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Abstract: Let fd (G) denote the minimum number of edges that have to be
added to a graph G to transform it into a graph of diameter at most d. We
prove that for any graph G with maximum degree D and n> n0 (D) vertices,
f2(G)� nÿDÿ 1 and f3(G) � nÿO(D 3). For d � 4, fd (G) depends strongly
on the actual structure of G, not only on the maximum degree of G. We
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prove that the maximum of fd (G) over all connected graphs on n vertices is
n/bd/2 cÿO(1). As a byproduct, we show that for the n-cycle Cn, fd (Cn)� n/
(2bd/2 cÿ 1)ÿO(1) for every d and n, improving earlier estimates of Chung
and Garey in certain ranges. ß 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161±172, 2000

Keywords: graphs; diameter of graphs; maximum degree

1. PRELIMINARIES AND RESULTS

Extremal problems concerning the diameter of graphs have been initiated by
ErdoÈs, ReÂnyi, and SoÂs in [4] and [5]. Problems concerning the change of diameter
if edges are added or deleted have been initiated by Chung and Garey in [2],
followed by a survey by Chung [1] which contains further references, e.g., the
paper by Schoone, Bodlaender, and Leeuwen [6]. A related problem, decreasing
the diameter of a triangle-free graph by adding a small number of edges while
preserving the triangle-free property, has been considered by ErdoÈs, GyaÂrfaÂs, and
RuszinkoÂ [3]. In this paper we continue the direction initiated in [2] and
investigate the minimum number of edges one has to add to a graph G to
transform G into a graph of diameter at most d. Let fd(G) denote this minimum.

In general, by [6], it is NP-complete to determine the minimum number of
edges to be added to a graph to make it of diameter d. On the other hand, in some
cases it is trivial to ®nd fd(G). For example, fd(G)� nÿ 1 for every d � 2 if G has
n vertices and no edges, f1(G) is equal to the number of edges in the complement
of G since only the complete graph has diameter one. The function f2(G)
is already interesting. If G has n vertices and maximum degree D(G) then
f2(G)� nÿD(G)ÿ 1, because G can be trivially extended into a graph of dia-
meter at most two by adding all missing edges from an arbitrary vertex of degree
D. We shall prove that this bound is tight for ®xed D and large n (Theorem 2.1).
For the case d� 3 we show (Theorem 2.3 ) that for any n-vertex graph G

with maximum degree D, f3(G) � nÿO(D3) (and there are examples for which
f3(G)� nÿO(D2)). If these results are applied to the cycle Cn we get that
f2(Cn)� nÿ 3 for suf®ciently large n and nÿ 100� f3(Cn)� nÿ 6 (Corollaries
2.2 and 2.4).

For general d we prove that fd�G� � n=bd=2c for any connected graph G on n
vertices (Theorem 3.1) and we also show that this is tight for every n and d� 2,
up to a constant additive term (Theorems 3.2, 3.4). This is proved by considering
the value of fd(G) where G is a path of length n/bd/2c with pending paths of
length bd/2cÿ 1 at each of its vertices.

These results (and their proof techniques) can be applied to get good lower
bounds on fd(G) for other graphs G as well. We demonstrate this with the
case when G�Cn, the cycle with n vertices: for an arbitrary positive integer h,
bn=�2hÿ 1�c ÿ 7 � f2h �Cn� � bn=�2hÿ 1�c and bn=�2hÿ 1�c ÿ 155 � f2h�1

�Cn� � bn=�2hÿ 1�c (Corollary 3.5). Thus fd(Cn) is determined up to an additive
constant error term.
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It is worth comparing our estimates to the ones of Chung and Garey [2]. They
proved that for t even, the minimum diameter C(n, t) which can be achieved by
adding t edges to Cn satis®es n/(t� 2)ÿ 1� C(n, t)� n/(t� 2)� 3. It is easy to
check that for t� c

���
n
p

our lower bound is stronger, otherwise it is weaker. The
importance of the magnitude of t is even more visible from a conjecture stated in
[1]: One can decrease the diameter of a path Pn to (n� tÿ 1)/(t� 1) by adding t

edges (for t even). If t may depend on n, this conjecture says that it is enough to
add (nÿ 4)/2 edges to Pn to get a graph of diameter three. However, by Corollary
2.4, nÿ 100 edges are needed. Thus the conjecture can be valid only for small t.

2. DIAMETER TWO AND THREE

Theorem 2.1. Let G be a graph of order n with maximum degree D. Then at

least nÿDÿ 1 edges are needed to extend G into a graph of diameter at most 2,
provided n is suf®ciently large (as a function of D).

Observe, that this result is tight, sinceÐas already mentionedÐadding all
missing edges to a vertex of degree D we obtain a graph of diameter two.

Proof. Assume that G is extended by H. If H has at most D� 1 tree
components then e(H)� nÿDÿ 1 and the proof is ®nished. Otherwise, select
D� 2 tree components of H, Ci, and a vertex xi of degree at most one (in H) from
each Ci, i� 1,2, . . ., D� 2. Notice that from each xi at most D2�D additional
components of H are reachable by paths of length at most 2 in G [ H, because at
most D(Dÿ 1)�D components are reachable by such a path of G and at most D
components are reachable by a 2 path which starts with an edge of H followed by
an edge of G. Since G [ H is of diameter 2, this means that H has at most
D2�D� 1 components.

Call a component of H small if it has no more than h� 2D3� 5D2� 2D
vertices, otherwise it is called large. We claim that a large component C of H has
at least jCj �D2 edges.

To see this, ®x a large component C and select a point xi of degree at most one
in each of the other D� 1 tree components of H. (Without loss of generality, we
may assume that i� 1, 2,. . ., D� 1.) Let Ai � C denote the vertices which are
reachable from xi by a 2-path of G[H whose second edge is from G or by a
1-path of G. By an argument similar to the one above it follows that jAij �
D2�D, so jAj � (D� 1)(D2�D), where A�A1[ A2[� � �AD� 1. Each vertex y 2
(C nA) is at distance at most two from xi, i� 1,2, . . ., D� 1. By the de®nition of
A, the shortest path from y to xi in G [ H must be of length two and it must start
with an edge yzi of H with some zi 2 A. Since the degree of zi in G is at most D,
there are at least two distinct zi-s. This implies that y is adjacent to at least two
vertices of A in H. Thus C has at least 2(jCj ÿ jAj) edges (in H) which, using that
C is suf®ciently large, gives

2�jCj ÿ jAj� � 2jCj ÿ 2�D� 1��D2 � D� � jCj � D2;

proving the claim.
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Set n0� (D2�D� 1) (2D3� 5D2� 2Dÿ 1)� 1. Then, if G has at least n0

vertices, H has a large component C. Assume H has t other components. Since
those t components span at least nÿ jCj ÿ t edges, we have

e�H� � nÿ jCj ÿ t � e�C� � nÿ �D2 � D� 1� � D2 � nÿ Dÿ 1;

completing the proof. &

Corollary 2.2. For n > n0, at least nÿ 3 edges must be added to Cn to get a
graph of diameter two.

Obviously, Corollary 2.2 is tight, and perhaps the best possible n0 can be
determined with some additional effort. We have the following example, showing
that the best possible value of n0 is at least 11. Consider the Petersen graph with
vertex set f1; . . . 10g and with edges (i, i� 5) (i 2 f1; . . . 5g), (i, i� 1) (mod 5)
(i 2 f1; . . . 5g), (i, i� 2) (mod 5) (i, i� 2 2 f6; . . . 10g�. Join a new vertex 11 to
vertices 1, 8, and 9. The resulting graph is a Hamiltonian graph of diameter two
with 11 vertices and 18 edges, showing that for n� 11, Cn can be extended by
less than nÿ 3 edges to a diameter two graph.

The following theorem shows that extending into diameter three does not
require signi®cantly less edges than extending into diameter two.

Theorem 2.3. Suppose that G is a graph of order n with maximum degree

D (� 2). Then at least nÿ 3(D� 1)3ÿ 2(D� 1)2ÿ 1 edges are needed to extend
G into a graph of diameter three.

Proof. Assume that G is extended by H so that the diameter of G [ H is at
most 3. Consider the components of H and denote by t the number of components
which are trees. We shall ®x nÿ t edges of H by selecting all edges of the tree
components and selecting a unicyclic spanning subgraph in each other
component. We shall refer to these edges as the ®xed edges. Observe that the
average degree of any subgraph formed by ®xed edges is at most 2. Select a
vertex xi of degree at most one in each tree component (i� 1, 2,. . ., t). The edge
of H incident with xi is called the root edge. Since G[H is of diameter at most
three, there is at least one path of length at most three with endpoints xi, xj for all
pairs 1 � i < j � t. Call a path essential, if it is of length three and its middle
edge is an edge of H.

We claim that there are at least t
2

ÿ �ÿ ct essential paths connecting distinct
pairs xi, xj, where c� (D� 1)3/2 depends on D only.

To see this, observe that for a ®xed vertex xi

(i) There is one xj which can be reached from xi by a (nonessential) path of
length zero (xi itself).

(ii) There are at most D xj-s which can be reached from xi by (nonessential)
paths of length one, since to get to a new component only the edges of G
can be used (and it is of maximum degree D).
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(iii) There are at most D2 � D xj-s which can be reached from xi by
(nonessential) paths of length two, since xi has at most D� 1 neighbors in
G [ H and from each of them at most D xj-s can be reached.

(iv) There are at most D(D2�D� 1) xj-s which can be reached from xi by
nonessential paths of length three, since from xi there are less than
D2�D� 1 paths of length two having the second edge from G and from
each of them at most D xj-s can be reached. Therefore, from a ®xed vertex
xi at most as many xj-s can be reached by nonessential paths of length at
most three as the sum of the above estimations, which is less than
(D� 1)3 for D� 2. From this the claim with c� (D� 1)3/2 follows.

On the other hand, any edge of H can be the middle edge of at most (D� 1)2

essential paths, since to both endpoints of such an edge at most D xj-s can be
adjacent in G and at most one xj can be adjacent in H. Moreover, the middle edges
of essential paths are spanned by a set X of at most t(D� 1) vertices, since those
ones have to be adjacent to some xi. Using that the ®xed edges form a graph of
average degree at most two on any subset of vertices, at most t(D� 1) edges are
®xed edges among the middle edges of essential paths. These considerations give
the

t
2

ÿ �ÿ t
2
�D� 1�3

�D� 1�2 ÿ t�D� 1� �1�

lower bound for the non-®xed edges of H. Set t0� 3(D� 1)3� 2(D� 1)2� 1. For
0� t� t0 H has at least nÿ t� nÿ t0� nÿ 3(D� 1)3ÿ 2(D� 1)2ÿ 1 (®xed)
edges and for t� t0 the number of ®xed edges and the estimate (1) show that

jE�H�j � nÿ t �
t
2

ÿ �ÿ t
2
�D� 1�3

�D� 1�2 ÿ t�D� 1�

� n� t
�t ÿ 1�

2�D� 1�2
 !

ÿ t
3�D� 1�

2
� 1

� �

� n� t
3�D� 1�

2
� 1

� �
ÿ t

3�D� 1�
2

� 1

� �
� n � nÿ 3�D� 1�3 ÿ 2�D� 1�2 ÿ 1;

from which the desired result follows. &

Unlike in Theorem 2.1, the bound in Theorem 2.3 is probably not tight and can
be improved to nÿO (D2). One cannot expect better than that since if we take a
graph G of maximum degree D which contains a diameter 2 subgraph G* with
approximately D2 vertices (such G* does exist, see [5]), then adding all missing
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edges from a vertex of G* to V(G)nV(G*) we get an extension which is of
diameter at most three.

Corollary 2.4. At least nÿ 100 edges must be added to Cn to get a graph of

diameter three.

We suspect that in fact for all n > n0 at least nÿ 6 edges have to be added to Cn to
get a graph of diameter three. If true, this is best possible as shown by the
following example. Add the edge (4, nÿ 2) and the edges (1, i) for 5� i �
nÿ 3. A similar solution is to replace (4, nÿ 2) by (3, nÿ 1).

3. LARGER DIAMETER

We start this section with an upper bound on fd (G) for arbitrary d provided G is
connected.

Theorem 3.1. For any connected graph G of order n, fd(G)� n/bd/2c.
Proof. It is enough to prove the theorem for even d, say d� 2h and one can

also assume (by monotonicity) that G is a tree. Select a longest path P� x1x2� � �
of G, we may assume that its length is at least h, otherwise G has diameter at most
hÿ 1. Remove the edge xh, xh� 1 from G. Each vertex of the subtree T1 containing
xh� y1 is at distance at most hÿ 1� d /2ÿ 1 from xh since P was maximal. The
procedure is iterated on the subtree of G containing xh� 1. Clearly, this partitions
G into subtrees Ti, each but the last one with at least h vertices. Moreover, each
subtree Ti has a vertex yi at distance at most hÿ 1 from all vertices of Ti. This
shows that there are at most t�dn /he subtrees. The required extension of G is
obtained by adding the edges ytyi for all 1� i < t. &

We next show that for every d � 2 and n, the following tree, which we denote
by T(n, d ), provides an example where Theorem 3.1 is tight up to a constant
additive term. The tree T (n, d ) is de®ned as follows. Put h�bd / 2c and take a
path of dn/he vertices. This will be called the horizontal path, and its vertices x

are called the top vertices. From each top vertex x of the horizontal path grow a
path Px with h vertices (including the top one). These paths are called the vertical

paths and their endpoints x (not belonging to the horizontal path) are called
bottom vertices. Finally, delete, if needed, hdn/heÿ n vertices from the last
vertical path to make sure the total number of vertices is n. Thus, the tree
T(n, 2)� T (n, 3) is simply a path with n vertices, and, for even n, the tree T(n, 4)
is called an n-comb. The general case (with h dividing n) appears in Figure 1.

For d� 4 the minimum number of edges one has to add to a graph to transform
it to one of diameter at most d in contrast to the cases d� 3 depends on the
structure of the graph in an essential way. For example, one can transform T(n, 6)
to a graph of diameter 4 by adding to it about n/3 edges simply by connecting one
given vertex to all vertices which are neither top nor bottom ones. On the other
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hand, signi®cantly more (� n/2) edges have to be added to transform the n-comb
T (n, 4) into a graph of diameter four. In the next theorem it is shown that indeed,
for arbitrary even d, Theorem 3.1 is tight up to a constant additive term. (This
remains true for odd d with a worse constant and with a slightly more
complicated proof and will be stated in Theorem 3.4).

Theorem 3.2. For every positive integer h and every n, f2h(T(n, 2h))�
bn / hcÿ 6.

Proof. We may assume that h is a divisor of n. Take an arbitrary extension of
T(n, 2h) into a graph G of diameter 2h. Call the original edges black and the
added ones red.

To capture the structure of the red edges, an auxiliary (multi)graph R is de®ned
as follows. To each vertical path Pi of T (n, 2h) a vertex i is associated, i.e., R has
n/h vertices denoted by 1, 2, . . . , (n/h). For every red edge with endpoints on the
vertical paths Pi,Pj (1� i� j� n/h), let ij be an edge of R. Notice that R can
have multiple edges and (since i� j is possible), multiple loops as well. Clearly,
the number of edges of R is equal to the number of red edges of G.

To any set A �V(R) a subgraph G (A) of G is de®ned as follows. The vertex set
X of G(A) is the union of vertices on the vertical paths corresponding to A, i.e.,
X�f[V (Pa)ja 2 Ag. The edges of G (A) are the edges of the subgraph induced
by X in G except the (black) edges of the horizontal path. (All red edges of G and
the black edges on the vertical paths remain.) Observe that if A �V(R) induces a
subtree in R then G(A) is a tree as well (union of jAj vertical paths with jAj ÿ 1 red
connecting edges). Let lA (u, v) denote the distance of vertices u, v in G(A). We
shall use the following lemma.

FIGURE 1.
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Lemma 3.3. Assume that A � V�R� induces a subtree in R. Then there exists
x 2 A such that

(i) lA�x; x� � hÿ 1:
(ii) There exists at most one top vertex y 2 V�G�A�� for which lA�x; y� � h:

(iii) For every top vertex z 2 V�G�A�� n fx; yg, lA�x; z� � h� 1:

Proof. We apply induction on jAj, the case jAj � 1 is trivial (G (A) is a path of
length hÿ 1). For the inductive step, delete y2A such that y is of degree one in
the subtree R[A]. By the inductive hypothesis there exists x 2 A*�Aÿy
satisfying the lemma (with A*).

Claim. either x or y satis®es the lemma (with A). To prove the claim,
consider the (unique) red edge ab where b 2 Py . If x does not satisfy the lemma
(with A) then lA(x; y)� h and (since the shortest path from x to y must go through
ab) it follows that

lA�x; a� � 1� lA�b; y� � h:

Now we prove that y satis®es the lemma (with A). Since (i): lA�y; y)� hÿ 1 is
obvious and lA(y; x)� h is immediate from the assumption lA(x; y)� h, it is
enough to show that lA(y; z)� h� 1 holds for every z =2fx; yg. If this fails then
(since the shortest path from y to z must traverse the red edge ab from b to a) we
get

lA�y; b� � 1� lA�a; z� � h:

By adding the two displayed inequalities we conclude that

lA�x; a� � lA�a; z� � lA�y; b� � lA�b; y� � 2hÿ 2:

Since lA�y; b� � lA�b; y� � hÿ 1 this implies that

lA��x; z� � lA�x; z� � lA�x; a� � lA�a; z� � hÿ 1

which contradicts the choice of x (in A*) and hence completes the proof of the
claim and the lemma. &

Now we return to the proof of Theorem 3.2. Assume that one can transform
T(n, 2h) to a graph of diameter at most 2h by adding at most n/hÿ 7 (red) edges.
This implies that the graph R has at least seven tree components C1,C2,. . . ,Ct

where t� 7. Take the bottom vertex xCi
in each tree G(V(Ci)) according to

Lemma 3.3.
De®ne another auxiliary (simple) graph R1 with directed and undirected edges

as follows. The vertices of R1 will be the tree components Ci of R. Connect Ci to

168 JOURNAL OF GRAPH THEORY



Cj by an undirected edge in R1 if the distance of xCi
and xCj

along the horizontal
path is two. De®ne a directed edge in R1 from Ci to Cj if the distance of xCi

and
some top vertex of G(V(Cj)) along the horizontal path is one.

Assume that Ci and Cj are not adjacent in R1. Consider a shortest path P from
xCi

to xCj
in G. Let u and v be the ®rst and last vertex encountered on the

horizontal path when traversing P from xCi
to xCj

. Using Lemma 3.3 and the
assumption that Ci and Cj are not adjacent we can estimate jPj, the length of P as
follows.

Case 1. u � xCi
and v � xCj

. Then jPj � (hÿ 1)� (hÿ 1)� 3� 2h� 1.

Case 2. u � xCi
and v 6� xCj

(or by symmetry v � xCj
and u 6� xCi

.) Then jPj �
(hÿ 1)� h� 2� 2h� 1.

Case 3. u 6� xCi
and v 6� xCj

. Then jPj � h� h� 1� 2h� 1.

We get a contradiction to the assumption that G is of diameter at most 2h (we
did not use the full strength of Lemma 3.3). Thus the graph R1 must be complete
so it has t

2

ÿ �
(directed or undirected) edges. However, from the de®nition, R1 has

at most 2t directed and at most tÿ 1 undirected edges, therefore 3tÿ 1� t
2

ÿ �
must

hold. This is a contradiction, since t� 7. &

The lower bound proof for fd (T (n, d )) for odd values of d is similar to the
even case and uses the full strength of Lemma 3.3. It is stated in the following
theorem (in which we make no attempt to optimize the additive constant term).

Theorem 3.4. For every positive integer h and every n, f2h� 1 (T(n, 2h� 1))�
bn=hc ÿ 154:

Proof. As in the proof of Theorem 3.2, we may and will assume that h is a
divisor of n. Take an arbitrary extension of T (n, 2h� 1) (� T (n, 2h)) into a graph
G of diameter at most 2h� 1 and like in the proof of Theorem 3.2, the added
edges are called red. The auxiliary graph R is de®ned also as in the proof of
Theorem 3.2 and C1, C2,. . . ,Ct denote the tree components of R. Since the
number of red edges is at least n

h
ÿ t, we may assume t� 155 throughout the

proof.
Select vertices xCi

in each tree component Ci according to Lemma 3.3. Let xCi

and xCi
denote the corresponding bottom and top vertices of G (V (Ci)). Moreover,

let yCi
and yCi

denote the (exceptional) bottom and top vertices de®ned in part (ii)
of Lemma 3.3. (If they do not exist let yCi

� xCi
and yCi

� xCi
.)

We need a re®ned de®nition of the second auxiliary graph R1 (with undirected
and directed edges) as follows. The t vertices of R1 are the components Ci, and
Ci,Cj is de®ned as an undirected edge of R1 in two cases: a. the distance of xCi

and
xCj

along the horizontal path is two or three; b. the distance of yCi
and yCj

along
the horizontal path is one. A directed edge of R1 from Ci to Cj is de®ned in two
cases: c. the distance of xCi

and yCj
along the horizontal path is two; d. the distance

of xCi
and a top vertex of G (V(Cj)) along the horizontal path is one.
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Notice that at most six undirected edges are incident to any vertex of R1 and
at most four directed edges go out from any vertex of R1. Thus R1 has at most
7t edges. Therefore, by TuraÂn's theorem, R1 has an independent set of size of
at least t/15. The foregoing computations are not affected by assuming that t

15

is an integer. We restrict our attention to these t
15

tree components Ci, 1� i � t
15

,
and consider them as vertices in another (undirected) auxiliary graph R2.
Two vertices Ci and Cj in R2 are considered adjacent if there is a red edge
connecting two top vertices p,q where p; xCi

and q; xCj
are both edges of the

horizontal path.
Assume that R2 is a complete graph. Let S denote the set of top vertices which

are at distance one along the horizontal path from some vertex xCi
,1 � i � t

15
.

Using that fCij1 � i � t
15
g is independent in R1 and complete in R2 it follows that

2t
15
ÿ 2 � jSj � 2t

15
and the subgraph G[S] induced by S in G has at least �t=15

2
�

(distinct) red edges. On the other hand, one can de®ne n
h
ÿ t red edges of G by

selecting the red edges corresponding to the edges of the t tree components of R

plus selecting the red edges corresponding to edges of ®xed unicursal spanning
subgraphs of the other (nontree) components of R. Notice that the selected n

h
ÿ t

red edges form a subgraph of G whose components are trees or unicursal graphs,
in particular at most jSj � 2t

15
of them are in G[S]. Therefore, the number of red

edges in G[S] is at least

n

h
ÿ t � t=15

2

� �
ÿ 2t=15 � n

h
� t�t ÿ 525�

450
>

n

h
ÿ 154

(because �t�t ÿ 525�=450� has minimum value ÿ153:125 at t � 262:5). There-
fore, if R2 is complete, the proof is ®nished.

Assume that there exist Ci and Cj which are adjacent neither in R1 nor in R2.
Using this and Lemma 3.3 (in full strength) we are going to show that jPj, the
length of a shortest path P in G from xCi

to xCj
is at least 2h� 2 and this

contradiction will ®nish the proof. Like in the proof of Theorem 3.2, let u and v
denote the ®rst and last vertex of P encountered in the horizontal path when P is
traversed from xCi

to xCj
.

Case 1. u � xCi
and v � xCj

; Then jPj � �hÿ 1� � �hÿ 1� � 4 � 2h� 2.

Case 2. u � xCi
and v � yCj

; (or, by symmetry u � yCi
and v � xCj

). Then
jPj � �hÿ 1� � h� 3 � 2h� 2.

Case 3. u � yCi
and v � yCj

; Then jPj � h� h� 2 � 2h� 2.

Case 4. u � xCi
and v =2fxCj

; yCj
g; (or, by symmetry v � xCj

and u =2fxCi
; yCi
g);

Then jPj � �hÿ 1� � �h� 1� � 2 � 2h� 2.

Case 5. all other cases. Then jPj � h� �h� 1� � 1 � 2h� 2.

This completes the case analysis and hence the proof of the theorem. &

170 JOURNAL OF GRAPH THEORY



A graph H is obtained from a graph G by an elementary identi®cation if H is
obtained from G by identifying two of its vertices u and v and by making the
identi®ed vertex adjacent to all neighbors of u as well as to all neighbors of v. It is
easy to see that fd(G)� fd(H) for every d. It also follows that if H is obtained from
G by a sequence of elementary identi®cations then for every d, fd(G)� fd(H).
(Note that this implies that for every m> n and every k and d, fd(T (m,k))�
fd(T (n, k)), as T (n, k) can be obtained from T (m, k) by a sequence of elementary
identi®cations.) This transformation is useful because it makes possible to apply
Theorems 3.2 and 3.4 to other graphs without translating the proof technique to
them. We demonstrate this with the example of the cycle Cn (in fact, for h� 1, the
next corollary gives another proof for Corollaries 2.2 and 2.4 although with worse
constants).

Corollary 3.5. The values of fd (Cn) for the n-cycle Cn satisfy the following:

(i) For every positive integer h and for every n,

bn=�2hÿ 1�c ÿ 7 � f2h�Cn� � bn=�2hÿ 1�c:

(ii) For every positive integer h and for every n

n=�2hÿ 1� ÿ 146 � f2h�1�Cn� � bn=�2hÿ 1�c:

Proof. Let f1; . . . ; ng be the vertex set of the cycle where the vertices appear
in this order along the cycle. The upper bound comes from adding the diagonals
1i for i� 2h, 4hÿ 1, 6hÿ 2,. . . .

To prove the lower bound note that if n is divisible by 2hÿ 1 then
T(hn/(2hÿ 1), 2h) plus one additional edge connecting the two ends of the
horizontal path can be obtained from the cycle Cn by a sequence of elementary
identi®cations. To do so pick 2hÿ 1 consecutive vertices along the cycle, say
1, 2, 3, . . ., 2hÿ 1 and identify the pairs (1, 2hÿ 1), (2, 2hÿ 2),. . ., (hÿ 1, h� 1).
Repeating the same process on each interval of 2hÿ 1 consecutive vertices along
the cycle we obtain the above-mentioned graph. Since after deleting one of its
edges we get T (hn /(2hÿ 1), 2h) (� T (hn / (2hÿ 1), 2h� 1)) the desired result
now follows from Theorems 3.2 and 3.4. If the length of the cycle is not divisible
by (2hÿ 1) we ®rst apply the appropriate number of identi®cations to reduce it to
a cycle of length (2hÿ 1) bn/(2hÿ 1)c. &
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