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Abstract

In this paper we consider the weak conflict-free colorings of re-
gions and points. This is a natural relaxation of conflict-free coloring
[ELRS03]. One of the most interesting type of regions to consider
for this problem is that of the azis-parallel rectangles. We completely
solve the problem for a special case of them, for bottomless rectangles.
We also give an almost complete answer for half-planes and pose sev-
eral open problems. Moreover we give efficient algorithms for coloring
with the needed number of colors.

1 Introduction

Motivated by a frequency assignment problem in cellular telephone networks,
Even, Lotker, Ron and Smorodinsky [ELRS03] studied the following prob-
lem. Cellular networks facilitate communication between fixed base stations
and moving clients. Fixed frequencies are assigned to base-stations to enable
links to clients. Each client continuously scans frequencies in search of a
base-station within its range with good reception. The fundamental prob-
lem of frequency assignment in cellular networks is to assign frequencies to
base-stations such that every client is served by some base-station, i.e. it
lies within the range of the station and no other station within its reception
range has the same frequency. Given a fixed set of base-stations we want to
minimize the number of assigned frequencies.
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First we assume that the ranges are determined by the clients, i.e. if a base-
station is in the range of some client, then they can communicate. Let P
be the set of base-stations and F the set of all possible ranges of any client.
Given some set F of planar regions and a finite set of points P we define
cf(F,P) as the smallest number of colors which are enough to color the
points of P such that in every region of F containing at least one point,
there is a point whose color is unique among the points in that region. The
maximum over all point sets of size n is the so called conflict-free col-
oring number (cf-coloring in short), denoted by cf(F,n). Determining
the cf-coloring number for different types of regions F is the main aim in
this topic. Regions for which the problems has been studied include circles
([ELRS03], [PTTO7], [SmO06], etc.) and axis-parallel rectangles ([ChSzPT],
[PT03], [AEGRO7], etc), for a brief list of some results see Chapter 4.

It is also a natural case to assume that the ranges are determined by the
base-stations, i.e. if a client is in the range of some base-station, then they
can communicate. For a finite set of planar regions F we define cf(F) as the
smallest number of colors which is enough for coloring the regions of F such
that for every point in UF there is a region whose color is unique among the
colors of the regions covering it. For a (not necessarily finite) set F of planar
regions let cf(F,n), the conflict-free region-coloring number of F be
the maximum of cf(F') for 7' C F, |F'| = n.

In [Sm03] and then in [HS05] generalized versions of these notions are defined.
A cfy-coloring (they used the notation k-CF) of a point set is a coloring such
that for each region F' of F containing at least one point, there is a color
which is assigned to at most k£ points covered by F'. Note that a cf-coloring
is actually a cfi-coloring. The region-coloring version is defined similarly.

Modifying the definition of a conflict-free coloring, wcf(F, P) equals to
the minimum number of colors needed to color the points of P such that
whenever a region covers at least 2 of them, then there are 2 points with
different colors covered by it (the region is multicolored). The maximum over
all n element point set of size n is the weak conflict-free coloring number
(wef-coloring in short), denoted by wcf(F,n).

Observation 1. cf(F,n) > wcf(F,n).

Generalizing our definition we can define wcfy(F, P) as the minimum
number of colors needed to color the points of P such that whenever a region
covers at least k of them, then there are 2 points with different colors covered



by it. The maximum of this value over all point sets of size n is denoted by

wefr(F,n).

Observation 2. wcf(F,n) = wcfo(F,n).
wefi(F,n) <wcefi(F,n) if k> 1.

A simple corollary of a theorem of [Sm06] (in [ELRS03] they already
present a very similar version of the following algorithm) shows that the
weak conflict-free coloring number gives a good upper bound to the conflict-
free coloring number. More precisely, they present the following algorithm
and prove that it gives a conflict-free coloring. In each step take a biggest
color class in a weak conflict-free coloring of the point set. After coloring it to
a new color, delete it and do the same for the new (smaller) point set. This
algorithm gives the following bounds, stated in [HS05] in a slightly different
way.

Lemma 3. [HS05]

(i) If wef(F,n) < ¢ for some constant ¢, then cf(F,n) < m(?/% =
O(logn),

(i1) if wef(F,n) = 0(n) for some e > 0, then cf(F,n) = O(n°).

Observation 1 and Lemma 3 show that wcf and cf are usually close to
each other. Often the best known bound for ¢f is obtained from Lemma 3.
This is the main motivation why we want to determine the weak conflict-free
coloring number for different types of regions. Moreover, Lemma 3 holds
even in the more general setting when we consider wc fi-colorings and cf_1-
colorings for some fixed k (the lemma considers the case k = 2). This moti-
vates the investigation of wcfg-colorings for k£ > 2.

Again we can define the dual version. For a finite F, wef(F) equals to the
smallest number of colors which are enough to assign colors to the regions
in F such that for every point covered by at least 2 regions in F, there
are two differently colored regions among the regions covering it (the point
is multicolored). For a not necessarily finite F the maximum of this value
over all n element subsets of F is the weak conflict-free region-coloring
number, denoted by wcf(F,n). Finally, we can again define wcfy,(F,n) by
restricting the condition only for points covered by at least k regions in F.
The dual version of Lemma 3 holds as well.



For a finite F following the notation of [Sm06] one can define the geo-
metric hypergraph induced by F. The base set is the set of regions F' and for
any point p covered by at least k regions there is a hyperedge 7, containing
the regions covering p. A proper coloring of a hypergraph is a coloring of
the points such that there are no monochromatic edges. Thus, determining
the chromatic number of this hypergraph is clearly equivalent to determining
wefi(F).

Following the notation of [PTTO07] a partial k-fold covering of the plane
with a set of regions F is decomposable if we can partition the set into two
subsets such that for any point covered by F at least k times, there is a
region in each part covering this point. Clearly, wcfy(F) = 2 is equivalent to
this as a good weak conflict-free region-coloring of F gives a good partition
and vice versa.

For the types of regions we study, the weak conflict-free coloring num-
ber can always be bounded from above by a constant not depending on
n. Thus, we define wefy,(F) = max, wefi,(F,n) and similarly wefy,(F) =
max,, wefy(F,n) if they exist. Our main aim is to determine these numbers
and give coloring algorithms using this minimal number of colors.

Slightly modifying the notation of [HS05] we call a set of regions F mono-
tone if for any finite P and F' € F and [ positive integer if F' covers at least
[ points of I’ then there exists F' € F, F' C F covering exactly [ points of
P.

Observation 4. For monotone set of regions in the definition of wcf-coloring
it is enough to restrict our condition to regions covering exactly 2 points of
the point set. Similarly, for the definition of wcfy, it is enough to restrict the
condition to regions covering exactly k points.

Note that monotonicity could be defined in the dual version as well, but
none of the types of regions we study in this paper are monotone in that dual
sense.

The paper is structured as follows. In Section 2 we prove theorems solving
all cases for bottomless rectangles, a special case of axis-parallel rectangles,
for the definition we refer to that section. In Section 3 we prove theorems
which give an almost complete answer for half-planes. Finally, in Section 4
we summarize our results and pose several open problems.



2 Bottomless rectangles

A bottomless rectangle the set of points (z,y)|a < z < b,y < ¢ for some
a,b and c. The set of all bottomless rectangles is denoted by B. For our
coloring purposes the family of bottomless rectangles is equivalent with the
family of (ordinary) axis-parallel rectangles having their lower edge on a com-
mon horizontal base-line. We prove exact bounds for wefy,(B) and wefy,(B)
for all k.

2.1 Coloring points

From now on we assume that there are no two points with the same x or y
coordinate. It is easy to show that if this is not the case, then coloring the
point set after a small perturbation gives a needed coloring for the original
point set as well. In this section upwards order means the ordering of points
according to their y coordinate starting with the point having the smallest y
coordinate (the lowest point).

The proof of the following, rather trivial result is just presented for the
sake of completeness.

Claim 5. (folklore) wefo(B) = 3 i.e. any set of points can be colored with
3 colors such that any bottomless rectangle covering at least 2 of them is
multicolored.

Proof. First we prove that wecfe(B) < 3. We want to color the points with
3 colors such that any bottomless rectangle covering at least 2 points covers
two differently colored points.

First we color the lowest point of P arbitrarily with one of the three colors
then we color the points one by one in upwards order. In each step we color
the next point p with a color maintaining that in the x-coordinate order of
the points already colored there are no two consecutive points with the same
color.

In this way any bottomless rectangle B covering at least two points covers
two differently colored ones. Indeed, when the highest point p in P N B
is considered, B N P is an interval in the left to right order of the points
considered so far. By the property maintained any such interval contains
points of at least two colors.

The lower bound wefy(B) > 3 follows from the fact that for example the



(a) Theorem 1(i) (b) Theorem 2(i)

Figure 1: Lower bound constructions for bottomless rectangles

points with coordinates (0,0), (1,1) and (2,0) cannot be colored with 2 colors
in a proper way. U

The following theorem shows that the smallest k for which wefi(B) = 2
is 4 and so wcfi(B) is determined for every k as trivially wef(B) > 2 for
any k.

Theorem 1.

(1) wefs(B) = 3.
(11) wefy(B) =2 i.e. any set of points can be colored with 2 colors such that
any bottomless rectangle covering at least 4 of them is multicolored.

(111) Such colorings can be found in O(nlogn) time.

Proof. (i) Using Observation 2 with Claim 5 we got that wef3(B) < wefo(B) =
3. Thus, it is enough to prove that wef;(B) > 2. For that we show that the
12 point construction on Figure 1(a) cannot be colored with 2 colors such
that any bottomless rectangle covering at least 3 points covers two differently
colored points. Suppose on the contrary that there is such a coloring. Denote
the points ordered by their x coordinate from left to right by pi,po, ..., pio.
Among the points py, ps, pg there are two with the same color, wlog. assume
that this color is red. If p, and ps are red, then all of py, po, p3 are blue as
there is a bottomless rectangle covering only p4, p; and any one of these 3
points. This is a contradiction as there is a bottomless rectangle covering
only these 3 points, all blue. If py and pg are red then similar argument for
the points p1g, p11, P12, if ps and pg are red then similar argument for the
points pr7, ps, pe yields to a contradiction.



(1) We want to color the points red and blue such that any bottomless
rectangle covering at least 4 points covers two differently colored points.
First we color the lowest point of P red then we consider the points in upwards
order. We do not color every vertex as soon as it is considered. We maintain
that in the z-coordinate order of the points considered so far there are no two
consecutive uncolored points and the colored points alternate in color. When
a new point is considered we keep it uncolored unless it has an uncolored left
or right neighbor in the z-coordinate order. In that case we color both in a
way keeping the alternation. At the end we arbitrarily color the remaining
points in P. Now we only need to prove that this coloring is good. We need
to consider bottomless rectangles covering at least 4 points, so let B be such.
Let p be the highest point covered by B. When p is considered B N P is
an interval in the left to right order of the points considered so far. By the
properties maintained any such interval of at least 4 vertices contains both
red and blue points as needed.

(77i) We need to prove that the algorithms presented in the proof of Claim
5 and Theorem 1 (i7) run in time O(nlogn). Computing the upwards order
of the points takes O(nlogn) time, the rest of the algorithm has n steps in
both cases, each computable in O(logn) time, in the latter algorithm there
is a final coloring step that takes at most linear time, so the whole algorithm
runs in O(nlogn) time in both case. O

2.2 Coloring bottomless rectangles

In [Sm06] a very similar version is considered, namely coloring axis-parallel
rectangles intersecting a common base-line. The proof of their result with
a slight modification gives wefao(B) < 4. The following theorem determines
wef,(B) for every k, also improving this bound to 3 colors, which is optimal.

From now on we assume that there are no two bottomless rectangles with
overlapping sides. It is easy to show that if this is not the case, then coloring
the rectangles after enlarging all of them with a very small amount such that
afterwards there are no overlappings, gives a needed coloring for the original
set of rectangles as well.

Theorem 2.

(i) wefo(B) = 3 i.e. any set of bottomless rectangles can be colored with 3
colors such that any point covered by at least 2 of them is multicolored.



(i1) wefs(B) = 2 i.e. any set of bottomless rectangles can be colored with 2
colors such that any point covered by at least 3 of them is multicolored.

(iii) Such colorings can be found in O(n?) time.

Proof. (i) For the lower bound, the arrangement of 3 rectangles on Figure
1(b) shows that 3 colors are sometimes needed. For the upper bound, given
a set of rectangles with a common base line we want to color the rectan-
gles red, blue and green such that any point covered by at least 2 rectangles
is covered by two differently colored rectangles. We color the rectangles in
downwards order according to their top edge’s y-coordinate. We start with
the empty set and reinsert the rectangles in this order. We color the first, i.e.
the highest rectangle blue. After each step we have a proper coloring and we
preserve the following additional assumption. If a point on the base-line is
covered by exactly 1 rectangle, then it is not red.

In each step we insert the next rectangle B in downwards order, so it’s top
edge is below the top edge of all the rectangles already inserted. We color
B red. We claim that this is again a proper coloring. Indeed, the condition
for points not in B already holds. For any point covered by B the base-line
point with the same x-coordinate is covered by the same rectangles as B is
the lowest rectangle. Thus, it is enough to check the condition for base-line
points in B. If a point is covered by at least 2 rectangles besides B then it
is good by induction. Otherwise it is covered by B, which is red and exactly
one more rectangle, which is not red by the assumption.

If there is no base-line point covered by only B, then the additional assump-
tion holds too. If ¢ is such a point then we need to do something else to
maintain the validity of our assumption. If a base-line point is covered by
only 1 rectangle then we say that the color of this point is the color of the
rectangle covering it. It is easy to see that if there is such a point p and
we switch the other two colors on the rectangles completely to the left (or
to the right) to p, the coloring remains good. With only such ‘divide and
color’ steps we will change the coloring such that there will be no point on
the base-line covered by exactly 1 green rectangle. Finally we will switch the
colors green and red on all the rectangles to have a good coloring satisfying
the assumption. For an illustration of the rest of the proof see Figure 2.

In the current coloring all green base-line points are left or right to B as B
is red. We will deal with the left side first, changing the colors only of rectan-
gles strictly left from ¢ and making a good coloring satisfying the condition
for any base-line point left to ¢q. For the right side we will do the mirrored
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Figure 2: The color switches of the ‘divide and color’ method in Theorem

2(1).
LininallBiminalRmsin]

Figure 3: The division of the ‘divide and color’ method in Theorem 2(ii).

version of this algorithm changing the colors only of rectangles strictly right
from ¢ and making a good coloring satisfying the condition for any base-line
point right to ¢. This way we get a good coloring satisfying the assumption
for all base-line points.

On the base-line left to B there are some intervals of single colored points, all
of them green or blue. If there is no green one then we are done. Otherwise
we can suppose that the closest such interval to B is blue, otherwise switch
colors blue and green on the rectangles strictly left from ¢, still having a
good coloring. Now switch colors red and green on the rectangles strictly left
from any point s of this blue interval, this way we got rid of all green points,
making the assumption true for all points left to B.

(77) Given a set of rectangles with a common base line we want to color
them red and blue such that any point covered by at least 3 rectangles is
covered by two differently colored rectangles. Moreover, the coloring we got
will always satisfy the following additional assumption. Any point on the
base-line covered by exactly 2 rectangles is covered by a red and a blue rect-
angle.



Now we need a different version of the ‘divide and color’ method. We will
proceed by induction on the number of rectangles. A single rectangle is col-
ored red. In a general step first assume that there is a point ¢ on the base-line
not covered by any rectangle and there are some rectangles strictly left and
strictly right from that point too. Color the rectangles to the left of ¢ and
the ones to the right of ¢ separately by induction, putting these together this
is clearly a good coloring.

Now assume that there is a point ¢ on the base-line covered by exactly 1
rectangle B and there are some rectangles strictly left and strictly right from
that point too. Color first the rectangles to the left of ¢ together with B then
the rectangles to the right together with B. As there were some rectangles
on both sides, this can be done by induction. By a possible switching of the
colors in the left and right parts, B is red in both colorings. Putting together
the two half-colorings we get a good coloring.

The next case is when we have a point ¢ on the base-line covered by exactly
two rectangles, By and Bs (see Figure 3 for an illustration). In this case color
first by induction the rectangles strictly left from g together with these two
rectangles. Using the assumption on ¢ we see that By and By have different
colors, after a possible switch of the two colors we can assume that By is red
and B, is blue. The same way we color the rectangles strictly right from ¢
together with these two rectangles. This way the two rectangles are colored
with the same colors in both colorings and so we can put together these two
half-colorings (if none of them is empty) to have a coloring of the whole set
of rectangles. This coloring is good by induction.

In the remaining case for any base-line point covered by exactly 1 or 2 rectan-
gles, there is no rectangle strictly to the left or to the right to that point. The
left and right sides of the rectangles divide the base-line into 2 half-lines and
2n — 1 intervals. It is easy to see that in this case the only base-line points
covered by exactly 1 rectangle are the points of the leftmost L, and rightmost
Ry interval and the 2-covered points are the points of the second leftmost L,
and second rightmost R, interval. Consider rectangle B, the one with the
lowest top edge. It is easy to see that if it does not cover 1- or 2-covered
base-line points then we can color the rest of the rectangles by induction and
then color B with arbitrary color not ruining the coloring and the additional
assumption. Otherwise B covers some intervals from Li, Lo, Ry, Rs.

If it covers only some of L; and L, then color the rest of the rectangles
by induction and then color B to a different color from the other rectangle
covering Lo, this way we obtain a good coloring satisfying our additional as-
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sumption. If it covers only some of R; and Ry then a symmetrical argument
gives a good coloring.

It remains to deal with the case when B covers Ly and Rs as well. Consider
now the rectangle By with the second lowest top edge. First assume that
By does not cover any of Li, Ly, Ry, Ry. In this case color the rest of the
rectangles (including B) by induction and then color B with the same color
as B. We claim that this coloring is good. Any point ruining the condition
must be in Bs. Assume on the contrary that there is a point p covered by at
least 3 rectangles all having the same color.

If p is covered by 3 rectangles besides By then by induction there are differ-
ently colored rectangles among these, a contradiction.

If p is covered by exactly 2 rectangles besides B, then take the base-line point
p’ having the same x-coordinate. If it is covered by the same rectangles as
p, then by the additional assumption it is covered by two differently colored
rectangles besides By. This holds for p as well, a contradiction. If p’ is not
covered by the same rectangles as p, the only possibility is that it is covered
by B too (as only B is lower then By). By induction this point was covered
by red and blue rectangles as well without considering Bs. As B has the
same color as By, the same holds for p, a contradiction.

The additional assumption holds as well as it is enough to check the points
of Ly and Ry and here the coloring is good by induction.

By dealing with the case when B, covers some of Ly, Ry we exhaust all possi-
bilities. By symmetry we can assume that By covers Ly (and maybe Ry too).
In this final case delete both B and By and color the rest of the rectangles
by induction. Now put back these two rectangles. If Ry is covered by some
rectangle besides B and B, then color B differently from the color of this
rectangle. Otherwise color B arbitrarily. Finally, color By differently from
B. Any point ruining the condition must be in B or Bs. Again, suppose
there is such a point p covered by at least 3 rectangles all having the same
color.

If p is covered by both B and B, then its a contradiction as they are differ-
ently colored. If it is covered by at least 3 rectangles besides B and Bs then
again its a contradiction by induction.

If p is covered by one of B and B and only two other rectangles then the
base-line point p’ with the same x-coordinate was covered by exactly two
rectangles in the coloring without B and Bs. Thus, these rectangles have
different colors by the assumption. As B and B, are the lowest rectangles,
the point p is covered by these differently colored rectangles as well, a con-
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tradiction. The additional assumption holds as well as it is enough to check
the points of Ly and Ry and here the coloring is clearly good.

(#77) Finding the upwards order of the rectangles takes O(nlogn) time. In
each step we maintain an array of the intervals of the base line. If an interval
is covered only by one rectangle, we keep its color as well.

In the algorithm of (7) in each step we search for some colored interval con-
stant times and recolor some rectangles with a given property (left from a
given interval, etc.) constant times. This takes ¢ - k time if we have k rect-
angles at that step. We have n such steps and k£ < n always, so the running
time is O(n?).

In the algorithm of (ii) except the last case we always do the ‘divide and
color’ step by cutting the set into two nontrivial parts and color separately.
Finding whether there is such a cut, doing the cut (and maintaining the
upwards order in the two parts) and the possible recolorings after the re-
cursional colorings take ¢; - n time for n rectangles. The two recursional
algorithms take at most ¢ - a? and ¢ - b? steps where a + b < n + 2. These
altogether are less then ¢ - n? for some ¢y big enough (depending on c;).
When we do a recursional step by deleting B or By or both we can decide
which kind of step is needed and color B and Bs in ¢y - n steps, and we can
do the recursion in cq - (n — 1)? steps. These altogether are less then cg - n?
for some ¢y big enough (depending on ¢; and ¢3). O

3 Half-planes

The set of all half-planes is denoted by H. We prove exact bounds for
wefy(H) and almost exact bounds for wefy,(H).

From now on we assume that there are no 3 points on one line. It is easy
to show that if this is not the case, then coloring the point set after a small
perturbation gives a needed coloring for the original point set as well. This
way the vertices of the convex hull of a point set P are exactly the points of
P being on the boundary of this convex hull.

3.1 Coloring points
The following lemma follows easily from the definition of the convex hull.

Lemma 6. Any half-plane H covering at least one point of P covers some
vertex of the convex hull of P too. Moreover, the vertices of the convex hull
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(a) The exceptional case of Theo- (b) The proof of Theorem 3(ii)
rem 3(ii)

Figure 4: Theorem 3(ii)

of P covered by H are consecutive on the hull.

Theorem 3.

(1) wefa(H) =4 i.e. any set of points can be colored with 4 colors such that
any half-plane covering at least 2 of them is multicolored, and 4 colors might
be needed.

(ii) wefo(H, P) < 3, except when P has 4 points, with one of them inside the
triangle determined by the other 3 points (see Figure 4(a)), in which case
wefy(H, P) = 4.

(111) wefs(H) = 2 i.e. any set of points can be colored with 2 colors such that
any half-plane covering at least 3 of them is multicolored.

(iv) Such colorings can be found in O(nlogn) time.

Proof. (i) This follows from (ii), yet we give a short proof for the upper
bound. Color the vertices of the convex hull of P with 3 colors such that
there are no 2 vertices next to each other on the hull with the same color.
Color all the remaining points with the 4th color. This coloring is good as by
Lemma 6 any half-plane covering at least two points covers two neighboring
vertices on the hull or one vertex on the hull and one point inside it.

(77) Clearly, in the case mentioned in the lemma we need four colors to have
a good coloring as any two points can be covered by some half-plane not
covering the rest of the points.

As 'H is monotone, by Observation 4 it is enough to consider half-planes
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covering exactly 2 points of P. We color the vertices of the convex hull with
3 colors as in (i). At this time the assumption already holds for every half-
plane covering two vertices of the convex hull as by Lemma 6 they cover two
neighboring ones which don’t have the same color, as needed. Now we color
the points inside the hull in a more clever way then in (i). Take an arbitrary
point p inside the hull. The only case when the color of this inside point can
ruin the coloring, is when there is a half-plane covering only this point and
one vertex of the convex hull. If this can happen only with two vertices of
the hull, then coloring p different from these, the coloring will be good for all
half-planes covering p. Doing the same for every inside point we get a good
coloring.

Denote the vertices of the convex hull by g, ..., g1 in clockwise order (in-
dexes are mod k). It is enough to prove that except the case mentioned in
the lemma, there are no 3 such vertices on the hull corresponding to some p.
For this, notice that if ¢; and p can be covered by a half-plane not covering
any other point, then p is inside ¢;_19q;+1A. It is easy to see that if the
hull has more then 3 vertices, then there are no 3 such triangles having a
common inner point. For the rest of the proof see Figure 4(b). If the hull
has 3 vertices and p can be covered with any of these 3 vertices by some half-
plane not covering any other point of P then the lines going through some
¢; and p partition the triangle into 6 triangles. Denote for each vertex ¢; the
union of the two triangles having it as a vertex by ;. Thus, we have three
quadrangles, all of which must be empty. Indeed, for example by assumption
there is some half-plane H covering p and ¢, not covering any other point of
P. This half-plane always covers the quadrangle S, and so it must be empty.
The same argument for the other two quadrangles shows that all of them are
empty and so p is the only point in the triangle, which is the excluded case.
(#7) As 'H is monotone, it is enough to consider half-planes covering exactly
3 points of P. We color the points with colors red and blue. The points
inside the convex hull of P are colored blue. The vertices of the convex hull
of P are denoted by qq,...,qr_1 in clockwise order. For each ¢; we assign
T; = ¢;-1¢:q;11A, where indexes are modulo k. If T; has some point of P
inside it, then color g; red.

If there are no nonempty T;’s then color the vertices of the convex hull with
alternating colors, if its size is odd, then with the exception of two neighbor-
ing red points. If there is at least one nonempty 7; then these red points cut
the boundary of the convex hull into chains. For each chain color its vertices
with alternating colors, a chain with size one is colored blue.
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Now we need to prove that this coloring is good. First observe that there
are no 2 consecutive blue vertices on the convex hull. Take again an arbi-
trary half-plane H covering exactly 3 points. By Lemma 6 it covers some
consecutive vertices of the convex hull of P. If it covers at least two consec-
utive vertices on the hull then it covers at least one red point. If it covers
at least one point inside the hull, then it covers at least one blue point. If it
covers three vertices of the convex hull but no points inside then it is easy
to see that the triangle corresponding to the middle point in the ordering
must be empty. So it belongs to some alternatingly colored chain. If any of
its neighbors corresponds to the same chain, then H covers a red and a blue
point too, if this point is a chain of size 1 then it is blue and its neighbors
are red, again good. The only case remaining when H covers one vertex of
the convex hull, ¢; and two points of P in the inside of the convex hull. The
latter points are blue and they must be in T;, that is ¢; is red, as needed.
(17v) The algorithm in (i) clearly works in O(nlogn), the same as building
the convex hull. For the other two algorithm we need the dynamic convex
hull algorithm presented in [BJ02].

For the algorithm in (7i¢) we first compute a convex hull in O(nlogn) amor-
tized time and then we take its points one by one and do the following.
Delete temporarily the convex hull vertex p, compute the new convex hull
temporarily, if it has some new vertices on it, then the triangle corresponding
to p is not empty. As any inner point has been added and deleted from the
set of vertices of the hull at most two times and the convex hull algorithm
makes a step in O(logn) amortized time, we could decide in O(nlogn) time
which vertices of the hull have empty triangles. After that the coloring of
the vertices of the hull and the inside points takes O(n) time, O(nlogn)
altogether.

For the algorithm in (ii) we do the same just when we temporarily delete p
we assign to any additional convex hull vertex the point p, as this vertex can
be cut out by a half-plane together with p. After these we simply color the
vertices of the convex hull as needed and all the inner points with a color
different from the color of the at most two convex hull vertex assigned to it.
Altogether this is again O(nlogn) time. O

Observation 7. The algorithm in the proof of Theorem 3 (iii) gives a col-
oring which additionally guarantees that there are no half-planes covering
exactly two points, both of them blue.
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3.2 Coloring half-planes

Theorem 4.

(i) wefo(H) = 3 i.e. any set of half-planes can be colored with 3 colors such
that any point covered by at least 2 of them is multicolored.

(i1) wefys(H) =2 i.e. any set of half-planes can be colored with 2 colors such
that any point covered by at least 4 of them is multicolored.

(iii) Such colorings can be found in O(nlogn) time for (i1) and in O(n?) time
for (7).

Proof. We can assume that there are no half-planes with vertical boundary
line. We dualize the half-planes and points of the plane S with the points
(with an additional orientation) and lines of plane S’, then we color the set
of directed points corresponding to the half-planes which will give a good
coloring of the original set of half-planes. The dualization is as follows. For a
half-plane H with a boundary line given by the equality y = ax + b the corre-
sponding dual point h has coordinates (a,b). If this line is a lower boundary,
then h has orientation north, otherwise it has orientation south. For an ar-
bitrary point p with coordinates (¢, d) the corresponding line P is given by
y = —cx + d. Now it is easy to see that H contains p on the primal plane if
and only if the vertical ray starting in h and going into its orientation meets
line P (we say that h and P see each other). Indeed, for a half-plane with
lower boundary both hold if and only if d > ac + b, for a plane with an
upper boundary both hold if and only if d < ac+ b. From this it follows that
the we fi-coloring of half-planes is equivalent to a coloring of the dual set of
oriented points such that any line with at least k& points looking at it, there
are at least two with different colors among these points.

All the proofs give colorings for directed points and from now on we assume
that there are no 3 directed points on one line. It is easy to show that if
this is not the case, then coloring the set of directed points after a small
perturbation gives a needed coloring for the original set of directed points as
well.

(1) For a construction proving that 3 colors might be needed, see Figure
5(a). For the upper bound given a set of directed points we will color them
with 3 colors such that for any line seeing at least 2 points, not all of these
points have the same color.

Take the lower boundary of the convex hull of the set of north-directed points
and denote the vertices of it by p1, po, ..., pr ordered by their x-coordinate.
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v

(a) Construction for Theorem 4(i) (b) Proof of Theorem 4(i)

Figure 5: Theorem 4(i)

Take the upper boundary of the convex hull of the set of south-directed points
and denote the vertices of it by ¢i,qs,...,q ordered by their z-coordinate.
The rest of the points we call inner points. Similarly to Lemma 6 any line
seeing at least one north-directed point sees one p; as well and any line seeing
at least one south-directed point sees one g; as well and the p;’s and ¢;’s seen
by a line are consecutive. First we give a coloring of the p;’s and ¢;’s with
3 colors such that no two consecutive points have the same color and if for
some p; and ¢; there is a line which sees exactly these two points, then these
points have different colors. As a line seeing at least two points which does
not see inner points sees either exactly one p; and g; or at least two consec-
utive ones of the same type, the coloring will be good for all such lines.

We define a graph on the points p; and g;. The consecutive points are con-
nected forming a path of p’s and a path of ¢’s. Moreover, p;, and ¢; are
connected if there is a line which sees exactly these two points. Clearly, we
need a proper 3-coloring of this graph. For algorithmic reasons we take a
graph with more edges and prove that it can be 3-colored as well. In this
graph p; and g; are connected if there is a line which sees no other points of
the p-path and ¢-path. We claim that drawing the p-path and the ¢-path on
two parallel straight lines, the ¢-path being on the higher line and in reverse
order, and drawing all the edges with straight lines, we have a graph without
intersecting edges. In other words the graph is a caterpillar-tree between two
paths. Going from left to right on the trunk of the caterpillar-tree and at
each trunk-point taking all the leaves in left to right order, it is easy to see
that at any step the considered point has only at most 2 backwards edges
(one path-edge and one caterpillar-edge), so we can color it properly with a
third color.
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So it is enough to prove that there are no intersecting edges. Without loss of
generality such two edges e and f would correspond to points e, €4, f, and
fq with x-coordinates e; < f7 and ej < f7 (the points with index p are from
the p-path and the points with index ¢ are from the g-path). The line seeing
only e, and ¢, is denoted by h,, the line seeing only f, and f, is denoted by
hy. These two lines divide the plane into four parts, which can be defined
as the north, south, west and east part. Clearly from e, and f, one must
be in the west part and one in the east part. By e; < f,, €, is in the west
and f, is in the east part. This means that h. must be the line above the
east and south parts and so e, must be in the east part and f, in the west,
a contradiction together with ef < f7 (see Figure 5(b)).

Now we finish the coloring such that the condition will hold also for lines
seeing inner points. As in Theorem 3 (i7) for any other north-directed point
p there are two points p; and p;y; (the unique ones for which p; has smaller
and p;y1 has bigger z-coordinate then p) such that whenever a line h sees p
then it sees p; or p;11 as well. Then coloring p differently from these points,
guarantees that any h seeing p sees two differently colored points. Doing the
same for the south-directed points we finished the coloring such that when-
ever a line sees some point which is not a p; or ¢; then it sees points with
both colors.

(77) Given a set of directed points we will color them with 2 colors such that
for any line seeing at least 4 points, not all of these points have the same
color. We color the north-directed points with the same algorithm as in The-
orem 3 (i17). We color the south-directed points with the same algorithm as
in Theorem 3 (7i7) just with inverted colors. This guarantees that any line
which sees at least 3 north-directed points, sees red and blue points as well.
If a line sees exactly 2 points of each kind, then sees red and blue points as
well of one kind or sees 2 red north-directed points and 2 blue south-directed
points by Observation 7, again seeing points with both colors. There are no
more cases for a line seeing at least 4 points, so the proof is complete.

(77) The algorithm in (i) clearly runs in time O(nlogn) using Theorem 3
(iv). The algorithm in (i) can be made similarly to work in this time, only
the building of the caterpillar tree might need O(n?) steps. Indeed, we just
need to prove that deciding whether there is an edge between some p; and
g; can be done in constant time. For that we just need to check whether the
linear equations for a line assuring that is goes above ¢;_1, ¢;4+1 and below
q;, below p;_1, pi+1 and above p; have a solution. O
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4 Discussion

In Table 1 we summarize the results presented in this paper, the bold ones

are proved in Section 2 and Section 3, others come from monotonicity except
for wefy(B) = 3 which is folklore.

k 2 3 >4
wefi(B) 3 3 2
wefr(B) | 3 2 2
wefr(H) | 4 2 2
wefr(H)| 3 | 20r3] 2

Table 1: table of results

The case of half-planes is solved except to determine wc f3(H).

Problem 8. Determine the value of wcfs(H), i.e. the lowest number of
colors meeded to color any finite set of half-planes such that if a point of the
plane is covered by at least 3 of them then not all of the covering half-planes
have the same color.

Though the case of bottomless rectangles is completely solved, one can
consider the aforementioned case of axis-parallel rectangles intersecting a
common base-line (denoted by B’). We start with the case of region coloring.
For this the best upper bound is due to [Sm06], proving wefo(B') < 8, and for
the case of k > 2 we can separately color the upper and lower parts (divided
by the base-line) of the rectangles with 2 colors by Theorem 2 (ii) and then
for a rectangle colored by a in the upper part and b in the lower part, we
give the ordered pair (a,b) as a color. It is easy to see that this is a good
wefs-coloring of the rectangles, thus proving wefs(B') < 4.

The case of coloring points seems less natural for axis-parallel rectangles
intersecting a common base-line, still it can be considered. Coloring the
points in the lower and upper parts with different colors ensures that any
rectangle covering one from both sides is multicolored. The two sides can be
colored by Claim 5 with 3-3 colors, thus proving wefe(B') < 6 (a rectangle
either covers points from both sides or covers at least 2 points on one side).
Further, the same claim implies wef3(B’) < 3. Indeed, color both sides with
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the same 3 colors according to Claim 5, then any rectangle covering at least
3 points covers 2 point on one side, thus covering two differently colored ones
as well. Finally, wef7(B’) = 2 as if we color both sides with the same two
colors according to Theorem 1 (7i), then any rectangle covering at least 7
points covers 4 point on one side, thus covering a red and blue one as well.

Problem 9. Give better bounds for wefy(B',n) and wefy(B',n).

The general case of axis-parallel rectangles (denoted by R) is still far from
being solved, the best bounds are wef (R, n) = Q(7—22 ) ([ChSzPT]) from

(loglogn)?2

below and recently wef(R,n) = O(n3¥+¢) (JAEGRO07]) from above, improv-
ing the previous bound wef(R,n) = O(y/™&le") ([PT03]). So proba-

logn

bly one of the most interesting problems is still to give better bounds for
wef(R,n), i.e. the lowest number of colors needed to color any set of n
points, such that if an axis-parallel rectangle covers at least two of them
then not all of those covered by it have the same color.

For the dual case of coloring axis-parallel rectangles the proof of the up-
per bound cf(R,n) = O(log>n) ([HS05]) can be modified easily to give
the upper bound wef(R,n) = O(logn). There is a matching lower bound
wef(R,n) = Qlogn) [PTa]. This implies the same lower bound for c¢f (R, n),
thus in this case there is still a slight gap between the lower and upper bounds.

The case of discs (denoted by D) in the plane is only partially solved. It is
easy to see that a proper coloring of the Delaunay-triangulation of a point set
gives a weak conflict-free coloring. From the four-color theorem we conclude
that wefy(D) = 4. Further, in [PTTO07] it is shown that wefy (D) > 2 for any
k.

Problem 10. Is it true for some k that wefy(D) = 37 If yes, find the
smallest such k.

Answering the question if wefy(D,n) exists for some k in [Sm06] it is
shown that wefo(D,n) = 4.

Problem 11. Give better bounds for wcfy(D,n) when k > 2.

Acknowledgment. The author is grateful to Gabor Tardos for introducing
this topic and for his many useful comments on this paper.

20



References

[AEGRO7] D. Aswani, K. ELBASSIONI, S. GOVINDARAJAN, S. RAY,
Conflict-Free Coloring for Rectangle Ranges Using O(n%2¢) Colors,
Proceedings of the 19th annual ACM symposium on Parallel algorithms
and architectures (2007), 181-187.

[BJ02] G. BropAL, R. JAcOB, Dynamic planar convex hull, Proc. 43rd
IEEE Symp. on Foundations of Computer Science (2002), 617-626.

[ChSzPT] X. CHEN, J. PACH, M. SZEGEDY, G. TARDOS, Delaunay graphs
of point sets in the plane with respect to axis-parallel rectangles, SODA
'08: Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms (2008), 94-101.

[ELRS03] G. EVEN, Z. LOTKER, D. RON, S. SMORODINSKY, Conflict-
free colorings of simple geometric regions with applications to frequency
assignment in cellular networks, STAM J. Comput. 33(1) (2003), 94—
136.

[HS05] S. HAR-PELED, S. SMORODINSKY, On Conflict-free Coloring of
Points and Simple Regions in the Plane, Discrete & Comput. Geom
(DCG) 34 (2005), 47-70.

[PTa] J. PacH, G. TARDOS, Coloring axis-parallel rectangles, Computa-
tional Geometry and Graph Theory (KyotoCGGT2007) (2007)

[PT03] J. PacH, G. TOTH, Conflict free colorings, Discrete and Compu-
tational Geometry - The Goodman-Pollack Festschrift (S. Basu et al,
eds.), Springer Verlag, Berlin (2003), 665-671.

[PTTO7] J. PacH, G. TARDOS AND G. TOTH, Indecomposable cover-
ings, Discrete Geometry, Combinatorics and Graph Theory, The China—
Japan Joint Conference (CJCDGCGT 2005), Lecture Notes in Com-
puter Science, Springer 4381 (2007), 135-148.

[Sm03] S. SMORODINSKY, Combinatorial Problems in Computational Ge-
ometry, PhD thesis, School of Computer Science, Tel-Aviv University,
Tel-Aviv, Israel (2003)

21



[Sm05] S. SMORODINSKY, Combinatorial Problems in Computational Ge-
ometry, PhD thesis, School of Computer Science, Tel-Aviv University,
Tel Aviv, Israel (2005)

[Sm06] S. SMORODINSKY, On The Chromatic Number of Some Geometric
Hypergraphs, Proc. of 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2006)

22



