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Suppose we have a finite collection of closed convex sets in the plane, (which without loss
of generality we can take to be polygons). Suppose further that among any four of them,
some three have non-empty intersection. We show that 13 points are sufficient to meet
every one of the convex sets.

1. Introduction

We consider the following simple problem. Suppose we have a finite collection
of closed convex sets in the plane, (which without loss of generality we
can take to be polygons). Suppose further that among any four of them,
some three have a point in common. How many points are required to meet
every member of the collection? This is the simplest non-trivial case of a
general problem: suppose in d dimensions we have convex polyhedra with
the property that among any k of them there are j (for j at least d+1) with
a point in common. How many points are necessary to meet every member
of the collection? That there is a finite answer, independent of the size of
the collection was a conjecture of Hadwiger and Debrunner [2]. That there
is a finite upper bound, f(k,j,d), for the answer to this problem was shown
by Alon and the first author, a few years ago [3], [4]. The argument then
given was general but not very efficient, in the sense that the best bounds
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obtainable from it are rather high. For the first question above using simple
tricks to improve it one can reduce it to approximately 200. On the other
hand the correct answer to this particular problem may well be 3. This
argument had the additional peculiarity that it was based on a counting
argument in which the geometric features of the problem appeared only
through general concepts; namely the fractional version of Helly’s theorem
[7], Wegner’s Theorem [8] and Epsilon-Net constructions [1].

The purpose of the present paper is to provide a direct argument for the
simple planar problem described in the first paragraph above. This argument
has the advantage of giving a much better upper bound, namely 13, which
can probably be improved with more ingenuity. We have made no attempt
to generalize this result at all, but express the hope that special as it may
seem, it has aspects that may be generalized in some direction. It is our
belief that it can be refined and improved, but have found the problem so
elusive that we think the present result, which is in the end quite simple and
elementary, is worth presenting as it stands. We approach the problem by
developing a series of simpler problems, of growing difficulty, culminating in
the original problem. We will show that each can be used as a tool to solve
the next.

2. Convex sets each of whose pairs have a meeting point on one
of two lines

R

L
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5

2 4 5 3

3 = A 4

1

Figure 1. Objects represented by intervals on two lines

We begin with the following simple observation which is a special case of
similar problems on trees that have been discussed by A. Gyárfás and J.
Lehel [5] (see also [6]).

Observation 1. Suppose we have two line segments, L and R, and a col-
lection of objects {Ai}, such that each Ai is represented by a closed interval
(denoted by AL

i ) on L and by the closed interval AR
i on R. Suppose further

that for every i and j, either AL
i and AL

j have a point in common or AR
i and

AR
j have a point in common, or both pairs do so. Then two points, one on

L and one on R, suffice to meet at least one representor for each object.

semmise-GoBack
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Proof. We order L and R linearly from one end of each to the other. Let
A be the object whose L-representor ends first on L, among those objects
whose representor on R is disjoint from that of another object on R whose
representor ends before it on L. Let B be the object whose representor is
furthest from A on R among those whose representor on L ends before that
of A on L. Then the right endpoint of AL and the endpoint of BR closer to
AR meet every object (see Fig. 1).

This complicated sounding paragraph can be expressed simply if we rep-
resent our objects by rectangles each of whose horizontal component is its
representor on L, and its vertical component its representor on R. (If there
is any object whose representor on either L or R is empty, we can give it a
fictitious interval that meets no other interval without changing any results;
and then the object will be represented by a rectangle here.) In rectangular
terms, our condition is that every pair of rectangles have a common vertical
or horizontal line. We will show that there is a horizontal and vertical line
which between them meet every object.

Consider all pairs of our rectangles that have no common horizontal line,
and pick out the pairs that end (on moving rightward) at the leftmost line,
call it rA, among such pairs. Let A be the rectangle that ends at rA within
such pairs. Among those rectangles that are partners of A in such pairs, let
B be the one vertically furthest from A, and let its horizontal end line nearer
to A be nB.

From now on, we say that an object meets a line if its represented rect-
angle does. We divide the objects into three classes. Those that meet rA,
those whose right end is to the left of rA, and those whose left end is to
the right of rA. Those whose left end is to the right of rA share no vertical
line with either A or B and therefore must share horizontal lines with both
A and B, so that they must meet nB. Those whose right end is to the left
of rA must have a common horizontal line with B by the definition of A,
and must extend closer to A vertically so by the definition of B, again meet
nB. If there is no such A, then all objects meet in R and a single point in
R suffices to meet them all (see Fig. 2).

rA

B

nB

A

Figure 2. Rectangles with each pair having a common horizontal or vertical line
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3. The special configuration

Q

h

N
M

Figure 3. A special configuration

We now consider collections of convex polygons which, while still not gen-
eral, bear a much closer relation to our original problem than the problem
considered so far do. We will be able to meet all the polygons in them by ju-
dicious use of the previous result. We first define these configurations, which
we will call special configurations of polygons. Suppose we have a horizon-
tal line, Q. Then a special configuration of convex polygons is one with the
following properties.

1. Each pair of polygons meet on or above Q; each polygon meets Q.
2. Any three polygons that are mutually disjoint on Q have a point in

common above Q.

Obviously we can replace above Q by below without any change in the result
here:

Theorem 1. All polygons in a special configuration can be met by at most
5 points.

Proof. Let A be a a special configuration of convex sets. For a set S of
points, A(S) is the subfamily of A not pierced by the points of S. For
N,M ∈A, INM is the convex hull of N ∩Q and M ∩Q. Line h is the line
parallel to Q at height h.

We assume that our polygons are jiggled, so that at any given point
at which two polygons separate, no other pair of polygons also separates
unless one polygon comes to an end. Such jiggling can be performed without
changing any polygon intersection properties.

Two polygons, N and M will be said to separate at height h, if they have
a point in common at height h above Q and no such point for any smaller
height (see Fig. 3). After jiggling this will happen one pair at a time. It can
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happen that the intersections of many pairs of polygons end at the same
point, if one polygon ends there. Since each of our polygons meets Q, this
cannot happen above Q here.

We order pairs of polygons in decreasing order by their separation heights,
and for each pair of polygons (N,M) in this order, we consider the pair of
intervals on Q defined by N ∩Q and M ∩Q as representors of the object
(N,M) on Q. These intervals are necessarily disjoint on Q for positive h.

Let the maximal initial segment be defined by the pairs (N,M) for which
the intervals INM pairwise intersect. Let I=[p1,p2]⊆Q denote the interval
of their intersection. Clearly I is the intersection of two support intervals
IN ′

1M ′
1
with endpoint p1 and IN ′

2M ′
2
with endpoint p2 where (N ′

i ,M
′
i) are

(not neccesarily distinct) pairs from the initial segment.
Assume first that the maximal initial segment contains all pairs separat-

ing at some positive height. Then A ∈ A(p1) can be partitioned into two
parts, those which intersect Q in (−∞,p1) and those which intersect Q in
(p1,∞). Both parts intersect Q in pairwise intersecting intervals therefore
three points of Q pierce A.

Otherwise, the maximality of the segment is witnessed by two pairs:
(N ′′,M ′′) separating at line h′′ next to the initial segment and the pair
(N ′

i ,M
′
i), separating at height h′

i whose support interval is separated from
IN ′′M ′′ by the endpoint pi of I (i= 1 or i= 2). Without loss of generality,
assume that i=1. The intervals IN ′′M ′′ and IN ′

1M ′
1
are disjoint on Q.

Now the sets of A(p1) can be partitioned into two parts, A−(p1) and
A+(p1), that is, those which intersect Q within X1 = (−∞,p1) and those
which intersect Q within X2 = (p1,∞), respectively. Let C and D be two
sets in A−(p1) that are disjoint on Q, and intersect Q in X1 = (−∞,p1).
Then C, D, N ′

1 and M ′
1 are all disjoint on Q, so by our initial condition and

Helly’s theorem, they must have a common point, which must necessarily
lie above h′′. But then C and D must meet on the line h′′, since they did
not separate above h′′. We conclude that any pair, (C,D), of A−(p1) either
meet on Q or on the line at height h′′ parallel to Q. By Observation 1, these
can all be met by two points, one on Q, one on h′′. We can proceed similarly
for the sets in A+(p1), the only difference is that we use N ′′ and M ′′ in the
argument, instead of N ′

1 and M ′
1.

Thus, with p1, five points pierce A.

4. Reduction to special configurations

In this section we show that given a collection of closed and finite convex
sets, with three out of any four having a point in common, we can choose
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three points, p, p′ and p′′, so that those of our sets that contain none of
them form at most two special configurations, as described in the previous
section. This implies that we can cover all the sets with 13 points, five for
each special configuration and the first three. The initially given (any three
of four) condition allows two cases: either all pairs of sets have non-empty
intersections, or not. In the second case, no two disjoint pairs of sets, (A,B)
and (C,D) can each have empty intersection, or else no three of (A,B,C,D)
could have a common point. This means (apart from the degenerate case of
three pairwise disjoint sets) that the empty intersection pairs form a ”claw”.

Suppose sets A and B have a point in common, but their intersection has
no point in common with any other of our sets. Then as far as our three out
of four condition is concerned, A and B may as well be disjoint, and we can
conclude from it that every other pair (C,D) must together have a common
point with either A or B or both. In this circumstance we say that A and
B are effectively disjoint.

We choose our first point so that we can find two sets A and B that are
effectively disjoint, and all other sets meet both of these.

In the first of the two cases above, when all pairs of sets meet, we can
choose an arbitrary direction, n̄, and move a line normal to n̄ from infinity
until we encounter the first point p, at which a pair of our sets, A and B,
separate. p will be our first point, and as far as the other sets that do not
contain p are concerned, A and B are effectively disjoint.

In the second case, let the hub of the claw that represents the disjointness
graph among our sets be the set A, and the sets that it does not meet be
B1,B2, . . .. Then any triple among the Bi’s have a point in common as we
can deduce by applying the three of four condition to the triple and A.
Then Helly’s Theorem in the plane implies that all the Bi’s have a point in
common. If we choose any common point as p, then A and any one of the
Bi’s, form two sets sought here; they are actually disjoint, and all sets not
containing p will meet both.

Let Q be a line that separates A and B and touches A. We will refer to
Q as a horizontal line.

We choose our second and third points, p′ and p′′, so that the remaining
sets not containing either of them can be partitioned into two special con-
figurations, one in which all pairs of members meet above Q, while those in
the other all meet below Q. We define these points explicitely at the end of
Section 6.

By considering all four-tuples of the form (A,B,X,Y ) among our sets
X and Y , because A and B are effectively disjoint we can deduce from our
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three of four condition that every pair, X and Y , must meet either in A or
in B.

We consider the complete graph on our convex sets as vertices and label
each edge of that graph with one of three labels: (X,Y ) gets label A if X
and Y meet in A but are disjoint on Q; gets label B if they meet in B but
are disjoint on Q; and label Q if they meet on Q (and therefore meet both
in A and in B). We use this edge labeling to produce a vertex labeling, with
the same labels as follows: if any of our sets X is the AA vertex of any AAB
triangle then it receives the label A. If X is the BB vertex of any BBA
triangle then it gets the label B; and otherwise it gets the label Q.

We will next show that the collection of our convex polygons which have
label A form a special configuration, as do those with label B after replacing
the word “above” by “below” in the definition of same. We then show that
the polygons with label Q can be absorbed into one or another of these
special configurations after removal of those polygons that contain either of
two particular points on Q.

Recall that a special configuration of polygons consists of those obeying
the two conditions:

1. Each pair of polygons meet on or above Q; each polygon meets Q.
2. Any three polygons that are mutually disjoint on Q have a point in

common above Q.

We already know that every one of our polygons meets both A and B
and every pair of them meet in one or the other, so that we need only verify
the second condition. If we show that three polygons with label A that are
mutually disjoint on Q must meet one another only on the A side of Q, from
our original condition applied to them and B we can deduce that the second
condition is satisfied. Thus, to get the desired conclusion here we must show
that every pair consisting of two of our polygons both with label A must get
label A or Q, and not B. Proof of this last claim is contained in the next
subsection, in which we also observe that no vertex can receive both labels,
A and B.

5. Polygons with A labels form a special configuration

By the remarks immediately above, this claim follows immediately from the
following theorem:

Theorem 2. Two of our convex polygons that both have A labels cannot
form a pair with edge label B. Moreover, any with label A cannot also have
label B.
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Proof. The definitions of labelings imply that these claims are equivalent to
the impossibility of the labeled subgraphs of the complete graph illustrated
in Figure 5. We show them to be impossible by invoking two principles, one
logical and the other geometric.

Rule 1. In order for three sets to have a single point in common, each pair
of them must meet on the same side of Q or on Q itself. Thus, by our original
condition, among any four of our vertices, there must be a triangle in which
the edge labels are all A or Q, or B or Q. This cannot happen if among
these four vertices there is a ’matching’ of B edges and one of A edges: if,
for example, the edges (1,2) and (3,4) are B edges, while (1,3) and (2,4)
are A edges. This is so because, among four vertices, every triangle meets
every matching. Our original condition therefore prohibits simultaneous A
and B matches among 4 of our polygon-vertices (see Fig. 4).

Q QQQ

not  Q

not  Q

A

B

A

B

Figure 4. Forbidden configurations
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Figure 5. Configurations with B edge between A vertices, and simultaneous A, B vertices
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Rule 2. Suppose polygons 2 and 3 are disjoint on Q as are polygons 4 and
5. Then all four of the pairs (2,4), (2,5), (3,4), and (3,5) cannot meet on Q.
For, if 2 and 3 are disjoint on Q, any polygon that meets both on Q must
include the interval between them; any two such polygons must therefore
themselves overlap on Q (see Fig. 4).

The first of these rules immediately eliminates the middle two subgraphs
of Figure 5, when applied to the quadrilateral (1,2,3,4). In the bottom case,
the first rule implies that each of (3,5), (2,5), (3,4) and (2,4) meet on Q
which contradicts the second rule.

In the top case, the first rule applied to (1,2,3,4) implies that the edges
(2,4) and (2,3) must each be labeled either Q or B, and the same argument
applies similarly in (1,2,5,6) to the edges (1,5) and (2,6). But if any of these
are B labels, we have a bottom type configuration which we have already
ruled out. We may conclude that all of (the four edges, (1,5), (1,6), (2,3)
and (2,4) have Q labels.

The first rule applied to (1,2,3,5) implies that the edge (3,5) has label A
or Q; and symmetrically, the same conclusion follows for edges (3,6), (4,5)
and (4,6). The second rule then, applied to (1,3,5,6) implies that one of
(3,5) and (3,6) must have label A. By applying this argument symmetri-
cally we find that each of 3, 4, 5 and 6, must have an A labeled edge to
another; this implies that there is an A labeled matching which gives us
a contradiction with our first rule: there is already a B labeled matching
among these vertices.

So the A and B labeled polygons each form special configurations. We
now consider Q labeled polygons.

6. Q labeled polygons

Let L be the leftmost Q labeled polygon on Q; that is, the one whose right
endpoint on Q is furthest to the left; let R be similarly, the rightmost Q
labeled polygon on Q. If L and R meet on Q, then all Q labeled polygons
meet, and there is a single point, p′ on Q that meets them all, by Helly’s
theorem in one dimension.

We therefore assume otherwise, that L and R are disjoint on Q and the
pair (L,R) has label A or B. Suppose, without loss of generality that this
label is A.

Here are two facts that give us two points that allow us to merge Q and
A among the polygons missing them.

Fact 1. Three Q labeled polygons that do not meet one another on Q must
have all of their edges A’s or all of their edges B’s.
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Proof. Any mixed triangle has a vertex with both labels the same which
vertex would be an A or a B rather than a Q labeled polygon.

Fact 2. If two Q labeled polygons are disjoint from each other and from an
A labeled polygon on Q, and if they form an A labeled pair, then all edges
of their triangle must be labeled A’s.

Proof. The triangle cannot be edge labeled ABB or else the A labeled
vertex would also have a B label, which contradicts Theorem 2. If the edge
labels were AAB one of the two Q labeled vertices would have an A label
instead.

We now show that if we omit all Q labeled polygons that contain either
the rightmost point, rL, of L on Q, or the leftmost point, lR, of R, then the
rest of the members of Q form only Q or A labeled pairs with each other or
with A labeled polygons.

Let Y be any Q labeled polygon not containing either rL or lR. Applying
the first fact to the triangle (L,R,Y ) we find that (L,Y ) and (R,Y ) must
have A labels. If Y and Y ′ have Q labels and miss lR and rL, they either
meet on Q and (Y,Y ′) has label Q, or, applying the first fact to either triangle
(L,Y,Y ′) or (Y,Y ′,R) we find that (Y,Y ′) must have label A. Finally, if X
has A label and lies to the left of Y on Q and is disjoint from Y on Q,
then applying the second fact to the triangle (X,Y,R), noting that (Y,R)
has label A, we deduce that (Y,X) has label A, which completes proof of
the claim of the previous paragraph. The same argument applies if A lies
to the right of Y on Q with L and R interchanged. We can summarize this
discussion by the statement that all (X,Y ) or (Y,Y ′) edges are necessarily
labeled Q or A.

These statements assure us that we can absorb all the polygons of Q
into A without introducing any B labeled edges among them and therefore
maintaining the resulting collection as a special configuration, after removing
those polygons containing the explicit two points, the right end, rL, of L
and the left end, lR, of R, which points we choose as p′ and p′′.

Consequently, the sets that do not contain any of p, p′ and p′′ can be
divided into two special configurations, both of which can be pierced by five
points. So, with 13 points we can pierce all sets.

7. Comments on the argument

The conclusion we draw from the arguments presented above is that 13
points suffice to cover all the polygons. We used three points to set up the
special configurations of A’s and B’s and five to cover them independently. If
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you study the problem you will soon be convinced that no more than three
points are required to handle a special configuration, and probably to handle
any set of polygons obeying the given conditions. Though this problem has
been open for more than forty years, it is probable that this particular case
was not studied very hard, because of its special nature. It may well be that
there is a simple argument for a tighter bound that is lurking, waiting to be
found. We can attest to the existence of a goodly number of false proofs of
such bounds. An interesting open question is: do these arguments help at all
in any other cases of this problem? Can one say anything intelligent about
the case in which three out of every five have a point in common, among
closed convex sets in the plane? Or four out of every five closed convex
polyhedra do so in three dimensions?

In the spirit of Paul Erdős, the authors will give x ·$10 for any improve-
ment of the upper bound by x, below 13, and $30 for each incremental
improvement of the lower bound above 3 for the problem considered here.
Again in the Erdős spirit, the argument presented above possesses a certain
esthetic charm. It will be a pity if and when it is replaced by a still more
direct and more conventional argument which gives a better bound. It is not
clear how much effort has gone into attempting to improve the lower bound
for this problem. The lower bound three can not be improved for special
configurations, this is shown by the following example with six triangles.
Select a regular triangle T with vertices Ai and let Bi be the point which
divides the segment AiAi+1 in ratio 1:2 and closer to Ai (i∈{1,2,3}). Now
the special configuration is defined by the three regular triangles whose sides
are the sides of T and their third vertex is outside T together with the three
triangles Ai,Bi,Bi+1. It is easy to check that the six triangles form a special
configuration with respect to the line A1A2, three of any four meet and no
two points cover all of them. However, a configuration requiring more than
three points for a cover in the general case has not been found.
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Computer and Automation

Research Institute

Hungarian Academy of Sciences

1111 Budapest, Kende u. 13–17

Hungary

gyarfas@luna.aszi.sztaki.hu
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