Balázs Keszegh


Address

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
H-1053 Budapest, Reáltanoda u. 13-15.

e-mail: keszegh @ renyi . hu
Curriculum Vitae

arXiv

Google Scholar

ResearchGate

Publications [sort by topic]

◼ 41. D. Gerbner, B. Keszegh, A. Methuku, B. Patkós, M. Vizer: An improvement on the maximum number of k-Dominating Independent Sets, arXiv

◼ 40. D. Gerbner, B. Keszegh, B. Patkós: Generalized forbidden subposet problems, arXiv

◼ 39. B. Keszegh, D. Pálvölgyi: Proper Coloring of Geometric Hypergraphs, SoCG 2017, accepted, arXiv

◼ 38. D. Gerbner, B. Keszegh, C. Palmer, B. Patkós: On the number of cycles in a graph with restricted cycle lengths, SIAM J. Discrete Math., accepted, arXiv

◼ 37. D. Gerbner, B. Keszegh, G. Mészáros, B. Patkós and M. Vizer: Line Percolation in Finite Projective Planes, SIAM J. Discrete Math., accepted, arXiv

◼ 36. E. Ackerman, B. Keszegh, M. Vizer: Coloring points with respect to squares, Discrete and Computational Geometry, DOI: 10.1007/s00454-017-9902-y; Proceedings of SoCG 2016, LIPIcs 51 (2016), 5:1-5:16., arXiv

◼ 35. E. Ackerman, B. Keszegh, M. Vizer: On the size of planarly connected crossing graphs, Journal of Graph Algorithms and Applications, Special Issue on Graph Drawing Beyond Planarity, accepted; Proceedings of Graph Drawing 2016, Lecture Notes in Computer Science 9801 (2016), 311-320., arXiv

◼ 34. E. Győri, B. Keszegh: On the number of edge-disjoint triangles in K4-free graphs, Combinatorica, DOI:10.1007/s00493-016-3500-0, arXiv

◼ 33. D. Gerbner, B. Keszegh, D. Pálvölgyi, B. Patkós, G. Wiener and M. Vizer: Finding a majority ball with majority answers, Discrete Applied Mathematics, 219(11) (2017), 18-31.; Proceedings of Eurocomb 2015, Electronic Notes in Discrete Mathematics 49 (2015), 345-351., arXiv

◼ 32. B. Keszegh, D. Pálvölgyi: More on Decomposing Coverings by Octants, Journal of Computational Geometry 6(1) (2015), 300-315., arXiv

◼ 31. B. Keszegh, X. Zhu: Choosability and paintability of the lexicographic product of graphs, Discrete Applied Mathematics 223(31) (2017), 84-90., arXiv

◼ 30. B. Keszegh, D. Pálvölgyi: An abstract approach to polychromatic coloring: shallow hitting sets in ABA-free hypergraphs and pseudohalfplanes, Proceedings of Graph-Theoretic Concepts in Computer Science - WG 2015, Lecture Notes in Computer Science 9224 (2016), 266-280., arXiv

◼ 29. R. Ben-Avraham, M. Henze, R. Jaume, B. Keszegh, O. E. Raz, M. Sharir, I. Tubis: Partial-Matching RMS Distance Under Translation: Combinatorics and Algorithms, Algorithmica, DOI:10.1007/s00453-017-0326-0; 22nd European Symposium on Algorithms - ESA 2014, Lecture Notes in Computer Science 8737 (2014), 100-111., arXiv
Preliminary version: M. Henze, R. Jaume, B. Keszegh: On the complexity of the partial least-squares matching Voronoi diagram, EuroCG 2013 (2013), 193-196.

◼ 28. A. Asinowski, B. Keszegh, T. Miltzow: Counting Houses of Pareto Optimal Matchings in the House Allocation Problem, Discrete Mathematics 339(12) (2016), 2919-2932.; Seventh International Conference on Fun with Algorithms (FUN 2014), Lecture Notes in Computer Science 8496 (2014), 301-312., arXiv

◼ 27. F. Cicalese, B. Keszegh, B. Lidicky, D. Pálvölgyi, T. Valla: On the Tree Search Problem with Non-uniform Costs, Theoretical Computer Science 647(27) (2016), 22-32.; Proceedings of Graph-Theoretic Concepts in Computer Science - WG 2015, Lecture Notes in Computer Science 9224 (2016), 90-102., arXiv

◼ 26. B. Keszegh: Covering Paths and Trees for Planar Grids, Geombinatorics Quarterly 24(1) (2014), 1-5.; EuroCG 2014 (2014), arXiv

◼ 25. D. Gerbner, B. Keszegh, C. Palmer, D. Pálvölgyi: Topological orderings of weighted directed acyclic graphs, Information Processing Letters 116(9) (2016), 564-568., arXiv

◼ 24. B. Keszegh, D. Pálvölgyi: Convex Polygons are Self-Coverable, Discrete and Computational Geometry 51(4) (2014), 885-895., arXiv

◼ 23. A. Dumitrescu, D. Gerbner, B. Keszegh, Cs. D. Tóth: Covering Paths for Planar Point Sets, Discrete and Computational Geometry 51(2) (2014), 462-484.; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2013), arXiv

◼ 22. D. Gerbner, B. Keszegh, D. Pálvölgyi, G. Rote, G. Wiener: Search for the end of a path in the d-dimensional grid and in other graphs, Ars Mathematica Contemporanea, 12(2) (2017), 301-314., arXiv

◼ 21. B. Keszegh, B. Patkós and X. Zhu: Nonrepetitive colorings of lexicographic product of paths and other graphs, Discrete Mathematics and Theoretical Computer Science (DMTCS) 16 (2), PRIMA special issue (2014), 97-110., arXiv

◼ 20. B. Keszegh, D. Pálvölgyi: Octants are Cover Decomposable into Many Coverings, Computational Geometry: Theory and Applications 47(5) (2014), 585-588., arXiv

◼ 19. B. Keszegh, N. Lemons and D. Pálvölgyi: Online and quasi-online colorings of wedges and intervals, Order 33(3) (2016), 389-409.; SOFSEM 2013: Theory and Practice of Computer Science, Lecture Notes in Computer Science 7741 (2013), 292-306., arXiv

◼ 18. D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, B. Patkós and D. Pálvölgyi: Saturating Sperner families, Graphs and Combinatorics 29(5) (2012), 1355-1364.; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2011), 341-350., arXiv

◼ 17. B. Keszegh, D. Pálvölgyi: Octants are Cover Decomposable, Discrete and Computational Geometry, 47(3), Springer (2012) 598-609.; EuroComb 2011 Proceedings, Electronic Notes in Discrete Mathematics 38 (2011), 499-504., arXiv

◼ 16. D. Gerbner, B. Keszegh: Path-search in a pyramid and in other graphs, Journal of Statistical Theory and Practice 6(2), (2012), 303-314.; ZiF Workshop Search Methodologies II, Bielefeld (2010), arXiv

◼ 15. B. Keszegh, J. Pach and D. Pálvölgyi: Drawing planar graphs of bounded degree with few slopes, SIAM J. Discrete Math., 27(2) (2013), 1171–1183.; Graph Drawing 2010, Lecture Notes in Computer Science 6502, Springer (2011), 293-304., arXiv

◼ 14. D. Gerbner, B. Keszegh, D. Pálvölgyi and G. Wiener: Density-based group testing, In: Information Theory, Combinatorics, and Search Theory - In Memory of Rudolf Ahlswede, Lecture Notes in Computer Science 7777 (2013), 543-556.
Conference version: Search with density tests, Coimbra Meeting on 0-1 Matrix Theory and Related, Coimbra (2010); ZiF Workshop Search Methodologies II, Bielefeld (2010), arXiv

◼ 13. P. Cheilaris, B. Keszegh, and D. Pálvölgyi: Unique-maximum and conflict-free colorings for hypergraphs and tree graphs, SIAM J. Discrete Math., 27(4) (2013), 1775–1787; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2011), 207-216.; SOFSEM 2012, 190-201., arXiv

◼ 12. K. Arikushi, R. Fulek, B. Keszegh, F. Moric and Cs. D. Tóth: Graphs that Admit Right Angle Crossing Drawings, Computational Geometry: Theory and Applications (2012), 45 (4), 169-177.; 36th International Workshop on Graph Theoretic Concepts in Computer Science, Zarós (2010), Lecture Notes in Computer Science 6410, Springer (2010), 135-146., arXiv

◼ 11. R. Fulek, B. Keszegh, F. Moric and I. Uljarevic: On polygons excluding point sets, Graphs and Combinatorics, 29(6), 1741-1753. (2013); The 22th Canadian Conference on Computational Geometry (CCCG10) Proceedings (2010), 273-276., arXiv

◼ 10. D. Gerbner, B. Keszegh, and C. Palmer: Generalizations of the Tree Packing Conjecture, Discussiones Mathematicae Graph Theory 32 (3) (2012), 569-582.; 8th French Combinatorial Conference, Paris (2010), arXiv

◼ 9. B. Keszegh: Combinatorial and computational problems about points in the plane (PhD Dissertation, supervisors: E. Győri and G. Tardos), 2009, Central European Univesity, Department of Mathematics and its Applications, pdf

◼ 8. D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, B. Patkós and D. Pálvölgyi: Polychromatic colorings of arbitrary rectangular partitions, Discrete Mathematics, 310(1), Elsevier (2010), 21-30.; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (2009), pdf

◼ 7. B. Keszegh: Box-respecting Colorings of n-dimensional Guillotine-Partitions, Discrete Mathematics, 311(8-9), Elsevier (2011), 756-760. Conference version: Polychromatic colorings of n-dimensional guillotine-partitions, The 14th Annual International Computing and Combinatorics Conference (COCOON08) Proceedings, 110-118., pdf

◼ 6. E. Ackerman and O. Aichholzer, B. Keszegh: Improved upper bounds on the reflexivity of point sets, Computational Geometry: Theory and Applications, 42(3), Elsevier (2009), 241-249.; The 19th Canadian Conference on Computational Geometry (CCCG07) Proceedings, 29-32., pdf

◼ 5. B. Keszegh: Coloring half-planes and bottomless rectangles, Computational Geometry: Theory and Applications, 45(9), Elsevier (2012), 495–507., arXiv
Conference version: Weak conflict free colorings of point sets and simple regions, The 19th Canadian Conference on Computational Geometry (CCCG07), Proceedings (2007), 97-100., pdf

◼ 4. B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth: Cubic graphs have bounded slope parameter, Journal of Graph Algorithms and Applications 14(1), (2010) 5-17.; Graph Drawing 2008, pdf

◼ 3. B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth: Drawing cubic graphs with at most five slopes, Computational Geometry: Theory and Applications 40(2), Elsevier (2008), 138-147.; Graph Drawing 2006, pdf

◼ 2. B. Keszegh: On linear forbidden submatrices, Journal of Combinatorial Theory, Series A, 116, Elsevier (2009), 232-241., pdf

◼ 1. B. Keszegh: Forbidden submatrices in 0-1 matrices (Master's Thesis, supervisor: G. Tardos), 2005, Eötvös Loránd University, Budapest, Faculty of Science, pdf