $p \mid \Delta$. So, if $\operatorname{ord}_{\nu}\left(c_{4}\right)=\operatorname{ord}_{\nu}\left(2^{6} \cdot 3^{4} \cdot 17^{2}\right)=0$, i.e. ν comes from 103 or 10303 , then $N=\operatorname{ord}_{\nu}(\Delta)=1$ and $n=\min \left(\operatorname{ord}_{\nu}\left(\psi_{2}(P)\right), N / 2\right)=\min \left(\operatorname{ord}_{\nu}(2 y), 1 / 2\right)=1 / 2$. Therefore

$$
\lambda_{\nu}(P)=\frac{1 / 2(1-1 / 2)}{2} \log |\Delta|_{\nu}=\frac{1}{8} \log |\Delta|_{\nu}
$$

(c) Otherwise, i.e. ν is the valuation at the primes 2 or 3 and P fails the conditions of (a), if $\operatorname{ord}_{\nu}\left(\psi_{3}(P)\right) \geq 3 \operatorname{ord}_{\nu}\left(\psi_{2}(P)\right)$, then

$$
\lambda_{\nu}(P)=\frac{1}{3} \log \left|\psi_{2}(P)\right|_{\nu}=\frac{1}{3} \log |2 y|_{\nu} .
$$

(d) Otherwise

$$
\lambda_{\nu}(P)=\frac{1}{8} \log \left|\psi_{3}(P)\right|_{\nu}
$$

For any non-torsion point P on $E_{102}(\mathbb{Q})$ let $x(P)=a / b$ for $(a, b)=1$ and $b>0$, and $y(P)=y=c / d$ with $(c, d)=1, d>0$. From equation (2.3) we have

$$
\left(\frac{c}{d}\right)^{2}=\left(\frac{a}{b}\right)^{3}-3 k^{2} \frac{a}{b}+2\left(k^{3}+2\right)
$$

or the equivalent

$$
\begin{equation*}
b^{3} c^{2}=d^{2}\left(a^{3}-3 k^{2} a b^{2}+2\left(k^{3}+2\right) b^{3}\right) . \tag{3.4}
\end{equation*}
$$

In (a) $\max \left(0, \log |x(P)|_{\nu}\right)=\max \left(0, \log |a / b|_{\nu}\right)>0$ only if $\log |a / b|_{\nu}=\operatorname{ord}_{\nu}(b) \log p>0$. If the local heights of P at the primes $p \mid \Delta$ are in cases (b),(c) and (d) we have $\operatorname{ord}_{\nu}\left(3\left(x^{2}-k^{2}\right)\right)=$ $\operatorname{ord}_{\nu}\left(3\left(a^{2}-k^{2}\right) / b^{2}\right)>0$. Let ν comes from 2 or 3 and consider cases (c) and (d). If $\operatorname{ord}_{\nu}(b)>0$, then $\operatorname{ord}_{\nu}(a)=0$, and since $2,3 \mid k$, we will have $\operatorname{ord}_{\nu}\left(3\left(x^{2}-k^{2}\right)\right)<0$ which is impossible. Thus $\operatorname{ord}_{2}(b)=\operatorname{ord}_{3}(b)=0$.

If we are in case (b) ν comes from $q \in\{103,10303\}$ and we also use that $\operatorname{ord}_{\nu}(2 y)>0$. This means that q divides c. If we assume that q divides b, i.e. $\operatorname{ord}_{q}(b)>0$, after (3.4) it follows that q divides a as well - a contradiction. Hence in case (b) $\operatorname{ord}_{103}(b)=\operatorname{ord}_{10303}(b)=0$.

In any case $\operatorname{ord}_{\nu}(b)=0$ if P is into (b), (c) or (d), so in these cases we can add toward the local height expression $\left(\operatorname{ord}_{\nu}(b) \log p\right) / 2$. Combining these we get

$$
\begin{equation*}
\sum_{\nu \neq \infty} \lambda_{\nu}(P)=\frac{1}{2} \log b+\tilde{\lambda}_{2}+\tilde{\lambda}_{3}+\tilde{\lambda}_{103}+\tilde{\lambda}_{10303} \tag{3.5}
\end{equation*}
$$

where $\tilde{\lambda}_{p}$ for $p \mid \Delta$ are non-zero only if the point P falls into some of the corresponding cases (b), (c) or (d) and then $\tilde{\lambda}_{p}=\lambda_{p}(P)$.

Clearly for any $P \in E_{102}(\mathbb{Q})$ falling in case (b) we have

$$
\begin{align*}
\lambda_{103}(P) & =\frac{1}{8} \log |\Delta|_{\nu}=-\frac{1}{8} \log 103 \tag{3.6}\\
\lambda_{10303}(P) & =\frac{1}{8} \log |\Delta|_{\nu}=-\frac{1}{8} \log 10303 \tag{3.7}
\end{align*}
$$

Next we estimate from below λ_{2} and λ_{3} from cases (c) or (d). Note that in these cases we have both $\operatorname{ord}_{\nu}\left(3\left(x^{2}-k^{2}\right)\right)>0$ and $\operatorname{ord}_{\nu}(2 y)>0$.
$\underline{p=2}$ Here $\nu\left(3\left(a^{2}-k^{2} b^{2}\right) / b^{2}\right)>0$ and $2 \mid k$, so we get $2 \mid a$. From $\nu(2 y)>0$ it follows that 2 does not divide d. If 2^{2} divides c, then the right-hand side of the equality (3.4) should be divisible by 2^{4}. Note that $8 \mid a^{3}, 3 k^{2} a b^{2}$ but $4 \| 2\left(k^{3}+2\right) b^{3}$. As $2 \nmid d$, then the right-hand side of (3.4) is $\equiv 4(\bmod 8)$. Therefore we could have at most $2 \| c$. The lefthand side of (3.4) is surely divisible by 2 and hence $2 \mid c$. Then the only possibility is $\operatorname{ord}_{2}(2 y)=2$.

Let us take a look at $\psi_{3}(P)$. As $2 \nmid b$ we are interested in the 2 -order of $b^{4} \psi_{3}$:

$$
\begin{equation*}
3 a^{4}-18 k^{2} a^{2} b^{2}+24\left(k^{3}+2\right) a b^{3}-9 k^{4} b^{4} \tag{3.8}
\end{equation*}
$$

The exact power of two dividing the summand $9 k^{4} b^{4}$ is 4 . If $2^{2} \mid a$ we will have $2^{5} \mid b^{4} \psi_{3}+9 k^{4} b^{4}$, thus $2^{4} \| \psi_{3}$. If $2 \| a$, then $2^{4} \| 3 a^{4}, 9 k^{4} b^{4}$ and hence $2^{5} \mid b^{4} \psi_{3}$. Therefore in any case $\operatorname{ord}_{2}\left(\psi_{3}\right) \geq 4$. We conclude that for $\operatorname{ord}_{2}(2 y)=2$ with $\operatorname{ord}_{2}\left(\psi_{3}\right) \geq 6$ we are in case (c) and

$$
\lambda_{2}(P)=\frac{1}{3} \log \left|\psi_{2}(P)\right|_{\nu}=\frac{1}{3} \log |2 y|_{\nu}=-\frac{2}{3} \log 2 .
$$

If $\operatorname{ord}_{2}\left(\psi_{3}\right)$ is 4 or 5 , then according to (d)

$$
\lambda_{2}(P)=\frac{1}{8} \log \left|\psi_{3}(P)\right|_{\nu}=-\frac{1}{8} \cdot 4 \log 2=-\frac{1}{2} \log 2
$$

or

$$
\lambda_{2}(P)=\frac{1}{8} \log \left|\psi_{3}(P)\right|_{\nu}=-\frac{1}{8} \cdot 5 \log 2=-\frac{5}{8} \log 2 .
$$

In any case we get

$$
\begin{equation*}
\lambda_{2}(P) \geq-\frac{2}{3} \log 2 \tag{3.9}
\end{equation*}
$$

$p=3$ Again from $\nu\left(3\left(a^{2}-k^{2} b^{2}\right) / b^{2}\right)>0$ and $\nu(2 c / d)>0$ it follows that $3 \mid c$ and $3 \nmid b, d$. $\overline{\text { Look }}$ at $b^{4} \psi_{3}(P)$ at (3.8). We see that $\psi_{3} / 3 \equiv a^{4}+16 a b^{3} \equiv a\left(a^{3}+b^{3}\right)(\bmod 3)$ because $3 \mid k$. If we use $3 \mid c$ in (3.4) we see that $3^{2} \mid a^{3}+4 b^{3}$. If $3 \mid a$ we should have $3 \mid b-\mathrm{a}$ contradiction, hence $3 \nmid a$. If $3^{2} \mid a^{3}+b^{3}$, then as it already divides $a^{3}+4 b^{3}$, it would follow
$3^{2} \mid 3 b^{3}$ which is impossible. Therefore at most $3 \| a^{3}+b^{3}$ and finally at most $3^{2} \| \psi_{3}$, i.e. $\operatorname{ord}_{3}\left(\psi_{3}(P)\right) \leq 2$. In this case we always have $\operatorname{ord}_{\nu}\left(\psi_{3}(P)\right)<3 \operatorname{ord}_{\nu}\left(\psi_{2}(P)\right)$, that is situation (d) with $\lambda_{3}(P)=\log \left|\psi_{3}(P)\right|_{\nu} / 8=-\left(\operatorname{ord}_{3}\left(\psi_{3}\right) \log 3\right) / 8$. Then, since the 3 -order of $\psi_{3}(P)$ is at most 2 , in any case

$$
\begin{equation*}
\lambda_{3}(P) \geq-\frac{1}{4} \log 3 \tag{3.10}
\end{equation*}
$$

When we combine the estimates (3.6), (3.7), (3.9) and (3.10) into equation (3.5) we come to

$$
\begin{equation*}
\sum_{\nu \neq \infty} \lambda_{\nu}(P) \geq \frac{1}{2} \log b-\frac{2}{3} \log 2-\frac{1}{4} \log 3-\frac{1}{8} \log 103-\frac{1}{8} \log 10303 \geq \frac{1}{2} \log b-2.47112 . \tag{3.11}
\end{equation*}
$$

$p=\infty \quad$ For computing λ_{∞} we apply Lemma 3.2. It can be seen from the graphic of E_{102} that there are points on $E_{102}(\mathbb{R})$ with $x(P)=0$. So we want to translate $x \rightarrow x+r$ such that $x+r>0$ for every $x \in E_{102}(\mathbb{R})$. On page 340 of [14] Silverman calls this transformation the shifting trick. Indeed, by Theorem 18.3.a)[13] it follows that the local height at Archimedean valuations depends only on the isomorphism class of E / \mathbb{Q}_{ν}.

If after the translation with r we denote $E_{102} \rightarrow E_{102}^{\prime}$ and $P \rightarrow P^{\prime}$, by the above-mentioned property of the local height $\lambda_{\infty}(P)=\lambda_{\infty}\left(P^{\prime}\right)$. Note that with the change $x \rightarrow x+r$ the discriminant stays the same. Then

$$
\lambda_{\infty}(P)=\frac{1}{2} \log (x+r)+\frac{1}{2} \sum_{n=0}^{\infty} \frac{\log \left(z\left(2^{n} P^{\prime}\right)\right)}{4^{n+1}}
$$

We take $r=516$ after we check numerically that with this r we achieve the best lower bound of $z(x)$ for $x \geq x_{0}$ where x_{0} is the only real root of the equation $(x-r)^{3}-31212(x-r)+2122420=0$. More precisely we run the MATHEMATICA procedure

```
Proc[r_] := (
    f[x_] := x^3 - 3*102^2*x + 2*102^3 + 4;
    f1[x_] := f[x - r];
    Clear [a];
    b2 := 4*Coefficient[f1[a], a, 2];
    b4 := 2*Coefficient[f1[a], a, 1];
    b6 := 4*Coefficient[f1[a], a, 0];
    b8 := 4*Coefficient[f1[a], a, 2]*Coefficient[f1[a], a, 0] -
        Coefficient[f1[a], a, 1]^2;
    P1[x_] := x^4 - b4*x^2 - 2*b6*x - b8;
    x0 = x /. Last[N[FindInstance[f1[x] == 0, x, Reals]]];
    minZ = Log[First[NMinimize[{P1[x]/x^4 , x >= x0}, x]]];
    Return [(minZ/3 + Log[x0])/2];
    ).
```

Then $r=516$ gives the best lower bound

$$
\begin{equation*}
\lambda_{\infty}(P) \geq \frac{1}{2}\left\{\log x_{0}+\frac{1}{3} \log \left(\min _{x \geq x_{0}} z(x)\right)\right\} \geq 2.85856 . \tag{3.12}
\end{equation*}
$$

If we straight apply this estimate for any point $P \in E_{102}(\mathbb{Q}) /\{0\}$ including the integral points, we have $b \geq 1$, so after (3.11)

$$
\hat{h}(P) \geq \sum_{\nu \neq \infty} \lambda_{\nu}(P)+\lambda_{\infty}(P) \geq-2.47112+2.85856 \geq 0.38744
$$

This lower bound is already much better than Hindry-Silverman's bound. Note that it holds for all integral points as well, including the torsion points different from the infinite point. It follows that the only torsion point on $E_{102}(\mathbb{Q})$ is $0=(0: 1: 0)$.

We still try to achieve better lower bound at the non-Archimedean local heights for nonintegral points. Looking at (3.4), we see that for any prime power $q \| b$ we get $q^{3} \| d^{2}$ and it follows that every q is on even power, i.e. b is a perfect square. If $2 \mid b$ we have $b \geq 4$. As from $2 \mid b$ it follows that the local height $\lambda_{2}(P)$ cannot fall into cases (c) and (d), it is given with case (a). Then

$$
\sum_{\nu \neq \infty} \lambda_{\nu}(P) \geq \frac{1}{2} \log 4-\frac{1}{4} \log 3-\frac{1}{8} \log 103-\frac{1}{8} \log 10303 \geq-1.31587
$$

If $2 \nmid b$ we should have $b \geq 3^{2}$ and

$$
\sum_{\nu \neq \infty} \lambda_{\nu}(P) \geq \frac{1}{2} \log 9-\frac{2}{3} \log 2-\frac{1}{4} \log 3-\frac{1}{8} \log 103-\frac{1}{8} \log 10303 \geq-1.3725
$$

From the latter estimates and (3.12) we have

$$
\hat{h}(P) \geq 2.85856-1.3725=1.48606
$$

for any non-integral point $P \in E_{102}(\mathbb{Q})$. This proves the lemma.
We check that $L^{(3)}(E, 1) \neq 0$ by E102.analytic_rank(leading_coefficient=True), because the coefficient is far from zero: SAGE gives

$$
\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{3}} \approx 264.870335957636575
$$

For our goal $\operatorname{ord}_{s=1} L\left(E_{102}, s\right) \geq 3$ is enough so we do not delve more in the precision of the last computation. It suggests that $\operatorname{ord}_{s=1} L\left(E_{102}, s\right)=3$, as predicted by Birch and Swinnerton-Dyer conjecture.

Acknowledgements I am indebted to my supervisor András Biró for his guidance and constructive criticism and to Kumar Murty for discussions on Godlfeld's theorem while being a hospitable advisor during my stay at University of Toronto. I am also thankful to Central European University Budapest Foundation for supporting my visit in Toronto.

References

[1] A. Biró, Yokoi's conjecture, Acta Arith. 106 (2003), no. 1, 85-104
[2] A. Biró, Yokoi-Chowla conjecture and related problems, Proceedings of the 2003 Nagoya Conference,Held at Nagoya University, Nagoya, October 14-17, 2003, Ed.: S. Katayama, C. Levesque and T. Nakahara., Saga University, Faculty of Science and Engineering, Saga, 2004
[3] J. P. Buhler, B. H. Gross and D. B. Zagier, On the conjecture of Birch and SwinnertonDyer for an elliptic curve of rank 3, Math. Comp. 44 (1985), 473-481
[4] D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663
[5] D. Goldfeld, The Gauss class number problem for imaginary quadratic fields, Heegner Points and Rankin L-Series, Ed.: H. Darmon and S. Zhang, Cambridge University Press, 2004
[6] F. Gouvẽa and B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc. 4 (1991), 1-23
[7] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320
[8] M. Hindry and J. H. Silverman, The Canonical Height and integral points on elliptic curves, Invent. Math. 93 (1988), 419-450
[9] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS, 2004
[10] S. Lang, Elliptic curves: Diophantine Analysis, Springer, 1978
[11] R. A. Mollin, L.-C. Zhang and P. Kemp, A lower bound for the class number of a real quadratic field of ERD type, Canad. Math. Bull. 37 (1994), 90-96
[12] H. Nakazato, Heegner points on modular elliptic curves, Proc. Japan Acad. 72, Ser. A (1996), 223-225
[13] J. Silverman, The Arithmetic of Elliptic Curves, 2nd Ed., Springer, 2010
[14] J. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358

[^0]: Key words and phrases: class number, real quadratic fields, elliptic curves.
 MSC2010: Primary 11R29; Secondary 11R11, 11G50, 14H52.

