Functional Analysis, BSM, Spring 2012
Exercise sheet: Spectra of operators
Solutions

1. We proved earlier that ker T is a linear subspace. Since T is bounded, it is continuous, so the preimage of
any closed set is closed. However, ker T is the preimage of {0} C Y, which is clearly a closed set.

2. a) If y1,y2 € ranT, then Jz1,25 € X with Tzy = y; and Tas = yo. Thus y1 +yo = T(x1 + z2) €EranT. If
a € C, then ay; = T'(axy) €ranT.

b) Let y = (1,1/2,1/3,...) and let y,, = (1,1/2,1/3,...,1/n,0,0,...). It is easy to check that y,y, € ¢» and
ly — ynll2 = 0 as n — oo. However, y,, € ranT, but y ¢ ran T, which implies that ran T is not closed.

3. Let y1,y2,... € ranT converging to y € Y. We need to show that y € ranT', too. There exists z,, € X such
that T'z,, = y,. Since T is bounded below, we have

1 1
[Zn — zmll < E”Tzn — Tyl = E”yn — Yml||-

However, (y,,) is Cauchy (because it is convergent), thus so is (z,). Since X is complete, (x,) is convergent:
|xn — x| = 0 as n — oo. Using that T is continuous, we get that Tz, = y,, converges to Tx. Thus y = Tx; it
follows that y € ranT'.

4. First suppose that T is invertible. Then T is surjective, so ranT = Y is indeed dense. Since T~! is bounded,
we get
-1 -1
Jof| = |77 T|| < [[ T {|[[T]],

which implies that ||Tz| > c||z|| with ¢ = 1/||T~.

Now suppose that T' is bounded below and ranT is dense. By the previous exercise ran T must be closed,
thus ranT = X, that is, T is surjective. Also, T is injective, because if Ta = 0, then |z|| < ||Tz||/¢c = 0, so
x = 0. Consequently, T' is bijective. By the inverse mapping theorem it follows that 7' is invertible.

5. a) We saw earlier that ||T|| = 1 and that o,,(T") (the set of eigenvalues) is the closed unit disk {A € C: |A| < 1}.
(The vector (1,A,A%,...) € £ is an eigenvector for \.)
b) It holds for arbitrary T that

op(T) Co(T) Cc{AeC: |\ T}

Here both the left-hand side and the right-hand side are the closed unit disk. It follows that o(T") is also the
closed unit disk. Finally, the residual spectrum is empty, because o, (T") C o(T) \ o,(T).

6. a) Since ||T'|| = 1, o(T') is contained by the closed unit disk. On the other hand, o,(T') is the open unit disk
{AeC: A <1}; 0,(T) Co(T) and o(T) is closed, so o(T") must contain the closure of ¢, (T"), which is the
closed unit disk again. Hence o(T) = {A € C: |A| < 1}.

b) For the operator I — T we have

I-T:2=(o1,a9,as,...) = (01 — g, a0 —as,as — ag,...).

For given 3, ..., 35, we need to solve the equation (I —T)z = (51, B2, ..., 0r,0,0,...). We get that ao = aq — 1,
ag = a1 — 1 — P2, and so on. For m > n we get

am =ai1 —P1—P2— - — P

So if we set a; = 81 + -+ - + By, then «y, = 0 for all m > n and we get a solution z € /.
c) Since 1 € o(T'), I — T is not bijective. Since 1 ¢ 0,(T), I — T is injective. Consequently, I — T cannot be
surjective: ran(l — T') # ¢1. Actually, it is not hard to show that

1 1 1 1
Yy = (12,23,347457> ¢ran(I—T).



We will use that
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When we solve (I — T)xz = y, then we get that

(1o vy,
n n+1/) n+1

an+1:a1—1+%+1.
We would need a solution for which > |a,| < co. We can only hope this if o, — 0 as n — oo. Consequently,
we have to set @; = 1. Then a,41 = 1/(n + 1). However, the sum of these is infinite. Thus we proved that
there isno x € £; with (I —T)x =y;soy ¢ ranT.
d) Since 0,.(T) C o(T) \ 0p(T) = {X € C : |A\| = 1}, we need to check the complex numbers of unit length. We
proved that ran(I — T') is dense. Basically the same proof shows that ran(A — T') is dense for any [A| = 1. It
follows that o,.(T) = 0.

7. If such a A exists, then ranT C ker A. However, ker A is a closed proper subspace of X, so the closure of
ran is also contained by ker A, so it cannot be the whole space, ran T is not dense.

To prove the other direction, suppose that ran T is not dense. Then the closure of ran T is a closed proper
subspace Y < X. Pick some z € X \ Y. Using the Hahn-Banach theorem it is not hard to prove the existence
of a bounded linear functional A € X* for which Ay =0 for y € Y and Az = 1. Then A # 0, but AT = 0.

8. a) We saw earlier that ||T'|| =1 and o, (T) = 0.
b) For |A| <1 consider the vector
y= (LA N ) el

and the corresponding bounded linear functional A, € ¢;. We claim that Ay(A] —T) = 0. Indeed, for an
arbitrary © = (aq, s, ...) € {1:

Ay =Tz = Ay(Aa, Aag — ag, dag — ag,...) = dag + A Aag —aq) + AN (Nag —ag) +---=0.

By the previous exercise it follows that ran(AI — T) is not dense, so A € 0,.(T') for |A| < 1.
¢) on(T) =0o(T)={AeC: |\ <1}.

9. a) Let us consider the ball B with radius 1/2 and center (1,1,...) € £y It consists of points y = (51, B2, . ..)
with |8, — 1| < 1/2 for all n. We will only use that the real part R0, is at least 1/2 for all n. We claim that
for any such y there is no x € £y such that (I —T)z =y, that is ran({ — T') is disjoint from B. Assume that
(I = T)x =y for some z = (a1, a9, ...). We get that a; = 81, as = 1 + B2, az = 1 + P2 + B3, and so on. It
follows that Ray, > RNB1 + - - - + NGB, > n/2, which contradicts that x = (a1, as,...) € loo.

b) [|T|| = 1; 0,(T) = 0. We claim that 0,(T) = o(T) is the closed unit ball. For |A\| < 1, the same argument
works as in the previous exercise: y = (1, A\, A\%,...) € {1, so A, € £%,. It is easy to check that Ay(A —T) =0,
so ran(Al — T') is not dense; A € o,.(T'). If |A\| = 1, then one can easily generalize the argument in a) to find a
ball that is disjoint from ran(Al — T'). Again, it follows that ran(A — T) is not dense, A € o,.(T).

10. a) Suppose that (I — T)z = y for some x = (ay,9,...) € {3 and y = (B1, B2,...) € f2. It can be seen
easily that

Qo :ﬁl +B2++Bn
So for y = (1,1/2,1/4,...) € {2 there exists no such y € f2. This shows that ran(I — T) # f2. Now we
prove that ran(l — T) is dense. Clearly ran(I — T') contains those vectors y = (f1,...,8n,0,0,...) for which
b1+ -+ Bn = 0. So it suffices to show that the set of such vectors is dense in £5. The key idea here is that
the sum of positive reals can be arbitrarily large while their square sum is arbitrarily small:

oo (oo}

1 1
E ~ = o0, but E — = 0as N — oo.
n o0, bu n2 as 0
n=N+1 n=N+1

So if some © = (a1, 9,...) € £ and € > 0 are given, then first we pick m such that ||z — z,,,|| < €/2 for
T = (@1, ...,04,,0,0,...). Then we replace finitely many of the 0’s by =1, ...,y such that

k

5
Z\%|2<§anda1+-~'+am+%+"'7k=0-
=1




Then z], = (a1, .., QmsY1,-- -,k 0,0,...) has the desired form and ||z — 2/,|| < ||z — 2| + [|2m — 2}, || < e
b) It is easy that ||T|| = 1, 0,(T) = 0. If [\| < 1, then Ay (Al —T) = 0, where y = (1, \,A?,...) € {o. It follows
that ran(AI — T') is not dense, so A € o,.(T). If |A\| = 1, then ran(AI — T') is dense (the proof is basically the
same as for A = 1). It means that A\ ¢ o,(T"). Consequently, o.(T) is the open unit disc, while o(T) is the
closed unit disc.

11. Pick an arbitrary f € C[0, 1] with ||f|| < 1. Then f(x) <1 for all z € [0,1]. It follows that (Tf)(x) < z,
(T%f)(z) < 22/2, (T3f)(z) < 22/6, and so on. One can show by induction that (7% f)(z) < x*/k!. Similarly,
since f(x) > —1 for all x, we obtain that (T*f)(x) > —ax¥/kl. Tt follows that | T*f| < 1/k! for any f with
£l < 1. It means that the operator norm of T* is at most 1/k!. In fact, the constant 1 function shows that
|T%|| = 1/K!. Thus ||T|| =1 and
—inf ¥ 1Tk = ; 1 _
r(T) = l%f ITF|| = uéf Vi 0

The kernel of T is trivial (i.e., kerT = {0}), since T'f = 0 implies that f = 0 (note that Tf is differentiable
and its derivative is f). So T is injective. It is clearly not surjective, since T'f is always 0 at 0. Thus 0 € o(T).
The spectrum has no other point, because it is contained by {A : |A| < r(T)} = {0}. So o(T") = {0}. Finally,
we show that the range is not closed. It is not hard to see that ranT is the set of continuously differentiable
functions g with g(0) = 0. A sequence of such functions can clearly converge (in the supremum norm) to a
non-differentiable function.

12. We proved earlier that ||S1S2]] < ||S1]| - ||S2]|, where S1S5 is the composition of S; and S2. Since T 1" is
the composition of T and T™:
[z = T < T - 1T

Taking logarithms of both sides: a4y < @y, + ay. It remains to show that for any such sequence

li = inf .
kggoak/k in ar/k

Clearly, liminfy_,oc ar/k > infy ai/k; it suffices to show that limsupy,_, . ar/k < infy ai/k. We need that for
any fixed m we have limsup,_, . ax/k < a,,/m. Any k can be written as sm + r with 0 < r < m. We know
that ay = asm+r < asm + ar < s-ay, + a,.. Thus

ar _ S Qm Gr _ S:Gm  Gpr Gy G

<< L=y T
k_k+k_sm+k m+l<:

The right-hand side tends to a,,/m as k — oo, we are done.

13. We use that

T -Sst=5"S-T)T"
It follows that
1

1T~ = STHE < ISTHIIS = TIT M < IS gy
2{|T=H|

_ 1 ae
174 = 31572,

which yields that
_ _ _ _ _ 1, 1, .-
T 2 IS = 1T~ = STH = 1S7H = 518 7H = 51871l

14. Let S be the left shift operator on ¢;. We notice that T =1+ S + S2. Let p(z) = 1 + z + 22. Using the
spectral mapping theorem and the fact that the spectrum of S is the closed unit disk:
o) ={1+z242": |z <1}.

To determine its intersection with the real axis, we need to determine the set of real numbers ¢ for which the
equation
l+z+22=ce22+z2+(1-c)=0
has a solution with |z| < 1. Solving this quadratic equation:
—1+4/1-4(1- -1 /
z= (1-c) = —x4/c— §
2 2 4

It is easy to check that the exact condition of at least one root being in the closed unit disk is that 0 < ¢ < 3.
So the intersection in question is [0,3]. (Note that we would get a different set if we took the intersection
o(S)NR =[-1,1] and then took the image of this set under p, which is [3/4, 3].)




15. Tt is clearly enough to show that r(T'S) < r(ST). The key observation is the following;:
(TSt =TSTS--- TS =T(STST---ST)S = T(ST)F'8.

Then
ITS)E| < ITIST) IS

Let € > 0; then for any large enough k we have

U 1(STYR=1|| < +(ST) + e.

| e _ ITIIS]
TS I < ITNISI ((ST) + )" = e

Taking k-th root, then taking the limit as k — oo we get that r(T'S) < 7(ST) + e. Since this holds for any
e > 0, it follows that r(T'S) < r(ST).

Consequently,

(r(ST) + )"

16. Pick ¢ € R such that 7(T) < ¢ < 1. We know that ||T*|| < ¢* for large enough k. We set
Sp=T+T+T?+ - +T" "

It is easy to see that Si is a Cauchy sequence in B(X). Since X is complete, so is B(X), which yields that
Sk is convergent. Let S € B(X) denote the the limit of Sy, that is, ||S — Sk|| — 0. We need to show that
S(I—-T)=(I—-T)S=1. Since

Se(I-T)=I+T+ - +T-YHYI-T)=1-TF,

we have
|S(I —T) —1I|| = ||T"|| = 0 as k — oo.

Consequently,

ISU=T)=I| =[[SU=T) = Se(I =T) + S (I = T) - I|| <
1S = Se)I =T)[ + 16T =T) = I| < IS = Sklll[T = T|| + [|Sk(I =T) = I} = 0

as k — oo. It follows that S(I — T) = I. Proving that (I —T')S = I is similar.

17.*% a) We know from previous exercises that if r(ST) < 1 < r(T'S) < 1, then both I — ST and I — T'S are
invertible. However, this does not help us when r(ST') > 1.

Suppose that I — ST is invertible, let U € B(X) be the inverse, that is, U(I — ST) = (I — ST)U = I.
We need to find an inverse operator V for I — T'S. To get an idea how to define V, we consider the case
r(ST)=r(TS)<1. ThenU =1+ ST+ STST+--- andV=I+TS+TSTS+---. Clearly, V=I14+TUS.
So we will define V' with this formula in the general case. Then using U(I — ST) = I:

V(I -TS)=I+TUS)I—-TS)=1-TS+TUS—TUSTS =
I+T(-I+U-UST)S=I1+S(U(I-ST)-I)T =1.

Proving that (I —T'S)V = I is similar.
b) Using the first part we get that for any A # 0:

A ¢ o(ST) < AI—-ST invertible < I—;T invertible < I—T% invertible < A[—T'S invertible < A ¢ o(ST).



