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Tube-null sets

Tube: the r -neighbourhood of a straight line l ⊂ Rd .
In the plane: tube = strip.
w(T ) denotes the width of a strip T .

Definition

A set E ⊂ R2 is said to be tube-null if it can be covered by strips of
arbitrarily small total width.
That is, for all ε > 0 there exist strips T1,T2, . . . such that

E ⊂
∞⋃
i=1

Ti and
∞∑
i=1

w(Ti ) < ε.

The study of tube-null sets was initiated by Carbery, Soria és Vargas in
connection with the divergence sets of the localisation problem.
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Simple observations

A tube-null set has Lebesgue measure 0.

If a set E ⊂ R2 has a zero measure projection to a line, then E is
clearly tube-null.
In particular: purely unrectifiable 1-sets are tube-null.

Every set of σ-finite H1-measure is tube-null.

For a set H ⊂ [1, 2] let EH =
{
x ∈ R2 : |x | ∈ H

}
.

I dim(H) < 1/2 ⇒ EH is tube-null.

I dim(H) > 1/2 ⇒ EH is not tube-null.
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How can one prove that a set is not tube-null?

method

To construct a measure µ concentrated on E such that

µ(E ) > 0;

there exists a constant C ∈ R+ such that for any strip T

µ(T ∩ E ) ≤ C · w(T ).

That is: if we project µ to any line, then we should get an absolutely
continuous measure with Radon-Nikodym derivative bounded by C .

Question: is there such a measure for any set E that is not tube-null?
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Fractal percolations

Shmerkin, Suomala

There exist sets of Hausdorff-dimension 1 that are not tube-null.
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The Koch snowflake curve

For many concrete fractals it is hard to tell if they are tube-null.

Question by M. Csörnyei: Is the snowflake curve tube-null?

Theorem

The snowflake curve is tube-null, that is, it can be covered by strips of
arbitrarily small total width.
Moreover, the snowflake curve K has a decomposition K = K0 ∪ K1 ∪ K2

with corresponding projections π0, π1, π2 such that the Hausdorff
dimension of πi (Ki ) is less than 1 for each i = 0, 1, 2.
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What we will need for the proof:
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What is the probability of survival?

If it’s less than 1/3, then the snowflake curve is tube-null!

l ?

Tube-null sets Viktor Harangi 8 / 19



What is the probability of survival?
If it’s less than 1/3, then the snowflake curve is tube-null!

l ?

Tube-null sets Viktor Harangi 8 / 19



What is the probability of survival?
If it’s less than 1/3, then the snowflake curve is tube-null!

l ?

Tube-null sets Viktor Harangi 8 / 19



Covering numbers
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Strips with large covering number

We are greedy: we use strips with large covering numbers.
We need: every piece is covered by such a strip.

Proposition

Take a level-n piece and the three level-n strips going through this piece.
The product of their covering numbers is at least 2n.
Proof: By induction. We can consider the level-n piece as a level-(n − 1)
piece of one of the level-1 pieces. In this level-1 piece the product of the
covering numbers is at least 2n−1 by induction. However, the covering
number of the horizontal strip is at least twice as large in the whole curve.

Corollary

It holds for every level-n piece that one of the three level-n strips going
through it has covering number at least 2n/3.
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The greedy covering of the curve

We take all level-n strips with covering number at least 2n/3.

According to the Corollary, these strips cover K .

So it suffices to show that the number of such strips is small
(compared to 3n).
The width of a level-n strip is 3−n, therefore it would follow that the
total width is small as well.

BUT: how can we determine these covering numbers?
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The different types of pieces

C1
C C1

KBC C2
C BK C2

K

Two orientations.

Crossing and border pieces.
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Covering vectors
To every piece we associate a covering vector (v1, v2):

v1: number of border pieces covered by the strip;

v2: number of crossing pieces covered by the strip.

The covering vector of a strip determines the three next-level covering
vectors!

Proposition

A covering vector (v1, v2) pruduces the following three covering vectors on
the next level:

(2v1, 2v1 + v2); (0, v2); (v2, v2).

That is: the next-level covering vectors can be obtained by multiplying by
the following 2× 2 matrices from the right:

A =

(
2 2
0 1

)
; B =

(
0 0
0 1

)
; C =

(
0 0
1 1

)
.
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Determining covering numbers

We fix a direction and we take the level-0 strip in this direction.

The covering vector v of this strip is either (1, 0) or (0, 1).

Then the covering numbers of the level-n strips:

vM1M2 · · ·Mn

(
1 1

)T
,

where Mi ∈ {A,B,C}; i = 1, 2, . . . , n.

Tube-null sets Viktor Harangi 14 / 19



Determining covering numbers

We fix a direction and we take the level-0 strip in this direction.

The covering vector v of this strip is either (1, 0) or (0, 1).

Then the covering numbers of the level-n strips:

vM1M2 · · ·Mn

(
1 1

)T
,

where Mi ∈ {A,B,C}; i = 1, 2, . . . , n.

Tube-null sets Viktor Harangi 14 / 19



Determining covering numbers

We fix a direction and we take the level-0 strip in this direction.

The covering vector v of this strip is either (1, 0) or (0, 1).

Then the covering numbers of the level-n strips:

vM1M2 · · ·Mn

(
1 1

)T
,

where Mi ∈ {A,B,C}; i = 1, 2, . . . , n.

Tube-null sets Viktor Harangi 14 / 19



Determining covering numbers

We fix a direction and we take the level-0 strip in this direction.

The covering vector v of this strip is either (1, 0) or (0, 1).

Then the covering numbers of the level-n strips:

vM1M2 · · ·Mn

(
1 1

)T
,

where Mi ∈ {A,B,C}; i = 1, 2, . . . , n.

Tube-null sets Viktor Harangi 14 / 19



Computing the matrix products

(
2 2
0 1

)
(

0 0
0 1

)
(

0 0
0 1

)
(

0 0
0 1

)(
0 0
0 1

)
BB = B

(
0 0
1 1

)
(

0 0
0 1

)(
0 0
1 1

)
BC = C

(
0 0
1 1

)
(

0 0
1 1

)(
0 0
1 1

)
CC = C

So there will be a lot of cancellations, for example:

BAABAC = BC = C .

After all possible cancellations we have:

(C )Ak1CAk2C · · ·CAkr (B or C ).
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Computing the matrix products

Ak =

(
2 2
0 1

)k

=

(
2k 2k+1 − 2
0 1

)
és CAk =

(
0 0

2k 2k+1 − 1

)
.

It follows that the the sum of the elements in the product matrix is at
most

L · 2(k1+1)+(k2+1)+···+(kr+1) ≤ 2c0+reduced legth,

where L, c0 are absolute constants and reduced length is the length of
the product after all possible cancellations.

Covering number: ≤ 2c0+reduced length.
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New problem

We forget that A,B,C denote matrices.

We simply take a random sequence of letters A,B,C (each letter is
chosen independently and of uniform distribution).

We perform all possible cancellations according to the following rules:
BA = B;BB = B;BC = C ;CC = C .

The reduced length of the sequence is the number of letters after the
cancellations.

We need: the reduced length of a random sequence of length n is less
than n/3− c0.

Proposition

There exists a constant a < 1 such that

P(the reduced length is at least n/3− c0) < an.
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The probabilities of survival

B A C

0
1

2

1

3

The probability of survival:
1

3
·
(

0 +
1

2
+

1

3

)
=

5

18
<

1

3
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