Transitive Tournaments and Self-Complementary Graphs

András Gyárfás

COMPUTER AND AUTOMATION RESEARCH INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, P.O. BOX 63, HUNGARY-1518. E-mail: gyarfas@sztaki.hu

Received December 19, 1999

Abstract: A simple proof is given for a result of Sali and Simonyi on selfcomplementary graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 111–112, 2001

Keywords: self-complementary graphs; transitive tournaments

Motivated by Sperner capacities of digraphs, A. Sali and G. Simonyi [1] discovered an interesting property of self-complementary graphs. Here a proof of their result is given which is conceptually simpler than the original one.

Theorem. (Sali and Simonyi [1]) For any self-complementary graph G on n vertices, the edges of the transitive tournament on n vertices can be partitioned into two isomorphic digraphs whose underlying graphs are isomorphic to G.

Proof. Assume that π is a complementing permutation on the vertex set $[n] = \{1, 2, ..., n\}$ of G, i.e., for every $1 \le x < y \le n$, $xy \in E(G)$ implies $\pi(x) \pi(y) \notin E(G)$. The theorem is proved by defining a linear order α on [n] such that π preserves α , i.e., for every $xy \in E(G)$ such that $x <_{\alpha} y$, it follows that $\pi(x) <_{\alpha} \pi(y)$. It is enough to define α on cycles of π since if π preserves a linear order on each cycle then π preserves the sum of the linear orders. Let $C = \{1, 2, ..., k\}$ be a nontrivial cycle of π , i.e., $\pi(x) = x + 1 \pmod{k}$. We may assume that $12 \in E(G)$.

Research supported in part by OTKA Grant T029074.

^{© 2001} John Wiley & Sons, Inc.

We shall define α on *C* by its initial segments $\{1\} = A_1 \subset ... \subset A_{k-1}$ so that $|A_i| = i$ and the elements of A_i are (cyclically) consecutive on *C*. Assuming that A_i is already defined for some $1 \le i < k - 1$, let *p* and *s* denote the predecessor and successor of the segment A_i in the cyclic ordering of *C*. Since $i \le k - 2$, $p \ne s$. Then A_{i+1} is defined by extending A_i with *p* if $ps \in E(G)$, or with *s* if $ps \notin E(G)$.

To show that π preserves α , let xy be an edge of G with end points on C such that $x <_{\alpha} y$. Select the smallest i such that $x \in A_i$ and $y \notin A_i$. The definition of i implies that x is an end point of the segment A_i . This can happen in two ways.

Case 1. $A_i = \{x, \pi(x), \ldots\}$ in the cyclic order of *C*. From the choice of A_i , $x \notin A_{i-1}$ therefore $\pi(x) \in A_{i-1}, \pi(y) \notin A_{i-1}$, implying $\pi(x) <_{\alpha} \pi(y)$.

Case 2. $A_i = \{z, ..., x\}$ in the cyclic order of *C*. We claim that $\pi(y) = z$ is impossible. If z = x then i = 1 and $12 = \pi(y) \pi(x) \notin E(G)$ contradicting the assumption $12 \in E(G)$. Otherwise $i \ge 2$ and $A_{i-1} = A_i \setminus \{x\}$ from the choice of A_i . However, from $\pi(y) = z$, *y* is the predecessor of A_{i-1} . The successor of A_{i-1} is *x*, $xy \in E(G)$, thus the definition of A_i gives $A_i = A_{i-1} \cup \{y\}$, a contradiction proving the claim.

The claim implies that the segment $\pi(y) \dots x$ in the cyclic order of *C* properly contains A_{i-1} . Therefore, since $\pi(x) \pi(y) \notin E(G)$ and $\pi(x)$ is the successor of *x*, the chain $A_i \subset A_{i+1} \subset \cdots$ will absorbe $\pi(x)$ before $\pi(y)$. Thus, for some $j \ge i$, $\pi(x) \in A_j$ and $\pi(y) \notin A_j$, i.e., $\pi(x) <_{\alpha} \pi(y)$.

REFERENCE

[1] A. Sali and G. Simonyi, Orientations of self-complementary graphs and the relation of Sperner and Shannon capacities, Eur J of Combin 20 (1999), 93–99.