
Functional Analysis, BSM, Spring 2012
Final exam, May 21

Solutions

1. We have ker(ST ) ⊃ kerT for any S, T ∈ B(H). Therefore ker(T ∗T ) ⊃ kerT . So it remains to show that
ker(T ∗T ) ⊂ kerT . Let x ∈ ker(T ∗T ), that is, T ∗Tx = 0. Then

‖Tx‖2 = (Tx, Tx) = (x, T ∗Tx) = (x, 0) = 0.

Thus x ∈ kerT ; we are done.
2. We need to show that the complement of σap(T ) is open. The complement consists of those complex numbers
λ for which

inf
‖x‖=1

‖(λI − T )x‖ > 0.

Suppose that λ /∈ σap(T ) and let

δ
def= inf
‖x‖=1

‖(λI − T )x‖ > 0.

It suffices to show that if |λ′ − λ| < δ, then λ′ /∈ σap(T ). Since

‖(λ′I − T )x‖ ≥ ‖(λI − T )x‖ − ‖(λ′ − λ)x‖,

it follows that
inf
‖x‖=1

‖(λ′I − T )x‖ ≥ inf
‖x‖=1

‖(λI − T )x‖ − |λ′ − λ| = δ − |λ′ − λ| > 0,

thus λ′ /∈ σap(T ) as claimed.
3. Let Y = ranT and let v ∈ Y \ {0}. Since Y is one-dimensional, Y = {αv : α ∈ C}. Consider the following
bounded linear functional Λ on Y :

Λ(αv) = α.

Then ΛT is a bounded linear functional on H. Riesz representation theorem tells us that there exists u ∈ H
such that

ΛTx = (x, u) for all x ∈ H.
It follows that Tx = (x, u)v. It remains to show that ‖T‖ = ‖u‖ · ‖v‖. Since

‖Tx‖ = ‖(x, u)v‖ = |(x, u)| · ‖v‖ ≤ ‖x‖ · ‖u‖ · ‖v‖,

we get that ‖T‖ ≤ ‖u‖ · ‖v‖. On the other hand, for x = u/‖u‖ we have ‖x‖ = 1 and ‖Tx‖ = ‖u‖ · ‖v‖.
4. The assumption is equivalent to y ∈ cl(ranT ∗), while the conclusion is equivalent to y ∈ cl(ran(T ∗T )).
However, using ker(T ∗T ) = kerT (see Problem 1) and cl(ranS∗) = (kerS)⊥ for S = T and S = T ∗T we get

cl(ranT ∗) = (kerT )⊥ = (ker(T ∗T ))⊥ = cl(ran(T ∗T )).

5. Since T ∈ B(H) is self-adjoint, we have σ(T ) ⊂ R, that is, αI − T is invertible if Imα 6= 0. Using this for
−α we get that −αI − T is invertible, thus so is αI + T .

We claim that (αI + T )−1 commutes with βI + T for any β ∈ C. This is clear, because it commutes with
both αI + T and (β − α)I, so it must commute with their sum

(αI + T ) + (β − α)I = βI + T.

It follows that the operators αI + T and (αI + T )−1 commute. We need to show that UU∗ = U∗U = I. Using
that T ∗ = T :

UU∗ = (αI + T )(αI + T )−1
(
(αI + T )−1

)∗
(αI + T )∗ = (αI + T )−1(αI + T ) ((αI + T )∗)−1 (αI + T ) =

(αI + T )−1(αI + T )(αI + T )−1(αI + T ) = (αI + T )−1I(αI + T ) = I.

Proving U∗U = I is similar.



6. Let Bn(0) denote the open ball in X with radius n and center 0. Then

ranT =
∞⋃

n=1

T (Bn(0)) =
∞⋃

n=1

n · T (B1(0)) .

Since T is compact, T (B1(0)) is totally bounded, so it has a finite ε-lattice Sε for any ε > 0. Let

M =
∞⋃

n=1

n · S1/n2 .

Since M is countable, it is enough to show that M is dense in ranT . Let y ∈ ranT be arbitrary. Then
y ∈ T (Bn(0)) = n · T (B1(0)) if n is large enough. Therefore y/n ∈ T (B1(0)). It follows that there exists
sn ∈ S1/n2 such that

‖y/n− sn‖ <
1
n2
,

thus
‖y − n · sn‖ <

1
n
.

Since n · sn ∈M for all n, we get that y ∈ clM .

Extra problems:
7. We prove by contradction; we assume that ∃T ∈ B(`2) such that T 2 = L. Let Y be the one-dimensional
subspace spanned by (1, 0, 0, . . .). Since kerT ⊂ kerT 2 = kerL = Y , we either have kerT = {0} or kerT = Y .
However, kerT = {0} would imply kerL = ker(T 2) = {0}. So only the second case is possible: kerT = Y .
Now let x = (0, 1, 0, 0, . . .). Then

LTx = T 3x = TLx = T (1, 0, 0, . . .) = 0.

Therefore Tx ∈ kerL = Y = kerT , thus TTx = 0. However, TTx = Lx = (1, 0, 0, . . .), contradiction.
If the right shift R had some square root T , then L = R∗ = (T 2)∗ = (T ∗)2, so L would have a square root,

too.
8. Since

(Tx, y) = (x, u)(v, y) =
(
x, (v, y)u

)
= (x, (y, v)u) ,

it follows that T ∗y = (y, v)u.
We claim that the spectrum consists of 0 and (v, u). Since T has finite rank, it is compact. So every nonzero

element λ of the spectrum is an eigenvalue. So there exists x ∈ H such that Tx = λx. Since Tx is in the range
ranT , so is x. Therefore we can assume that x = v and λ = (v, u) follows.
9. Let P1 be the orthogonal projection to ker(I − T ) and P2 the orthogonal projection to ker(−I − T ) =
ker(I + T ). We aim to show that T = P1 − P2.

If T is self-adjoint (T = T ∗) and unitary (TT ∗ = T ∗T = I), then T 2 = I, thus 0 = I−T 2 = (I−T )(I+T ).
It follows that ker(I − T ) ⊃ ran(I + T ). Since ker(I − T ) is closed, we even have

ker(I − T ) ⊃ cl(ran(I + T )) = (ker(I + T ∗))⊥ = (ker(I + T ))⊥ .

We also know that ker(I − T ) ∩ ker(I + T ) = {0}, therefore ker(I − T ) and ker(I + T ) must be orthogonal
complements. So for any x ∈ H we have x = P1x+P2x and consequently Tx = TP1x+ TP2x = P1x−P2x as
claimed.
10. We need to show that for any y ∈ H and ε > 0 there exists a polynomial q such that

‖y − q(T ∗)x‖ < ε.

Since x is cyclic for T , it suffices to prove this when y = Tnx for some nonnegative integer n. So for any n and
ε > 0 we need to find a polynomial q such that

‖Tnx− q(T ∗)x‖ < ε.

However, Tn − q(T ∗) is normal, so

‖ (Tn − q(T ∗))x‖ = ‖ (Tn − q(T ∗))∗ x‖ = ‖ ((T ∗)n − q(T ))x‖ = ‖(T ∗)nx− q(T )x‖,

which can be arbitaririly small, because x is cyclic for T .


