Effective lower bound for the class number of a certain family of real quadratic fields
 ADDENDUM

Kostadinka Lapkova (Budapest)
Email: k.lapkova@gmail.com

August 14, 2012

I thank Stéphane Louboutin for his remarks on my paper [1]. This addendum answers his comments. In [1] the following main result is shown (there Theorem 1.2).
Theorem 1. Let $n=m\left(m^{2}-306\right)$ for a positive odd integer m, and $N=2^{3} \cdot 3^{3} \cdot 103 \cdot 10303$. If $d=n^{2}+4$ is square-free and $\left(\frac{d}{N}\right)=-1$, then for every $\epsilon>0$ there exists an effective computable constant $c_{\epsilon}>0$, depending only on ϵ, such that

$$
h(d)=h\left(n^{2}+4\right)>c_{\epsilon}(\log d)^{1-\epsilon} .
$$

As Gergely Harcos had suspected the condition $\left(\frac{d}{N}\right)=-1$ yields a stronger bound $h(d) \gg \log d$ because for some prime divisor p of the conductor N we have $\left(\frac{d}{p}\right)=1$. Louboutin pointed out to me a proof of this fact, and more precisely of the bound

$$
\begin{equation*}
h(d) \geq \frac{\log \frac{1}{2} \sqrt{d}}{\log 10303}, \tag{1}
\end{equation*}
$$

which can be found in [2]. It means that in [1] a weaker result was proven than an already existing one.

The method of [1], however, can be used for new families as well. If we take a look at Table 1 from [1], we see that we can formulate
Theorem 2. Let $n=m\left(m^{2}-3 k\right)$ for a positive odd integer m and even k. Let $d=n^{2}+4$ be square-free and $\left(\frac{d}{p}\right)=-1$ for $p \in \mathcal{A}$ for the set of primes \mathcal{A}. Then in the cases
i) $k=136, \mathcal{A}=\{3,7,43,61,137\}$,
ii) $k=184, \mathcal{A}=\{3,5,7,151,223\}$,
we have the following claim. For every $\epsilon>0$ there exists an effective computable constant $c_{\epsilon}>0$, depending only on ϵ, such that

$$
h(d)=h\left(n^{2}+4\right)>c_{\epsilon}(\log d)^{1-\epsilon}
$$

The proof of the theorem assumes that the analytic rank of the elliptic curves E_{136} and E_{184} is three.

k	conductor N_{k}
65	$2^{5} \cdot 3^{3} \cdot 11 \cdot 19 \cdot 73$
102	$2^{3} \cdot 3^{3} \cdot 103 \cdot 10303$
114	$2^{3} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 23 \cdot 991$
129	$2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 337$
136	$2^{2} \cdot 3^{3} \cdot 7 \cdot 43 \cdot 61 \cdot 137$
141	$2^{5} \cdot 3^{3} \cdot 19 \cdot 71 \cdot 1039$
145	$2^{5} \cdot 3^{3} \cdot 7 \cdot 19 \cdot 73 \cdot 157$
162	$2^{3} \cdot 3^{3} \cdot 163 \cdot 26083$
184	$2^{2} \cdot 3^{3} \cdot 5 \cdot 37 \cdot 151 \cdot 223$
187	$2^{4} \cdot 3^{3} \cdot 7 \cdot 47 \cdot 4969$
191	$2^{4} \cdot 3^{3} \cdot 12097$

Table 1: Elliptic curves E_{k} of analytic rank 3

In the proof of (1) the continued fractional expansion of $(1+\sqrt{d}) / 2$ is used. After Theorem 4 [3] we see that for example for the family of square-free $d=n^{2}+8$ the surd \sqrt{d} is with unknown such expansion (the lowest period of the continued fractional expansion tends to infinity together with $n)$. So no analogue of (1) is known for these discriminants. Our method works in this case too.

We need to consider the family of elliptic curves

$$
\mathcal{E}_{k}: y^{2}=x^{3}-3 k^{2} x+\left(2 k^{3}+8\right)
$$

SAGE gives that for example the curves \mathcal{E}_{174} and \mathcal{E}_{192} are of analytic rank three. Here k is even, and now we do not worry whether the parameterizing elliptic curve has odd or even number of prime divisors of its conductor.

Theorem 3. Let $n=m\left(m^{2}-3 k\right)$ for a positive odd integer m and even k. Let $d=n^{2}+8$ be square-free and $\left(\frac{d}{N}\right)=-1$ for a certain positive integer N. Then in the cases
i) $k=174, N=2^{6} \cdot 3^{2} \cdot 2634013$,
ii) $k=192, N=2^{6} \cdot 3^{2} \cdot 5 \cdot 707789$,
we have the following claim. For every $\epsilon>0$ there exists an effective computable constant $c_{\epsilon}>0$, depending only on ϵ, such that

$$
h(d)=h\left(n^{2}+8\right)>c_{\epsilon}(\log d)^{1-\epsilon}
$$

References

[1] Lapkova, K., Effective lower bound for the class number of a certain family of real quadratic fields, J. Number Theory 132 (2012), no. 12, 2736-2747, DOI: 10.1016/j.jnt.2012.05.029
[2] Louboutin, St., Continued Fractions and Real Quadratic Fields, J. Number Theory 30 (1988), 167-176
[3] A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1960-1961), 393-413

