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Abstract

We study three problems in combinatorial geometry. The problems investigated

are con�ict-free colorings of point sets in the plane with few colors, polychromatic

colorings of the vertices of rectangular partitions in the plane and in higher dimen-

sions and polygonalizations of point sets with few re�ex points. These problems

are problems of discrete point sets, the proofs are of combinatorial �avour with

computational aspects and give e�cient algorithms. First we give a historical in-

troduction to the topics and place our results in this context. We also investigate

the similarities between the proving methods of the three topics. In the rest of

the Thesis we present the results in all detail including proofs.
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1 Introduction

In this thesis we study several problems in combinatorial geometry. The

problems investigated are con�ict-free colorings of point sets in the plane with

few colors, polychromatic colorings of the vertices of rectangular partitions in

the plane and in higher dimensions and polygonalizations of point sets with few

re�ex points. The connections between these problems might not be obvious at

�rst sight as the historical relation between them is not very strong. Instead,

many similarities between the proving methods can be observed. All problems

are problems of discrete point sets, the proofs are of combinatorial �avour

and are problems in computational geometry with algorithmic proofs. First

we overview the topics and the results appearing in the Thesis. Finally, we give

a more detailed overview of the methods appearing in the proofs.

1.1 Weak con�ict-free colorings

The following problem is the meeting point of two areas of combinatorial geom-

etry. The �rst and older of these two is the problem of decomposability of

multiple coverings (and the closely related problem of multiple packings which

we do not discuss here), the other one is con�ict-free coloring of points and

regions. We start with the introduction of the �rst one. Multiple coverings (and

packings) were introduced independently by Davenport and László Fejes Tóth.

Given a system F of subsets of an underlying set P , we say that they form a

k-fold covering if every point of P belongs to at least k members of F . A family

F of regions in the plane is called cover-decomposable if there exists a positive

integer k = k(F) such that any k-fold covering of the plane with members from

F can be decomposed into two coverings (i.e. into two 1-fold coverings). In an

unpublished manuscript, P. Mani-Levitska and Pach [35] showed that every 33-
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fold covering of the plane with congruent open disks splits into two coverings,

thus the set of the translates of an open disc is cover-decomposable. Pach [37]

also showed that the set of the translates of any open centrally symmetric convex

polygon is cover-decomposable. Tardos and Tóth [47] extended this result to any

open triangle. Recently Pálvölgyi and Tóth [43] extended this result further to

any open convex polygon. Pach et al. [40] proved several negative results, among

others they proved that the set of translates of any concave quadrilateral is not

cover-decomposable.

One important observation is that to prove cover-decomposability, it is enough to

solve a �nite problem, as for open bounded sets it implies the cover-decomposability.

This �nite-cover-decomposability means that having an arbitrary �nite subset of

the given set of regions we need a two-coloring of these regions such that any k-fold

covered point is covered by regions of both colors. For example the set of trans-

lates of an arbitrary open convex polygon is �nite-cover-decomposable as well

[43]. Recently Pálvölgyi [42] showed that the set of translates of any general (ha-

ving no parallel edges) concave polygon is not �nite-cover-decomposabe. He also

characterizes which non-general concave polygons are �nite-cover-decomposable

and which are not thus answering the �nite question for every open polygon.

The other important observation used throughout these proofs is that it is possi-

ble to consider the following dual problem. Distinguish an arbitrary point in S as

a center (if S is centrally symmetric let it be its real center) and then for a given

system S of translates of S, let C(S) denote the set of centers of all members of

S. Clearly, S forms a k-fold covering of the plane if and only if every translate

of −S contains at least k elements of C(S) (where −S denotes the re�ection of

S to its center, thus for centrally symmetric S we have −S = S). I.e. cover-

decomposability is equivalent to the existence of a bipartition (two-coloring) of

these points such that every translate of −S contains at least one element from

both parts (colors).
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The dual of the �nite-cover-decomposability problem is that having a �nite set of

points we need a two-coloring of the points such that any translate of −S covering

at least k of these points covers points of both colors. This �nite dual version can

be phrased for any set of regions, not just for the set of translates, in this case

the two versions are not equivalent (for example for all discs of the plane it does

not hold).

Given a family of regions and a �nite subfamily F of it, following the notation

of Smorodinsky [46] one can de�ne the geometric hypergraph induced by F . The

base set is the set of regions F and for any point p covered by at least k regions

there is a hyperedge rp containing the regions covering p. A proper coloring of

a hypergraph is a coloring of the points such that there are no monochromatic

edges. Clearly, determining whether there is a proper two-coloring for any �nite

subfamily F is equivalent to the �nite-cover-decomposability de�ned above. The

dual problem can be phrased similarly as a hypergraph-coloring problem. Then

it is natural to ask what is the minimal number of colors for which a proper

coloring exists. This is where we arrive to the notion of weak con�ict-free color-

ings but before de�ning it in whole generality we have to talk about the other

area it relates to, the area of con�ict-free colorings, which serves as the main

motivation to investigate these questions.

Motivated by a frequency assignment problem in cellular telephone networks,

Even, Lotker, Ron and Smorodinsky [23] studied the following problem. Cel-

lular networks facilitate communication between �xed base stations and moving

clients. Fixed frequencies are assigned to base-stations to enable links to clients.

Each client continuously scans frequencies in search of a base-station within its

range with good reception. The fundamental problem of frequency assignment in

cellular networks is to assign frequencies to base-stations such that every client

is served by some base-station, i.e. it can communicate with a station such that

the frequency of that station is not assigned to any other station it could also
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communicate with (to avoid interference). Given a �xed set of base-stations we

want to minimize the number of assigned frequencies.

First we assume that the ranges are determined by the clients, i.e. if a base-

station is in the range of some client, then they can communicate. Let P be the

set of base-stations and F the family of all possible ranges of any client. Given

some family F of planar regions and a �nite set of points P we de�ne cf(F , P )

as the smallest number of colors which are enough to color the points of P such

that in every region of F containing at least one point, there is a point whose

color is unique among the points in that region. The maximum over all point sets

of size n is the so called con�ict-free coloring number (cf-coloring in short),

denoted by cf(F , n) (for a summary of the de�nitions of the di�erent versions of

cf -colorings see De�nition 1.1). Determining the cf-coloring number for di�erent

types of regions F is the main aim in this topic. Regions for which the problems

has been studied include discs ([23], [46], etc.) and axis-parallel rectangles ([16],

[41], [7], etc), we give a more detailed overview after introducing the de�nitions

needed.

It is natural to de�ne a dual version for con�ict-free colorings as well. It is natural

to assume that the ranges are determined by the base-stations, i.e. if a client is in

the range of some base-station, then they can communicate. For a �nite family

of planar regions F we de�ne cf(F) as the smallest number of colors which is

enough for coloring the regions of F such that for every point in ∪F there is a

region whose color is unique among the colors of the regions covering it. For a

(not necessarily �nite) family F of planar regions let cf(F , n), the con�ict-free

region-coloring number of F be the maximum of cf(F ′) for F ′ ⊆ F , |F ′| = n.

Smorodinsky [45] and then Har-Peled et al. [27] de�ned generalized versions of

these notions. A cfk-coloring of a point set is a coloring such that for each region

F of F containing at least one point, there is a color which is assigned to at most
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k points covered by F . Note that a cf -coloring is actually a cf1-coloring. The

region-coloring version is de�ned similarly.

De�nition 1.1. Given a family F of planar regions and a �nite set of points P ,

• cfk(F , P ) = min c: ∃ c-coloring f of P s.t. ∀F ∈ F ∃x s.t. 1 ≤ |{p : p ∈

F, f(p) = x}| ≤ k

• cfk(F , n) = max|P |=n cfk(F , P ); cf(F , n) = cf1(F , n)

• if F is �nite, cfk(F) = min c: ∃ c-coloring f of F s.t. ∀p ∈ ∪F ∃x s.t.

1 ≤ |{F, p ∈ F, f(F ) = x}| ≤ k

• cfk(F , n) = max|F ′|=n,F ′⊂F cfk(F ′); cf(F , n) = cf1(F , n)

Now we arrived to the point where we can introduce the notion of weak

con�ict-free colorings. For a summary of the forthcoming de�nitions of the

di�erent versions of wcf -colorings see De�nition 1.5. Modifying the de�nition

of a con�ict-free coloring, wcf(F , P ) equals to the minimum number of colors

needed to color the points of P such that whenever a region covers at least 2

points of P , it covers 2 of di�erent colors (the region is not monochromatic).

The maximum over all n element point set of size n is the weak con�ict-free

coloring number (wcf-coloring in short), denoted by wcf(F , n).

Observation 1.2. cf(F , n) ≥ wcf(F , n).

Generalizing our de�nition we can de�ne wcfk(F , P ) as the minimum number

of colors needed to color the points of P such that whenever a region covers at

least k points of P , then it covers 2 points of di�erent colors. The maximum

of this value over all point sets of size n is denoted by wcfk(F , n). Note that

wcf(F , n) = wcf2(F , n).

Observation 1.3. wcfk(F , n) ≤ wcfl(F , n) if k ≥ l.

Even et al. [23] presented a general algorithmic framework on con�ict-free col-

orings, re�ned version of this approach appeared in [27] (and later in [46]) where
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they summarized it in a lemma showing essentially that the weak con�ict-free col-

oring number gives a good upper bound to the con�ict-free coloring number (they

do not use the notation wcf -coloring and they deal only with the case k = 2).

The algorithm giving a con�ict-free coloring from weak con�ict-free colorings is

the following. In each step take a biggest color class in a weak con�ict-free col-

oring of the point set. After coloring it to a new color, delete it and do the same

for the new (smaller) point set. This framework also works for k > 2 as it is

easy to see that taking in each step a color class of a wcfk-coloring we get a

cfk−1-coloring. The generalized version of the lemma stated in [27] is as follows.

Lemma 1.4. For any �xed k ≥ 2

(i) if wcfk(F , n) ≤ c for some constant c, then cfk−1(F , n) ≤ log n
log(c/(c−1)) =

O(log n),

(ii) if wcfk(F , n) = O(nε) for some ε > 0, then cfk−1(F , n) = O(nε).

Observation 1.2 and Lemma 1.4 show that wcf and cf are usually close to

each other. Often the best known bound for cf is obtained from Lemma 1.4. This

is the main motivation why we want to determine the weak con�ict-free coloring

number for di�erent types of regions. As this lemma gives bound for cfk−1 using

wcfk, it motivates the investigation of wcfk-colorings for k > 2.

Again we can de�ne the dual version. For a �nite F , wcf(F) equals to the smallest

number of colors which are enough to assign colors to the regions in F such that

for every point covered by at least 2 regions in F , there are two di�erently colored

regions among the regions covering it (the point is not monochromatic). For a not

necessarily �nite F the maximum of this value over all n element subfamilies of

F is the weak con�ict-free region-coloring number, denoted by wcf(F , n).

Finally, we can again de�ne wcfk(F , n) by restricting the condition only for points

covered by at least k regions in F . The dual version of Lemma 1.4 holds as well.

Let us recall the geometric hypergraph de�ned earlier. Given a �nite family of
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regions F , the base set of the hypergraph is the family of regions F and for

any point p covered by at least k regions there is a hyperedge rp containing the

regions covering p. We were interested in determining its chromatic number,

which is clearly equivalent to determining wcfk(F). Further, the existence of a

k for which wcfk(F) = 2 is equivalent to the statement that F is �nite-cover-

decomposable. Indeed, a good weak con�ict-free region-coloring of F gives a good

partition and vice versa. In the dual version such equivalence holds as well.

For most regions we study, the weak con�ict-free coloring number can always

be bounded from above by a constant not depending on n. Thus, for in�nite F we

de�ne wcfk(F) = maxn wcfk(F , n) and similarly wcfk(F) = maxn wcfk(F , n)

if they exist. Our main aim is to determine these numbers and give coloring

algorithms using this minimal number of colors. Before doing so, let us collect

here the de�nitions of the di�erent versions of wcf -colorings.

De�nition 1.5. Given a family F of planar regions and a �nite set of points P ,

• wcfk(F , P ) = min c: ∃ c-coloring f of P s.t. ∀F ∈ F if |{p : p ∈ F}| ≥ k

then ∃p, q ∈ P, p 6= q : p, q ∈ F and f(p) 6= f(q)

• wcfk(F , n) = max|P |=n wcfk(F , P ); wcf(F , n) = wcf2(F , n)

• if F is in�nite, wcfk(F) = maxn wcfk(F , n), if it exists

• if F is �nite, wcfk(F) = min c: ∃ c-coloring f of F s.t. ∀p ∈ ∪F if

|{F : p ∈ F}| ≥ k then ∃F,G ∈ F , F 6= G : p ∈ F,G and f(F ) 6= f(G)

• wcfk(F , n) = max|F ′|=n,F ′⊂F wcfk(F ′); wcf(F , n) = wcf2(F , n)

• if F is in�nite, wcfk(F) = maxn wcfk(F , n), if it exists

Slightly modifying the notation of [27] we call a family of regions F monotone

if for any �nite P, F ∈ F and l positive integer if F covers at least l points of F

then there exists F ′ ∈ F covering exactly l points of P , all covered by F as well.

7



Observation 1.6. For monotone families of regions in the de�nition of wcf-

coloring it is enough to restrict our condition to regions covering exactly 2 points

of the point set. Similarly, for the de�nition of wcfk it is enough to restrict the

condition to regions covering exactly k points.

Note that monotonicity could be de�ned in the dual version as well, but none

of the types of regions we study are monotone in that dual sense.

Let us now summarize the results known about axis-parallel rectangles and discs

(the two most widely examined region types) and pose open problems regarding

the unsolved cases. The general case of axis-parallel rectangles (denoted by R) is

still far from being solved, the best bounds are wcf(R, n) = Ω( log n
(log log n)2

) by Chen

et al. [16] from below and recently by Ajwani et al. [7] wcf(R, n) = Õ(n.382+ε)

from above, improving the previous bound wcf(R, n) = O(
√

n log log n
log n ) by Pach

et al. [41]. So probably one of the most interesting problems is still to give better

bounds for wcf(R, n), i.e. the lowest number of colors needed to color any set of

n points, such that if an axis-parallel rectangle covers at least two of them then

not all of those covered by it have the same color.

For the dual case of coloring axis-parallel rectangles the proof of the upper bound

cf(R, n) = O(log2 n) ([27]) can be modi�ed easily to give the upper bound

wcf(R, n) = O(log n). There is a matching lower bound wcf(R, n) = Ω(log n)

by Pach et al. [39]. This implies the same lower bound for cf(R, n), thus in this

case there is still a slight gap between the lower and upper bounds.

The case of discs (denoted by D) in the plane is only partially solved. It is

easy to see that a proper coloring of the Delaunay-triangulation of a point set

gives a weak con�ict-free coloring. From the four-color theorem we conclude that

wcf2(D) = 4. Further, Pach et al. [40] showed that wcfk(D) > 2 for any k.

Problem 1.7. Is it true for some k that wcfk(D) = 3? If yes, �nd the smallest

such k.

Answering the question if wcfk(D) exists for some k Smorodinsky [46] showed
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k 2 3 ≥4

wcfk(B) 3 3 2

wcfk(B) 3 2 2

wcfk(H) 4 2 2

wcfk(H) 3 2 or 3 2

Table 1: table of results about B and H

that wcf2(D) = 4.

Problem 1.8. Give better bounds for wcfk(D) when k > 2.

Now we can summarize the new results presented in Chapter 2. In Section

2.1 we solve all cases for bottomless rectangles, a special case of axis-parallel

rectangles. A bottomless rectangle is the set of points (x, y) such that a <

x < b, y < c for some a, b and c. The set of all bottomless rectangles is denoted

by B. For our coloring purposes the family of bottomless rectangles is equivalent

with the family of (ordinary) axis-parallel rectangles having their lower edge on

a common horizontal base-line. At the end of the section we deduce results for

another very similar special case, the set of rectangles intersecting a common base-

line. In Section 2.2 we prove theorems which give an almost complete answer

for half-planes (the set of all half-planes is denoted by H). The only case not

completely solved is to determine wcf3(H). In Table 1 we summarize these

results, the bold ones are proved in Chapter 2, others come from monotonicity

except for wcf2(B) = 3 which is folklore.

1.2 Re�exivity of point sets in the plane

In the following problem again we need to �nd some optimal structure for a given

set of points. Here instead of a coloring we have to �nd a polygonalization of the

points. Given a set S of n ≥ 3 points in the plane, a polygonalization of S is a
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simple polygon P whose vertices are the points of S. We always assume that the

points are in general position, that is, no three of them are collinear. A vertex of

a simple polygon is re�ex if the (interior) angle of the polygon at that vertex is

greater than π. We denote by ρ(P ) the number of re�ex vertices of a polygon P .

The re�exivity of a set of points S, ρ(S), is the smallest number of re�ex vertices

any polygonalization of S must have. Further, we denote by ρ(n) the maximum

value ρ(S), such that S is a set of n points.

The notion of re�exivity was suggested by Arkin et al. [9] as a measure for

the �goodness� of a polygonalization of a set of points. According to their mo-

tivation, the re�exivity quanti�es, in a combinatorial sense, the degree to which

the set of points is in convex position. There are several other such functions,

e.g., the minimum number of points to delete from S such that the remaining

point set is in convex position or the number of convex layers. There are several

applications in computational geometry in which the number of re�ex vertices of

a polygon can play an important role in the complexity of algorithms. If one or

more polygons are given to us, there are many problems for which more e�cient

algorithms can be written with complexity depending on the number of re�ex

vertices, instead of the total number of vertices. The number of re�ex vertices

also plays an important role in convex decomposition problems for polygons (see

for example Keil [34] for a recent survey).

From a slightly di�erent point of view, re�exivity has strong connections with

the convex cover number κc(S), the minimal number of convex set of points

(convex chains) covering the whole point set S. These kind of questions can be

originated from the classical problems of Erd®s and Szekeres ([21], [22]). They

studied convex chains in �nite planar point sets and showed that any point set

of size n has a convex subset of size Ω(logn). This is closely related to the

convex cover number κc, since it implies an asymptotically tight bound on the

worst-case value of κc for sets of size n (denoted by κc(n)) as Urabe ([48],[49])
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(b)(a)

Figure 1: (a) con�guration of points S0(n) having re�exivity ρ(S0(n)) =

n/4 and (b) a polygonalization of S0 with n/4 re�ex vertices

showed that κc(n) = Θ(n/ log n). There are still a number of open problems

regarding the exact relationship between the size of the biggest convex chain

and n (see for example [38] for recent developments). Another variant of this

measure is the convex partition number κp, the minimal number of convex set

of points covering the whole point set S such that their convex hull are pair-

wise disjoint. Urabe ([48],[49]) and Urabe and Hosono [31] has shown that

d(n− 1)/4e ≤ κp(n) ≤ d5n/8e. Clearly, κc ≤ κp. The ratio κp(S)/κc(S) for

a set S may be as large as Θ(n). By an observation of Chazelle [15] one can

partition an optimal polygonalization to ρ(S) + 1 convex parts by adding ρ(S)

segments, bisecting each re�ex angle. This gives also a good partition of the point

set, proving κp ≤ ρ(n) + 1. Arkin et al. believe that the ratio between these two

notions cannot be big, i.e. they conjectured that ρ(S) = O(κp(S)). They could

not prove this, and the worst example they found has re�exivity twice as big as

κc.

Taking into account that the points on the convex hull of S are always con-

vex points of any polygonalization, it is natural to regard ρ(S) with respect to

nI , the points of S which are interior to the convex hull CH (S). Arkin et al.

proved that ρ(S) ≤ dnI/2e and that this bound is tight. The example S0(n)
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(see Figure 1) having n ≥ 6 points and showing tightness has nI = bn/2c,

thus implying ρ(S0(n)) ≥ dnI/2e ≥ bn/4c. As nI ≤ n these bounds imply

bn/4c ≤ ρ(n) ≤ dn/2e. Arkin et al. conjectured that the lower bound is tight �

see also Conjecture 7 in Chapter 8.5 of [12]. The case n = 6 already shows that

the lower bound is not tight but with ceiling instead of �oor it may be still a

tight bound. Settling this conjecture is one of the open problems listed in The

Open Problems Project [17]. We refer to [9] and [12] for further discussions on

the notion of re�exivity, its applications, and related problems.

Table 2 lists ρ(n) for n ≤ 10. These values were veri�ed using a computer [5,

9].

n 3 4 5 6 7 8 9 10

ρ(n) 0 1 1 2 2 2 3 3

Table 2: ρ(n) for n ≤ 10

The main result of Chapter 3 is the following improvement for the upper

bound of ρ(n).

Theorem 1.9. ρ(n) ≤ 3bn−2
7 c+ 2.

The result is obtained by considering a slightly modi�ed version of re�exivity,

namely to force a given convex hull edge to be part of the polygonalization. The

main ingredient of the proof is an iterative subdivision of the point set, together

with a good polygonalization of sets of constant size.

Utilizing a computer-aided abstract order type extension [6] the upper bound

is further improved to

Theorem 1.10. ρ(n) ≤ 5bn−2
12 c+ 4.

At the end of Chapter 3 we consider the setting when Steiner points are

allowed. Following the notation of [9], a Steiner point is a point q /∈ S that may
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be added to S in order to improve some structure. Moreover, we pose several

questions regarding the relation between the re�exivity and the above mentioned

modi�ed re�exivity of a point set. The results about re�exivity are joint work

with Eyal Ackerman and Oswin Aichholzer.

1.3 Polychromatic colorings of rectangular partitions

In the following set of problems we have a plane graph on a set of points and just

like in the case of weak con�ict-free colorings, we want a coloring of the points

satisfying some properties.

De�nition 1.11. A k-coloring of the vertices of a plane graph is polychromatic

(or face-respecting) if on all its faces all k colors appear at least once (with the

possible exception of the outer face).

De�nition 1.12. The polychromatic number of a plane graph G is the maximum

number k such that G admits a polychromatic k-coloring, we denote this number

by χf (G).

This problem is closely related to the vertex-guard problem, where we want

to place a set of guards in the points such that every face has one on its boundary

(i.e. a vertex-guard guards all faces incident to it and we want to guard all

faces). Indeed, any color class of a polychromatic coloring guards all faces. We

de�ne the length of a face as the number of vertices on its boundary. Alon et

al. [8] showed that if g is the length of a shortest face of a plane graph G,

then χf (G) ≥ b(3g − 5)/4c (clearly χf (G) ≤ g), and showed that this bound

is su�ciently tight. Mohar et al. [36] proved using the four-color theorem that

every simple plane graph admits a polychromatic 2-coloring, later Bose et al.

[11] proved that without using the four-color theorem. Horev et al. [30] proved

that every plane graph of maximum degree at most 3, other than K4 admits a

polychromatic 3-coloring. Horev et al. [28] proved that every 2-connected three-
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(a) (b)

Figure 2: (a) polychromatic 4-coloring and (b) strong rectangle-respecting

4-coloring of a guillotine partition

regular bipartite plane graph admits a polychromatic 4-coloring. This result is

tight, since any such graph must contain a face of size four.

Getting closer to the problems investigated in Chapter 4, we de�ne a rectangular

partition as a partition of an axis-parallel rectangle into an arbitrary number

of non-overlapping axis-parallel rectangles, such that no four rectangles meet

at a common point. One may view a rectangular partition as a plane graph

whose vertices are the corners of the rectangles and edges are the line segments

connecting these corners. Dinitz et al. [20] proved that every rectangular partition

admits a polychromatic 3-coloring.

A guillotine-partition is obtained by recursively cutting a rectangle into two

subrectangles by either a vertical or a horizontal line (for an illustration see Figure

3. For this subclass of rectangular partitions Horev et al. [29] proved that they

admit a polychromatic 4-coloring.

(b)(a)

Figure 3: (a) a non-guillotine and (b) a guillotine partition
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Actually, they prove a stronger statement. We de�ne a strong rectangle-

respecting k-coloring (k ≤ 4) of a rectangular partition R as a vertex coloring

of R with k colors such that every rectangle of R has all k colors among the four

corners de�ning it. A strong rectangle-respecting 4-coloring is clearly a poly-

chromatic 4-coloring as well. For examples see Figure 2. They proved that such

coloring exists for any guillotine-partition. With Eyal Ackerman [1] we observed

that a conjecture of Seymour about planar graphs implies that any rectangular

partition admits a strong rectangle-respecting 4-coloring. Independently, Dim-

itrov et al. [18] made the same observation and also noticed that Guenin [26]

proved the conjecture of Seymour. In Chapter 4 �rst we show how Seymour's

conjecture (i.e. Guenin's theorem) implies the existence of a strong rectangle-

respecting 4-coloring for every rectangular partition.

All the above mentioned results are restricted to partitions where no more

than 2 rectangles meet at a common corner. We will say that a partition is a

general rectangular partition if more than 2 rectangles are allowed to meet at a

common corner. In the second part of Chapter 4 we solve several problems about

general rectangular partitions.

Before continuing, let us generalize these colorings to more then 4 colors to have

a more general overview of the set of remaining problems.

De�nition 1.13. A weak (resp. strong) rectangle-respecting k-coloring of a

rectangular partition is a k-coloring of the vertices of the partition such that every

rectangle has at least min(k, 4) di�erent colors on its boundary (resp. on its

corners).

We remark that the de�nition of a weak rectangle-respecting k-coloring and

of a polychromatic coloring is the same for k ≤ 4. Note that a strong rectangle-

respecting coloring is necessarily also a weak rectangle-respecting coloring as the

boundary of a rectangle includes its four corners. For k ≥ 4, it is clear that the
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k ≤2 3 4 5 ≥6

weak yes yes not always yes yes

strong yes not known not always not known yes

Table 3: the existence of rectangle-respecting k-colorings for general parti-

tions

existence of a weak (resp. strong) rectangle-respecting k-coloring implies the ex-

istence of a weak (resp. strong) rectangle-respecting (k + 1)-coloring (just ignore

additional colors). Furthermore, for k ≤ 4 the existence of a weak (resp. strong)

rectangle-respecting k-coloring implies the existence of a weak (resp. strong)

rectangle-respecting (k − 1)-coloring (just merge two colors). Thus, we should

focus our attention on �nding weak and strong rectangle-respecting k-colorings

for k as close to 4 as possible.

In [18] Dimitrov et al. present a simple example showing that not all general

rectangular partitions have a strong rectangle-respecting 4-coloring and they ask

if every general partition has a polychromatic 4-coloring. We answer this question

in the negative.

Theorem 1.14. There exists a general partition with no weak rectangle-respecting

4-coloring (i.e. a polychromatic 4-coloring).

Our construction is also a guillotine-partition. Furthermore, a simple char-

acterization of polychromatic 4-colorability is unlikely according to the following

theorem, which we mention without proof as it is rather technical. It can be

found in [24].

Theorem 1.15. Deciding whether a general partition admits a polychromatic

4-coloring is NP-complete.

By Theorem 1.14 we know that not every general partition admits a weak

rectangle-respecting 4-coloring. We show that such a coloring with 3 colors always
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exists. Note that the result of Dinitz et al. [20] follows. We also show that such a

coloring with 5 colors exists thus giving a complete answer in the weak rectangle-

respecting coloring case.

Proposition 1.16. Every general partition admits a weak rectangle-respecting

3-coloring (i.e. a polychromatic 3-coloring).

Proposition 1.17. Every general partition admits a weak rectangle-respecting

5-coloring.

Now let us turn our attention to the remaining questions for strong rectangle-

respecting k-colorings. We show the existence of strong rectangle-respecting 2-

and 6-colorings.

Proposition 1.18. Every general partition admits a strong rectangle-respecting

2-coloring.

Proposition 1.19. Every general partition admits a strong rectangle-respecting

6-coloring.

Note that simple coloring algorithms will follow from the proofs of the above

propositions. These results are collected in Table 3. The existence of strong

rectangle-respecting 3- and 5-colorings for every partition remains unknown.

Problem 1.20. Does every general partition admit a

1. strong rectangle-respecting 3-coloring?

2. strong rectangle-respecting 5-coloring?

The last (and main) result of Chapter 4 is a generalization of the result

for guillotine-partitions for n dimensions. An n-dimensional hyperbox is an n-

dimensional axis-parallel hyperbox. For us a partition of an n-dimensional hy-

percube or hyperbox is a partition to hyperboxes such that each corner vertex
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is a corner of 2 hyperboxes, except the corners of the original hypercube. Note

that this de�nition di�ers again a bit from the natural de�nition (i.e. it is not a

general partition), where we would allow a vertex to be the corner of more than

2 hyperboxes. This is needed, as using the more natural de�nition even in the

plane there are simple counterexamples for our main theorem. The hyperboxes

of the partition are called the basic hyperboxes. A guillotine-partition is obtained

by starting with a partition containing only one basic hyperbox and recursively

cutting a basic hyperbox into two hyperboxes by a hyperplane orthogonal to one

of the n axes. The structure of such partitions is widely investigated, used in

the area of integrated circuit layouts and other areas. Guillotine-partitions are

also the underlying structure of orthogonal binary space partitions (BSPs) which

are widely used in computer graphics. In [2] Ackerman et al. determine the

asymptotic number of structurally di�erent guillotine-partitions. We refer to the

introduction of the same paper for more on this topic.

A strong hyperbox-respecting k-coloring of a partition is a coloring of the corners

of its basic hyperboxes with k colors such that any basic hyperbox has all the

colors appearing on its corners. Note that a corner belongs to two basic hyper-

boxes except the 2n corners of the partitioned big hyperbox, which belong to

only one basic hyperbox. The natural extension to n dimensions of a polychro-

matic k-coloring would be a coloring of the corners of its basic hyperboxes with

k colors such that any basic hyperbox has all the colors appearing on its bound-

ary. Clearly, every strong hyperbox-respecting k-coloring has this property. For

simplicity we de�ne a strong hyperbox-respecting coloring as a strong hyperbox-

respecting 2n-coloring. Note that 2n is the maximum number of colors for which

such colorings may exist for every n-dimensional partition.

Theorem 1.21. There is a strong hyperbox-respecting coloring of any n-dimen-

sional guillotine-partition.
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We note that all results of the Thesis except the one about polychromatic 4-

colorings of partitions give e�cient algorithms as well. Finally, we would like to

summarize the methods which were used in the proofs of the problems discussed

and emphasize the strong connections between them.

First, in several problems discussed, the horizontal and vertical order of the points

(and regions) served as the important combinatorial structure. Such were the

weak con�ict-free colorings of bottomless rectangles and points wrt. bottomless

rectangles. Here, another important tool we used was that when we wanted to

�nd a coloring with some properties, we rather gave a coloring satisfying some

additional properties (for details see Chapter 2). Using this stronger assumption

we were able to color inductively. The same idea appears in a di�erent setting

when searching for good polygonalizations of a set of points. Here, we searched

for a polygonalization having the additional property that it contains a �xed edge

on the convex hull of the points. This stronger assumption again made possible to

prove inductively. Whereas the stronger requirement in the �rst case can always

be met when the original requirement can, in the second case the relation be-

tween the stronger assumption and the original problem is not clear and various

conjectures phrasing this lack of understanding where stated at the end of Chap-

ter 3. Back to orderings, in Chapter 4 when dealing with general partitions we

gave algorithms considering the vertices in the lexicographical ordering. Further,

to give a strong hyperbox-respecting coloring for an n-dimensional partition we

used the natural order of the guillotine-cuts to give again a recursive proof which

implied an e�cient algorithm as well.

In the same chapter when dealing with 2-dimensional partitions, instead of un-

derstanding the structure of the partitions, we reduced the problem to another

problem dealing with graphs. This idea of �dualizing� the problem to a much

more investigated and understood topic of combinatorics (in this case the theory

of planar graphs) is a standard method and saved us a lot of energy (a similar ap-
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proach led to the investigation of coloring of point sets from covering problems).

Still, it would be desirable to understand whether the deep theorem of Guenin

(implying the four-color theorem) which we used is necessary or the problem has

a simpler (probably straightforward) proof.

The second general tool we used many times was the understanding of the (ge-

ometric and combinatorial) structure of a convex hull of a set of points. This

was crucial when giving weak con�ict-free colorings of half-planes and points wrt.

half-planes. Further, when building the polygonalization in Chapter 3 the convex

hull had a central role as well. Giving e�cient algorithms for these problems

depended mainly on the ability to build dynamically a convex hull e�ciently.

The third important tool, introduced in Chapter 3 was a partition of the set of

points which has some nice separating properties as well, making it possible to

give results for arbitrary point sets by solving the problem just for small set of

points (by case analysis and then with computer aid). This partition is an in-

teresting technique (discovered independently by others (see [25], [14], [10]) with

applications to straight-line drawings of outerplanar graphs), which is not widely

known and may be useful to solve di�erent problems as well where such argu-

ments can be helpful.

The results of Chapter 2 about weak con�ict-free colorings appeared in [32]

without proofs and the paper was invited to the CCCG 2007 conference issue

of CGTA. The results of Chapter 3 about the re�exivity of point sets are joint

work with Eyal Ackerman and Oswin Aichholzer and appeared in [3] and will

be soon published in CGTA. The results in Chapter 4 about general rectangular

partitions are joint work with Dániel Gerbner, Nathan Lemons, Cory Palmer,

Balázs Patkós and Dömötör Pálvölgyi and can be found in [24]. The main result

of Chapter 4 about n-dimensional polychromatic colorings appeared in [33].
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2 Weak con�ict-free colorings

2.1 Bottomless rectangles

Recall that B is the family of all bottomless rectangles. We prove exact bounds

for wcfk(B) and wcfk(B) for all k.

2.1.1 Coloring points

From now on we assume that there are no two points with the same x- or y-

coordinate. It is easy to show that if this is not the case, then coloring the point

set after a small perturbation gives a needed coloring for the original point set

as well. In this section upwards order means the ordering of points according to

their y-coordinate starting with the point having the smallest y-coordinate (the

lowest point).

The proof of the following, rather trivial result is just presented for the sake

of completeness.

Claim 2.1. (folklore) wcf2(B) = 3 i.e. any set of points can be colored with

3 colors such that any bottomless rectangle covering at least 2 of them is not

monochromatic.

Proof. First we prove that wcf2(B) ≤ 3. We want to color the points with 3

colors such that any bottomless rectangle covering at least 2 points covers two

di�erently colored points.

First we color the lowest point of P arbitrarily with one of the three colors then

we color the points one by one in upwards order. In each step we color the next

point p with a color maintaining that in the x-coordinate order of the points

already colored there are no two consecutive points with the same color.

In this way any bottomless rectangle B covering at least two points covers two

di�erently colored ones. Indeed, when the highest point p in P ∩B is considered,
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B ∩ P is an interval in the left to right order of the points considered so far. By

the property maintained any such interval contains points of at least two colors.

The lower bound wcf2(B) ≥ 3 follows from the fact that for example the points

with coordinates (0,0), (1,1) and (2,0) cannot be colored with 2 colors in a proper

way, since any two of them can be cut o� by a bottomless rectangle.

The following theorem shows that the smallest k for which wcfk(B) = 2 is 4

and so wcfk(B) is determined for every k as trivially wcfk(B) ≥ 2 for any k.

Theorem 2.1.

(i) wcf3(B) = 3.

(ii) wcf4(B) = 2 i.e. any set of points can be colored with 2 colors such that any

bottomless rectangle covering at least 4 of them is not monochromatic.

(iii) Such colorings can be found in O(n log n) time.

Proof. (i) Using Observation 1.3 with Claim 2.1 we got that wcf3(B) ≤ wcf2(B) =

3. Thus, it is enough to prove that wcf3(B) > 2. For that we show that the

12 point construction on Figure 4(a) cannot be colored with 2 colors such that

any bottomless rectangle covering at least 3 points covers two di�erently colored

points. Suppose on the contrary that there is such a coloring. Denote the points

ordered by their x-coordinate from left to right by p1, p2, . . . , p12. Among the

points p4, p5, p6 there are two with the same color, wlog. assume that this color

is red. If p4 and p5 are red, then all of p1, p2, p3 are blue as there is a bottomless

rectangle covering only p4, p5 and any one of these 3 points. This is a contradic-

tion as there is a bottomless rectangle covering only these 3 points, all blue. If

p4 and p6 are red then similar argument for the points p10, p11, p12, if p5 and p6

are red then similar argument for the points p7, p8, p9 yields to a contradiction.

(ii) We want to color the points red and blue such that any bottomless rect-

angle covering at least 4 points covers two di�erently colored points.

First we color the lowest point of P red then we consider the points in upwards
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(a) Theorem 2.1(i) (b) Theorem 2.2(i)

Figure 4: Lower bound constructions for bottomless rectangles

order. We do not color every vertex as soon as it is considered. We maintain

that in the x-coordinate order of the points considered so far there are no two

consecutive uncolored points and the colored points alternate in color. When a

new point is considered we keep it uncolored unless it has an uncolored left or

right neighbor (note that it cannot have both) in the x-coordinate order. In that

case we color the new point and its uncolored neighbor in a way that keeps the

alternation. At the end we arbitrarily color the remaining points in P . Now we

only need to prove that this coloring is good. Consider a bottomless rectangle B

covering at least 4 points. Let p be the highest point covered by B. When p is

considered B∩P is an interval in the left to right order of the points considered so

far. By the properties maintained any such interval of at least 4 vertices contains

both red and blue points as needed.

(iii) We need to prove that the algorithms presented in the proof of Claim 2.1

and Theorem 2.1 (ii) run in time O(n log n). Computing the upwards order of the

points takes O(n log n) time, the rest of the algorithm has n steps in both cases,

each computable in O(log n) time, in the latter algorithm there is a �nal coloring

step that takes at most linear time, so the whole algorithm runs in O(n log n)

time in both case.
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2.1.2 Coloring bottomless rectangles

In [46] a very similar version is considered, namely, weak con�ict-free coloring of

axis-parallel rectangles intersecting a common base-line. The proof of their result

with a slight modi�cation gives wcf2(B) ≤ 4. The following theorem determines

wcfk(B) for every k, also improving this bound to 3 colors, which is optimal.

From now on we assume that there are no two bottomless rectangles with

overlapping sides. It is easy to show that if this is not the case, then coloring the

rectangles after perturbing them such that afterwards there are no overlappings,

gives a needed coloring for the original family of rectangles as well.

Theorem 2.2.

(i) wcf2(B) = 3 i.e. any family of bottomless rectangles can be colored with 3

colors such that any point covered by at least 2 of them is not monochromatic.

(ii) wcf3(B) = 2 i.e. any family of bottomless rectangles can be colored with 2

colors such that any point covered by at least 3 of them is not monochromatic.

(iii) Such colorings can be found in O(n2) time.

Proof. (i) For the lower bound, the arrangement of 3 rectangles on Figure 4(b)

shows that 3 colors are sometimes needed. For the upper bound, given a fam-

ily of rectangles with a common base line we want to color the rectangles red,

blue and green such that any point covered by at least 2 rectangles is covered by

two di�erently colored rectangles. We color the rectangles in downwards order

according to their top edge's y-coordinate. We start with the empty family and

reinsert the rectangles in this order. We color the �rst, i.e. the highest rectangle

blue. After each step we have a proper coloring and we preserve the following

additional assumption. If a point on the base-line is covered by exactly 1 rectan-

gle, then it is not red.

In each step we insert the next rectangle B in downwards order, so its top edge

is below the top edge of all the rectangles already inserted. We color B red. We
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q

1. blue-green2. red-green

blue interval

B

base-lines

Figure 5: The color switches of the `divide and color' method in Theorem

2.2(i).

claim that this is again a proper coloring. Indeed, the condition for points not in

B already holds. For any point covered by B the base-line point with the same

x-coordinate is covered by the same rectangles as B is the lowest rectangle. Thus,

it is enough to check the condition for base-line points in B. If a point is covered

by at least 2 rectangles besides B then it is good by induction. Otherwise it is

covered by B, which is red and exactly one more rectangle, which is not red by

the assumption.

If there is no base-line point covered by only B, then the additional assumption

holds too. If q is such a point then we need to do something else to maintain

the validity of our assumption. If a base-line point is covered by only 1 rectangle

then we say that the color of this point is the color of the rectangle covering it. It

is easy to see that if there is such a point p and we switch the other two colors on

the rectangles completely to the left (or to the right) to p, the coloring remains

good. With only such `divide and color' steps we will change the coloring such

that there will be no point on the base-line covered by exactly 1 green rectangle.

Finally we will switch the colors green and red on all the rectangles to have a

good coloring satisfying the assumption. For an illustration of the rest of the

proof see Figure 5.

In the current coloring all green base-line points are left or right to B as B is red.
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Figure 6: The division of the `divide and color' method in Theorem 2.2(ii).

We will deal with the left side �rst, changing the colors only of rectangles strictly

left from q and making a good coloring satisfying the condition for any base-line

point left to q. On the right side we proceed analogously, changing the colors

only of rectangles strictly right from q and making a good coloring satisfying the

condition for any base-line point right to q. This way we get a good coloring

satisfying the assumption for all base-line points.

On the base-line to the left of B there are some intervals of single colored points,

all of them green or blue. If there is no green one then we are done. Otherwise,

we can suppose that the closest such interval to B is blue, otherwise switch colors

blue and green on the rectangles strictly left from q, still having a good coloring.

Now switch colors red and green on the rectangles strictly left from any point s of

this blue interval, this way we got rid of all green points, making the assumption

true for all points left to B. This concludes the proof.

(ii) Given a family of rectangles with a common base line we want to color

them red and blue such that any point covered by at least 3 rectangles is covered

by two di�erently colored rectangles. Moreover, the coloring we got will always

satisfy the following additional assumption. Any point on the base-line covered

by exactly 2 rectangles is covered by a red and a blue rectangle.

Now we need a di�erent version of the `divide and color' method. We will proceed

by induction on the number of rectangles. A single rectangle is colored red. In a

general step �rst assume that there is a point q on the base-line not covered by

any rectangle and there are some rectangles strictly left and strictly right from
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that point too. Color the rectangles to the left of q and the ones to the right of

q separately by induction, putting these together this is clearly a good coloring.

Now assume that there is a point q on the base-line covered by exactly 1 rectangle

B and there are some rectangles strictly left and strictly right from that point

too. Color �rst the rectangles to the left of q together with B then the rectangles

to the right together with B. As there were some rectangles on both sides, this

can be done by induction. By a possible switching of the colors in the left and

right parts, B is red in both colorings. Putting together the two half-colorings

we get a good coloring.

The next case is when we have a point q on the base-line covered by exactly

two rectangles, B1 and B2 (see Figure 6 for an illustration)and there is at least

one rectangle both to the right and to the left of q. In this case color �rst by

induction the rectangles strictly left from q together with these two rectangles.

Using the assumption on q we see that B1 and B2 have di�erent colors, after a

possible switch of the two colors we can assume that B1 is red and B2 is blue.

The same way we color the rectangles strictly right from q together with these

two rectangles. This way the two rectangles are colored with the same colors in

both colorings and so we can put together these two half-colorings (if none of

them is empty) to have a coloring of the whole family of rectangles. This coloring

is good by induction.

In the remaining case for any base-line point covered by exactly 1 or 2 rectangles,

there is no rectangle strictly to the left or to the right to that point. The left

and right sides of the rectangles divide the base-line into 2 half-lines and 2n− 1

intervals. It is easy to see that in this case the only base-line points covered by

exactly 1 rectangle are the points of the leftmost L1 and rightmost R1 interval

and the 2-covered points are the points of the second leftmost L2 and second

rightmost R2 interval. Consider rectangle B, the one with the lowest top edge.

It is easy to see that if it does not cover 1- or 2-covered base-line points then we
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can color the rest of the rectangles by induction and then color B with arbitrary

color not ruining the coloring and the additional assumption. Otherwise B covers

some intervals from L1, L2, R1, R2.

If it covers some of L1 and L2 and does not cover R1 and R2 then color the

rest of the rectangles by induction and then color B to a di�erent color from the

other rectangle covering L2, this way we obtain a good coloring satisfying our

additional assumption. If it covers some of R1 and R2 and does not cover L1 and

L2 then a symmetrical argument gives a good coloring.

It remains to deal with the case when B covers L2 and R2 as well. Consider now

the rectangle B2 with the second lowest top edge. First assume that B2 does not

cover any of L1, L2, R1, R2. In this case color the rest of the rectangles (including

B) by induction and then color B2 with the same color as B. We claim that this

coloring is good. Any point ruining the condition must be in B2. Assume on the

contrary that there is a point p covered by at least 3 rectangles all having the

same color.

If p is covered by 3 rectangles besides B2 then by induction there are di�erently

colored rectangles among these, a contradiction.

If p is covered by exactly 2 rectangles besides B2 then take the base-line point p′

having the same x-coordinate. If it is covered by the same rectangles as p, then

by the additional assumption it is covered by two di�erently colored rectangles

besides B2. This holds for p as well, a contradiction. If p′ is not covered by the

same rectangles as p, the only possibility is that it is covered by B too (as only B

is lower then B2). By induction this point was covered by red and blue rectangles

as well without considering B2. As B has the same color as B2, the same holds

for p, a contradiction.

The additional assumption holds as well as it is enough to check the points of L2

and R2 and here the coloring is good by induction.

By dealing with the case when B2 covers some of L2, R2 we exhaust all possibili-
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ties. By symmetry we can assume that B2 covers L2 (and maybe R2 too). In this

�nal case delete both B and B2 and color the rest of the rectangles by induction.

Now put back these two rectangles. If R2 is covered by some rectangle besides

B and B2 then color B di�erently from the color of this rectangle. Otherwise

color B arbitrarily. Finally, color B2 di�erently from B. Any point ruining the

condition must be in B or B2. Again, suppose there is such a point p covered by

at least 3 rectangles all having the same color.

If p is covered by both B and B2 then its a contradiction as they are di�erently

colored. If it is covered by at least 3 rectangles besides B and B2 then again its

a contradiction by induction.

If p is covered by one of B and B2 and only two other rectangles then the base-

line point p′ with the same x-coordinate was covered by exactly two rectangles

in the coloring without B and B2. Thus, these rectangles have di�erent colors by

the assumption. As B and B2 are the lowest rectangles, the point p is covered

by these di�erently colored rectangles as well, a contradiction. The additional

assumption holds as well as it is enough to check the points of L2 and R2 and

here the coloring is clearly good.

(iii) Finding the upwards order of the rectangles takes O(n log n) time. In each

step we maintain an array of the intervals of the base line. If an interval is covered

only by one rectangle, we keep its color as well.

In the algorithm of (i) in each step we search for some colored interval constant

times and recolor some rectangles with a given property (left from a given inter-

val, etc.) constant times. This takes c · k time if we have k rectangles at that

step. We have n such steps and k ≤ n always, so the running time is O(n2).

For the algorithm of (ii) we will prove by induction on the number of bottom-

less rectangles that c0 · n2 is an upper bound on the number of steps needed to

color any family of n bottomless rectangles for some c0 large enough. Except

the last case we always do the `divide and color' step by cutting the family into
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two nontrivial parts and color separately. Finding whether there is such a cut,

doing the cut (and maintaining the upwards order in the two parts) and the

possible recolorings after the recursional colorings take c1 · n time for n rectan-

gles. By induction, this and the two recursional algorithms together take at most

c0 ·a2 + c0 · b2 + c1 ·n time where a+ b ≤ n+2. When we do a recursional step by

deleting B or B2 or both we can decide which kind of step is needed and color B

and B2 in c2 ·n steps, and we can do the recursion in c0 · (n− 1)2 steps. Thus we

need at most c0 · (n− 1)2 + c2n time in this case. It is easy to see that in both of

these cases the time can be bounded from above by c0 ·n2 if c0 have been chosen

to be large enough (depending on c1 and c2).

Consider now the case of axis-parallel rectangles intersecting a common base-

line (denoted by B′). We start with the case of region coloring, that is, estimating

wcfk(B′). For this the best upper bound is due to [46], proving wcf2(B′) ≤ 8, and

for the case of k > 2 we can separately color the upper and lower parts (divided

by the base-line) of the rectangles with 2 colors by Theorem 2.2 (ii) and then for

a rectangle colored by a in the upper part and b in the lower part, we give the

ordered pair (a, b) as a color. It is easy to see that this is a good wcf3-coloring

of the rectangles, thus proving wcf3(B′) ≤ 4.

The case of coloring points seems less natural for axis-parallel rectangles inter-

secting a common base-line, still it can be considered. Coloring the points in the

lower and upper parts with di�erent colors ensures that any rectangle covering

one from both sides is not monochromatic. The two sides can be colored by Claim

2.1 with 3-3 colors, thus proving wcf2(B′) ≤ 6 (a rectangle either covers points

from both sides or covers at least 2 points on one side). Further, the same claim

implies wcf3(B′) ≤ 3. Indeed, color both sides with the same 3 colors according

to Claim 2.1, then any rectangle covering at least 3 points covers 2 point on one

side, thus covering two di�erently colored ones as well. Finally, wcf7(B′) = 2 as

if we color both sides with the same two colors according to Theorem 2.1 (ii),

30



k 2 3. . .6 ≥7

wcfk(B′) ≥3, ≤6 3 2

wcfk(B′) ≥4, ≤8 ≤4 ≤4

Table 4: table of results about B′

then any rectangle covering at least 7 points covers 4 point on one side, thus

covering a red and blue one as well. The lower bounds for bottomless rectangles

trivially hold for the case of B′ as well, further a simple construction shows that

wcf2(B′) ≥ 4. Summarizing, the best known results are collected in Table 4.

Problem 2.2. Give better bounds for wcfk(B′, n) and wcfk(B′, n).

2.2 Half-planes

The family of all half-planes is denoted byH. We prove exact bounds for wcfk(H)

and almost exact bounds for wcfk(H).

From now on we assume that there are no 3 points on one line. It is easy to show

that if this is not the case, then coloring the point set after a small perturbation

gives a needed coloring for the original point set as well. This way the vertices of

the convex hull of a point set P are exactly the points of P being on the boundary

of this convex hull.

2.2.1 Coloring points

The following lemma follows easily from the de�nition of the convex hull.

Lemma 2.3. Any half-plane H covering at least one point of P covers some

vertex of the convex hull of P too. Moreover, the vertices of the convex hull of P

covered by H are consecutive on the hull.

Theorem 2.3.
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(a) The exceptional case of Theo-

rem 2.3(ii)

p

q1

q2q0

H

S2

(b) The proof of Theorem 2.3(ii)

Figure 7: Theorem 2.3(ii)

(i) wcf2(H) = 4 i.e. any set of points can be colored with 4 colors such that any

half-plane covering at least 2 of them is not monochromatic, and 4 colors might

be needed.

(ii) wcf2(H, P ) ≤ 3, except when P has 4 points, with one of them inside the trian-

gle determined by the other 3 points (see Figure 7(a)), in which case wcf2(H, P ) =

4.

(iii) wcf3(H) = 2 i.e. any set of points can be colored with 2 colors such that any

half-plane covering at least 3 of them is not monochromatic.

(iv) Such colorings can be found in O(n log n) time.

Proof. (i) This follows from (ii), yet we give a short proof for the upper bound.

Color the vertices of the convex hull of P with 3 colors such that there are no

2 vertices next to each other on the hull with the same color. Color all the re-

maining points with the 4th color. This coloring is good as by Lemma 2.3 any

half-plane covering at least two points covers two neighboring vertices on the hull

or one vertex on the hull and one point inside.

(ii) Clearly, in the case mentioned in the lemma we need four colors to have a

good coloring as any two points can be covered by some half-plane not covering

32



the rest of the points.

As H is monotone, by Observation 1.6 it is enough to consider half-planes cover-

ing exactly 2 points of P . We color the vertices of the convex hull with 3 colors

as in (i). At this time the assumption already holds for every half-plane covering

two vertices of the convex hull as by Lemma 2.3 they cover two neighboring ones

which don't have the same color, as needed. Now we color the points inside the

hull in a more clever way then in (i). Take an arbitrary point p inside the hull.

The only case when the color of this inside point can ruin the coloring, is when

there is a half-plane covering only this point and one vertex of the convex hull. If

this can happen only with two vertices of the hull, then coloring p di�erent from

these, the coloring will be good for all half-planes covering p. Doing the same for

every inside point we get a good coloring.

Denote the vertices of the convex hull by q0, ..., qk−1 in clockwise order (indexes

are mod k). It is enough to prove that except the case mentioned in the lemma,

there are no 3 such vertices on the hull corresponding to some p. For this, notice

that if qi and p can be covered by a half-plane not covering any other point,

then p is inside qi−1qqi+1∆. It is easy to see that if the hull has more then 3

vertices, then there are no 3 such triangles having a common inner point. For the

rest of the proof see Figure 7(b). If the hull has 3 vertices and p can be covered

with any of these 3 vertices by some half-plane not covering any other point of P

then regard the lines going through some qi and p partitioning the triangle into

6 triangles. For each vertex qi, denote the union of the two triangles having it as

a vertex by Si. Thus, we have three quadrilaterals, all of which must be empty.

Indeed, for example by assumption there is some half-plane H covering p and q2

not covering any other point of P . This half-plane always covers the quadrilateral

S2 and so it must be empty. The same argument for the other two quadrilaterals

shows that all of them are empty and so p is the only point in the triangle, which

is the excluded case.
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(iii) As H is monotone, it is enough to consider half-planes covering exactly 3

points of P . We color the points with colors red and blue. The points inside the

convex hull of P are colored blue. The vertices of the convex hull of P are denoted

by q0, . . . , qk−1 in clockwise order. For each qi we assign Ti = qi−1qiqi+1∆, where

indexes are modulo k. If Ti has some point of P inside it, then color qi red.

If there are no nonempty Ti's then color the vertices of the convex hull with

alternating colors, if its size is odd, then with the exception of two neighboring

red points. If there is at least one nonempty Ti then these red points cut the

boundary of the convex hull into chains. For each chain color its vertices with

alternating colors, a chain with size one is colored blue.

Now we need to prove that this coloring is good. First observe that there are no

2 consecutive blue vertices on the convex hull. Take again an arbitrary half-plane

H covering exactly 3 points. By Lemma 2.3 it covers some consecutive vertices

of the convex hull of P . If it covers at least two consecutive vertices on the hull

then it covers at least one red point. If it covers at least one point inside the hull,

then it covers at least one blue point. If it covers three vertices of the convex hull

but no points inside then it is easy to see that the triangle corresponding to the

middle point in the ordering must be empty. So it belongs to some alternatingly

colored chain. If any of its neighbors corresponds to the same chain, then H

covers a red and a blue point too, if this point is a chain of size 1 then it is blue

and its neighbors are red, again good. The only case remaining when H covers

one vertex of the convex hull, qi and two points of P inside the convex hull. The

latter points are blue and they must be in Ti, that is qi is red, as needed.

(iv) The algorithm in (i) clearly works in O(n log n), the same as building the

convex hull. For the other two algorithm we need the dynamic convex hull algo-

rithm presented in [13].

For the algorithm in (iii) we �rst compute a convex hull in O(n log n) amortized

time and then we take its points one by one and do the following. Delete tem-
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porarily the convex hull vertex p, compute the new convex hull temporarily, if it

has some new vertices on it, then the triangle corresponding to p is not empty.

As any inner point has been added and deleted from the set of vertices of the

hull at most two times and the convex hull algorithm makes a step in O(log n)

amortized time, we could decide in O(n log n) time which vertices of the hull have

empty triangles. After that the coloring of the vertices of the hull and the inside

points takes O(n) time, O(n log n) altogether.

For the algorithm in (ii) we do the same just when we temporarily delete p we

assign to any additional convex hull vertex the point p, as this vertex can be cut

out by a half-plane together with p. After these we simply color the vertices of

the convex hull as needed and all the inner points with a color di�erent from the

color of the at most two convex hull vertices assigned to it. Altogether this is

again O(n log n) time.

Observation 2.4. The algorithm in the proof of Theorem 2.3 (iii) gives a col-

oring which additionally guarantees that there are no half-planes covering exactly

two points, both of them blue.

2.2.2 Coloring half-planes

Theorem 2.4.

(i) wcf2(H) = 3 i.e. any family of half-planes can be colored with 3 colors such

that any point covered by at least 2 of them is not monochromatic.

(ii) wcf4(H) = 2 i.e. any family of half-planes can be colored with 2 colors such

that any point covered by at least 4 of them is not monochromatic.

(iii) Such colorings can be found in O(n log n) time for (ii) and in O(n2) time for

(i).

Proof. We can assume that there are no half-planes with vertical boundary line.

We dualize the half-planes and points of the plane S with the points (with an
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(a) Construction for Theorem 2.4(i)

ep

he

hf

eq
fp

fq

(b) Proof of Theorem 2.4(i)

Figure 8: Theorem 2.4(i)

additional orientation) and lines of plane S′, then we color the set of directed

points corresponding to the half-planes which will give a good coloring of the

original family of half-planes. The dualization is as follows. For a half-plane

H with a boundary line given by the equality y = ax + b the corresponding

dual point h has coordinates (a, b). If this line is a lower boundary, then h has

orientation north, otherwise it has orientation south. For an arbitrary point p

with coordinates (c, d) the corresponding line P is given by y = −cx + d. Now it

is easy to see that H contains p on the primal plane if and only if the vertical ray

starting in h and going into its orientation meets line P (we say that h and P

see each other or h is looking at P ). Indeed, for a half-plane with lower boundary

both hold if and only if d > ac+ b, for a plane with an upper boundary both hold

if and only if d < ac+b. From this it follows that the wcfk-coloring of half-planes

is equivalent to a coloring of the dual set of oriented points such that any line

with at least k points looking at it, there are at least two with di�erent colors

among these points.

All the proofs give colorings for directed points and from now on we assume that

there are no 3 directed points on one line. It is easy to show that if this is not

the case, then coloring the set of directed points after a small perturbation gives

a needed coloring for the original set of directed points as well.

(i) For a construction proving that 3 colors might be needed, see Figure 8(a).
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For the upper bound given a set of directed points we will color them with 3

colors such that for any line seeing at least 2 points, not all of these points have

the same color.

Take the lower boundary of the convex hull of the set of north-directed points

and denote the vertices of it by p1, p2, . . . , pk ordered by their x-coordinate. Take

the upper boundary of the convex hull of the set of south-directed points and

denote the vertices of it by q1, q2, . . . , ql ordered by their x-coordinate. The rest

of the points we call inner points. Similarly to Lemma 2.3 any line seeing at

least one north-directed point sees one pi as well and any line seeing at least one

south-directed point sees one qj as well and the pi's and qi's seen by a line are

consecutive. First we give a coloring of the pi's and qj 's with 3 colors such that no

two consecutive points have the same color and if for some pi and qj there is a line

which sees exactly these two points, then these points have di�erent colors. As a

line seeing at least two points which does not see inner points sees either exactly

one pi and qj or at least two consecutive ones of the same type, the coloring will

be good for all such lines.

We de�ne a graph on the points pi and qj . The consecutive points are connected

forming a path of p's and a path of q's. Moreover, pi and qj are connected if

there is a line which sees exactly these two points. Clearly, we need a proper 3-

coloring of this graph. For algorithmic reasons we take a graph with more edges

and prove that it can be 3-colored as well. In this graph pi and qj are connected

if there is a line which sees no other points of the p-path and q-path. We claim

that drawing the p-path and the q-path on two parallel straight lines, the q-path

being on the higher line and in reverse order, and drawing all the edges with

straight lines, we have a graph without intersecting edges. In other words the

graph is a caterpillar-tree between two paths. Such a graph is outer-planar and

thus three-colorable.

So it is enough to prove that there are no intersecting edges. Without loss of
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generality such two edges e and f would correspond to points ep, eq, fp and fq

with x-coordinates ex
p < fx

p and ex
q < fx

q (the points with index p are from the

p-path and the points with index q are from the q-path). The line seeing only ep

and eq is denoted by he, the line seeing only fp and fq is denoted by hf . These

two lines divide the plane into four parts, which can be de�ned as the north,

south, west and east part. Clearly from ep and fp one must be in the west part

and one in the east part. By ex
p < fx

p , ep is in the west and fp is in the east

part. This means that he must be the line above the east and south parts and

so eq must be in the east part and fq in the west, a contradiction together with

ex
q < fx

q (see Figure 8(b)).

Now we �nish the coloring such that the condition will hold also for lines seeing

inner points. As in Theorem 2.3 (ii) for any other north-directed point p there

are two points pi and pi+1 (the unique ones for which pi has smaller and pi+1 has

bigger x-coordinate then p) such that whenever a line h sees p then it sees pi or

pi+1 as well. Then coloring p di�erently from these points, guarantees that any h

seeing p sees two di�erently colored points. Doing the same for the south-directed

points we �nished the coloring such that whenever a line sees some point which

is not a pi or qj then it sees points with both colors.

(ii) Given a set of directed points we will color them with 2 colors such that for

any line seeing at least 4 points, not all of these points have the same color. We

color the north-directed points with the same algorithm as in Theorem 2.3 (iii).

We color the south-directed points with the same algorithm as in Theorem 2.3

(iii) just with inverted colors. This guarantees that any line which sees at least

3 north-directed points, sees red and blue points as well. If a line sees exactly 2

points of each kind, then sees red and blue points as well of one kind or sees 2 red

north-directed points and 2 blue south-directed points by Observation 2.4, again

seeing points with both colors. There are no more cases for a line seeing at least

4 points, so the proof is complete.
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(iii) The algorithm in (ii) clearly runs in time O(n log n) using Theorem 2.3

(iv). The algorithm in (i) can be made similarly to work in this time, only the

building of the caterpillar tree might need O(n2) steps. Indeed, we just need to

prove that deciding whether there is an edge between some pi and qj can be done

in constant time. For that we just need to check whether the linear equations for

a line assuring that it goes above qj−1, qj+1 and below qj , below pi−1, pi+1 and

above pi have a solution.

Problem 2.5. Determine the value of wcf3(H), i.e. the lowest number of colors

needed to color any �nite family of half-planes such that if a point of the plane

is covered by at least 3 of them then not all of the covering half-planes have the

same color.

Note that wcf3(H) is either 2 or 3.
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3 Re�exivity of point sets

3.1 Modi�ed Re�exivity and Iterative Subdivision

Let us recall the theorems which we would like to prove in this chapter. First we

will prove that:

Theorem 3.1. ρ(n) ≤ 3bn−2
7 c+ 2.

And then improve this to:

Theorem 3.2. ρ(n) ≤ 5bn−2
12 c+ 4.

Recall that the convex hull of a �nite set S of points, CH (S), is composed of

the boundary and the interior of a convex polygon. A boundary edge of CH (S)

is an edge of that polygon. To prove a stronger variant of Theorem 3.1 we �rst

introduce some notation. Let S be a set of points and let e be a boundary edge

of CH (S). We denote by ρe(S) the minimum number of re�ex vertices in any

polygonalization P of S, such that e is an edge of P . Similarly, let ρ̄(S) be the

maximum value of ρe(S) taken over all the edges e of the boundary of CH (S),

and let ρ̄(n) be the maximum value of ρ̄(S) taken over all sets S of size n. The

de�nition of ρ̄(·) is perhaps a bit counter-intuitive (one might expect to take the

minimum over all edges), however, it is crucial for our purposes.

Obviously ρ(n) ≤ ρ̄(n), so our goal is to derive good upper bounds for ρ̄(n).

To this end we �rst provide a central lemma, which allows us to subdivide a

point set in a way that we can consider the polygonalizations of the subsets

rather independently.

Lemma 3.3. Given an integer k > 2, a set S of n > k points, and two points

p, q ∈ S, such that pq is a boundary edge of CH (S), then there exists a point

t ∈ S \ {p, q} and two sets L,R ⊂ S such that:

1. L ∪R = S, L ∩R = {t}, q ∈ R, and p ∈ L;
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2. The triangle 4pqt contains no other points from S;

3. CH (R) ∩ CH (L) = {t}; and

4. |R| = k.

Proof. Let us �rst give a sketch of the proof. We will de�ne sets L1 and R1

satisfying properties (1)�(3) of the lemma and |R1| ≤ k. Then, we will de�ne

step by step pairs of sets Li and Ri for i ≥ 1 all satisfying properties (1)�(3) and

|Ri| ≤ k. Further, |Ri| will strictly increase in each step until for some j we will

have |Rj | = k, thus Lj and Rj will be a pair of sets satisfying all properties of

the lemma, as needed.

Assume, w.l.o.g., that p and q lie on the x-axis, such that p is to the left of q and all

the remaining points are above the x-axis. Let t1 be the point of S such that the

angle ∠t1pq is the smallest. Let e1 be the line determined by q and t1, and let H1

be the closed half-plane to right of e1. Let S1 be the subset of points of S contained

in H1. If |S1| > k, then de�ne r1 ∈ S1\{q, t1} to be the point creating the (k−1)st

smallest angle ∠r1t1q, and denote by f1 the line through t1 and r1. Otherwise,

if |S1| ≤ k let f1 = e1. Set R1 = {q, t1} ∪ {p′ ∈ S1 | p′ is to the right of f1}

and L1 = (S \ R1) ∪ {t1}. Note that r1, if de�ned, is in L1. We claim that t1,

R1, and L1 satisfy properties (1)�(3) of the lemma: (1) This property holds by

the de�nition of R1 and L1; (2) By the choice of t1 the triangle 4pqt1 is empty;

(3) All the points in R1 are to the right of f1, except for t1 and possibly q. All

the points in L1 are to the left of f1, except for t1 and possibly r1. However q

and r1 cannot both lie on f1. If |S1| ≥ k, then we also have that |R1| = k (either

by the choice of r1 or because |S1| = k, see Figure 9(a) for an illustration of the

former case).

Suppose now that |S1| < k. We de�ne ti, ei, and Si for i > 1 and |Si−1| < k

recursively. Let ti be the point that minimizes the angle ∠tipq among the points

in Li−1 \ {ti−1} (note that this set of points is not empty since |Si−1| < k and we

show below that S1 ⊂ · · · ⊂ Si−1). Let ei be the line through q and ti, let Hi be
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(a) More than k = 8 points on or to

the right of e1. The points in R1 and

L1 are marked by crosses and circles,

respectively.

ti−1

qp

ei−1 = fi−1

ti

ei = fi

(b) Less than k points on or to the right of

ei. The points in Ri and Li are marked by

crosses and circles, respectively.

Figure 9: Illustrations for the proof of Lemma 3.3

the closed half-plane to the right of ei, and let Si be the set of points contained

in Hi. Next, we de�ne ri, fi, Ri, and Li. If |Si| > k de�ne ri ∈ Si \ {q, ti} to be

the point creating the (k − 1)st smallest angle ∠ritiq, and denote by fi the line

through ti and ri. Otherwise, if |Si| ≤ k set fi = ei. Set Ri = {q, ti} ∪ {p′ ∈ Si |

p′ is to the right of fi} and Li = (S \Ri) ∪ {ti}. See Figure 9(b) for an example

where |Si| < k. The existence of a point t and sets R,L ⊂ S as required, will

follow from the next claim.

Proposition 3.4. Set S0 = ∅. Then, for every i ≥ 1 such that |Si−1| < k, ti,

Ri, and Li satisfy properties (1)�(3) of Lemma 3.3, and Si−1 ( Si.

Proof. By induction on i. For i = 1 the claim holds by the discussion above.

Assume that i > 1 and |Si−1| < k. Property (1) holds by the de�nition of Ri and

Li. The triangle 4tipq is empty since: 4ti−1pq is empty; ti is to the left of fi−1

and therefore 4tipq does not contain any point from Ri−1; and by the choice of

ti. Thus, Property (2) holds. Property (3) clearly holds if fi = ei. Otherwise,

if ri is de�ned, denote by Ci the cone whose apex is at p and is bounded by the
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line through p and ti−1 and the line through p and ti. By the choice of ti all the

points in Ci are in Si−1. Since |Si−1| < k it follows that ri is to the left of the

line through p and ti. Recall that ri is to the right of ei, since ri ∈ Si. Therefore,

fi is tangent to both CH (Ri) and CH (Li) and separates them, except for the

point ti. Thus, Property (3) holds. Finally, since ti is to the left of ei−1 we have

Si−1 ⊆ Si. However ti ∈ Si \ Si−1, thus, Si−1 ( Si.

Since |Si| > |Si−1| there is an integer j such that |Sj−1| < k and |Sj | ≥ k. It

follows from Proposition 3.4 and the de�nition of Rj that tj , Rj , and Lj satisfy

the required properties.

Note that Lemma 3.3 implies that pt is a boundary edge of CH (L) and tq

is a boundary edge of CH (R), respectively. Using this fact we will apply the

suggested subdivision in the next section in order to obtain our �rst main result.

3.2 A New Upper Bound

Figure 10 illustrates the subdivision obtained in the previous section. The idea to

prove an upper bound on ρ̄(n) is to iteratively split a set into subsets of constant

size, to obtain good polygonalizations for these sets, and then to combine them

based on Lemma 3.3. The base case is covered by the following result.

t

q

R

p

L

Figure 10: The subdivision of S guaranteed by Lemma 3.3
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Lemma 3.5. Let S be a set of at most 8 points in the plane. Then ρ̄(S) ≤ 2.

Proof. The claim is clearly true for n ≤ 5 since any vertex on the boundary

of CH (S) is a convex vertex of any polygonalization of S. For 6 ≤ n ≤ 8 we

prove the statement by a case-analysis over the size of the convex layers of S; see

Appendix A for details. The correctness of the statement was also veri�ed using

a computer by checking all possible con�gurations of at most 8 points in general

position.

We are now ready for the �rst upper bound on ρ̄(n).

Theorem 3.6. ρ̄(n) ≤ 3bn−2
7 c+ 2.

Proof. We prove the claim by induction on n. For n ≤ 8 we directly get the

result from Lemma 3.5.

For n > 8 we apply Lemma 3.3 on the set S with k = 8 and some edge

pq of the boundary of CH (S), and obtain the point t and the subsets L and

R. Now according to Lemma 3.5 there is a polygonalization of R containing

the edge qt with at most two re�ex vertices (note that qt is a boundary edge of

CH (R)). By induction, L has a polygonalization containing the edge pt (which is

a boundary edge of CH (L)) with at most 3bn−9
7 c+2 = 3bn−2

7 c−1 re�ex vertices.

By removing the edge qt from the �rst polygonalization and the edge pt from the

second, the remaining polygonal chains, along with the edge pq, form a proper

polygonalization of S with at most 2+3bn−2
7 c−1+1 = 3bn−2

7 c+2 re�ex vertices

(note that t may be a re�ex vertex in the resulting polygon).

3.3 Improving the Constant

Generalizing the approach used to prove Theorem 3.6 to arbitrary k ≥ 2 we get

Corollary 3.7. If for some k ≥ 2 we have ρ̄(k) ≤ l, then ρ(n) ≤ (l+1)bn−2
k−1 c+k ≤

l+1
k−1n+k. If, additionally, for any k′ ≤ k we have ρ̄(k′) ≤ l, then ρ(n) ≤ l+1

k−1n+l.
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Improved bounds for ρ̄(n) for small, constant values of n thus yield a better

bound on the re�exivity of arbitrarily large sets of points. From Lemma 3.5

together with an extension to n = 9, 10 by using the point set order type data

base [5] we observe that ρ̄(n) = ρ(n) for n ≤ 10, see Table 2. Therefore our next

goal is to determine good bounds on ρ̄(n) for n ≥ 11. To this end, we use the

following observation which is implied by Lemma 3.3 and the discussion in the

previous section.

Observation 3.8. For any integers 2 < k < n, we have ρ̄(n) ≤ ρ̄(n − k + 1) +

ρ̄(k) + 1. Moreover, for every set of n points, S, there is a subset L ⊂ S, such

that |L| = n− k + 1 and ρ̄(S) ≤ ρ̄(L) + ρ̄(k) + 1.

Using the values of Table 2 for k = 3 and k = 8 we get

ρ̄(n) ≤ ρ̄(n− 2) + 1 (1)

ρ̄(n) ≤ ρ̄(n− 7) + 3

Applying these two relations we obtain the upper bounds on ρ̄(n) shown in Table 5

with an exception for n = 13.

n 11 12 13 14 15 16

ρ(n) 3 3..4 3..4 4..5 4..5 4..6

ρ̄(n) 4 4 4 4..5 4..5 4..6

Table 5: ρ(n) and ρ̄(n) for n = 11 . . . 15

By using the point set order type data base for n = 11 points it turned out

that ρ(11) = 3 whereas ρ̄(11) = 4. Interestingly, only for 36 of the 2 334 512 907

existing order types, the best polygonalization required 4 re�ex vertices. In all

these sets the boundary of the convex hull was a triangle, and only for one (out of

three) convex hull edge e we obtained ρe(S) = 4. This has to be seen in contrast

to the worst case examples for ρ(S) obtained in [9], which are so-called double
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circles. There half of the vertices are on the convex hull, and the remaining

vertices form a second onion layer, each point lying close to the middle of one

edge of the convex hull.

We have extended examples providing ρ̄(11) = 4 to verify that 4 re�ex vertices

are necessary for polygonalizing certain point sets of size n = 12, . . . , 16, as is

listed in Table 5. Thus, for n = 12, together with Equation 1 we have ρ̄(12) = 4.

So we will have to look for values of k > 12 in order to bene�t from Corollary 3.7.

Thus we aim to show that ρ̄(13) = 4.

From Equation 1 we already know that ρ̄(13) ≤ 5. So assume that there exists

a set S, |S| = 13, with ρ̄(S) = 5. By Observation 3.8 S contains a subset L of 11

points with ρ̄(L) = 4. We now apply abstract order type extension, which is a

tool that can be used to generate all (abstract) point sets containing a given class

of sets of smaller cardinality, see [6] for details. Applying this method to the 36

sets of n = 11 points which require 4 re�ex vertices, we obtain all sets for n = 13

which might require 5 re�ex vertices. Our computations show that all obtained

sets contain a polygonalization with at most 4 re�ex vertices, contradicting our

assumption, and we conclude that ρ̄(13) = 4.

By Corollary 3.7 we therefore get

Corollary 3.9. ρ̄(n) ≤ 5bn−2
12 c+ 4

which implies Theorem 3.2. Obviously determining ρ̄(n) for n ≥ 14 could

further improve the constant of Corollary 3.9, and we leave this for future research.

3.4 An Algorithm

After establishing the existence of a polygonalization with few re�ex vertices we

describe an e�cient way to �nd one.

Theorem 3.10. Given a set of n points S and two points p, q ∈ S such that pq

is a boundary edge of CH (S), a polygonalization P of S such that pq is an edge
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Figure 11: The subdivision of the point set into constant-size subsets

of P and ρ(P ) ≤ 5bn−2
12 c+ 4 can be found in O(n log n) time.

Proof. The proof of Theorem 3.6 and the discussion in Section 3.3 yield an algo-

rithm for computing a polygonalization with at most 5bn−2
12 c+ 4 re�ex vertices,

based on the subdivision of the set S into (not necessarily disjoint) subsets of

size 13 (apart from one subset of size at most 13). Set t′0 = q, L′
0 = S, and

M = b(n − 2)/12c. De�ne t′l, R′
l, and L′

l, recursively, to be the point t and the

sets R and L, respectively, guaranteed by applying Lemma 3.3 on the set L′
l−1

and the edge pt′l−1, 1 ≤ l ≤ M . Once the points t′l and the sets R′
l have been

computed it is easy to compute in linear time the polygonalization of S with the

stated number of re�ex vertices: For each 1 ≤ l ≤ M we computed (in constant

time) a polygonalization Pl of R′
l, such that Pl contains the edge t′lt

′
l−1 and has

at most four re�ex vertices. By removing the edge t′lt
′
l−1 from every polygon Pl,

we get a polygonal chain P starting at t′0 = q and ending at t′M . If |L′
M | = 2,

that is L′
M = {p, t′M}, then we obtain the desired polygonalization of S by con-

catenating to P the edges pt′M and pq. Otherwise, one can compute in constant

time a polygonalization PM+1 of L′
M containing the edge pt′M and having at most

four re�ex vertices (note that |L′
M | ≤ 13). By removing the edge pt′M from PM+1

and concatenating the resulting chain to P and the edge pq we obtain the desired

polygonalization of S (see Figure 11 for an illustration).

Therefore, it remains to depict the details of the subdivision described in
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Lemma 3.3. Algorithm 3.4 describes the implementation of this subdivision. It

uses the dynamic planar convex hull of Brodal and Jacob [13]. This data struc-

ture, denoted by DCH, maintains the convex hull of a set of points and supports,

among other things, the following operations:

• DCH.INSERT(v): insert a new point v;

• DCH.DELETE(v): remove the point v; and

• DCH.CCW(v): get the counter-clockwise neighbor in the convex hull of the

point v, where v is a vertex of the convex hull;

Insertions and deletions are performed in O(log n) amortized time, while the

counter-clockwise neighbor query takes O(log n) worst-case time.

Next, we explain Algorithm 3.4, using the notation of Lemma 3.3. The al-

gorithm begins by removing the vertex q (line 5). Now, CCW(p) is t1. Then,

we remove CCW(t1) repeatedly at most k − 2 times while it is to the right of e1

(lines 15�23). If k−2 times CCW(t1) was to the right of e1, then all those points

that were removed along with t1 constitute the set R, with t = t1 (lines 24�27).

Otherwise, by deleting t1 (line 5), CCW(p) is the point t2 that forms the small-

est angle ∠t2pq among the points to the left of e1. The algorithm proceeds by

re-inserting all the points that were deleted in the previous iteration and are to

the left of the line determined by p and t2 (lines 9�12). This step is performed

since it is possible that these points will not be among the set of points p′ ∈ S2

creating the (k − 2)nd smallest angles p′tiq (whereas the points that are to the

right of the line through p and t2 must be in this set, and thus, remain in R).

Next, we remove CCW(t2) repeatedly (as long as it is to the right of e2), this

time k− 1− |R| times (lines 15�23). As before, if k− 1− |R| times CCW(t2) was

to the right of e2, then we are done. Otherwise, we proceed to the next point t3.

For the same arguments used to claim that |Si| > |Si−1| in the proof of

Lemma 3.3 it follows that the size of R at, say, line 24 grows along the iterations
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Require: A set of n points S; DCH(S); p, q ∈ S s.t. pq is a boundary edge of CH (S);
an integer k > 2

Ensure: The set R and the point t as described in Lemma 3.3.
R← ∅;
i← 0;
ti ← q;
while |R| < k do

DCH.DELETE(ti);
R← R ∪ {ti};
i← i + 1;
ti ← DCH.CCW(p);
for all {r ∈ R : r is to the left of the line through p and ti} do

R← R \ {r};
DCH.INSERT(r);

end for

ei ← the line through q and ti;
m← (k − 1− |R|); /* The number of points missing in R */
for j = 1 to m do

s← DCH.CCW(ti);
if s is to the right of ei then

DCH.DELETE(s);
R← R ∪ {s};

else

quit the for-loop;
end if

end for

if s is to the right of ei then

R← R ∪ {ti}; /* |R| = k */
t← ti;

end if

end while

Algorithm 1: Generating the subdivision of Lemma 3.3
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of the main loop (lines 4�28). Therefore, the main loop is executed O(k) times,

and thus, the run-time of the procedure described in Algorithm 3.4 is O(k2 log n)

amortized time. The number of times this procedure is executed is O(n/k). Thus,

the overall run-time, including the initialization of DCH, is O(nk log n). As in our

case k = 13, the run-time is O(n log n).

3.5 Discussion and Open Problems

We showed that for every set S of n points in general position in the plane there

is a polygonalization of S with at most 5bn−2
12 c + 4 re�ex vertices, and such a

polygonalization can be found in O(n log n) time. The basic idea of the proof

is that by Lemma 3.3 we can subdivide S into some �xed-size parts and use

a stronger result on each of these parts. It would be interesting to �nd other

applications of the subdivision suggested in Lemma 3.3. Recently Günter Rote

informed us that this kind of subdivision was utilized in papers about straight line

embeddings of outerplanar graphs (see [25], [14], [10]). Moreover, for achieving

the same subdivision they use a simpler algorithm which - using the DCH data

structure - works in amortized time O(k log n), whereas ours works in O(k2 log n)

amortized time. Yet, in our application k is a small constant, thus utilizing their

algorithm only simpli�es things, does not improve the result signi�cantly.

Conjecture 3.4 in [9] states that ρ(n) = bn4 c. As already mentioned in the

Introduction, considering the values for ρ(n) in Tables 2 and 5 the conjecture has

to be modi�ed to

Conjecture 3.11. bn4 c ≤ ρ(n) ≤ dn4 e.

It is a challenging open problem to determine the structure of sets maximizing

the re�exivity for �xed cardinality. On the one hand we have the sets used in [9]

to provide the bound of ρ(n) ≥ bn
4 c, which have half of their vertices on the

boundary of the convex hull. This so-called double circle con�guration is also
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conjectured to minimize the number of triangulations [4], and therefore seems

to be a promising extremal example, supporting Conjecture 3.11. On the other

hand all maximizing examples for ρ̄(11) have a triangular convex hull, so it could

be that for larger cardinality ρ̄(n) is more than a constant additive factor larger

than ρ(n), contradicting Conjecture 3.12.

It would be interesting to bound ρ̄(n) in terms of ρ(n).

Conjecture 3.12. There is a constant c0 such that ρ̄(n) ≤ ρ(n) + c0.

Note that the stronger statement that ρ̄(S) ≤ ρ(S)+O(1) for any set S might

also hold.

Conjecture 3.12, if true, would mean that it is possible (although not neces-

sarily practical) to get arbitrarily close to the best possible linear upper bound

by checking only �nitely many small cases. In other words, suppose the con-

jecture holds and c is a constant such that ρ(n) ≤ cn. Then, for any ε > 0

there is k = k(ε) such that if we verify that ρ(k) ≤ ck, then for n > k we have

ρ(n) ≤ (c + ε)n + O(1). Indeed, k large enough such that ck+c0+1
k−1 ≤ (c + ε)

holds, would do. Moreover, the discussion above is still valid if we replace c0 in

Conjecture 3.12 by some function f(n) such that f(n) ∈ o(n).

Conjecture 3.12 is true when we consider re�exivity in the presence of Steiner

points. Following the notation of [9], a Steiner point is a point q /∈ S that may

be added to S in order to improve some structure. For example, we de�ne the

Steiner re�exivity of S, ρ′(S), to be the minimum number of re�ex vertices of any

simple polygon with vertex set V ⊇ S. Similarly, ρ′(n) = max|S|=n ρ′(S). The

(stronger statement) of Conjecture 3.12 can be easily proved if we allow Steiner

points.

Lemma 3.13. Let S be a set of n points and let pq be a boundary edge of CH (S).

Then, there are points p′, q′ (inside CH (S)) such that S ∪ {p′, q′} has a polygo-

nalization containing the edge pq and having at most ρ(S) + 1 re�ex vertices.
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Figure 12: An illustration for the proof of Lemma 3.13

Proof. We assume, w.l.o.g., that the �xed edge pq is horizontal, p is left to q,

and the remaining points S \ {p, q} are above the line through p and q. Let P

be a polygonalization of S, such that P does not contain the edge pq. We show

that P can be modi�ed into a polygonalization P ′ of a set V ⊃ S such that P ′

contains the edge pq and ρ(P ′) ≤ ρ(P ) + 1.

Let p1 be the counter-clockwise neighbor of p in P , and let q1 and q2 be the

counter-clockwise and clockwise neighbors of q in P , respectively. Fix p′ slightly

to the right and above p, and q′ slightly to the left and above q. Now by replacing

the chain q1 q q2 with the chain q1 q′ q2, and the edge p p1 with the chain p q p′ p1,

one obtains the desired polygonalization P ′ (see Figure 12 for an illustration).

Note that the only re�ex vertex that might be introduced in these steps is p′.

As before, this implies that we can get arbitrarily close to any linear upper

bound on ρ′(n) by checking only �nitely many small cases. Note that it is impor-

tant here that the Steiner points we add lie inside the convex hull of the original

set of points.

Adding a (Steiner) point to a set of points might result in a set of points whose

re�exivity is smaller than this of the original set (see [9] for examples). However,

we are con�dent, although we were not able to prove, that for every set of points

one can add some point that will not reduce the re�exivity. This would imply

Conjecture 3.14. ρ(n + 1) ≥ ρ(n)
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A similar statement should hold for restricted re�exivity.

Conjecture 3.15. ρ̄(n + 1) ≥ ρ̄(n)

If this conjecture is true, then the last inequality of Corollary 3.7 always holds.
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4 Polychromatic colorings of rectangular par-

titions

First we regard the problem of polychromatic colorings and rectangle-respecting

colorings for rectangular partitions, and then for guillotine-partitions in higher

dimensions.

4.1 Polychromatic colorings of planar rectangular par-

titions

Polychromatic 4-colorings of rectangular partitions

We start with the de�nition of r-graphs, then state the conjecture of Seymour

[44] about 4-graphs, which was proved recently by Guenin [26]. Note that this

theorem implies the four-color theorem. An r-graph is an r-regular (multi)-graph

G on an even number of vertices with the property that every edge-cut separating

V (G) into two sets of odd cardinality has size at least r.

Theorem 4.1 (Guenin). Every planar 4-graph is 4-edge-colorable.

In the rest of this section we will prove that this theorem implies the following.

Theorem 4.2. There is a strong rectangle-respecting 4-coloring of any rectangu-

lar partition.

Proof. Take an arbitrary rectangular partition. We will give a strong rectangle-

respecting 4-coloring of it. First, if it has an even number of rectangles then

add one rectangle to the left side of the partition for example. Coloring this new

partition (which has an odd number of rectangles) also gives a coloring of the

original one. Now we contruct the planar graph on which we can apply Theorem

4.1. First put a point in the center of all the rectangles. Connect two such points

with an edge whenever the corresponding rectangles have a common corner. Draw
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angular partition
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P (W ′)

(b) The edges of the edge-cut guaranteed

by the proof

Figure 13: Example for the proof of Theorem 4.2

this edge in the plane by two segments, one going from the center point of the

�rst rectangle to the common corner and the second going from here to the center

point of the other. This way we clearly built a planar graph on an odd number of

points. Further, add a point p outside the partitioned rectangle. For each corner

c of the partitioned rectangle take the rectangle R in the partition that has c as

a corner. Then connect p to the center r of R, with a polygon going through c

as well. This can easily be done for all four corners of the partitioned rectangle

in a way that the �nal graph is still a plane graph. Now our graph has an even

number of points. The new point p has 4 outgoing edges and an arbitrary point

corresponding to a rectangle has 4 outgoing edges as well, one going through

each of its corners. Thus, this graph G has an even number of points and is

4-regular. For an example see Figure 13(a). Note that the resulting graph can be

a multigraph and that we needed that no 4 rectangles meet at a common corner.

To be able to apply Theorem 4.1 we only need to prove that every edge-cut

separating V (G) into two sets of odd cardinality has size at least r. Take an

arbitrary cut of this kind. The two point sets of the cut are W and V \W where

p is in V \W . Take a maximal connected component W ′ of W . If two points are
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Figure 14: The partition T and two di�erent colorings

connected in the graph then the corresponding rectangles have a common segment

on their borders, thus the rectangles corresponding to W ′ form a polygon P (W ′)

whose every edge is horizontal or vertical. Thus, W ′ has at least four convex

corners. It is enough to prove that the edge corresponding to such a corner c is

part of the edge-cut. Indeed one end of such an edge is the point corresponding

to the rectangle in P (W ′) (and so it is in W ) whose corner is c and the other end

is a point corresponding to a rectangle outside P (W ′) and by the maximality of

W ′ this cannot be in W . For an example see Figure 13(b), where the 5 edges of

G corresponding to the convex corners of P (W ′) are solid, the rest are dotted.

Now, applying Theorem 4.1 we get a 4-coloring of the edges. Give the same colors

for the corresponding corners of the partition, this is clearly a strong rectangle-

respecting 4-coloring as we needed.

Polychromatic 4-colorings of general rectangular partitions

In the rest of this section we deal with general rectangular partitions, and so for

simplicity, in the remainder of this section we will use the terms partition and

general partition interchangeably. The previous theorem does not hold for general

rectangular partitions as it was mentioned in the Introduction. Now we prove

that even a polychromatic 4-coloring does not always exist for general partitions.
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Figure 15: The partition Q and subpartitions G1, G2, G3, G4

We want to �nd a 4-coloring of a given partition such that for any rectangle all

four colors appear on the vertices on the boundary of that rectangle. Denote by

G the 3× 3 grid (i.e. four squares) and by T the partition obtained from a 3× 3

grid by merging the upper two squares (see Figure 14). When referring to a side

of the partition G or T we mean the set of vertices on the corresponding vertical

or horizontal boundary of the partition (e.g. left, right, upper, lower). We begin

with some simple observations.

Observation 4.3. If a weak rectangle-respecting 4-coloring of the 3 × 3 grid G

assigns three colors to some side of G, then the same three colors appear on the

opposite side of G.

Observation 4.4. A weak rectangle-respecting 4-coloring of a 3×3 grid G cannot

simultaneously assign three colors to the left (or right) and lower (or upper) sides.

Observation 4.5. A weak rectangle-respecting 4-coloring of T assigns three col-

ors to the left side or right side of T . (See Figure 14.)

Let us de�ne a new partition Q as follows: start with a 7× 7 grid, �rst merge

the four central squares, then for each side of this new center square merge the

two smaller squares adjacent to that side. In this way we obtain a partition that

contains four copies of G and four rotations of T . See Figure 15 for an illustration
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Figure 16: Proof of Theorem 1.14, C, the counterexample

of Q.

Claim 4.6. Let G1 (resp. G2) be the 3 × 3 grid in the upper-left (resp. upper-

right) corner of Q. A weak rectangle-respecting 4-coloring of the partition Q must

assign three colors to either the upper side of G1 or the upper side of G2.

Proof. Let G3 (resp. G4) be the 3 × 3 grid in the lower-left (resp. lower-right)

corner of Q (see Figure 15). Assume that neither the upper side of G1 nor the

upper side of G2 are assigned three colors. By Observation 4.3 neither the lower

side of G1 nor the lower side of G2 are assigned three colors. By Observation 4.5

the upper sides of G3 and G4 are each assigned three colors. Finally, by Obser-

vation 4.4 the right side of G3 has exactly two colors and the left side of G4 has

exactly two color. However, now we have colored the right and left sides of the

partition T on the bottom of Q in a way that contradicts Observation 4.5.

Note that a similar claim holds for each side of Q as we can simply rotate Q

and follow the proof of Claim 4.6. Let us de�ne a new partition C as follows: start

with a 3×3 grid and embed a 7×7 grid in the upper-right square, a copy of Q in

the upper-left square and a copy of Q in the lower-right square. See Figure 16 for

an illustration. We will show that partition C has no weak rectangle-respecting
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4-coloring thus proving Theorem 1.14.

Proof of Theorem 1.14. Let Q1 be the upper-left copy of Q and let Q2 be the

lower-right copy of Q. By applying Claim 4.6 to Q2 we �nd 3 consecutive vertices

on the lower side of the 7× 7 grid with three colors. By applying Claim 4.6 to a

−90o rotation of Q1 we �nd 3 consecutive vertices on the right side of the 7× 7

grid with three colors. By application of Observation 4.3 it is easy to see that we

can �nd a 3× 3 grid in the 7× 7 grid that has three colors on both the lower side

and right side. This contradicts Observation 4.4.

The elements of this construction are the main building parts to prove that it is

NP -complete to decide if a general rectangular partition admits a polychromatic

4-coloring. We know several smaller partitions that have no weak rectangle-

respecting 4-coloring, the smallest known construction has 65 vertices (whereas

the counterexample presented here has 124 vertices).

Weak rectangle-respecting 3- and 5-colorings of general rectangu-

lar partitions

In this part we want to prove that any partition admits a weak rectangle-respecting

3- and 5-coloring.

Consider a partition in the coordinate plane. Let us arrange vertices from

smallest to largest x coordinate then from largest to smallest y coordinate i.e.

from left to right then top to bottom. We refer to this ordering as the upper-left

order of the vertices. Two vertices are neighbors if there is a segment between

them containing no other vertex.

Proposition 4.7. Every general partition admits a weak rectangle-respecting 3-

coloring (i.e. a polychromatic 3-coloring).

Proof. Let R be a partition. We will greedily 3-color the vertices of R. Note that

any v vertex has at most one neighbor above it and at most one left to it (the
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neighbor with smaller x-coordinate and the neighbor with larger y-coordinate).

We will always maintain a coloring such that any vertex has a di�erent color from

these at most 2 neighbors of it.

Next, consider the vertices of R arranged in upper-left order. For a given

rectangle we will ensure that it has at least 3 colors on its boundary in the step

when we consider its lower right corner.

Let v be the pending vertex to be colored. If v has exactly one previously-

colored neighbor w then color v with a color di�erent from w. If v has two

previously-colored neighbors, say x and y, then v, x and y are on the boundary

of a common rectangle and v is the bottom-right corner of this rectangle.

If x and y are colored with di�erent colors then color v with the third color.

Thus, the rectangle r containing v, x and y will have 3 di�erent colors on its

boundary as we wanted.

If y and x are colored with the same color then we will color v with a color

di�erent from that used on x and y. These two points must have at least one

already colored neighbor w on the boundary of rectangle r (this may be a common

neighbor of x and y, in which case it is the top left corner of r). By induction w

has di�erent color from the color of x and y. Color v with the color unused by x

and w. Thus, rectangle r will have 3 di�erent colors on its boundary as needed.

In this way every rectangle of R will include three di�erent colors among the

vertices on its boundary.

Proposition 4.8. Every general partition admits a weak rectangle-respecting 5-

coloring.

Proof. Let R be a partition. We will greedily 5-color the vertices of R. Note that

any v vertex has at most one neighbor above it and at most one left to it (the

neighbor with smaller x-coordinate and the neighbor with larger y-coordinate).

Again, we will always maintain a coloring such that any vertex has a di�erent
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Figure 17: w cannot be colored to 1, 2, 3 because of A, neither to 4 because

of v in B

color from these at most 2 neighbors of it.

Next, consider the vertices of R arranged in upper-left order. For a given rectangle

B we will ensure that it has at least 2 colors on its boundary in the step when

we consider the vertex v right to its top left vertex u (v and u are neighbors and

so we color v di�erently from u). We will ensure that B has at least 3 colors on

its boundary in the step when we consider the vertex w which is the neighbor

of u below u (we color it di�erently from u and u's right neighbor v). We will

ensure that B has at least 4 colors on its boundary in the step when we consider

its lower right corner x (in case there are only 3 colors present on the boundary

of B, we color x di�erently from these).

Following these rules we will get a needed coloring. Thus, it is enough to prove

that when coloring a vertex there are at most 4 colors we need to avoid, thus using

5 colors we can color greedily all the vertices. If a vertex does not need to ensure

a third or fourth color on some rectangle, then we need to color it di�erently only

from its left and upper neighbor, that is we need to avoid at most 2 colors. If

a vertex w ensures a third color on some B (but it does not need to ensure a

fourth color on any of the rectangles) then when coloring it we need to avoid the

color of its left neighbor (if it exists), its upper neighbor u and the right neighbor

of u, thus at most 3 colors. If a vertex needs to ensure a fourth color on some

rectangle A, then we need to avoid at most 3 colors (including the colors of its
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left and upper neighbor). If at the same time this vertex ensures a third color

on some rectangle B, then one more color needs to be avoided (the color of the

right neighbor of its upper neighbor). Together this is again at most 4 colors to

be avoided (see Figure 17 for an illustration of this worst case).

Strong rectangle-respecting 2- and 6-colorings of general rectan-

gular partitions

In this section we either want to �nd the minimal number k ≥ 4 or the maximal

number k < 4 of colors such that every partition can be colored with k colors such

that min{k, 4} colors appear on the 4 corners of every rectangle of the partition.

First we show the existence of a strong rectangle-respecting 2-coloring.

Proposition 4.9. Every general partition admits a strong rectangle-respecting

2-coloring.

Proof. For a given partition R let us color the vertices in upper-left order with

exactly two colors. Let v be the pending vertex to be colored. Only vertices

above and to the left of v are already colored. Thus, only the rectangle that has

v in its lower right corner may have three previously colored corners. If the three

previously colored corners have the same color, then choose the other color for v.

Otherwise choose any color for v. After coloring all vertices in this way clearly

no rectangle will have a single color among its four corners.

A simple greedy algorithm similar to those used for weak rectangle-respecting

5-colorings shows that for a partition there is always a strong rectangle-respecting

7-coloring. We present a proof that every partition has a strong rectangle-

respecting 6-coloring.

Proposition 4.10. Every general partition admits a strong rectangle-respecting

6-coloring.
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Figure 18: orientation of edge xy

Proof. For a given partition R, let G be the graph with the vertex set of R, where

xy is an edge of G if and only if x and y are corners of the same rectangle in R.

Clearly, the proposition is proved if we can �nd a proper 6-coloring of G. First

we will color the vertices where four rectangles meet. We use a greedy algorithm

with the vertices in upper-left order. Every vertex has at most four previously

colored neighbors, hence six colors are (more than) enough to properly color such

vertices.

Denote by W the set of all so-far uncolored vertices of R. A vertex in W is

the corner of at most two rectangles, thus has degree at most six in the graph

G. Let W ′ ⊂W be the set of vertices of degree 6. A vertex x ∈W ′ must be the

corner of exactly two rectangles that do not share a second corner. Hence x has

two neighbors lying on a common line segment starting from x (see Figure 18).

Denote the closer one of these two neighbors by y. Observe that y must be the

corner of exactly two rectangles. Now for every such pair x and y direct the edge

xy in G from x to y. Note that this procedure will never direct y to x. Thus all

vertices in W ′ have outdegree exactly one.

Let us �rst color the vertices of W ′ with indegree zero. Let x ∈ W ′ be a

vertex with indegree zero. The vertex x has outdegree one, so x has an uncolored

neighbor, thus there is an available color for x. Color x with an available color and

remove x from W ′. Repeat this step until no vertex with indegree zero remains
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in W ′. Now every vertex in W ′ has outdegree and indegree equal to 1. Therefore

the remaining vertices of W ′ can be partitioned into directed cycles. The vertices

on a directed cycle in W ′ have at most 4 previously colored neighbors, so each

vertex has a list of at least two available colors.

If we examine these cycles in R it is clear that the edges must alternate between

vertical and horizontal orientation. Thus these directed cycles are of even length.

The list-chromatic number of an even cycle is 2, hence each cycle can be colored

properly. Now all vertices in W ′ are colored. The remaining uncolored vertices

in G are the vertices of W −W ′. These vertices have degree at most 5 and thus

all have an available color.

4.2 Polychromatic colorings of n-dimensional guillotine-

partitions

In this section our aim is to prove the following theorem.

Theorem 4.11. There is a strong hyperbox-respecting coloring of any n-dimen-

sional guillotine-partition.

Note that the theorem is about partitions where no more than 2 hyperboxes

are allowed to meet at a common corner. First we start with some de�nitions

to be able to phrase the theorem we will actually prove, implying Theorem 4.11.

We begin by introducing some notations. From now on x = (x1, x2, . . . , xn),

y, z,a,b, c,d, etc. always refer to some n-long 0-1 vector. We de�ne the sum of

two such vectors (denoted simply by +) as summing independently all coordinates

mod 2. The (0, 0, . . . , 0) vector is denoted by 0 and the vector (1, 0, 0, . . . , 0) by

e1. A face is always an (n − 1)-dimensional face of a hyperbox. Fix now the

unit hyperbox, the 0-1 vectors being its corners. First we de�ne the forthcoming

notions only for this hyperbox. For some �xed x 6= 0 we de�ne the re�ection Rx

being the function on the set of corners for which Rx(y) = x + y for all y. It is
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indeed a re�ection on an (n− k)-dimensional hyper-plane where k is the number

of 1's in x. Observe that Rx(Rx(y)) = y for any y.

We say that a coloring of the corners of the hyperbox is an Rx-coloring (x 6= 0) if

two corners y and z have the same colors if and only if Rx(y) = z (or equivalently

Rx(z) = y). Observe that such a coloring will have 2n−1 di�erent colors appearing

on the corners of the hyperbox, each occuring twice. Further, we say that the

coloring of the corners is an R0-coloring if all corners are colored di�erently. Note

that for any x, permuting the colors of an Rx-coloring gives another Rx-coloring.

Given now an arbitrary axis-parallel hyperbox B, the unit hypercube can be

uniquely scaled (with positive coe�cients) and translated into B. Denote this

transformation by C (depends on B). The function C maps the 0-1 vectors (i.e.

the corners of the unit hypercube) onto the corners of B, thus the set of corners

of B are the set of C(y)'s (B and y given, C(y) uniquely denotes one of B's

corners). By this bijection an Rx-coloring can be analogously de�ned on this

hyperbox, thus on an arbitrary hyperbox.

From now on we will always restrict ourselves to these kinds of colorings. Further,

when we speak about a coloring of some partitioned hyperbox then it will be

always a hyperbox-respecting coloring. If any pair of such colorings could be

put together along any axes to form another such coloring then it would already

imply a recursive proof for the main theorem. As this is not the case we have to

be more precise about our freedom of how to color a partition, making necessary

to de�ne sets of such colorings.

For any x 6= 0 Sx is de�ned as the union of all Ry's for which x ·y = 1 (the scalar

product of x and y mod 2). S0 is the one element set of R0. If for some x 6= 0

for all y ∈ Sx the hyperbox partition has a strong hyperbox-respecting coloring

which is an Ry-coloring on its corners, we say that the hyperbox partition can

be colored by the color-range Sx. If it has a strong hyperbox-respecting coloring

which is an R0-coloring on its corners, we say that the hyperbox partiton can be
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colored by the (one element) color-range S0.

We will prove the following theorem, which implies Theorem 4.11.

Theorem 4.12. Any n-dimensional guillotine-partition can be colored by some

color-range.

Proof. We proceed by induction on the number of guillotine-cuts of the partiton.

The corners of a hyperbox containing only one basic hyperbox (i.e. the partition

has 0 cuts) can be colored trivially with all di�erent colors, thus colorable by

color-range S0. In the general step we take a cut of the hyperbox B splitting it

into two hyperboxes B1 and B2 with smaller number of cuts in them. Thus, by

induction they can be colored by some color-ranges Sx and Sy for some x and

y. We need to prove that there exists a z for which our hyperbox partition can

be colored by Sz. First we prove this for the case when the cut is orthogonal

to the �rst axis. Finally, we will prove that as the de�nition of R's and S's is

symmetrical on every pair of axes, the claim follows for any kind of cut.

We regard the �rst axis (the one which corresponds to the �rst coordinate of

points) as the usual x-axis, and so we can say that an object (corner, face, hy-

perbox etc.) is left from another if its �rst coordinates are smaller or equal than

the other's (B1 is left from B2 for example). Similarly we can say right when its

coordinates are bigger or equal than the other's.

We always do the following. Take an Ra ∈ Sx and Rb ∈ Sy and take a color-

ing of B1 which is an Ra-coloring on its corners and a coloring of B2 which is

an Rb-coloring on its corners by induction such that the colors of the corners

which should �t together (the right face of B1 and the left face of B2) have the

same colors at the corners which will be identi�ed. This is not always possible

but when it is, it gives a coloring of B (the corners on the left face of B1 and

on the right face of B2 are the corners of B). Note that we can permute the

colors on the two hyperboxes in order to achieve such a �t of the colors. Clearly,

the resulting coloring of B is a hyperbox-respecting coloring by induction. If
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Figure 19: Example to Lemma 4.13(c): R010 ·R010→R010

the resulting coloring can be an Rc-coloring on the corners for some c then we

write Ra · Rb→Rc. See Figure 19 and 20 for examples for 3 dimensions. The

de�nition of → is good as the existence of such a �t depends only on the color

of the corners. Observe that this operation is not commutative by de�nition and

can hold for more than one c and has the hidden parameter that we put them

together along the �rst axis (i.e. the two partitions are put together by the face

which is orthogonal to the �rst axis). As we remarked earlier, if for any a and b

there would be a c with Ra ·Rb→Rc then it would be enough to prove the main

theorem by induction without de�ning color-ranges. As this is not the case we

need to deal with color-ranges and de�ne the function → on them as well.

We write Sx ·Sy→Sz if ∀Rc ∈ Sz ∃Ra ∈ Sx and Rb ∈ Sy such that Ra ·Rb→Rc.

Clearly, we need to prove that there exists such a z for any choice of x and y

that Sx · Sy→Sz. Lemma 4.14 states this. For the proof of this lemma we will

�rst need to prove Lemma 4.13 about the behaviour of → for R's.

Finally, we need to prove that we can put together color-ranges along any axis.

One can argue that we can obviously do that as the de�nition of color-ranges is

symmetrical on any pair of coordinates and because of that analogs of Lemma

4.13 and Lemma 4.14 are true for an arbitrary axis. For a more rigorous argument

see Lemma 5.7 and its proof in the Appendix.

Lemma 4.13 (�tting together colorings). For a,b, c 6= 0 we have

(a) R0 ·R0→Rc, if the �rst coordinate of c is 1,

(b) Ra ·R0→R0 and R0 ·Ra→R0, if the �rst coordinate of a is 1,
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Figure 20: Example to Lemma 4.13(d): R110 ·R101→R111

(c) Ra ·Ra→Ra, if the �rst coordinate of a is 0,

(d) Ra ·Rb→Rc, if the �rst coordinate of a and b is 1 and c = a + b + e1.

Proof. (a) Take an arbitrary c with its �rst coordinate being 1. For an Rc-

coloring each color appearing on the corners of the hyperbox appears once on its

left and once on its right face. We want to �t together two R0-colorings to have

an Rc-coloring. Take an arbitrary R0-coloring of B1. Take an R0-coloring of B2

and permute its colors such that the corners on its left face �t together with the

corners on the right face of B1. Now the set of colors on the right face of B2 is

the same set of colors as on the left face of B1. After a possible permutation of

these colors on B2 we can get an Rc-coloring on B.

(b) Take an Ra-coloring of B1 and an R0-coloring of B2, permute the colors on

B2 such that the needed faces �t together. This can be done as Ra does not have

a color appearing twice on its right face. As on B1's left face the same set of

colors appear as on its right face, B has all the colors of B2's coloring appearing

on its corners, thus it is an R0-coloring of B. The proof for the other claim is

similar.

(c) Take an Ra-coloring of B1. Take an Ra-coloring of B2 and permute the colors

on it such that the corners on its left face �t together with the corners on the

right face of B1 and on its right face all colors are di�erent from the ones we

used to color the corners of B1. This can be done as both are Ra-colorings where

the �rst coordinate of a is 0, so on the common face the same pair of corners

need to have the same color. Similarly, we see that these �t together to form an
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Ra-coloring of B. For an illustration for 3 dimensions see Figure 19.

(d) Take an Ra-coloring of B1. Take an Rb-coloring of B2 and permute again

the colors such that the corners on its left face �t together with the corners on

the right face of B1. This can be done as the corners on the right face of B1 all

have di�erent colors and this is what we need on the left face of B2 to make an

Rb coloring (as the �rst coordinate of a and b is 1). Now it is enough to see that

the resulting coloring of B is an Rc coloring with c = a + b + e1 (recall that

e1 is the vector with all-0 coordinates except the �rst coordinate being 1). Take

an arbitrary corner on its left face, C(d) (thus d has �rst coordinate 0). In the

coloring of B1 its pair (the corner with the same color) is C(d + a). This is on

the right face of B1, and so it is �tted together with the corner C(d + a + e1) of

B2 on B2's left face. By the Rb-coloring of B2 the corner C(d + a + e1 + b) has

the same color. This is also the C(d + a + e1 + b) corner of B. This holds for

any corner of B on its left side and symmetrically on its right side as well, and so

this is indeed an Rc-coloring of B. For an illustration for 3 dimensions see Figure

20.

Lemma 4.14 (�tting together color-ranges). For x,x′,y 6= 0 we have

(a) S0 · S0→Se1 ,

(b) Sx · S0→S0 and S0 · Sx→S0,

(c) Sx · Sy→Se1 , if x and y di�er somewhere which is not the �rst coordinate,

(d) Sx · Sx→Sx′, if x′ is the same as x with the possible exception at the �rst

coordinate, which is 1 in x′.

(e) Sx·Sx′→Sx and Sx′ ·Sx→Sx, if x′ is the same as x except at the �rst coordinate,

which is 0 in x and 1 in x′.

Proof. Let us recall �rst that S0 is the one element set of R0 and for any x 6= 0

Sx is de�ned as the union of all Ry for which x · y = 1.
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(a) by Lemma 4.13(a) R0 ·R0→Rc for any c · e1 = 1.

(b) In Sx (x 6= 0) there is always an Ra where the �rst coordinate of a is 1. By

Lemma 4.13(b) Ra ·R0→R0. The proof for the other claim is similar.

(c) We need to prove that for any Rc ∈ Se1 (c · e1 = 1) there is an Ra ∈ Sx and

Rb ∈ Sy such that Ra ·Rb→Rc.

Suppose x and y di�er in the kth coordinate (k 6= 1). De�ne X as the set of

coordinates l where xl = 1, and Y the set of coordinates l where yl = 1. We want

to apply Lemma 4.13(d) which is symmetric on a and b and so we can suppose

that k /∈ X and k ∈ Y . The �rst coordinate of c is 1, so we choose a and b

having the �rst coordinate 1 as well. We need that a + b + e1 = c to be able

to apply Lemma 4.13(d). First de�ne the coordinates of a being in X all zero

except one (this is the �rst if 1 ∈ X, some other otherwise), thus by any choice

of the other coordinates we will have Ra ∈ Sx. Now de�ne the coordinates of

b being in X \ {1} such that al + bl = cl for all l ∈ X. De�ne the rest of the

coordinates of b such that b · y = 1, this can be done as we can choose the kth

coordinate as we want. Thus, Rb ∈ Sy as well. Finally, choose the coordinates

of a not in X such that al + bl = cl for all l /∈ X. This way a + b + e1 = c as

needed.

(d) We need to prove that for any Rc ∈ Sx′ there is an Ra ∈ Sx and Rb ∈ Sx

such that Ra ·Rb→Rc.

First we prove the case when the �rst coordinate of x is 1 and so x′ = x. For a c

with �rst coordinate 0 by Lemma 4.13(c) we have Rc ·Rc→Rc, all in Sx as needed.

For a c with �rst coordinate 1 take an arbitrary a with �rst coordinate 1 and

Ra ∈ Sx. Choose b such that a+b+e1 = c and so by Lemma 4.13(d) Ra ·Rb→Rc

holds. We need that Rb is in Sx, which is true as b · x = (a + c + e1) · x =

1 + 1 + 1 = 1.

Now we prove the case when the �rst coordinate of x is 0 and so x′ = x+e1. For a

c with �rst coordinate 0 by Lemma 4.13(c) we have Rc·Rc→Rc, all in Sx and in S′
x
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too (as for such a c we have c·x = c·x′ = 1). For a c with �rst coordinate 1 take an

arbitrary a with �rst coordinate 1 and Ra ∈ Sx. Choose b such that a+b+e1 = c

and so by Lemma 4.13(d) Ra ·Rb→Rc holds. We need that Rb is in Sx, which is

true as c ·x′ = 1, c ·e1 = 1 and so b ·x = (a+c+e1) ·x = 1+c ·(x′+e1)+0 = 1.

(e) For Sx · Sx′→Sx we need to prove that for any Rc ∈ Sx there is an Ra ∈ Sx

and Rb ∈ Sx′ such that Ra ·Rb→Rc.

For a c with �rst coordinate 0 by Lemma 4.13(c) we have Rc·Rc→Rc, all in Sx and

in S′
x too (as for such a c we have c ·x = c ·x′ = 1). For a c with �rst coordinate

1 take an arbitrary a with �rst coordinate 1 and Ra ∈ Sx. Again, choose b such

that a + b + e1 = c and so by Lemma 4.13(d) Ra ·Rb→Rc holds. We need that

Rb is in S′
x, which is true as b · x′ = (a + c + e1) · x′ = (a + c + e1) · (x + e1) =

a · x + c · x + e1 · x + a · e1 + c · e1 + e1 · e1 = 1 + 1 + 0 + 1 + 1 + 1 = 1.

As Lemma 4.13(d) is symmetric on a and b, Sx′ ·Sx→Sx follows the same way.

The Lemmas above conclude the proof of Theorem 4.12.

Assuming we know the cut-structure of the partition, the proof yields a simple

linear time algorithm (in the number of cuts, regarding the dimension n as a �xed

constant) to give a strong hyperbox-respecting coloring. First we determine the

color-ranges and then the colorings of the hyperboxes using the lemmas. We will

sketch how to do that.

First we construct the rooted binary tree with its root on the top representing

our guillotine-cuts (each node corresponds to a hyperbox, the leaves are the basic

boxes, the root is the original hyperbox). From bottom to top we can deter-

mine for each node v the unique s(v) for which the corresponding hyperbox will

have color-range Ss(v) (leaves have color-range S0, then it is easy to determine

the rest going upwards using Lemma 4.14). Now from top to bottom we can

give appropriate Ry-colorings to the hyperboxes. For the root w give arbitrary

Rr(w)-coloring with r(w) ∈ Ss(w). Then by induction if we gave an Rr(w)-coloring
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(rw ∈ Ss(w)) to some hyperbox corresponding to the node w with children u

and v then by Lemma 4.14 there exists r(u) ∈ Ss(u) and r(v) ∈ Ss(v) such that

an Rr(u) and an Rr(v) can be put together (at the appropriate face) to form an

Rr(w)-coloring. Such colorings can be found in the same way as in the proof of

Lemma 4.14. Thus, we can give such colorings to the hyperboxes corresponding

to u and v. Finishing the coloring this way the basic boxes will have R0-colorings,

i.e. the coloring will be a strong hyperbox-respecting coloring.

It is easy to see that using this algorithm any Sx color-range can appear with

appropriate cuts.

It was observed by D. Dimitrov and R. Skrekovski [19] using a double-counting ar-

gument that when a (not necessary guillotine) partition contains an odd number

of basic hyperboxes then a coloring of it must have all the corners colored di�er-

ently. From Lemma 4.13 one can easily deduce that when the partition contains

an odd number of basic hyperboxes then our algorithm will give an R0-coloring

thus having all corners colored di�erently indeed. Further it was also observed

that when a partition contains an even number of basic hyperboxes then all the

colors appear pair times on the corners of the hyperbox. In the even case our

algorithm will give an Ra-coloring with a 6= 0 thus having all colors appearing

zero times or twice on the corners.

As mentioned in the Introduction, the general case is solved in 2-dimensions, but

it is still unknown for which other dimensions can it hold.

Problem 4.15. For which n > 2 do exist a strong hyperbox-respecting coloring

of any n-dimensional partition.
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5 Concluding remarks

In this thesis we regarded three problems of combinatorial geometry, these are

con�ict-free colorings of point sets in the plane with few colors, polygonalizations

of point sets with few re�ex points and polychromatic colorings of points sets in

the plane and in higher dimensions. The �rst has roots in the topic of multiple

coverings of the plane and their decomposability, the second originates from the

classical problem of Erd®s and Szekeres about �nding big convex chains in planar

point sets and the last regards a natural coloring number of point sets, thus ha-

ving roots in the theory of chromatic numbers. Historically these topics are only

loosely connected, yet there are many similarities between the methods applied

during the proofs. The majority of the proofs gave e�cient algorithms.

In Chapter 2 by extending earlier de�nitions about cover-decomposability, con�ict-

free coloring number and geometric hypergraph coloring we de�ned the weak

con�ict-free coloring number and then solved many questions about it. We gave

complete answer about the weak con�ict-free coloring number of points wrt. bot-

tomless rectangles, solving the dual problem also. Further, we gave almost com-

plete answer for half-planes, again in the dual case as well. The cases of discs

and axis-parallel rectangles have still many open problems to answer.

In Chapter 3 we improved the earlier bound on the re�exivity of point sets sig-

ni�cantly utilizing a subdivision technique which may be used in other areas as

well. Besides the problem of improving further the upper or lower bounds, several

other relevant questions were posed.

In Chapter 4 we regarded the natural notion of polychromatic colorings of plane

graphs for the special case of rectangular partitions. First we proved that a rect-

angular partition always admits a polychromatic 4-coloring proving a stronger

statement, i.e. that it admits a strong rectangle-respecting 4-coloring as well.

Further, we regarded general rectangular partitions and among others we proved

that not all general partitions admit a polychromatic 4-coloring, yet they always
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admit a polychromatic 3-coloring. Generalizing these notions to higher dimen-

sions, we gave colorings in the strong sense with the highest possible number of

colors for n-dimensional guillotine partitions.
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Appendix

The re�exivity of point sets with at most 8 points

Lemma 5.4. Let S be a set of at most 8 points in the plane. Then ρ̄(S) ≤ 2.

Proof. Given a set of n points S′, the algorithm in the proof of Theorem 3.1 in [9]

generates a polygonalization of S′ with at most dnI/2e re�ex vertices, where nI

is the number of points in S′ that are internal points of CH (S′). Moreover,

this algorithm begins with �xing one edge of the boundary of CH (S′) (the edge

p0p1 in [9]'s notation), and one can observe that this edge is an edge of the

resulting polygonalization when the algorithm terminates. Therefore, it is enough

to consider the case in which |S| = 8 and the boundary of CH (S) is a triangle.

Let CHi (S) denote the ith layer in the �onion peeling� of S. More pre-

cisely, set CH0 (S) = CH (S), and let CHi (S) be the convex hull of S \ {p ∈

S | p is a vertex of the boundary of CHj (S) , 0 ≤ j < i}. We say that a point p

outside of CHi (S) sees a vertex q of the boundary of CHi (S) if the segment pq

does not cross CHi (S).

Assume that the �xed edge of the boundary of CH (S) is e = (A,B), such that

e is on the x-axis, A is left of B, and let C be the third vertex of the boundary

of CH (S). Consider the lines determined by C and each of the internal points.

Let p0 be the point that determines the line with smallest slope. Clearly, p0 is a

vertex of the boundary of CH1 (S). Let p1, p2, . . . , pk be the remaining vertices

of the boundary of CH1 (S) in a clockwise order around CH1 (S). Denote by pi

the point that determines (along with C) the line with the largest slope, and by

pl the lowest point in CH1 (S). (Note that it is possible that pl = p0 or pl = pi.)

The following two observations are easy.

Observation 5.5. The point A (resp., B) sees all the vertices on the boundary of

CH1 (S) along the clockwise (resp., counter-clockwise) chain from pl to pi (resp.,
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Figure 21: The case of 5 vertices on the boundary of CH1 (S)

p0).

Proof. Follows from convexity.

Observation 5.6. If i ≤ 3 then A sees p1 or B sees pi−1.

Proof. Since i ≤ 3 we have l ∈ {0, 1, i− 1, i}. If l ∈ {1, i− 1}, then, since both A

and B see pl we are done. Otherwise, suppose that l = 0. Then, by the previous

observation, A sees all the vertices on the clockwise chain from p0 to pi. Similarly,

B sees this chain in case l = i.

We proceed proving Lemma 3.5 by case analysis, based on the number of

vertices on the boundary of CH1 (S).

Case 1: There are 5 vertices on the boundary of CH1 (S). We consider two

subcases: (a) Suppose that i ≤ 3. Then by Observation 5.6 A sees p1 or B sees

pi−1. Assume, w.l.o.g., that B sees pi−1. Then we draw the desired polygon

as in Figure 21(a). (b) Suppose that i = 4. Then pl 6= p0 or pl 6= pi. As-

sume, w.l.o.g., that pl 6= pi. Then by Observation 5.5 A sees pl+1. The polygon

A pl+1 . . . pi C p0 . . . pl B A is the desired polygon (see Figure 21(b)).

Case 2: There are 4 vertices on the boundary of CH1 (S). Let q be the single

vertex on the boundary of CH2 (S). We consider the di�erent subcases, based

on the value of i. (a) Suppose i = 1. If Aq or Bq cross p0p1, then we can

draw the desired polygon as in Figure 22(a). Otherwise, A sees the vertex p2 of
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Figure 22: The case of 4 vertices on the boundary of CH1 (S)

the boundary of CH1 (S) (and B sees p3), and we can draw the polygon as in

Figure 22(b). (b) Suppose i = 2. The vertex p1 of the pentagon A B p0 p1 p2 is

re�ex. Thus at most one of the vertices p0 and p2 of this pentagon is re�ex (a

pentagon has at most two re�ex vertices). Assume, w.l.o.g., ∠p1p2A is less than

π, then we can draw the polygon as in Figure 22(c). (c) Suppose i = 3. Then

at most one of vertices p1 and p2 of the quadrangle B p1 p2 A is re�ex. Assume,

w.l.o.g., that ∠p1p2A is less than π. Then we draw the polygon as in Figure 22(d).

(Note that if A does not see p2, then p3 is below the segment Ap2 and therefore

∠p1p2A is greater than π.)

Case 3: There are 3 vertices on the boundary of CH1 (S). If i = 2 then by

Observation 5.6 A or B sees p1. If i = 1, then A and B sees p0 or p1. Hence,

A sees pi−1 or B sees p1. We assume, w.l.o.g., that A sees pi−1. Then we have

the chain pi C B A pi−1. It remains to connect pi−1 to pi through pi+1 (addition

is modulo 3) and the two vertices q1, q2 of the boundary of CH2 (S). Let q1 be

the point such that ∠pi−1pi+1q1 < ∠pi−1pi+1q2. Then the chain pi−1 q1 pi+1 q2 pi
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Figure 23: The case of 3 vertices on the boundary of CH1 (S)

completes the desired polygon (see Figure 23).

Putting together color-ranges along a general axis

De�ne ◦i as the function on the 0-1 vectors which exchanges the �rst and the

ith coordinates, i.e. for a vector x the vector xi has the same coordinates except

that xi
1 = xi and xi

i = x1 (thus ◦ii is the identity and ◦i is a bijection). For

vectors corresponding to corners of a hyperbox this is a re�ection on an (n− 1)-

dimensional hyper-plane going through the corners having the same �rst and ith

coordinate. Clearly, applying ◦i on an Rx-coloring of the corners we get an Rxi-

coloring of the corners. Lemma 5.7 states that the color-ranges Sx and Sy can

be put together along the ith axis to give the color-range Sz if the color-ranges

Sxi and Syi can be put together along the �rst axis to give the color range Szi .

We have seen this can be done for any xi and yi with some zi, thus �tting along

any other axis is also possible.

Lemma 5.7 (�tting together along a general axis). If the color-ranges Sxi

and Syi can be put together along the �rst axis to give the color range Szi then

the color-ranges Sx and Sy can be put together along the ith axis to give the

color-range Sx.

Proof. First we prove that if Rai · Rbi→Rci for some c then an appropriate

Ra-coloring and Rb-coloring can be put together by the ith axis to form an Rc-

coloring. For that take an Rai-coloring and an Rbi-coloring which �t together

along the �rst axis to form an Rci-coloring. Apply ◦i on these colorings. The
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original ones had the same colors on the pair of corners C(v) on the �rst one

and C(v + e1) on the second one for arbitrary v having �rst coordinate 1. Thus

after applying ◦i their images, the pair of corners C(w) and C(w + ei) (ei is the

vector with all-0 coordinates except the ith coordinate being 1), will have the

same colors for arbitrary w with ith coordinate 1 and so we can put together the

two colorings along the ith axis.

By assumption when putting together along the �rst axis, the result was an Rci-

coloring. If c = ci = 0 then it had all di�erent colors on its corners, thus the

same is true after applying ◦i and putting together along the ith axis, so the

result is indeed an Rc-coloring.

Otherwise if ci has �rst coordinate 0 then on the Rai-coloring the corners C(v)

and C(v + ci) had the same colors for any v with �rst coordinate 0 and on the

Rbi-coloring the corners C(w) and C(w+ci) had the same colors for any w with

�rst coordinate 1. Thus after applying ◦i, the corners C(v) and C(v + c) of the

Ra-coloring have the same colors for any v with ith coordinate 0 and the corners

C(w) and C(w + c) of the Rb-coloring have the same colors for any w with ith

coordinate 1. As in this case the ith coordinate of c is 0, the resulting coloring

after �tting these two together along the ith axis is indeed an Rc-coloring.

If ci has �rst coordinate 1 then the corner C(v) of the Rai-coloring and the corner

C(v + ci) of the Rbi-coloring had the same color for any v with �rst coordinate

0. Thus after applying ◦i, the corners C(v) of the Ra-coloring and the corner

C(v + c) of the Rb-coloring have the same colors for any v with ith coordinate

0. Putting these together along the ith axis gives indeed an Rc-coloring.

Finally, back to the hyperboxes colorable with color-ranges Sx and Sy which

need to be put together along the ith axis, applying xi on all the colorings of Sx

we get Sxi and similarly from Sy we get the color-range Syi and we can put these

together by the �rst axis to get the color-range Szi for some z and so Sx and Sy

can be put together by the ith axis to get the color-range Sz.
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