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Abstract 

Let C denote the claw 1<1,3 , N the net (a graph obtained from a J<3 by attaching a 

disjoint edge to each vertex of the 1<3 ), W the wounded (a graph obtained from a /{3 by 

attaching an edge to one vertex and a disjoint path P3 to a second vertex), and Zi the 

graph consisting of a 1<3 with a path of length i attached to one vertex. For k a fixed ' 

positive integer and n a sufficiently large integer, the minimal number of edges and the 

smallest clique in a k-connected graph G of order n that is CY -free (does not contain an 

induced copy of C or of Y) will be determined for Y a connected subgraph of either P6, 

N, W, or Z3 . It should be noted that the pairs of graphs CY are precisely those forbidden 

pairs that imply that any 2-connected graph of order at least 10 is hamiltonian. These 

extremal numbers give one measure of the relative strengths of the forbidden subgraph 

conditions that imply a graph is hamiltonian. 

1 Introduction 

We will deal only with finite graphs without loops or multiple edges. Notation will be 

standard, and we will generally follow the notation of Chartrand and Lesniak in [3] and 

Bondy and Murthy in [2]. Given a graph F, a graph G is said to be F -free if there is no 
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induced subgraph of G that is isomorphic to F. The graph F is generally called a forbidden 

subgraph of G. In the case of forbidden pairs of graphs, say F and H, we will simply say the 

graph is F H-free, as opposed to { F, H }-free. The degree of a vertex v in a graph G will be 

denoted by d( v), and the minimum and maximum degree of vertices in G will be denoted by , 

c5( G) and ~(G) respectively. The independence number of G will be denoted by n( G). 

Singletons and forbidden pairs of connected graphs that imply that a 2-connected graph 

is hamiltonian have been characterized. Also, similar characterizations have been given for 

other hamiltonian properties such as traceable, pancyclic, cycle extendable, etc. A collection 

of graphs that are frequently used as forbidden in results of this type are pictured in Figure 

1. 

A 
The claw C The bull B The deer D The hourglass H The net N 

The wounded W 

Figure 1 

The following result, which extends the results of Bedrossian in [1], gives all forbidden 

pairs that imply hamiltonicity in 2-connected graphs. A survey of results of this kind for 

other hamiltonian type properties can be found in [6], and a more general survey on claw-free 

graphs can be found in [7]. 

Theorem 1 {8} Let X andY be connected graphs with X, Y f: P3 , and let G be a 2-connected 

graph of order n ~ 10 .. Then, G being XY -free implies that G is hamiltonian if, and only if, 
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up to the order of the pairs, X= C andY is a subgraph of either P6 , N, W, or Z3. 

The well known degree type conditions that imply that a graph is hamiltonian, such as 

Dirac's in [4], Ore's in [10], or many of the other degree conditions that followed these two 

conditions, also imply that the graph is very dense. One motivation, among many others, to ' 

look at forbidden subgraph conditions is that they do not, at least on the surface, require that 

the graph be so dense. Thus, it is natural to examine the number of edges in a graph and the 

clique size of the graph forced by the forbidden subgraph conditions that imply hamiltonicity, 

or other hamiltonian type properties. This is the objective of this paper. 

The number of edges in a graph G will be denoted by e( G), and the clique number will 

be denoted w( G). The number of edges e( G) or the clique size w( G) implied in the case 

of forbidden pairs X and Y (neither of which is a P3 ) such that XY-free implies that a 

2-connected graph G is hamiltonian, varies significantly. We will see that for some forbidden 

pairs the graph G can be very sparse, but some forbidden pairs imply that the graph has 

many edges. 

In the next sections we will investigate the number of edges e( G) and the clique number 

w( G) implied by the pairs of forbidden subgraphs that imply a graph is hamiltonian (see 

Theorem 1). For some forbidden subgraph pair conditions on a graph G exact bounds will be 

given, and in other cases we will give reasonable bounds one( G) and w( G). More specifically, 

in Section 2 we will deal with forbidden subgraphs that imply the graph is relatively dense, 

in Section 3 forbidden pairs that imply only a moderate number of edges will be considered, 

and in Section 4 forbidden subgraph pairs that place minimal density conditions on a graph 

G will be investigated. 

Actually the extremal numbers for larger classes of forbidden subgraphs can be considered. 

For i 2:: 1 the graph Zi will denote the graph obtained by identifying the endvertex of a path 

of length i with one of the vertices of a triangle. For i, j 2:: 1, the generalized bull Bi,j is the 

graph obtained by attaching two vertex disjoint paths of lengths i and j to distinct vertices 

of a triangle. Thus B1,1 is the Bull and B 1,2 is the Wounded W. Likewise, the generalized 

net Ni,j,k can be defined for i,j, k ~ 1. 

The forbidden claw C does not imply the existence of many edges or large cliques, even 

in the presence of a connectivity condition. The following result makes this precise. 
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Theorem 2 Let G be a k-connected C -free graph of order n. If n is sufficiently large, then 

w( G) ~ f( k + 2) /21 and e( G) ~ kn/2. These results are sharp for k even, and nearly sharp 

fork odd. 

Proof: Since G is k-connected, each vertex must have degree at least k, which implies that • 

e(G) ~ kn/2. If k ::; 4, then the C-free property implies that G has a clique with at least 

(k + 2)/2 vertices, so we assume that k ~ 5. If G has a vertex v of degree at least k2 , then 

the neighborhood N ( v) of v contains a J( k, since a( N) < 3 from the C -free property and 

r(J(3,J(k)::; k2 (see [9]). Thus, we can assume that .6.(G) < k2 , and so G has large diameter, 

say d. 

Select a diameter path P = (x0, x1 , · · ·, xd)· No vertex y rf. P can be adjacent to more 

than 3 vertices of P, otherwise, P would not be a diameter path. If y is adjacent to precisely 

one vertex on P and that vertex is Xi for some 1 ::; i < d, then there would be a claw centered 

at Xi. Also, if y is adjacent to precisely Xi and Xi+2 with 1 ::; i ::; d- 2, then there is a claw 

centered at Xi. We can assume that y is adjacent to two or three consecutive vertices on the 

path P, if it has at least one adjacency on P. 

Choose a vertex Xi near the middle of the path P, and let N denote the neighborhood 

of Xi off of the path P. Partition N into three sets: N° are those vertices adjacent to each 

of Xi-1, Xi, Xi+1, N- are those vertices adjacent to Xi, Xi-1 and possibly Xi-2, and N+ are 

those vertices adjacent to Xi, Xi+1 and possibly Xi+2 . Note that to avoid a claw, each of the 

sets N-, N°, N+ induces a complete graph. Thus, if N° = 0, we can assume that with no 

loss of generality that IN-I ~ (k- 2)/2, and so N- U { Xi-b Xi} induces a complete graph 

with at least (k + 2)/2 vertices. Thus, we can assume that N° f= 0. If some vertex y E N° is 

not adjacent to some vertex y- E N- and also to some vertex y+ E N+, then there would 

be a claw centered at Xi unless y- and y+ are adjacent. However, in this case there would 

be a claw cenered at Xi-1 unless y- is adjacent to Xi-2. Likewise, y+ must be adjacent to 

Xi+2 . This gives a contradiction to the fact that P is a distance path, because the path 

Xi-2, Xi-1, Xi, Xi+b Xi+2 could be replaced by the shorter path Xi-2, y-, y+, Xi+2· Therefore, 

we can assume that N° can be partitioned into N~ UN~, where each vertex inN~ is adjacent 

to each vertex in N-, and correspondingly each vertex in N~ is adjacent to each vertex in 

N+. Hence, one of th~ sets N-UN~ U { Xi-1 , xi} or N+ UN~ U {Xi, Xi+1} induces a complete 
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graph with at least (k + 2)/2 vertices. 

To see the sharpness consider the graph H = CAk/21. It is easily checked that H is 

a 2fk/21-connected C-free graph with e(H) 

completes the proof of Theorem 2. 

2 fk/21 n and w(H) = f(k + 2)/21- This 

0 

2 Forbidden Subgraphs That Imply Dense Graphs 

The only single forbidden graph F that implies that a 2-connected F-free G is hamiltonian, or 

has any of the other common hamiltonian type properties, is F = P3 • Clearly any connected 

P3-free graph G must be complete, so this is an example of a forbidden subgraph condition 

that forces extreme density. 

Another well known example that implies the graph is dense is the case of C Zrfree 

graphs. This fact is part of the folklore of the discipline, but for sake of completeness, we 

give the result and its short proof here. 

Theorem 3 IJG is a connected C Z 1 -free graph of order n with D.( G)~ 3, then G = l(n -M, 

when M is a matching (possibly empty) in G. 

Proof: Consider a maximum clique H in G, which has m ~ 3 vertices, since D.( G)~ 3, and 

G is C-free. Each vertex of G adjacent to a vertex in H must be adjacent to precisely m- 1 

vertices; otherwise, there is either a larger clique or an induced Z1 . A vertex a distance 2 

from H immediately gives a Z1, so each vertex of G not in H is adjacent to m - 1 vertices 

of H. Likewise, to avoid a Z1 or a C, distinct vertices not in H must avoid different vertices 

of H and must be adjacent. This completes the proof of Theorem 3. 0 

As a consequence of Theorem 3 we have that any 2-connected C Z1-free graph G must 

have e( G) ~ n( n- 2)/2 and w( G) ~ n/2. The next theorem.is another example of a forbidden 

pair of subgraphs that implies the graph is dense. 

Theorem 4 Let G be a k-connected graph (k ~ 1} of order n ~ k + 1 that is CP4-free. 

Then, w(G) ~ fn/21, and e(G) ~ f(n2 + (2k- 2)n- 2k2 )/41 if k ~ n/2 and e(G) ~ nk/2 
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if k > n/2. Also, the lower bound for w( G) is sharp for k :::; n/2 and each of the bounds for 

e( G) is sharp for the appropriate range. 

Before completing the proof of Theorem 4, we will give a structure theorem for C P4-free 

graphs that will be useful in the proof of Theorem 4. 

Theorem 5 If G is a connected C P4 -free graph, then the complement G is just a vertex 

disjoint union of complete bipartite graphs (possibly all trivial). 

Proof: We will first show that G has two disjoint cliques that span the vertices of G. This 

will be done by induction, and it is trivial for n :::; 4. One characterization of a P4-free graph 

G is that there is always a partition of any set of vertices of G into two sets A and B such 

that there are either no edges between A and B or all of the edges are in between A and B. 

This can be verified with a straightforward induction proof. Since G is connected, there must 

be such a partition, say AUB, of all of the vertices of G such that all of the edges between A 

and Bare in. 

Now, the graph spanned by A, which we will just denote by A, is P4 free and the inde

pendence number a(A) :::; 2, since G is C-free. If A is not connected, then a(G) :::; 2 implies 

A the union of two cliques. If A is connected, then we can apply induction to get that A 

contains two disjoint cliques that span the vertices of A. Thus, in either case, A = At U A2 , 

where both At and A2 are both cliques. The same is true of B, so B = Bt U B2 such that 

both Bt and B2 are cliques. This gives that both At U Bt and A2 U B2 span cliques, and so, 

G has two disjoint cliques, say R and S, that span G, which was the claim. Consider the 

graph G, which is a bipartite graph with only edges between the sets Rand S. Since P4 is 

self-complementary, G is also P4-free. Thus, G must be a a vertex disjoint union of complete 

bipartite graphs to avoid an induced P4 . This completes the proof of Theorem 5. D 

Proof: (of Theorem 4) From Theorem 5 we have the structure of G, which is J( n- (BtU B2 U 

· · · U Bt) for some collection of vertex disjoint complete bipartite graphs Bi. Let bt, b2, · · ·, bt 

be the number of vertices in the bipartite graphs Bi respectively, and we can assume that 

bt :::; b2 :::; ... :::; bt. 

Clearly w( G) 2:: f n/21, since one of the cliques R or S will have at least that number 

of vertices. Determiningthe minimum number of edges in the graph e(G) is equivalent to 
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determining the maximum number of possible edges in the bipartite graphs B1 U B2 U · · ·UBt. 

Observe that G being k-connected is equivalent to bt ~ n- k. 

If k ~ n/2, then under these conditions, to maximize the number of edges in B1 U 

B 2 U · · · U Bt, one should choose t = 2 with b1 = k and b2 = n - k. Also, each of the , 

bipartite graphs B1 and B 2 should be as balanced as possible, and so B1 = J( lk/2J ,fk/21 

and B2 = J(l(n-k)/2J,f(n-k)/2l· This implies that the graph l(n- (B1 U B2) has at least 

(~)- lk/2J fk/21 - l(n- k)/2J f(n- k)/21 = f(n2 + (2k- 2)n- 2k2)/41 edges. If k ~ n/2, 

then each vertex must have degree at least k, and so clearly e( G) ~ nk/2. 

To see the sharpness of the result fork ~ n/2, consider the graph H of order n obtained 

from a C4 by replacing the vertices around the cycle with cliques of orders l k /2 J, f( n -

k)/21, fk/21, l(n-k)/2J respectively, and replacing each edge with the appropriate complete 

bipartite graph. The graph H is C P4-free, w( G) = f n/21, and e( G) = f( n2 + (2k - 2)n -

2k2)/4l If k > n/2, then let H = l(n- (B1 U B2 U · · · U Bt) where the Bi's are chosen such 

that each vertex of H has degree at least k but is as small as possible. Therefore, the number 

of vertices in each part of Bi will be at most n - k - 1 and each Bi will be as balanced as 

possible. For values of k and n with appropriate divisibility properties this will give a regular 

graph of order k. This verifies the sharpness of the result and completes the proof of Theorem 

4. 0 

The extremal results for C Z2-free graphs are very similar to those for C P4-free graphs for 

sufficiently large order graphs, as the next result indicates. Of course, any C P4-free graph 

is certainly C Z2-free, so it is natural to expect some relationship between these extremal 

graphs. 

Theorem 6 Let G be a k-connected C Z2-free graph with k ~ 2 and b( G) ~ 3. Then, for n 

sufficiently large, e(G) ~ f(n2 + (2k- 2)n- 2k2 )/41 and w(G) ~ cn112 for some constant c. 

The lower bound on e(G) is sharp, and the lower bound for w(G) is at most c(logn)n213 • 

Proof: The sharpness for the lower bounds on the number of edges in a C Z2-free graphs comes 

from the examples given in the proof of Theorem 4, since C P4-free implies C Z2-free. Recall 

that these examples came from a C4 by replacing the vertices around the cycle with cliques 

of orders lk/2J, f(n -. k)/21, fk/21, l(n- k)/2J respectively, and replacing each edge with 
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the appropriate complete bipartite graph. A bound on w( G) comes from a result by Spencer 

which is stated in [5] and implies that the Ramsey number r( { C3 , C4}, J( n) > c( n/ log n )312 

for some constant c. This implies that there is a graph H of order c( n/ log n )312 with clique 

number w(H) < n. Also, since there is no C3 in If, 11 is C-free, and, since H does not 

contain a C4, this implies that H is Z2-free. Therefore for n sufficiently large that there is a 

graph L of order n that is C Z2-free for which w( L) ::; c(log n )n213 • 

To verify the lower bound for e( G), consider a minimal vertex cut S for the C Z2-free 

graph G. Let A and B be the two components of G- S. (Note that since Sis a minimal cut, 

each vertex of S has a adjacency in each component of G- S, and thus the C-free property 

implies there are just 2 components.) The C-freeness also implies that the neighborhood in 

A (or in B) of a vertex x E S induces a complete graph. We will first consider the case when 

IAI 2 2 and IBI 2 3. If a vertex x has at least two adjacencies in A, say a1,a2, then x must 

be adjacent to all of the vertices in B. Otherwise, there would be an Z2 using ab a2, x and 

a neighbor of x in B along with an appropriate non-neighbor. This argument is symmetric 

with respect to A and B. So, if any vertex in x E S has two adjacencies in either A or B, 

then x will be adjacent to all of the vertices in A U B, and each of A and B is a complete 

graph. If a vertex y E S has just one adjacency b E B, then there will be an induced Z2 

using a triangle in B containing b, y, and a vertex in A. Likewise, y adjacent to one vertex 

in A will result in a Z2 with yon the triangle. Thus, we can conclude that each vertex in S 

is adjacent to each vertex in AU B, if at least one vertex of S has 2 adjacencies in A or B. 

If each vertex of S has only one adjacency in each of A and B, then B could contain no 

triangle; for this would give immediately an induced Z2 • Also, this implies that each vertex 

in B has degree at most 2 relative to B, and so B is either a path or a cycle. In either case, 

this would give an induced C centered in B and using a vertex of S. From this contradiction 

we can conclude that each vertex of S is adjacent to each vertex of AU B. 

Since G is k-connected, S has at least k vertices. Also, since G is C-free, S contains no 

triangles, and thus the number of edges inS is at most fiSI/2lliSI/2J. Thus if lA U Bl 2 k, 

the number of edges in G is at most fiSI/2lliSI/2J + fiA U Bl/2lliA U BI/2J. This gives 

the required bound on e(G), since the number of edges in G will be minimized by having 

fk/21 Lk/2J + f(n- k)/21 L(n- k)/2J edges in G. If lA U Bl < k, then select a smallest 
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minimal cutset D of S. Thus, S - D = S1 u S2, where S1 and S2 are complete graphs. 

Note that IS2 U S2 1 ~ k, for otherwise each vertex in S would have degree at least n- 2k, 

which easily gives the required bound on e( G). Now, the number of edges in G is at most 

IStiiS21 + fiA U B U Dl/2lliA U B U DI/2J. Just as before, this implies the required bound , 

for e(G). 

Select a smallest minimal cutset S. By assumption, one of the components of G - S will 

be a single vertex, which we will denote by v. Thus d( v) = 8( G) < ( n + 2k )/2. Let A be the 

other component. If some vertex x E S has only one adjacency y E A, then a triangle in A 

will result in an induced Z2. If there is no triangle in A, then each vertex in A has degree 

at most 2 relative to A, which implies a large independent set and so an induced C, since 

each of the vertices in A are adjacent to all but at most 2 of the vertices of S. Thus we can 

assume that each vertex of S has at least 2 adjacencies in A. 

We next consider the case when some vertex x E S has neighborhood B in A, and that 

lEI ~ IAI- 2. If there is a vertex in z E A which is a distance 2 from Bin A, say with path 

(z,y,b), then there will be an induced Z2 unless y is adjacent to each vertex in B. Since G 

is C Z2-free, the vertex y can have no other adjacencies in A except for { z} U B, and for the 

same reason no other vertex in A- B can be adjacent to a vertex in B. Likewise, the vertex z 

can have no additional adjacencies in A, and so z is adjacent to all of the vertices in S except 

for x. Since G is C -free, there are no edges between B and S- { x}, which implies that { x, y} 

is a minimal cutset in G with components with at least 2 and 3 vertices respectively. This 

case has already been considered, so, we can assume there are no vertices in A a distance 2 

from B. Thus, each vertex in A is adjacent to some vertex in B. 

If y and z are vertices of A- B, then their neighborhoods in B are disjoint, for otherwise 

there would be either a Cor a Z2. Also, for the same reason, there can be no edges in A- B 

unless there are just 2 vertices in A - B that dominate all of the vertices in B. Any vertex of 

S adjacent to all vertices of A except for possibly one would imply a C, so no such vertices 

exists. Therefore, each vertex inS must have a neighborhood with the same property as that 

of x. Thus, we can conclude that all of the vertices of S are adjacent to precisely the vertices 

B in A, since B is the only possible neighborhood with the required property. To avoid a 

C, the vertices in S must be also complete, so G has a clique with vertices S U B, and the 
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remaining vertices have disjoint neighborhoods with at least 3 vertices in the clique. Hence 

the clique S U B has at least 3n/ 4 vertices, and this gives the required bound for e( G). 

We are left with the case in which each vertex of Sis adjacent to all but possibly 1 vertex 

of A. In this case in G there are at most n edges in A, and most 2n edges between S U { v} , 

and A, no more than ISI 2/4 edges inS. If lSI> (n+2k)/2, then each vertex in G has degree 

at least (n + 2k)/2 and this gives the required bound on e(G). If lSI ~ (n + 2k)/2, then G 

has at most ( n + 2k )2 /8 + 3n, and so again G has the required number of edges. This verifies 

the lower bound for e( G). 

The lower bound on e( G) implies there is a vertex v of G of degree at least n/2. Let H 

be the graph spanned by the vertices in the neighborhood of v. Since G is C-free, there is no 

J(3 in H, and soH must contain a clique with at least VnJ2 vertices since r(J(3 , f(t) ::; t 2 

(see (9]). This completes the proof of Theorem 6. D 

3 Forbidden Subgraphs That Imply Moderate Density 

For both paths Pm with m ~ 5 and Zm for m ~ 3 the density implied by C Pm-free graphs 

and C Zm-free graphs depends on m. We will not be able to give precise results in this case, 

but we will be able give some reasonable bounds, when the graph is of sufficiently large order. 

We start with the following result for paths. 

Theorem 7 Let m ~ 5 be an odd integer, and G be a C Pm -free connected graph of order 

n. lfn is sufficiently large, then w(G) ~ c1n2/(m-l) and e(G) ~ c2n1+l/(2(m-I)/
2 -l) for some 

constants c1 and c2 that do not depend on n. Also, the bounds for w( G) and e( G) are of the 

correct order of magnitude. 

Proof: For ease of calculation, we will let m = 2t + 1 with t ~ 2. We will first assume 

that G does not have w(G) ~ c1n11t, and show that this leads to a contradiction. Select 

an arbitrary vertex v of G, and consider the sets Nt, N2, · · ·, Nt-1, where Ni denotes the 

vertices in G that are a distance i from v. Also, let No = { v }. Observe that since G is C-free, 

a(NI)::; 2. Therefore, if IN1I ~ (cn) 2ft, then G will contain a ]((cn)llt, since r(J(3,1(p) < p2. 

Also, note for 1 ::; i < t - 1 that the neighborhood in Ni+l of any vertex in x E Ni is 
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complete, for otherwise there would be a claw centered at x with 2 vertices in Ni+l and one 

in Ni-l· Thus, by assumption, each vertex in Ni has less than (en )1 ft adjacencies in Ni+l· 

This implies that INi+II ~ ((cn)llt- l)INil, and so INa U N1 U · · · U Nil ~ (cn)(i+I)/t. In 

particular, !No U N1 U · · · U Nt-ll ~ en. Thus, for appropriate c there is a longest distance , 

path P = (x1, x2 , · · ·, xp) with p ~ t + 1, and of course p < m since Pis an induced path. 

Now select a series of sets M1, M2 , ···where Mi is the set of vertices that are a distance 

i from the set of vertices in P. Just as before, M 1 < pcn21t and each vertex in Mi has 

less than (cn) 11t adjacencies in Mi+l· This implies that IMi+ll ~ ((cn) 1ft- 1)IMil, and so 

IMo U M 1 U · · · U Mt-11 ~ cmn. Thus there is for some r a longest distance path P1 = 
(YI, Y2, · · ·, Yq = Xr) with q ~ t + 1. Therefore the graph H spanned by P U P1 is induced 

except possibly for the additional edges Xr-lYq-l and Xr+IYq-1· Note also that q < m, since 

P1 is also an induced path. Starting with H form a third distance path P2 , which also will 

have s ~ t + 1 vertices. If the last point on P2 is some Yk on P1, then be the choice of P1 , 

we must have k ~ s ~ t + 1. This will give an induced path with at least 2(t + 1)- 1 ~ m, 

since there will be at most a 2-chord spanned by P2 and the subpath of P1 preceding Yk· If 

P2 terminates on P, then there will certainly be an induced Pm using the vertices of P1 , P2 

and possibly some vertices of P. This contradiction implies that w(G) ~ cn11t. 

We will assume that e( G) < c2 n1+1/(2
t_

1), and show that this leads to a contradiction. 

Select a vertex v of smallest degree in G, which is a most c'n11(2
t_

1) for some constant c'. Just 

as one done earlier, consider the sets N1, N2, • • ·, Nt_ 1, where Ni denotes the vertices in G that 

are a distance i from v. Also, let N0 = { v }. Observe that since G is C-free, the neighborhood 

in Ni+1 of a vertex in Ni induces a complete graph fori ~ 1. Using this fact we will verify an 

upper bound for each ni for i ~ 2. Note that the average degree in N2 of the vertices in N1 

is at least n2Jn1 • Therefore by just counting the edges in the complete graph neighborhoods 

of the vertices in N1, there must be at least n1(n2/n1 + 1)(n2/n1)/2 ~ n~/(2nl) edges in N2 

and between N1 and N2. This gives the inequality n~/(2n1 ) < e = e( G), which implies that 

n2 < ~· More generally, the same argument gives that ni+1 < -vxn;e for 1 ~ i < t. It 

follows that for each 2 ~ i ~ t, 
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More specifically, it gives that 

where c depends on the constant c2 and (3 < 1. It follows immediately that I{ v} U N1 U , 

N2 • • • Ntl :s; c*nf3 for some constant c*. Therefore, there is some vertex in G at at distance 

at least t + 1 from v. 

Select some longest distance path P with at least p ~ t + 2 vertices. Just as in the case of 

the proof for w( G), start with the vertices P and let Mi denote the vertices of G at a distance 

i from P, and let mi = IMi j. A repeat of the previous argument involving the sets Ni will 

give 

and so there is a path of longest distance path P1 from P with at least q ~ t + 1 vertices. 

Just as before, the graph H spanned by these two paths is induced except possibly for two 

edges. A repeat of this procedure starting with H will give another distance path P2 from 

H with at least t + 1 vertices. A repeat of the previous argument used for w( G) implies that 

G must have an induced path with at least 2t + 1 vertices. This contradiction implies that 

e(G) ~ c2nl+l/(2t-1). 

To show that the lower bound for w( G) has the correct order of magnitude, consider 

the following "tree like" graph. Start with a J(qn1/t and make each vertex of this complete 

adjacent to c2n11t different vertices that form a complete graph as well. Do this until there 

are t levels. For each 1 :s; i :s; t there should be approximately ni/t vertices at that level. 

Appropriate choice of the constants Ci will yield a graph H 1 with n vertices. Also, the graph 

H1 is C-free, the longest induced path has 2t = m-1 vertices, and w(H1 ) = cn11t = cn2/(m-l) 

for some constant c. 

To show that the lower bound for e( G) has the correct order of magnitude, consider 

a tree like graph with t levels just like the one considered for w( G), except that the size 

of the complete graphs will vary depending on the level in the graph. For convenience let 

1 = (1 + (1/(2t - 1))/2. Then, for 1 :s; i :s; t the complete graphs at level i will have 

Cin"~l2i-l vertices. Therefore the order of magnitude of the number of vertices at level i will 

be n((2i-l)/2i-l h and the order of magnitude of the number of edges at each level will be n2"~. 
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Thus, appropriate choice of the constants Ci will yield a C Pm-free graph H2 of order n with 

cn2'Y = cn1+(l/(2t-l)) vertices for some constant c. This completes the proof of Theorem 7. 

0 

Since any Pm-free graph is clearly Pm+1-free, there is the immediate corollary to the proof 

and examples from Theorem 7. 

Theorem 8 Let m ~ 6 be an even integer, and G be a CPm-free connected graph of order n. 

If n is sufficiently large, then w( G) ~ c1 n2/m and e( G) ~ c2n1+l/(2m12 -l) for some constants 

c1 and c2 that do not depend on n. Also, w( G) ::; c1 n2/(m- 2) and e( G) ::; c2n1+1/(2(m-2
)12 -1). 

Note that if G is a Pm-free graph, then G is also a Zm-2-free graph, since Pm is an 

induced subgraph of Zm_2. Again, a corollary of the examples and proof of Theorem 7 gives 

immediately the following result. 

Theorem 9 Let m ~ 3, and let G be a C Zm -free connected graph of order n for n sufficiently 

large. If m is odd, then w( G) ~ c1 n2/(m+l) and e( G) ~ c2n1+l/(2(mtl)/2
_ 1), and the bounds 

for w( G) and e( G) are of the correct order of magnitude for odd m. If m is even, then 

w(G) ~ c1n2/(m+2) and e(G) ~ c2n1+l/(2(mt 2
)/

2 -l) for some constants c1 and c2 that do not 

depend on n. Also, w( G) ::; c1 n2/m and e( G) ::; c2nl+l/(2mf2 -1). 

The connectivity, other than just being connected, does not play a role in any of the results 

of this section. Note that the examples given in the lower bounds can easily be modified to 

give an fixed connectivity k that does not depend on n. Thus, one could assume that all 

graphs considered were k-connected. 

4 Forbidden Subgraphs And Sparse Graphs 

Forbidding the pairs CW, C N, and C B, or more generally forbidding Ba,b or Na,b,c graphs 

for integers a, b, c ~ 1 in a 2-connected C -free graphs G of order n does not imply that G has 

many edges or a large clique. The cycle Cn does not contain any of these graphs as induced 

subgraphs, and it clearly has a minimum number of edges and clique size for a hamiltonian 

graph. To avoid this ~rivial case, we will consider only graphs with minimum degree at least 
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3. The following Theorem 10 shows that the forced clique size is just 3, and the number of 

edges implied by the forbidden subgraph condition is linear in the number of vertices n. In 

fact, even if the connectivity k = K( G) is increased (but is fixed and is not a function of the 

order n of the graph), the clique size is still bounded by k + 1 and number of edges is still , 

linear in n. This is indicated in Theorems 10, 11, and 12, which follow. 

Figure 2 

Theorem 10 IfG is a 2-connected (or in fact just 1-connected) graph of ordern with 8(G) 2: 

3 that is C Ba,b-free, or C Na,b,c-free for a, b, c 2: 1, then w( G) 2: 3 and e( G) 2: f3n/2l. Also, 

the lower bounds for w( G) and e( G) are sharp. 

Proof: The minimum degree condition implies that G must have at least f3n/2l edges, and 

the claw-free condition along with 8( G) 2: 3 implies that G must contain a 1(3 . To see that 

the bounds given are sharp, observe that the graph G1 pictured in Figure 2 is a 2-connected 

C Ba,b-free, and C Na,b,c-free graph for a, b, c 2: 1 with w( G1) = 3 and e( GI) = 3n/2 for 

n divisible by 4. Thus, the bounds cannot be improved, and this completes the proof of 

Theorem 10. D 

Since any CNa,b,c-free graph is a C-free graph and the upper bound example in Theorem 

2 was also Na,b,c-free, then the following is a direct consequence of Theorem 2. 

Theorem 11 Let k 2: 3 and let G beak-connected C Na,b,c-free graph for a, b, c 2: 1 of order 

n. If n is sufficiently large, then w( G) 2: f( k + 2)/21 and e( G) 2: fkn/21- Also, these lower 

bounds for w( G) and e( G) cannot be improved. 

The following result gives the corresponding extremal result for generalized Bulls that the 

previous result gave for generalized Nets. 
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Theorem 12 Let k ~ 3 and let G be a k-connected C Ba,b-free graph of order n for a, b ~ 1. 

If n is sufficiently large, then w( G) ~ 2 fk /21 and e( G) ~ f(3k - 2)n/ 41. Also, these lower 

bounds for w( G) and e( G) cannot be improved for k even. 

Proof: Fork even and 2n divisible by k, consider the graph G which has a vertex set which , 

is partitioned into 2n/k sets X1,X2 , • • ·,X2n/k each with k/2 vertices such that each set 

Xi U Xi+l (with the indices taken modulo 2n/k) induces a complete graph on k vertices. It 

is straightforward to check that G is CB-free (and hence CBa,b-free for a,b ~ 1), e(G) = 

(3k- 2)n/4, and w(G) = k. 

Consider a k-connected graph G that is C Ba,b-free. We will show for n sufficiently large 

that w(G) ~ 2fk/21 and e(G) ~ f(3k- 1)n/21. Note that if G has a vertex v whose 

neighborhood N has at least f ~1 + 1 vertices, then, since a(N) < 3, N will contain 

at least (IN I - 1)2 /4 ~ 6kn/4 edges. Also, N will contain a clique with at least k + 1 

vertices since INI > r(J(3, J(k+l) for n sufficiently large (see [9]). Thus, we can assume that 

~(G) :::; f ~1· This implies that G has large diameter, say d. 

Select a diameter path P = ( x 0 , x1, · · ·,X d)· Let x be a vertex not on P that is adjacent 

to a vertex on P. We will assume that a :::; b. The vertex x can be adjacent to a most 3 

vertices, for otherwise the length of the path would be shortened. Also, if x is adjacent to Xi 

for (0 < i < d), then to avoid a claw centered at Xi, x must be adjacent to either Xi- 1 or Xi+1 . 

Also, if x is adjacent to just 2 vertices, say Xi and Xi+l, with (a :::; i < d- a), then there will 

be an induced Ba,b using x and vertices on the path P. Therefore, we can assume that each 

vertex x that is adjacent to a vertex Xi for (a :::; i < d - a) must be adjacent to precisely 3 

consecutive vertices on the path P. A corresponding adjacency pattern must be true at the 

end of the path Pas well. Thus, we have a collection of sets Nt, N2, · · ·, Nd_ 1 such that each 

vertex in Ni is adjacent to precisely Xi-b Xi, Xi+l if a :::; i < d- a and the remaining Ni's 

are adjacent to Xi, Xi+l and possibly Xi-1· Denote the vertices adjacent to precisely { xo, x1} 

by No and the vertices adjacent to just x0 by N0 . There are the corresponding sets Nd and 

Nt. All of the Ni's induce complete graphs, because there would be a claw otherwise. This 

includes N0 and Nt as well. 

For each i let Nt = Ni U {xi}· If a :::; i < d- a and there are vertices Yi E Nt and 

Yi+1 E Nt+1, that are ~ot adjacent, then there is an induced Ba,b using Yi, Yi+1 and vertices 
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on the path P. Therefore all the edges between Nt and Nt-H are in G. A vertex adjacent to 

a vertex of Nt for (a S i < d- a) that is not on the path P and not in any NJ for (0 < j < d) 

would imply a claw centered in Nt. Hence the graph spanned by N; U N;+1 U · · ·, NJ_a_1 

has no outside adjacencies except for N0 U N0 U N;_ 1 U NJ_a U · · · U N;t. For a s; i s; d- a- 3 , 

the vertices Nt U Nt+ 2 form a cut set that separates Nt+1 from the remainder of the graph, 

and so INt U Nt+ 2 1 ~ k. Therefore there is some (in fact many) j for which INJI ~ fk/21, 
and this implies that either INj*-1 U Njl ~ 2 fk/21 or INJ U NJ+11 ~ 2 fk/21, which gives the 

required clique of order at least 2 fk /21-

If the vertices N; U N;+1 U · · · U NJ_a form a set of cut vertices of G, then this implies 

for a < i S d- a- 1, that the set Nt is a vertex cut of G, and so INti ~ k. Thus, each 

of the vertices in N: U N;+1 U · · ·, NJ_a have degree at least 2k, in fact at least 3k - 1, 

except for the vertices in Na and Nd-a· This clearly implies that e(G) > f(3k- 2)n/4l 
Therefore we can assume that there is a path Q from Xa-1 to Xd-a+1 that is disjoint from 

N; U N;+1 U · · · U NJ_a. Pick Q to be such a distance path, which must be of length at least 

d- 2a. 

The path Q will have the same properties as P, so there will be a family of sets that 

correspond to the sets Nt. In fact the path induced by P and Q from a vertex in the rp.iddle 

of P to the middle of Q will have the same property. The immediate consequence of this is 

that there is a cycle C = (Y1, Y2, · · ·, yp, Y1) in G with d < p S 2~ with corresponding sets Mt 

associated with each of the vertices Yi, and the Mt's have the same properties as the NJ's. 

Thus, each vertex in G will be in some Mt- In particular Mt U Mt+ 2 is a cut set for G and 

so must have at least k vertices. This implies that the sum of the degrees of the vertices in 

G is at least (3k/2- 2)n, and this which would occur if and only if each of the sets Mt had 

k/2 vertices. Therefore, e( G) 2:: (3k- 2)n/ 4, which completes the proof of Theorem 12. D 
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