Tube-null sets

Viktor Harangi

Tube-null sets

Tube-null sets

Tube: the r-neighbourhood of a straight line $I \subset \mathbb{R}^{d}$.

Tube-null sets

Tube: the r-neighbourhood of a straight line $I \subset \mathbb{R}^{d}$. In the plane: tube $=$ strip.

Tube-null sets

Tube: the r-neighbourhood of a straight line $I \subset \mathbb{R}^{d}$.
In the plane: tube $=$ strip.
$w(T)$ denotes the width of a strip T.

Tube-null sets

Tube: the r-neighbourhood of a straight line $I \subset \mathbb{R}^{d}$.
In the plane: tube $=$ strip.
$w(T)$ denotes the width of a strip T.

Definition

A set $E \subset \mathbb{R}^{2}$ is said to be tube-null if it can be covered by strips of arbitrarily small total width.

Tube-null sets

Tube: the r-neighbourhood of a straight line $I \subset \mathbb{R}^{d}$.
In the plane: tube $=$ strip.
$w(T)$ denotes the width of a strip T.

Definition

A set $E \subset \mathbb{R}^{2}$ is said to be tube-null if it can be covered by strips of arbitrarily small total width.
That is, for all $\varepsilon>0$ there exist strips T_{1}, T_{2}, \ldots such that

$$
E \subset \bigcup_{i=1}^{\infty} T_{i} \quad \text { and } \quad \sum_{i=1}^{\infty} w\left(T_{i}\right)<\varepsilon
$$

Tube-null sets

Tube: the r-neighbourhood of a straight line $I \subset \mathbb{R}^{d}$.
In the plane: tube $=$ strip.
$w(T)$ denotes the width of a strip T.

Definition

A set $E \subset \mathbb{R}^{2}$ is said to be tube-null if it can be covered by strips of arbitrarily small total width.
That is, for all $\varepsilon>0$ there exist strips T_{1}, T_{2}, \ldots such that

$$
E \subset \bigcup_{i=1}^{\infty} T_{i} \quad \text { and } \quad \sum_{i=1}^{\infty} w\left(T_{i}\right)<\varepsilon
$$

The study of tube-null sets was initiated by Carbery, Soria és Vargas in connection with the divergence sets of the localisation problem.

Simple observations

- A tube-null set has Lebesgue measure 0 .

Simple observations

- A tube-null set has Lebesgue measure 0 .
- If a set $E \subset \mathbb{R}^{2}$ has a zero measure projection to a line, then E is clearly tube-null.
In particular: purely unrectifiable 1 -sets are tube-null.

Simple observations

- A tube-null set has Lebesgue measure 0 .
- If a set $E \subset \mathbb{R}^{2}$ has a zero measure projection to a line, then E is clearly tube-null.
In particular: purely unrectifiable 1 -sets are tube-null.
- Every set of σ-finite \mathcal{H}^{1}-measure is tube-null.

Simple observations

- A tube-null set has Lebesgue measure 0 .
- If a set $E \subset \mathbb{R}^{2}$ has a zero measure projection to a line, then E is clearly tube-null.
In particular: purely unrectifiable 1 -sets are tube-null.
- Every set of σ-finite \mathcal{H}^{1}-measure is tube-null.
- For a set $H \subset[1,2]$ let $E_{H}=\left\{x \in \mathbb{R}^{2}:|x| \in H\right\}$.

- $\operatorname{dim}(H)<1 / 2 \Rightarrow E_{H}$ is tube-null.
- $\operatorname{dim}(H)>1 / 2 \Rightarrow E_{H}$ is not tube-null.

How can one prove that a set is not tube-null?

How can one prove that a set is not tube-null?

One possible method

To construct a measure μ concentrated on E such that

- $\mu(E)>0$;
- there exists a constant $C \in \mathbb{R}^{+}$such that for any strip T

$$
\mu(T \cap E) \leq C \cdot w(T)
$$

How can one prove that a set is not tube-null?

One possible method

To construct a measure μ concentrated on E such that

- $\mu(E)>0$;
- there exists a constant $C \in \mathbb{R}^{+}$such that for any strip T

$$
\mu(T \cap E) \leq C \cdot w(T)
$$

That is: if we project μ to any line, then we should get an absolutely continuous measure with Radon-Nikodym derivative bounded by C.

How can one prove that a set is not tube-null?

The only known method
To construct a measure μ concentrated on E such that

- $\mu(E)>0$;
- there exists a constant $C \in \mathbb{R}^{+}$such that for any strip T

$$
\mu(T \cap E) \leq C \cdot w(T)
$$

That is: if we project μ to any line, then we should get an absolutely continuous measure with Radon-Nikodym derivative bounded by C.

How can one prove that a set is not tube-null?

The only known method
To construct a measure μ concentrated on E such that

- $\mu(E)>0$;
- there exists a constant $C \in \mathbb{R}^{+}$such that for any strip T

$$
\mu(T \cap E) \leq C \cdot w(T)
$$

That is: if we project μ to any line, then we should get an absolutely continuous measure with Radon-Nikodym derivative bounded by C.

Question: is there such a measure for any set E that is not tube-null?

Fractal percolations

Fractal percolations

Fractal percolations

Fractal percolations

Fractal percolations

Shmerkin, Suomala
There exist sets of Hausdorff-dimension 1 that are not tube-null.

The Koch snowflake curve

For many concrete fractals it is hard to tell if they are tube-null.

The Koch snowflake curve

The Koch snowflake curve

The Koch snowflake curve

The Koch snowflake curve

The Koch snowflake curve

The Koch snowflake curve

The Koch snowflake curve

Question by M. Csörnyei: Is the snowflake curve tube-null?

The Koch snowflake curve

Question by M. Csörnyei: Is the snowflake curve tube-null?

Theorem

The snowflake curve is tube-null, that is, it can be covered by strips of arbitrarily small total width.

The Koch snowflake curve

Question by M. Csörnyei: Is the snowflake curve tube-null?

Theorem

The snowflake curve is tube-null, that is, it can be covered by strips of arbitrarily small total width.
Moreover, the snowflake curve K has a decomposition $K=K_{0} \cup K_{1} \cup K_{2}$ with corresponding projections $\pi_{0}, \pi_{1}, \pi_{2}$ such that the Hausdorff dimension of $\pi_{i}\left(K_{i}\right)$ is less than 1 for each $i=0,1,2$.

What we will need for the proof:

What we will need for the proof: three Pac-Men :-)

What we will need for the proof: three Pac-Men :-)

What we will need for the proof: three Pac-Men :-)

asccacc9c9arcaas92

What we will need for the proof: three Pac-Men :-)

asccacceceaacaas28

$$
\rightarrow 02002
$$

What is the probability of survival?

What is the probability of survival?

If it's less than $1 / 3$, then the snowflake curve is tube-null!

What is the probability of survival?
If it's less than $1 / 3$, then the snowflake curve is tube-null!

Covering numbers

Covering numbers

Strips with large covering number

Strips with large covering number

We are greedy: we use strips with large covering numbers.

Strips with large covering number

We are greedy: we use strips with large covering numbers. We need: every piece is covered by such a strip.

Strips with large covering number

We are greedy: we use strips with large covering numbers.
We need: every piece is covered by such a strip.

Proposition

Take a level- n piece and the three level- n strips going through this piece. The product of their covering numbers is at least 2^{n}.

Strips with large covering number

We are greedy: we use strips with large covering numbers.
We need: every piece is covered by such a strip.

Proposition

Take a level- n piece and the three level- n strips going through this piece. The product of their covering numbers is at least 2^{n}.
Proof: By induction. We can consider the level- n piece as a level- $(n-1)$ piece of one of the level-1 pieces. In this level-1 piece the product of the covering numbers is at least 2^{n-1} by induction. However, the covering number of the horizontal strip is at least twice as large in the whole curve.

Strips with large covering number

We are greedy: we use strips with large covering numbers.
We need: every piece is covered by such a strip.

Proposition

Take a level- n piece and the three level- n strips going through this piece. The product of their covering numbers is at least 2^{n}.
Proof: By induction. We can consider the level- n piece as a level- $(n-1)$ piece of one of the level-1 pieces. In this level-1 piece the product of the covering numbers is at least 2^{n-1} by induction. However, the covering number of the horizontal strip is at least twice as large in the whole curve.

Corollary

It holds for every level- n piece that one of the three level- n strips going through it has covering number at least $2^{n / 3}$.

The greedy covering of the curve

The greedy covering of the curve

- We take all level- n strips with covering number at least $2^{n / 3}$.

The greedy covering of the curve

- We take all level- n strips with covering number at least $2^{n / 3}$.
- According to the Corollary, these strips cover K.

The greedy covering of the curve

- We take all level- n strips with covering number at least $2^{n / 3}$.
- According to the Corollary, these strips cover K.
- So it suffices to show that the number of such strips is small (compared to 3^{n}).

The greedy covering of the curve

- We take all level- n strips with covering number at least $2^{n / 3}$.
- According to the Corollary, these strips cover K.
- So it suffices to show that the number of such strips is small (compared to 3^{n}).
The width of a level- n strip is 3^{-n}, therefore it would follow that the total width is small as well.

The greedy covering of the curve

- We take all level- n strips with covering number at least $2^{n / 3}$.
- According to the Corollary, these strips cover K.
- So it suffices to show that the number of such strips is small (compared to 3^{n}).
The width of a level- n strip is 3^{-n}, therefore it would follow that the total width is small as well.
- BUT: how can we determine these covering numbers?

The different types of pieces

The different types of pieces

The different types of pieces

- Two orientations.

The different types of pieces

- Two orientations.
- Crossing and border pieces.

Covering vectors

To every piece we associate a covering vector (v_{1}, v_{2}):

- v_{1} : number of border pieces covered by the strip;
- v_{2} : number of crossing pieces covered by the strip.

Covering vectors

To every piece we associate a covering vector (v_{1}, v_{2}):

- v_{1} : number of border pieces covered by the strip;
- v_{2} : number of crossing pieces covered by the strip.

The covering vector of a strip determines the three next-level covering vectors!

Covering vectors

To every piece we associate a covering vector $\left(v_{1}, v_{2}\right)$:

- v_{1} : number of border pieces covered by the strip;
- v_{2} : number of crossing pieces covered by the strip.

The covering vector of a strip determines the three next-level covering vectors!

Proposition

A covering vector $\left(v_{1}, v_{2}\right)$ pruduces the following three covering vectors on the next level:

$$
\left(2 v_{1}, 2 v_{1}+v_{2}\right) ; \quad\left(0, v_{2}\right) ; \quad\left(v_{2}, v_{2}\right)
$$

Covering vectors

To every piece we associate a covering vector (v_{1}, v_{2}):

- v_{1} : number of border pieces covered by the strip;
- v_{2} : number of crossing pieces covered by the strip.

The covering vector of a strip determines the three next-level covering vectors!

Proposition

A covering vector $\left(v_{1}, v_{2}\right)$ pruduces the following three covering vectors on the next level:

$$
\left(2 v_{1}, 2 v_{1}+v_{2}\right) ; \quad\left(0, v_{2}\right) ; \quad\left(v_{2}, v_{2}\right)
$$

That is: the next-level covering vectors can be obtained by multiplying by the following 2×2 matrices from the right:

$$
A=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) ; \quad B=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) ; \quad C=\left(\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right)
$$

Determining covering numbers

Determining covering numbers

- We fix a direction and we take the level-0 strip in this direction.

Determining covering numbers

- We fix a direction and we take the level-0 strip in this direction.
- The covering vector \mathbf{v} of this strip is either $(1,0)$ or $(0,1)$.

Determining covering numbers

- We fix a direction and we take the level-0 strip in this direction.
- The covering vector \mathbf{v} of this strip is either $(1,0)$ or $(0,1)$.
- Then the covering numbers of the level- n strips:

$$
\mathbf{v} M_{1} M_{2} \cdots M_{n}\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{\mathrm{T}}
$$

where $M_{i} \in\{A, B, C\} ; i=1,2, \ldots, n$.

Computing the matrix products

Computing the matrix products

$$
\begin{aligned}
& \quad\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Computing the matrix products

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

$B A=B$

Computing the matrix products

$$
\begin{array}{rc}
\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

$$
B A=B \quad B B=B
$$

Computing the matrix products

$$
\left.\begin{array}{cc}
\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \\
B A=B & B B=B
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
$$

Computing the matrix products

$$
\begin{array}{r}
\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & \left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \\
0 & 1
\end{array}\right)
\end{array}\left(\begin{array}{ll}
0 & \left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
$$

$$
B A=B \quad B B=B \quad B C=C \quad C C=C
$$

Computing the matrix products

$$
\left.\left.\begin{array}{r}
\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
1
\end{array} \right\rvert\, \begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
$$

$$
B A=B \quad B B=B \quad B C=C \quad C C=C
$$

- So there will be a lot of cancellations, for example:

$$
B A A B A C=B C=C
$$

Computing the matrix products

$$
\left.\begin{array}{r}
\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \\
0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right)
$$

$$
B A=B \quad B B=B \quad B C=C \quad C C=C
$$

- So there will be a lot of cancellations, for example:

$$
B A A B A C=B C=C
$$

- After all possible cancellations we have:

$$
\text { (C) } A^{k_{1}} C A^{k_{2}} C \cdots C A^{k_{r}}(B \text { or } C) .
$$

Computing the matrix products

Computing the matrix products

$$
\text { - } A^{k}=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right)^{k}=\left(\begin{array}{cc}
2^{k} & 2^{k+1}-2 \\
0 & 1
\end{array}\right) \text { és } C A^{k}=\left(\begin{array}{cc}
0 & 0 \\
2^{k} & 2^{k+1}-1
\end{array}\right) \text {. }
$$

Computing the matrix products

- $A^{k}=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}2^{k} & 2^{k+1}-2 \\ 0 & 1\end{array}\right)$ és $C A^{k}=\left(\begin{array}{cc}0 & 0 \\ 2^{k} & 2^{k+1}-1\end{array}\right)$.
- It follows that the the sum of the elements in the product matrix is at most

$$
L \cdot 2^{\left(k_{1}+1\right)+\left(k_{2}+1\right)+\cdots+\left(k_{r}+1\right)} \leq 2^{c_{0}+\text { reduced_legth }}
$$

where L, c_{0} are absolute constants and reduced_length is the length of the product after all possible cancellations.

Computing the matrix products

- $A^{k}=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}2^{k} & 2^{k+1}-2 \\ 0 & 1\end{array}\right)$ és $C A^{k}=\left(\begin{array}{cc}0 & 0 \\ 2^{k} & 2^{k+1}-1\end{array}\right)$.
- It follows that the the sum of the elements in the product matrix is at most

$$
L \cdot 2^{\left(k_{1}+1\right)+\left(k_{2}+1\right)+\cdots+\left(k_{r}+1\right)} \leq 2^{c_{0}+\text { reduced_legth }}
$$

where L, c_{0} are absolute constants and reduced_length is the length of the product after all possible cancellations.

- Covering number: $\leq 2^{c_{0}+\text { reduced_length }}$.

New problem

New problem

- We forget that A, B, C denote matrices.

New problem

- We forget that A, B, C denote matrices.
- We simply take a random sequence of letters A, B, C (each letter is chosen independently and of uniform distribution).

New problem

- We forget that A, B, C denote matrices.
- We simply take a random sequence of letters A, B, C (each letter is chosen independently and of uniform distribution).
- We perform all possible cancellations according to the following rules: $B A=B ; B B=B ; B C=C ; C C=C$.

New problem

- We forget that A, B, C denote matrices.
- We simply take a random sequence of letters A, B, C (each letter is chosen independently and of uniform distribution).
- We perform all possible cancellations according to the following rules: $B A=B ; B B=B ; B C=C ; C C=C$.
- The reduced length of the sequence is the number of letters after the cancellations.

New problem

- We forget that A, B, C denote matrices.
- We simply take a random sequence of letters A, B, C (each letter is chosen independently and of uniform distribution).
- We perform all possible cancellations according to the following rules: $B A=B ; B B=B ; B C=C ; C C=C$.
- The reduced length of the sequence is the number of letters after the cancellations.
- We need: the reduced length of a random sequence of length n is less than $n / 3-c_{0}$.

New problem

- We forget that A, B, C denote matrices.
- We simply take a random sequence of letters A, B, C (each letter is chosen independently and of uniform distribution).
- We perform all possible cancellations according to the following rules: $B A=B ; B B=B ; B C=C ; C C=C$.
- The reduced length of the sequence is the number of letters after the cancellations.
- We need: the reduced length of a random sequence of length n is less than $n / 3-c_{0}$.

Proposition

There exists a constant $a<1$ such that
$\mathbf{P}\left(\right.$ the reduced length is at least $\left.n / 3-c_{0}\right)<a^{n}$.

The probabilities of survival

The probabilities of survival

The probabilities of survival

The probability of survival: $\frac{1}{3} \cdot\left(0+\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{18}<\frac{1}{3}$

References

風 V. H.,
The Koch snowflake curve is tube-null, Proc. Amer. Math. Soc. 139 (2011), 1375-1381.

R A. Carbery, F. Soria, A. Vargas,
Localisation and weighted inequalities for spherical Fourier means, Journal d'Analyse Mathématique 103 (2007) no. 1, 133-156.
回 M. Csörnyei, L. Wisewell,
Tube-Measurability,
Real Anal. Exchange 33 (2007) no. 1, 247-252.
T.C. O'Neil,

Some geometric problems concerning sets and measures in Euclidean space,
Workshop on Harmonic Analysis and Geometric Measure Theory in memory of Laura Wisewell, University of Glasgow, 2008 December.

