χ -bounded graph classes - results and problems

András Gyárfás

Alfréd Rényi Institute of Mathematics

2016 September, Bedlewo

 a class G of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ G; such an f is called a χ-bounding function of G. We consider classes that are closed for induced subgraphs.

- a class G of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ G; such an f is called a χ-bounding function of G. We consider classes that are closed for induced subgraphs.
- if \mathcal{G} is χ -bounded, what is its smallest χ -bounding function ?

- a class G of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ G; such an f is called a χ-bounding function of G. We consider classes that are closed for induced subgraphs.
- if \mathcal{G} is χ -bounded, what is its smallest χ -bounding function ?
- the class χ-bounded with the identity function f(x) = x is the family of perfect graphs.

- a class G of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ G; such an f is called a χ-bounding function of G. We consider classes that are closed for induced subgraphs.
- if \mathcal{G} is χ -bounded, what is its smallest χ -bounding function ?
- the class χ -bounded with the identity function f(x) = x is the family of perfect graphs.
- since $\omega(G) = 1$ implies $\chi(G) = 1$ and $\omega(G) \le \chi(G)$, we may assume that $f(1) = 1, f(x) \ge x$ for any χ -bounding function f

- a class G of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ G; such an f is called a χ-bounding function of G. We consider classes that are closed for induced subgraphs.
- if \mathcal{G} is χ -bounded, what is its smallest χ -bounding function ?
- the class χ-bounded with the identity function f(x) = x is the family of perfect graphs.
- since ω(G) = 1 implies χ(G) = 1 and ω(G) ≤ χ(G), we may assume that f(1) = 1, f(x) ≥ x for any χ-bounding function f
- the real test case is the class of graphs with ω(G) = 2: a class G of graphs is weakly χ-bounded if there is a bound for the chromatic number of every triangle-free member of the class.

- a class G of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for all G ∈ G; such an f is called a χ-bounding function of G. We consider classes that are closed for induced subgraphs.
- if \mathcal{G} is χ -bounded, what is its smallest χ -bounding function ?
- the class χ-bounded with the identity function f(x) = x is the family of perfect graphs.
- since $\omega(G) = 1$ implies $\chi(G) = 1$ and $\omega(G) \le \chi(G)$, we may assume that $f(1) = 1, f(x) \ge x$ for any χ -bounding function f
- the real test case is the class of graphs with ω(G) = 2: a class G of graphs is weakly χ-bounded if there is a bound for the chromatic number of every triangle-free member of the class.
- metaconjecture: "natural" weakly χ -bounded graph classes are χ -bounded

Conjecture

(Forbidden tree conjecture, Gy. 1975, Sumner 1981) For any acyclic graph H, the class of graphs without (induced) H is χ -bounded.

Conjecture

(Forbidden tree conjecture, Gy. 1975, Sumner 1981) For any acyclic graph H, the class of graphs without (induced) H is χ -bounded.

Let $Forb(\mathcal{H})$ denote the class of graphs with no induced subgraph from \mathcal{H} .

Conjecture

(Forbidden tree conjecture, Gy. 1975, Sumner 1981) For any acyclic graph H, the class of graphs without (induced) H is χ -bounded.

Let $Forb(\mathcal{H})$ denote the class of graphs with no induced subgraph from \mathcal{H} .

 Forb(T) is weakly χ-bounded if T is a radius two tree (Gy. Szemerédi, Tuza, 1980)

Conjecture

(Forbidden tree conjecture, Gy. 1975, Sumner 1981) For any acyclic graph H, the class of graphs without (induced) H is χ -bounded.

Let $Forb(\mathcal{H})$ denote the class of graphs with no induced subgraph from \mathcal{H} .

- Forb(T) is weakly χ-bounded if T is a radius two tree (Gy. Szemerédi, Tuza, 1980)
- Forb(B) is χ -bounded if B is a broom (Gy. 1985)

Conjecture

(Forbidden tree conjecture, Gy. 1975, Sumner 1981) For any acyclic graph H, the class of graphs without (induced) H is χ -bounded.

Let $Forb(\mathcal{H})$ denote the class of graphs with no induced subgraph from \mathcal{H} .

- Forb(T) is weakly χ-bounded if T is a radius two tree (Gy. Szemerédi, Tuza, 1980)
- Forb(B) is χ -bounded if B is a broom (Gy. 1985)
- Forb(T) is χ-bounded if T is a radius two tree (Kierstead, Penrice, 1994)

Conjecture

(Forbidden tree conjecture, Gy. 1975, Sumner 1981) For any acyclic graph H, the class of graphs without (induced) H is χ -bounded.

Let $Forb(\mathcal{H})$ denote the class of graphs with no induced subgraph from \mathcal{H} .

- Forb(T) is weakly χ-bounded if T is a radius two tree (Gy. Szemerédi, Tuza, 1980)
- Forb(B) is χ -bounded if B is a broom (Gy. 1985)
- Forb(T) is χ-bounded if T is a radius two tree (Kierstead, Penrice, 1994)
- Forb(T) is χ -bounded if T is a subdivided star (Scott, 1997)

• the best bounding function f(x) satisfies $\frac{R(3,x+1)-1}{2} \le f(x) \le R(3,x)$ (easy)

- the best bounding function f(x) satisfies $\frac{R(3,x+1)-1}{2} \le f(x) \le R(3,x)$ (easy)
- improvement: $f(x) \leq \frac{R(3,x)+x}{2}$ (King, 2009), this gives

- the best bounding function f(x) satisfies $\frac{R(3,x+1)-1}{2} \le f(x) \le R(3,x)$ (easy)
- improvement: $f(x) \leq \frac{R(3,x)+x}{2}$ (King, 2009), this gives
- $f(2) = 3, 4 \le f(3) \le 5, f(4) = 7, 9 \le f(5) \le 10, 11 \le f(6) \le 13$

- the best bounding function f(x) satisfies $\frac{R(3,x+1)-1}{2} \le f(x) \le R(3,x)$ (easy)
- improvement: $f(x) \leq \frac{R(3,x)+x}{2}$ (King, 2009), this gives
- $f(2) = 3, 4 \le f(3) \le 5, f(4) = 7, 9 \le f(5) \le 10, 11 \le f(6) \le 13$
- surprise: the class of connected graphs with α(G) ≥ 3 is χ-bounded with 2x (Chudnovsky, Seymour, 2010)

• $H = P_4$: f(x) = x (perfect Seinsche, 1974)

э

• $H = P_4$: f(x) = x (perfect Seinsche, 1974)

•
$$H = P_3 \cup K_1$$
: asymptotic to $\frac{R(3,x+1)-1}{2}$

- $H = P_4 : f(x) = x$ (perfect Seinsche, 1974)
- $H = P_3 \cup K_1$: asymptotic to $\frac{R(3,x+1)-1}{2}$
- $H = K_2 \cup 2K_1$: $\frac{R(3,x+1)-1}{2} \le f(x) \le {\binom{x+1}{2}}$ (Randerath, Schiermeyer, 2004)

• $H = P_4 : f(x) = x$ (perfect Seinsche, 1974)

•
$$H = P_3 \cup K_1$$
: asymptotic to $\frac{R(3,x+1)-1}{2}$

• $H = K_2 \cup 2K_1$: $\frac{R(3,x+1)-1}{2} \le f(x) \le \binom{x+1}{2}$ (Randerath, Schiermeyer, 2004)

•
$$H = 2K_2 : \frac{R(C_4, K_{x+1})}{3}) \le f(x) \le {\binom{x+1}{2}}$$
 (Wagon, 1980)

• For any tree T, $Forb(T, K_{2,2})$ is weakly χ -bounded, in fact any graph G from the class satisfies $\chi(G) \leq |V(T)|$ (Gy. Szemerédi, Tuza, 1980)

- For any tree T, $Forb(T, K_{2,2})$ is weakly χ -bounded, in fact any graph G from the class satisfies $\chi(G) \leq |V(T)|$ (Gy. Szemerédi, Tuza, 1980)
- For any tree T and any $t \ge 2$, $Forb(T, K_{t,t})$ is χ -bounded (Kiersted, Rödl, 1996)

Forbidding sets of induced cycles

In a series of papers some of my old conjectures have been proved:

• 1. The class of graphs without odd holes is χ -bounded (with bounding function $2^{3^{\times}}$, Scott and Seymour 2014). The subclass with $\omega(G) \leq 3$ is at most 4-chromatic (Chudnovsky, Robertson, Seymour, Thomas, 2010)

- 1. The class of graphs without odd holes is χ-bounded (with bounding function 2^{3^x}, Scott and Seymour 2014). The subclass with ω(G) ≤ 3 is at most 4-chromatic (Chudnovsky, Robertson, Seymour, Thomas, 2010)
- 2. graphs without long holes are $\chi\text{-bounded}$ (Chudnovsky, Scott and Seymour 2015)

7 / 19

- 1. The class of graphs without odd holes is χ -bounded (with bounding function $2^{3^{\times}}$, Scott and Seymour 2014). The subclass with $\omega(G) \leq 3$ is at most 4-chromatic (Chudnovsky, Robertson, Seymour, Thomas, 2010)
- 2. graphs without long holes are $\chi\text{-bounded}$ (Chudnovsky, Scott and Seymour 2015)

My third conjecture, whether graphs without long odd holes are χ -bounded still holds but probably not for long...

 3. For any fixed t > 0, graphs without t consecutive holes are weakly *χ*-bounded (Scott and Seymour 2015)

7 / 19

- 1. The class of graphs without odd holes is χ -bounded (with bounding function $2^{3^{\times}}$, Scott and Seymour 2014). The subclass with $\omega(G) \leq 3$ is at most 4-chromatic (Chudnovsky, Robertson, Seymour, Thomas, 2010)
- 2. graphs without long holes are $\chi\text{-bounded}$ (Chudnovsky, Scott and Seymour 2015)

My third conjecture, whether graphs without long odd holes are $\chi\text{-bounded}$ still holds but probably not for long...

- 3. For any fixed t > 0, graphs without t consecutive holes are weakly *χ*-bounded (Scott and Seymour 2015)
- 4. The class without induced cycles of length 0 (mod 3) (Bonamy, Charbit, Thomassé, 2014)

Let $Forb^*(H)$ denote the class of graphs that do not contain any subdivision of H as an induced subgraph.

• For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)

- For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)
- Conjecture: Forb*(H) is χ -bounded for any H (Scott, 1997)

- For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)
- Conjecture: $Forb^*(H)$ is χ -bounded for any H (Scott, 1997)
- true if *H* is a paw or a bull or a necklace (Chudnovsky, Penev, Scott, Trotignon, 2010)

- For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)
- Conjecture: $Forb^*(H)$ is χ -bounded for any H (Scott, 1997)
- true if *H* is a paw or a bull or a necklace (Chudnovsky, Penev, Scott, Trotignon, 2010)
- true for maximal triangle free H (Bousquet, Thomassé, 2011)

- For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)
- Conjecture: Forb*(H) is χ -bounded for any H (Scott, 1997)
- true if *H* is a paw or a bull or a necklace (Chudnovsky, Penev, Scott, Trotignon, 2010)
- true for maximal triangle free *H* (Bousquet, Thomassé, 2011)
- Not true in general: consequence of the surprising discovery that intersection graphs of straight line segments of the plane is not a χ -bounded class (Pawlik, Kozik, Krawczyk,Lasoń, Micek, Trotter, Walczak, 2012)

- For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)
- Conjecture: Forb*(H) is χ -bounded for any H (Scott, 1997)
- true if *H* is a paw or a bull or a necklace (Chudnovsky, Penev, Scott, Trotignon, 2010)
- true for maximal triangle free *H* (Bousquet, Thomassé, 2011)
- Not true in general: consequence of the surprising discovery that intersection graphs of straight line segments of the plane is not a χ -bounded class (Pawlik, Kozik, Krawczyk,Lasoń, Micek, Trotter, Walczak, 2012)
- More counterexamples (Chalopin, Esperet, Li, Ossona de Mendez, 2014)
Forbidding induced topological subgraphs

Let $Forb^*(H)$ denote the class of graphs that do not contain any subdivision of H as an induced subgraph.

- For any tree T, $Forb^*(T)$ is χ -bounded (Scott, 1997)
- Conjecture: Forb*(H) is χ -bounded for any H (Scott, 1997)
- true if *H* is a paw or a bull or a necklace (Chudnovsky, Penev, Scott, Trotignon, 2010)
- true for maximal triangle free *H* (Bousquet, Thomassé, 2011)
- Not true in general: consequence of the surprising discovery that intersection graphs of straight line segments of the plane is not a χ -bounded class (Pawlik, Kozik, Krawczyk,Lasoń, Micek, Trotter, Walczak, 2012)
- More counterexamples (Chalopin, Esperet, Li, Ossona de Mendez, 2014)
- Conjecture: true when *H* is a forest of chandeliers (Chudnovsky, Scott, Seymour, 2015)

(Aboulker, Bousquet, 2015) For any fixed k the class C_k of graphs that do not contain cycles with exactly k chords is χ -bounded.

(Aboulker, Bousquet, 2015) For any fixed k the class C_k of graphs that do not contain cycles with exactly k chords is χ -bounded.

• C_1 is χ -bounded by $f(x) = max\{3, x\}$ (Trotignon, Vušković, 2009).

(Aboulker, Bousquet, 2015) For any fixed k the class C_k of graphs that do not contain cycles with exactly k chords is χ -bounded.

- C_1 is χ -bounded by $f(x) = max\{3, x\}$ (Trotignon, Vušković, 2009).
- C_2 is χ -bounded by f(x) = 6, C_3 is χ -bounded by $f(x) = max\{96, x + 1\}$ (Aboulker, Bousquet, 2015).

(Aboulker, Bousquet, 2015) For any fixed k the class C_k of graphs that do not contain cycles with exactly k chords is χ -bounded.

- C_1 is χ -bounded by $f(x) = max\{3, x\}$ (Trotignon, Vušković, 2009).
- C_2 is χ -bounded by f(x) = 6, C_3 is χ -bounded by $f(x) = max\{96, x + 1\}$ (Aboulker, Bousquet, 2015).

Conjecture

(Geelen, 1995) For every graph H, the class of graphs without a vertex-minor H is χ -bounded. (Vertex-minor: can be obtained by vertex removal and complementing neighborhoods.)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

(Aboulker, Bousquet, 2015) For any fixed k the class C_k of graphs that do not contain cycles with exactly k chords is χ -bounded.

- C_1 is χ -bounded by $f(x) = max\{3, x\}$ (Trotignon, Vušković, 2009).
- C_2 is χ -bounded by f(x) = 6, C_3 is χ -bounded by $f(x) = max\{96, x + 1\}$ (Aboulker, Bousquet, 2015).

Conjecture

(Geelen, 1995) For every graph H, the class of graphs without a vertex-minor H is χ -bounded. (Vertex-minor: can be obtained by vertex removal and complementing neighborhoods.)

Geelen's conjecture is proved if H is path with an additional vertex connected to all vertices of the path (Choi, Kwon, Oum, 2015)

A k-wheel is an induced cycle and one additional vertex connected to at least k vertices of the cycle. A wheel is a 3-wheel.

Conjecture

The class of wheel-free graphs is χ -bounded (Trotignon, 2010)

A k-wheel is an induced cycle and one additional vertex connected to at least k vertices of the cycle. A wheel is a 3-wheel.

Conjecture

The class of wheel-free graphs is χ -bounded (Trotignon, 2010)

 For fixed k, l, the class Forb(k-wheel, K_{l,l}) is weakly χ-bounded (Bousquet, Thomassé, 2015) A k-wheel is an induced cycle and one additional vertex connected to at least k vertices of the cycle. A wheel is a 3-wheel.

Conjecture

The class of wheel-free graphs is χ -bounded (Trotignon, 2010)

- For fixed k, l, the class Forb(k-wheel, K_{l,l}) is weakly χ-bounded (Bousquet, Thomassé, 2015)
- For fixed *l*, the class *Forb*(*wheel*, *K*_{*l*,*l*}) is *χ*-bounded (Bousquet, Thomassé, 2015)

• For $D_1 = (1, 2), (2, 3)(4, 3), Forb(D_1)$ is perfect (Chvatal, 1989)

- For $D_1 = (1,2), (2,3)(4,3)$, $Forb(D_1)$ is perfect (Chvatal, 1989)
- For $D_2 = (1, 2), (3, 2), (3, 4)$, Forb (D_2) is not χ -bounded

- For $D_1 = (1,2), (2,3)(4,3)$, $Forb(D_1)$ is perfect (Chvatal, 1989)
- For $D_2 = (1, 2), (3, 2), (3, 4)$, Forb (D_2) is not χ -bounded
- For $D_3 = (1, 2), (2, 3), (3, 4)$, $Forb(D_3)$ is not χ -bounded (Kierstead, Trotter, 1992)

- For $D_1 = (1,2), (2,3)(4,3)$, $Forb(D_1)$ is perfect (Chvatal, 1989)
- For $D_2 = (1,2), (3,2), (3,4)$, Forb (D_2) is not χ -bounded
- For $D_3 = (1, 2), (2, 3), (3, 4)$, $Forb(D_3)$ is not χ -bounded (Kierstead, Trotter, 1992)
- Is $Forb(S_{s,t}) \chi$ -bounded, where $S_{p,q}$ is the star with s outgoing and t incoming edges? (Kierstead, Rödl, 1996 and Aboulker et. al. 2016)

• • = • • = •

11 / 19

э

• gluing along small rank cuts; Dvořak, Král, 2012

- gluing along small rank cuts; Dvořak, Král, 2012
- substitutions; Chudnovsky, Penev, Scott, Trotignon, 2013

- gluing along small rank cuts; Dvořak, Král, 2012
- substitutions; Chudnovsky, Penev, Scott, Trotignon, 2013
- gluing (along cliques and bounded number of vertices) ; Chudnovsky, Penev, Scott, Trotignon, 2013

- gluing along small rank cuts; Dvořak, Král, 2012
- substitutions; Chudnovsky, Penev, Scott, Trotignon, 2013
- gluing (along cliques and bounded number of vertices) ; Chudnovsky, Penev, Scott, Trotignon, 2013
- gluing along homogeneous subsets and amalgams; Penev, 2014

Complementary χ -bounding functions

• A function f is complementary bounded if for any graph family \mathcal{G} with bounding function f, the family $\{G^c : G \in calG\}$ is also χ -bounded (with some bounding function g). The smallest such g is denoted by f^* .

Complementary χ -bounding functions

- A function f is complementary bounded if for any graph family \mathcal{G} with bounding function f, the family $\{G^c : G \in calG\}$ is also χ -bounded (with some bounding function g). The smallest such g is denoted by f^* .
- Weak perfect graph theorem (Lovász): f(x) = x is a self-complementary bounding function

- A function f is complementary bounded if for any graph family G with bounding function f, the family $\{G^c : G \in calG\}$ is also χ -bounded (with some bounding function g). The smallest such g is denoted by f^* .
- Weak perfect graph theorem (Lovász): f(x) = x is a self-complementary bounding function
- (Gy. 1985) If f is complementary bounded then f(x) = o(x)

- A function f is complementary bounded if for any graph family G with bounding function f, the family $\{G^c : G \in calG\}$ is also χ -bounded (with some bounding function g). The smallest such g is denoted by f^* .
- Weak perfect graph theorem (Lovász): f(x) = x is a self-complementary bounding function
- (Gy. 1985) If f is complementary bounded then f(x) = o(x)
- (Gy., Li, Machado, Sebő, Thomassé, Trotignon, 2013) The function $f(x) = x + x/\log^{j}(x)$ is not complementary bounded for any fixed j

- A function f is complementary bounded if for any graph family G with bounding function f, the family $\{G^c : G \in calG\}$ is also χ -bounded (with some bounding function g). The smallest such g is denoted by f^* .
- Weak perfect graph theorem (Lovász): f(x) = x is a self-complementary bounding function
- (Gy. 1985) If f is complementary bounded then f(x) = o(x)
- (Gy., Li, Machado, Sebő, Thomassé, Trotignon, 2013) The function $f(x) = x + x/\log^{j}(x)$ is not complementary bounded for any fixed j
- Conjecture (Gy. 1985) The function f(x) = x + c is complementary for fixed c

Let F_c denote the set of functions with f(x) = x for $x \ge c$. The following results and problems are from (Gy., Li, Machado, Sebő, Thomassé, Trotignon, 2013).

Let F_c denote the set of functions with f(x) = x for $x \ge c$. The following results and problems are from (Gy., Li, Machado, Sebő, Thomassé, Trotignon, 2013).

Theorem

For all c and $f \in F_c$, f is complementary bounded.

Let F_c denote the set of functions with f(x) = x for $x \ge c$. The following results and problems are from (Gy., Li, Machado, Sebő, Thomassé, Trotignon, 2013).

Theorem

For all c and $f \in F_c$, f is complementary bounded.

Conjecture

The function

$$g(x) = \left\{ \begin{array}{cc} x & \text{if } x \ge 3 \\ 3 & \text{if } x = 2 \end{array} \right\}.$$
(1)

has best complementary bounding function is $g^* = \lfloor \frac{8x}{5} \rfloor$.

Let F_c denote the set of functions with f(x) = x for $x \ge c$. The following results and problems are from (Gy., Li, Machado, Sebő, Thomassé, Trotignon, 2013).

Theorem

For all c and $f \in F_c$, f is complementary bounded.

Conjecture

The function

$$g(x) = \left\{ \begin{array}{l} x & \text{if } x \ge 3 \\ 3 & \text{if } x = 2 \end{array} \right\}.$$
(1)

has best complementary bounding function is $g^* = \lfloor \frac{8x}{5} \rfloor$.

This conjecture is true for 3-colorable graphs (in fact for every graph whose induced subgraphs H satisfy $\alpha(H) \geq \frac{|V(H)|}{3}$).

14 / 19

• 1-dimensional boxes: perfect (Gallai's theorems on intervals)

- 1-dimensional boxes: perfect (Gallai's theorems on intervals)
- 2-dimensional boxes: χ -bounded by quadratic function (Asplund, Grünbaum, 1960)

- 1-dimensional boxes: perfect (Gallai's theorems on intervals)
- 2-dimensional boxes: χ -bounded by quadratic function (Asplund, Grünbaum, 1960)
- 3-dimensional boxes: (surprise) not (weakly) χ -bounded (Burling, 1965)

- 1-dimensional boxes: perfect (Gallai's theorems on intervals)
- 2-dimensional boxes: χ -bounded by quadratic function (Asplund, Grünbaum, 1960)
- 3-dimensional boxes: (surprise) not (weakly) χ -bounded (Burling, 1965)
- straight-line segments: (surprise) not (weakly) $\chi\text{-bounded}$ (Pawlik et al. 2013)

Algorithms to find χ -bounded colorings

I just mention intervals of the line and $Forb(P_k)$.

Algorithms to find χ -bounded colorings

I just mention intervals of the line and $Forb(P_k)$.

 \bullet On-line and off-line algorithms to find $\chi\mbox{-bounded colorings}$

Algorithms to find χ -bounded colorings

I just mention intervals of the line and $Forb(P_k)$.

- On-line and off-line algorithms to find χ -bounded colorings
- intervals has off-line perfect colorings (Gallai)
Algorithms to find χ -bounded colorings

- On-line and off-line algorithms to find χ -bounded colorings
- intervals has off-line perfect colorings (Gallai)
- the best on-line χ -bounding function for intervals is 3x 2 (Kierstead, Trotter, 1981)

- On-line and off-line algorithms to find χ -bounded colorings
- intervals has off-line perfect colorings (Gallai)
- the best on-line χ -bounding function for intervals is 3x 2 (Kierstead, Trotter, 1981)
- first fit coloring on intervals has linear χ -bounding function (Kierstead 1988), best bounds 5x, 8x

- On-line and off-line algorithms to find χ -bounded colorings
- intervals has off-line perfect colorings (Gallai)
- the best on-line χ -bounding function for intervals is 3x 2 (Kierstead, Trotter, 1981)
- first fit coloring on intervals has linear χ -bounding function (Kierstead 1988), best bounds 5x, 8x
- first fit is a perfect coloring on $Forb(P_4)$ but no on-line χ -bounding function exists on $Forb(P_6)$ (Gy., Lehel, 1988)

- On-line and off-line algorithms to find χ -bounded colorings
- intervals has off-line perfect colorings (Gallai)
- the best on-line χ -bounding function for intervals is 3x 2 (Kierstead, Trotter, 1981)
- first fit coloring on intervals has linear χ -bounding function (Kierstead 1988), best bounds 5x, 8x
- first fit is a perfect coloring on $Forb(P_4)$ but no on-line χ -bounding function exists on $Forb(P_6)$ (Gy., Lehel, 1988)
- there is χ -bounded on-line coloring on $Forb(P_5)$ (Gy., Lehel, 1991)

- On-line and off-line algorithms to find χ -bounded colorings
- intervals has off-line perfect colorings (Gallai)
- the best on-line χ -bounding function for intervals is 3x 2 (Kierstead, Trotter, 1981)
- first fit coloring on intervals has linear χ -bounding function (Kierstead 1988), best bounds 5x, 8x
- first fit is a perfect coloring on $Forb(P_4)$ but no on-line χ -bounding function exists on $Forb(P_6)$ (Gy., Lehel, 1988)
- there is χ -bounded on-line coloring on $Forb(P_5)$ (Gy., Lehel, 1991)
- the first fit coloring on $Forb(P_5)$ is χ -bounded (Kierstead, Penrice, Trotter, 1994)

Two of my 1985 problems that seemingly nobody touched

Two of my 1985 problems that seemingly nobody touched

• 1. Estimate the best bounding function of the union of two perfect graphs

- 1. Estimate the best bounding function of the union of two perfect graphs
- $\bullet\,$ 2. Let ${\cal G}$ be the family of graphs whose induced subgraphs satisfy

 $\alpha(G)\omega(G) \geq |V(G)| - 1.$

Is \mathcal{G} χ -bounded?

Gyárfás (MTA RÉNYI)

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 Let G be the family of graphs with χ-bounding function f(x) = x + 1. Is the complementary family {G : G^c ∈ G} χ-bounded? (Gy. 1985)

- Let G be the family of graphs with χ-bounding function f(x) = x + 1. Is the complementary family {G : G^c ∈ G} χ-bounded? (Gy. 1985)
- For any fixed t > 0, graphs without t consecutive holes are χ-bounded (Scott and Seymour 2015)

- Let G be the family of graphs with χ-bounding function f(x) = x + 1. Is the complementary family {G : G^c ∈ G} χ-bounded? (Gy. 1985)
- For any fixed t > 0, graphs without t consecutive holes are χ-bounded (Scott and Seymour 2015)
- Let G be the family of graphs in which every path induces an at most 3-chromatic subgraph. Is G χ-bounded? (A simplified version of an Erdős - Hajnal problem, Gy. 1997)

æ

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A