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Abstract. This is the first half of a two-part paper devoted to on-line 3-colorable graphs.
Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced
subgraphs. The key role in our approach is played by the family of graphs which are both triangle-
and (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular
decomposition concept. This decomposition, combined with the greedy algorithm, culminates in an
on-line 3-coloring algorithm for this family. On the other hand, based on the characterization of this
family, all 22 forbidden subgraphs of on-line 3-colorable triangle-free graphs are determined. As a
corollary, we obtain the 10 forbidden subgraphs of on-line 3-colorable bipartite graphs. The forbidden
subgraphs in the finite basis characterization are on-line 4-critical, i.e., they are on-line 4-chromatic
but their proper induced subgraphs are on-line 3-colorable. The results of this paper are applied in the
companion paper [Discrete Math., 177 (1997), pp. 99–122] to obtain the finite basis characterization
of connected on-line 3-colorable graphs (with 51 4-critical subgraphs). However, perhaps surprisingly,
connectivity (or the triangle-free property) is essential in a finite basis characterization: there are
infinitely many on-line 4-critical graphs.
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Introduction. A proper coloring of a graph G is an assignment of positive inte-
gers (called colors) to its vertices in such a way that adjacent vertices have distinct
colors. The smallest number of colors in any proper coloring is denoted by χ(G) and is
called the chromatic number of G. An on-line coloring of a (finite) G is an algorithm
that colors the vertices as follows:

• Vertices of G are given in some order v1, v2, . . . (unknown by the algorithm).
• In the ith step the algorithm assigns a proper color to vi (and never changes

it later).
The most extensively studied on-line coloring algorithm is the greedy or first fit

algorithm (FF): in each step it assigns the smallest available positive integer as color
to the current vertex. In general, on-line coloring can be interpreted as a two-person
game of GraphDrawer and GraphPainter. Drawer’s moves consist of successively
revealing vertices of a graph G with all adjacencies to vertices already known by
Painter, and in each step Painter assigns a color to the current vertex. Painter’s aim
is to use as few distinct colors as possible while Drawer’s aim is to force Painter to
use as many colors as possible. The common optimum value will be called the on-line
chromatic number of G.
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Let G be a graph and A be some fixed on-line coloring algorithm. Then the max-
imum number of colors used by A during any coloring game (i.e., for all orderings of
the vertices of G) is called the A-chromatic number of G and is denoted by χA(G). The
on-line chromatic number, χ∗(G), is the minimum number of colors Painter succeeds
with when playing on G; that is, χ∗(G) = min{χA(G) : A is an on-line coloring}. A
graph G is (on-line) k-critical if χ∗(G) = k and χ∗(G′) < k holds for every proper
induced subgraph G′ ⊂ G.

The concept of on-line chromatic number of graphs was introduced in [GL1], [GL2];
a similar notion, recursive coloring, had been investigated earlier. The introduction
in [KPT1] gives a brief survey of the connection of these concepts. Our reference list
covers several areas of on-line graph colorings beyond our particular subject [GKL2],
[I], [K], [K1], [K2], [KK], [KT1], [KT], [LST], [V].

On-line 2-colorable graphs are rather trivial, and their connected components are
complete bipartite graphs. This statement is a good introductory exercise to on-line
colorings. It also shows that a single on-line algorithm, FF, provides a 2-coloring for
every on-line 2-colorable graph. This is not the case for on-line 3-colorable graphs
as demonstrated by the B-E paradigm [GL2]: although the graphs B and E (see
Figure 1) are on-line 3-colorable, Painter cannot color with three colors if Drawer does
not tell in advance which graph is to be presented. Thus a single on-line 3-coloring
algorithm cannot 3-color every on-line 3-colorable graph. The same phenomenon
explains that such a simple operation as addition of an isolated vertex may change
on-line 3-colorability of a graph. The smallest amusing example is the triangle with
a pendant edge on each of its vertices [GKL1]. A bipartite example comes from the
evolution of B. Adding an isolated edge and an isolated vertex to the graph B gives
an on-line 3-colorable graph, but if a further isolated vertex is added, an on-line 4-
chromatic graph is obtained. These examples might suggest that on-line 3-colorable
graphs are very restricted, but examples like the Petersen graph, K3 × K3 [GKL1],
seem to refute this view. It seems to us that the analysis of on-line 3-colorable graphs
is a good test case by which to understand paradoxical features of on-line colorings.
As pointed out by referees, our approach is tailored specifically to 3-colorable graphs
and at many places relies heavily on case analysis. Unfortunately, this seems to be
an inherent feature of the subject.

This paper gives a characterization of on-line 3-colorable triangle-free graphs. The
crucial role is played by the family of graphs which are both triangle- and (2K2 +K1)-
free. We use the notation (∆,Ξ)-free for this family in accordance with our notations
∆ for the triangle C3 and Ξ for 2K2 + K1. Our key result (Theorem 1) states that
(∆,Ξ)-free graphs are on-line 3-colorable—in fact, with a single on-line algorithm A
(section 3).

Theorem 1 is related to coloring results on (∆, T )-free graphs. A well-known
conjecture [G], [S] states that (∆, T )-free graphs have bounded chromatic number in
terms of the number of vertices of T , where T is a forest. The on-line version behaves
differently; in [GL1] it was shown that the on-line chromatic number of (∆, P6)-free
graphs is not bounded. Sumner proved that (∆, P5)-free graphs are 3-colorable [S] and
in fact are 3-colorable by FF as shown in [GL3]. A well-known example (the bipartite
complement of mK2) demonstrates that the FF-chromatic number is unbounded for
our (∆,Ξ)-free (even for (∆,K2 + 2K1)-free) family. Thus the on-line 3-coloring
algorithm A of Theorem 1 cannot be replaced by FF. Actually, A seems to be the
first algorithm essentially different from FF which is optimal for a family where FF
behaves very poorly. It is worth noting that, going a step further, the family of
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(∆, 3K2)-free graphs are not 3-colorable even off-line since the Grötzsch graph is in
the family. Finally we note that (prepared by works in [GL2], [GL3], [KPT]) a deep
theorem of Kierstead, Penrice, and Trotter [KPT1] implies that the family of (∆, T )-
free graphs has a bounded on-line chromatic number if and only if each component
of the forest T is P6-free.

Structural and coloring properties of (∆,Ξ)-free graphs are interrelated. On one
hand, algorithm A is used to prove structural results; for example, the existence of
A immediately implies (through the B-E paradigm ) that (∆,Ξ)-free graphs cannot
contain both B and E. On the other hand, algorithm A is based on our structural
characterization of the family.

To obtain a general structure theorem (Theorems II and 2) we shall introduce a
modular decomposition of Ξ-free bipartite graphs in section 2. The building blocks
(modules) are 2K2-free bipartite graphs (halfgraphs), and they are joined using com-
plete bipartite graphs. Nonbipartite members of the family are obtained by extending
bipartite ones having at most two modules, and their structure shows a peculiar cir-
cular symmetry (Theorem 1 and (2.7)). This is a graph theoretic structure theorem
independent of on-line coloring and so has its own interest.

In section 4.2 we extend algorithm A to color disconnected ∆-free graphs con-
taining B with three colors when it is possible.

A synthesis of our techniques results in a characterization of on-line 3-colorable
triangle-free graphs by finitely many (22) forbidden subgraphs (Theorem 4). In fact,
these are the triangle-free on-line 4-critical graphs displayed in Figures 3, 4, and
5 (except F1 and F5). We have learned that the Drawer-Painter game is rather
interesting on almost all of them due to diverse strategies with subtle details. During
a game on any of these graphs, a smart Painter has a chance to achieve a 3-coloring
against an imperfect Drawer. However, a perfect Drawer can always force any Painter
to use four colors.

Theorem 4 implies that on-line 3-colorability of a triangle-free graph can be
decided (theoretically) in polynomial time of its order, in contrast with off-line 3-
colorability which is known to be NP-complete [L].

In the companion paper [GKL1] Theorems 2 and 3 were used to obtain the fi-
nite basis characterization of connected on-line 3-colorable graphs (with 51 forbidden
on-line 4-critical subgraphs). In contrast to our expectations, the assumption of con-
nectivity was essential: we found an infinite family of (disconnected) on-line 4-critical
graphs. Therefore, on-line 3-colorable graphs (like off-line 2-colorable, i.e., bipartite
graphs) cannot be characterized with finitely many forbidden subgraphs.

We conclude the introduction with remarks concerning algorithmic aspects of
our results. The structural properties of on-line 3-colorable graphs developed in this
paper and in its companion led to a very simple on-line coloring algorithm (FF(C6) in
[GKL1]). This algorithm is a slight modification of FF, easy to implement, and uses
at most four colors on every on-line 3-colorable graph. Due to the B-E paradigm,
this is the best that a single on-line algorithm can achieve. Another algorithm for
the same purpose, List First Fit, was found independently by Kolossa [KO]. Vaguely
speaking, both algorithms are fast optimal, but it is extremely difficult to prove that
they do what they claim. Our attempt to sacrifice accuracy for clarity and the hope of
generalization led to an on-line algorithm for which it is easy to bound the maximum
number of colors (142) for any on-line 3-colorable input graph. Unfortunately, for
k > 3, the proof is not suitable to give an affirmative answer for the following more
general and seemingly important question. For fixed k, is it possible to find a single
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Fig. 1. Graphs B and E.

on-line coloring algorithm Ak which colors every on-line k-colorable graph with a
bounded number of colors (in terms of k)? [GKL3].

1. Notations and results. LetKn, Pn, and Cn denote the n-clique, the induced
path with n vertices, and the induced n-cycle, respectively. For a positive integer k,
kG is the union of k disjoint copies of G and G+H is the disjoint union of the graphs
G and H. We use the following nonstandard notation: II = 2K2, Ξ = II+K1, B is a
6-cycle together with a long chord, and E is the graph obtained from B by removing
two consecutive edges from its 6-cycle adjacent to the long chord (see Figure 1). The
triangle is often denoted by ∆. Graphs with more than one forbidden subgraph are
indicated by the list of subgraphs within parentheses.

The main result of the paper is the following theorem.
Theorem 1. If G is (∆,Ξ)-free, then χ∗(G) ≤ 3. In addition, a 3-coloring for

all (∆,Ξ)-free graphs is obtained by a single on-line algorithm, A.
The proof of Theorem 1 is presented in sections 2 and 3. In section 2 we prove a

structure theorem for (∆,Ξ)-free graphs by introducing a new modular decomposition
concept. Section 3 concludes the proof of Theorem 1 by presenting the on-line 3-
coloring algorithm A, a combination of FF and a natural but not simple algorithm
based on the structure theorem.

Structural characterization of (∆,Ξ)-free graphs is developed in several stages.
First, II-free members of the family are described (see (2.2) and (2.3)). Next, bipar-
tite Ξ-free graphs are characterized using a modular decomposition technique. The
decomposition relies on the fact that a bipartite graph G is Ξ-free if and only if every
connected component of the bipartite complement of G contains no II (see (2.4)).
Finally we give extension rules by which all nonbipartite members of the family are
derived from bipartite ones (see (2.6) and (2.7)). We summarize here the conclusion
of section 2 without explaining the definitions in details. (These can be found at the
end of the present section and throughout section 2.)

Theorem I. A ∆-free graph G with no equivalent vertices is Ξ-free if and only
if G satisfies one of the following properties:

(a) G = C5 +K1.
(b) G is a bipartite graph such that its bipartite complement is the disjoint union

of connected II-free bipartite graphs (called reduced halfgraphs).
(c) G is the induced subgraph of a graph H with the following structure: The

vertices of H are partitioned into six nonempty sets Ai,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2,
such that the graph induced by Ai1,j1 and Ai2,j2 is a complete bipartite graph,
if i1 = i2, j1 6= j2; a halfgraph or a reduced halfgraph, if i1 6= i2, j1 = j2;
and a graph with no edges otherwise. Furthermore, for any x ∈ A1,j , y ∈
A2,j , z ∈ A3,j the set {x, y, z} induces neither a triangle nor the complement
of a triangle.

The coloring result of Theorem 1 leads to the following theorem.
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Fig. 2. The five minimal ∆-free graphs of FF -chromatic number 4.

Theorem II. Let G be a connected ∆-free graph containing a copy of B. Then G
is E-free if and only if G is Ξ-free.

For this purely graph theory statement we could not find a short direct proof that
avoids on-line colorings. Actually, Theorem II is proved in the following stronger form
in section 3.1.

Theorem 2. If G is a connected ∆-free graph containing a copy of B, then the
following statements are equivalent:

(1) G is E-free.
(2) G has no induced subgraph isomorphic to any of F3, F4 in Figure 2 and

B1, B2, B3, B4 in Figure 4.
(3) G is Ξ-free.
(4) G has on-line chromatic number χ∗(G) ≤ 3.

Theorem 2 also helps in finding the list of all minimal graphs that are excluded
from graphs of on-line chromatic number 3. Before formulating this result in Theo-
rem 3 we present some critical graphs from the list. Let us start with the observation
that any graph G of on-line chromatic number 4 must contain an induced subgraph
G′ such that χFF (G′) = 4. In [GKL1] we determined all graphs with FF-chromatic
number 4 which are minimal with respect to that property. From the list of these 22
graphs, Figure 2 shows the ∆-free ones.

In [GKL1] it was also shown that F2, F3, and F4 are 4-critical, F1 = B and F5

are not. Hence, if G is a ∆-free 4-critical graph different from F2, F3, and F4, then
G contains at least one of B and F5. Figure 3 shows all 4-critical graphs obtained in
[GKL1] which contain F5.

The analysis of 4-critical graphs results in the following finite basis theorems.

Theorem 3. If G is a ∆-free graph containing B, then G has on-line chromatic
number at most 3 if and only if G has no induced subgraph isomorphic to any of F3, F4

in Figure 2 and Bi, 1 ≤ i ≤ 10, in Figure 4.

Theorem 4. A ∆-free graph G has on-line chromatic number 3 if and only if G
has no induced subgraph isomorphic to any of F2, F3, F4 in Figure 2 and the 19 graphs
in Figures 3 and 4.

A corollary of Theorem 4 is the following finite basis result for bipartite graphs.

Theorem 5. A bipartite graph G has on-line chromatic number at most 3 if and
only if G has no induced subgraph isomorphic to F2, F3 in Figure 2 and B1, B2, B3,
B5, B7, B8,B9, B10 in Figure 4.

The vertex and the edge set of a graph G is respectively denoted by V (G) and
E(G). The relation D ⊂ G means that D is an induced subgraph of G. Throughout
the paper subgraph always means induced subgraph (i.e., “G has a P4” actually means
that P4 is an induced subgraph of G). For D ⊂ G and v ∈ V (G), D + v and D − v
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Fig. 3. All ∆-free 4-critical graphs containing F5.

Fig. 4. All ∆-free 4-critical graphs containing B.

denote the subgraph of G induced by V (D) ∪ {v} and V (D) \ {v}, respectively.

Define N(v) = {u ∈ V (G) : uv ∈ E(G)} (and NU (v) = {u ∈ U ⊆ V (G) : uv ∈
E(G)}) to be the (U -) neighborhood set of v ∈ V (G). Vertices u, v ∈ V (G) are
called equivalent if and only if N(u) = N(v). A graph is called primitive if it contains
no equivalent pair of vertices. Vertex multiplication is the operation of replacing a
vertex x of a graph with a certain number of equivalent copies of x. If a graph G is the
vertex multiplication of some primitive graph G′ then we say that G′ is a primitive
representative of G. For a graph G and v ∈ V (G), let CG(v) ⊂ V (G) denote the set
of all vertices of G equivalent to v. Obviously, any subgraph of G induced by the set
containing one vertex from each equivalence class is a primitive representative of G.
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Throughout the paper it is assumed that bipartite graphs are given together
with a bipartition of their vertices. A bipartite graph with partite sets X and Y
is denoted by [X,Y ] and is called here a bigraph. General graphic operations have
natural bipartite versions for bigraphs. In case of bigraphs the equivalence and the
vertex multiplication are involving vertices in the same partite set. A bigraph is called
primitive if it contains no equivalent pair of vertices. (A primitive bigraph can have

two isolated vertices, one in each class.) For a bigraph G = [X,Y ], let Ĝ denote the

bipartite complement of G, that is, x ∈ X and y ∈ Y are adjacent in Ĝ if and only
if xy is not an edge of G. A vertex v is called a star vertex of the bigraph [X,Y ]
if N(v) = X or Y . A subgraph of an arbitrary graph G induced by two disjoint
independent sets X,Y ⊂ V (G) is a bigraph [X,Y ] of G.

2. Characterizations of (∆,Ξ)-free graphs. Graph classes we shall consider
in this section are closed under vertex multiplication. (It is worth noting that this is
not true for the whole class of on-line 3-colorable graphs.) This property is formulated
in our first proposition. (The trivial proof is omitted.)

(2.1) Let H be a primitive (bi)graph. Then G is an H-free (bi)graph if and only if
any primitive representative of G is H-free.

A Ξ-free graph G with no triangle is of one of the following two types: either
G is II-free or G contains II and is disconnected (Type 1), or G contains II and is
connected (Type 2).

Type 1. Let G be a graph of Type 1. No connected component of G may contain
II; otherwise, G would be connected, which contradicts the definition of Type 1
graphs. If G has two nontrivial connected components, then it contains II; thus no
third component might exist. Because both components must be (K2 +K1)-free, G is
bipartite, and it is the disjoint union of two complete bipartite graphs. Assume next
that G has exactly one nontrivial connected component, that is, G is II-free.

First let G be a nonbipartite graph of Type 1. Since G is ∆-free with no II,
its shortest induced odd cycle must be a C5. This observation combined with (2.1)
results in the following easy characterization.

(2.2) A nonbipartite ∆-free graph G is of Type 1 if and only if G is the vertex
multiplication of C5 or C5 +K1.

Next let G be a bipartite graph of Type 1 containing one nontrivial connected
component, or, equivalently, let G = [X,Y ] be a II-free bigraph. The following four
properties are obviously equivalent:

(i) G = [X,Y ] is II-free;
(ii) for every x, x′ ∈ X, either N(x) ⊆ N(x′) or N(x′) ⊆ N(x);
(iii) X has an ordering x1, . . . , xp such that Y ⊇ N(x1) ⊇ · · · ⊇ N(xp);
(iv) Y has an ordering y1, . . . , yq such that N(y1) ⊆ · · · ⊆ N(yq) ⊆ X.
The equivalence of (i) and (iii) characterizes II-free bigraphs as follows: G =

[X,Y ] is II-free if and only if {N(x) : x ∈ X} defines a chain on Y (and {N(y) :
y ∈ Y } defines a chain on X). The chain on X may start with the empty set
(corresponding to an isolated vertex of Y ); it may contain several copies of the same
subset (corresponding to equivalent vertices of Y ), and its last member is either the
whole set X (which corresponds to a star vertex in Y ) or the set of nonisolated vertices
in X.

Using these observations together with (2.1), all II-free bigraphs can be obtained
from the containment graphs of simple chains, called halfgraphs. The nth halfgraph,
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H(n), is defined as a bigraph on vertex set {x1, . . . , xn}∪{y1, . . . , yn} with xiyj being
an edge if and only if i < j. Notice the symmetry of H(n) defined by the automorphism
xi ←→ yn+1−i (i = 1, . . . , n) between its partite sets. In this paper we call a bigraph
halfgraph if it is a vertex multiplication of some H(n). The primitive halfgraphs will
be written as halfgraphs. A halfgraph which does not have isolated vertices in both
bipartition classes will be called a reduced halfgraph.

(2.3) A bigraph G is of Type 1 if and only if G is the vertex multiplication of II
or it is a halfgraph or a reduced halfgraph.

The type of Ξ-free bigraphs can be determined by introducing a new modular
decomposition concept which also will be useful for the whole structural description
of (∆,Ξ)-free graphs. Observe first that the bipartite complement of the bigraph Ξ is

a P5. Hence a bigraph G is Ξ-free if and only if its bipartite complement Ĝ is P5-free.
Furthermore, a connected component of Ĝ contains no P5 if and only if it is II-free.
According to the discussion before (1.3) each connected II-free bigraph is a connected
reduced halfgraph, that is, either some isolated vertices or a halfgraph with all of its
isolated vertices removed. Note that ÎI ∼= II; hence the connected components of ÎI
are isomorphic to K2 (i.e., a connected reduced H(2)).

(2.4) A bigraph is Ξ-free if and only if every connected component of its bipartite
complement is a connected reduced halfgraph.

Let G be a Ξ-free bigraph and denote by G1, . . . , Gk the connected components
of its bipartite complement Ĝ. Then Ĝi, i = 1, . . . , k, are called the modules of G. If
a module contains just one vertex, then it is called a trivial module; otherwise, it is a
nontrivial module. Observe that any two vertices from distinct partite sets and from
distinct modules are adjacent in G; in particular, trivial modules are star vertices of
the bigraph. It is easy to check that the bipartite complement of a connected reduced
halfgraph is either a single vertex or a halfgraph. Therefore, by (2.3), each nontrivial
module of the unique module decomposition of G is a halfgraph. Note that the two
modules of the bigraph II are isomorphic to H(1). Thus we obtain that a Ξ-free
bigraph G is of Type 1 if and only if G has k ≤ 2 nontrivial modules and, in case of
k = 2, neither contains an edge.

Type 2. As a result of the module decomposition concept introduced for Ξ-free
bigraphs we obtain that a bigraph G is of Type 2 if and only if G is connected and
has k ≥ 2 nontrivial modules. Nonbipartite graphs of Type 2 will be described as
extensions of Ξ-free bigraphs.

Let G be a graph, D ⊂ G, and z ∈ V (G) \ V (D). If D is a bigraph and D + z
is also bipartite, then z is called a bipartite extension of D. If D + z is nonbipartite
(i.e., z induces an odd cycle together with some vertices of D), then z is called an odd
extension of D. The obvious transition rule of bipartite extensions are described as
follows.

(2.5) Let G be a (∆,Ξ)-free graph and let D = [X,Y ] be a connected induced
bigraph of G. If z ∈ V (G) \ V (D) is a bipartite extension of D and M is the
module of D + z containing z, then M = {z}, or M − z is a module of D, or
M − z consists of at most one nontrivial module and a set of trivial modules
of D.

For characterizing nonbipartite graphs of Type 2 we need to extend the notion
of halfgraphs. Let F = [X,Y ] be a halfgraph and let z be a new vertex adjacent to
some vertices of F , i.e., z is an extension of F with neighborhood sets X(z) ⊆ X and
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Y (z) ⊆ Y . The graph F + z is called an extended halfgraph if the following properties
are all satisfied:

• X(z) 6= ∅ and Y (z) 6= ∅.
• F + z is ∆-free.

• If x ∈ X, y ∈ Y, xy 6∈ E, then at least one of zx and zy is an edge.

The second and third properties together say that there are neither triangles nor
empty triangles of form zxy.

The following statement describes the structure of nonbipartite graphs of
Type 2.

(2.6) Let G be a connected (∆,Ξ)-free graph and let D = [X,Y ] be an induced
bigraph of G. Assume that the set Z ⊂ V (G) \ V (D) of all odd extensions of
D is nonempty. Then D and Z satisfy (i)–(iv):

(i) D has at most two nontrivial modules. Furthermore, for any fixed z ∈ Z, the
neighbors of z in D belong to the same nontrivial module.

(ii) If M1 ⊂ D is the module containing the neighbors of z ∈ Z, then M1 + z is
an extended halfgraph.

(iii) If z1, z2 ∈ Z are distinct, then z1z2 ∈ E(G) if and only if z1 and z2 are
adjacent to distinct nontrivial modules of D.

(iv) Let M1 = [X1, Y1] ⊂ D be a module and Z1 = {z ∈ Z : neighbors of
z are in M1}, and let A,B,C denote the sets X1, Y1, Z1 in any order and
c1, c2 ∈ C. Then either NA(c1) ⊆ NA(c2) or NA(c2) ⊆ NA(c1). Moreover, if
NA(c1) ⊂ NA(c2), then NB(c2) ⊆ NB(c1).

Proof. Recall that every nontrivial module of D is a halfgraph and its trivial
modules are star vertices. Because G is Ξ-free with no triangle, all induced odd
cycles of D+z ⊂ G are isomorphic to either C5 or C7. Because z is an odd extension,
at least one induced odd cycle containing z must exist in D + z.

Because G is connected, every nonbipartite subgraph of G must be connected (oth-
erwise, as easily can be checked, G would contain Ξ). In particular, D+z is connected
for every z ∈ Z.

(i) Let z ∈ Z and assume that C is an induced odd cycle of D + z with x ∈
V (C) ∩X(z) and y ∈ V (C) ∩ Y (z). Because xy /∈ E(G), x and y are vertices of the
same module, say, M1 = [X1, Y1]. If u ∈ V (D) is a vertex not in M1, then one of ux
and uy is an edge of G; thus zu /∈ E(G) follows (because G is ∆-free). This shows
that the neighbors of z in D belong to M1. Assuming that D has more than two
nontrivial modules, a copy of II between M2 and M3 together with z would induce a
Ξ of G. Thus D has at most two nontrivial modules.

(ii) Let M1, x, and y be as in case (i). As G is ∆-free and z is an odd exten-
sion with all neighbors in M1, M1 + z satisfies the first two properties of extended
halfgraphs. Suppose there are x′ ∈ X1 and y′ ∈ Y1 such that none of zx′, x′y′, y′z is
an edge. First observe that as xy 6∈ E, one of xy′ and x′y is also not an edge (M1

does not contain II); by symmetry we can assume that x′y 6∈ E. As we noted at the
beginning of the proof, the graph induced by C+x′ is connected. Denote the neighbor
of x′ in C by y∗. As x′y∗ is an edge, y∗ differs from z, y, y′ and is in Y . zy∗ is not an
edge because C was induced. Therefore, x′y∗, zy and y′ induce Ξ, a contradiction.

(iii) Let z1, z2 ∈ Z be vertices with neighbors in the same module M1 = [X1, Y1].
For proving z1z2 6∈ E it is enough to see that they have a common neighbor in M1.
Let y1 ∈ Y1 be an isolated vertex of M1. Either it is a common neighbor and we are
done, or, e.g., z1y1 6∈ E. Then by (ii) and by the third property of extended halfgraphs
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z1 is connected to every vertex in X1 and by the first property z2 is connected to at
least one vertex in X1.

Let z1z2 /∈ E(G), let xi ∈ X, yi ∈ Y be neighbors of zi in Mi for i = 1, 2, and
suppose M1 6= M2. Observe that the subgraph D′ induced by {z1, x1, y2, z2, x2, y1} is

a C6. Since Ĉ6 = 3K2, D
′ has three nontrivial modules. Hence, by (i), D′ ⊂ G has

no odd extensions, which contradicts M1 6= M2.
(iv) The first statement says that none of the bigraphs [A,B], [B,C], and [C,A]

contains II. As we know this fact about [X1, Y1] it is enough to prove it for [Z,X1].
Suppose z1x1 and z2x2 induce a II. If X has a vertex connected to neither z1 nor z2,
then G contains Ξ. Hence X = X1. Now if a vertex in Y1 is isolated in M1, then it is
also isolated in D. Since the vertices zi are odd extensions, both of them must have
a neighbor in Y1 which is not isolated in M1. However, in the halfgraph M1 there
exists an x ∈ X1 which is connected to every nonisolated vertex of Y1, so x cannot be
connected to any of the zi’s.

To prove the second statement indirectly, suppose that a ∈ NA(c2) \NA(c1) and
b ∈ NB(c2) \NB(c1). Since ac2b is not a triangle, ab 6∈ E. Since ac1b is not an empty
triangle, ab ∈ E.

In the next proposition we formulate a converse of (2.6) which shows that a graph
with properties (i)–(iv) is Ξ-free. To get an even nicer symmetry, we swap the role of
X1 and Y1. The proof is routine and the details are left to the reader.

(2.7) Suppose that the vertices of a graph G are partitioned into six nonempty
sets Ai,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, such that the graph induced by Ai1,j1 and
Ai2,j2 is a complete bipartite graph if i1 = i2, j1 6= j2; a halfgraph or reduced
halfgraph if i1 6= i2, j1 = j2; and a graph with no edges otherwise. Suppose
furthermore that for any x ∈ A1,j , y ∈ A2,j , z ∈ A3,j the set {x, y, z} induces
neither a triangle nor the complement of a triangle. Then G is Ξ-free.

3. On-line 3-coloring of (∆,Ξ)-free graphs. Let G be (∆,Ξ)-free graph. If
G is of Type 1, then by (2.2) and (2.3) it is either bipartite or 3-chromatic. Assume
now that G is of Type 2 and nonbipartite. Then it has the structure described in
(2.6). In particular, there is a bipartite subgraph [X,Y ] with nontrivial modules
M1 = [X1, Y1] and M2 = [X2, Y2] such that all odd extensions can be partitioned into
sets Z1 and Z2 in a manner that a vertex in Zi has neighbors only in Z3−i and in
Mi. Since the three sets X, Z1 ∪ (Y \ Y1) and Z2 ∪ Y1 are all independent, we get the
following result:

(3.1) If G is a (∆,Ξ)-free graph, then χ(G) ≤ 3.

This section contains the proof of Theorem 1 (stated in the introduction), which
claims that the stronger χ∗(G) ≤ 3 also holds in (3.1). Let us consider the on-line
coloring game on graph G. At some step of the game let D ⊂ G denote the colored
subgraph (i.e., the subgraph induced by the set of all colored vertices of G), and
denote by z the current vertex to be colored. For any on-line coloring algorithm A
and for an integer r, let A(r) denote the set of all vertices of G colored with r. If x
is a colored vertex, c(x) will denote its color.

Our on-line algorithm A consists of three consecutive stages. In the first stage,
called FF -stage, first fit coloring is applied. The FF-stage ends up when II first
appears in D + z. The current vertex z that terminates the FF-stage gets a color
in the second stage including a single step, called II-step. After a suitable color is
assigned to z a bigraph D0 ⊆ D + z, called reference graph, is defined in the II-step
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to start the last stage. In the last stage z is considered as the (bipartite or odd)
extension of the actual reference graph D0. In each step of the last stage the color of
z is determined with respect to D0 and D0 is updated for the next step.

FF-stage. z gets the smallest color r such that z has no neighbor in D colored
with r.

Note that FF assigns the same color to equivalent vertices. In the early steps
of the coloring game D is bipartite and eventually is disconnected. In this case we
assume, for convenience, that all isolated vertices of D = [X,Y ] belong to Y. In
particular, X 6= ∅ implies that A(2) ∩X 6= ∅. Notice, however, that the partite set of
an isolated vertex is undefined in D, that is, it may change at a subsequent step of
the game.

(3.2) If G is a (∆,II)-free graph, then χFF (G) ≤ 3.

Proof. If G is nonbipartite, then by (2.2) its primitive representative is C5 or
C5 + K1. Since, in both cases, the maximum degree is 2, χFF (G) ≤ 3 follows. Note
that the coloring of C5 by FF is unique: 12123 (in some cyclic ordering of the vertices).

Assume now that G is bipartite and contains at least one edge. Now G is a
reduced halfgraph. Recall that all isolated vertices are considered to be in Y . In any
FF-coloring of G, by definition, FF(1) is a maximal independent set, and FF(2) is a
maximal independent set in G− FF(1). So either FF(1)=Y and FF(2)=X or FF(1)
is a maximal independent set containing vertices from both X and Y and FF(2)⊆ X,
FF(3)⊆ Y such that each 2-colored vertex is connected to every 3-colored vertex
(because a reduced halfgraph minus a maximal independent set is either a graph with
no edges or a complete bipartite graph).

The properties of the coloring patterns obtained in the proof of (3.2) will be used
in the II-step below.

II-step. We shall see that starting with this step A is able to color the current
vertex z so that the overall colored graph satisfies a set of properties we call Ruleset.

Ruleset for a graph D. In D there is maximal induced bigraph D0 = [X,Y ] with
nontrivial modules M1 = [X1, Y1], M2 = [X2, Y2], etc., and with some trivial modules
such that all odd extensions of D0 are connected to either M1 (forming the set Z1) or
M2 (forming the set Z2). Furthermore, the coloring by A satisfies the following rules:

For some permutation s1, s2, s3 of colors 1, 2, and 3,
(i) if x and y are equivalent vertices in D, then c(x) = c(y);
(ii) A(s3) ∩ Y ⊆ Y1 ⊆ Y ⊆ A(s1) ∪A(s3);

(iii) A(s3) ∩X ⊆ X1 ⊆ X ⊆ A(s2) ∪A(s3);
(iv) Z2 ⊆ A(s3), Z1 ⊆ A(s1) ∪A(s2);
(v) the bigraphs [A(s1) ∩ Y1, A(s2) ∩X1], [A(s2) ∩ Z1, A(s3) ∩ Y1], and [A(s1) ∩

Z1, A(s3) ∩X1] are complete.
In the II-step A determines D0 and properly colors z so that D + z satisfies

Ruleset. Note that as the colored graph extends, the same Ruleset will be maintained
by A in each step of the last stage. Now we show how Ruleset can be achieved in the
II-step.

Take any II in D + z and let D0 = [X0, Y0] be a maximal bipartite subgraph of
D+ z containing that II. Clearly z is in D0. As D0− z is II-free, D0 has exactly two
nontrivial modules M = [X,Y ] and M ′ = [X ′, Y ′] and we can assume {z} = X. Let
y be an arbitrary vertex in Y .

Case 1. D is bipartite. Only M can have odd extensions forming the set Z.
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If the graph D is colored by two colors, then let s1 = c(y), s2 = 3−s1, s3 = 3, and
color z by 3. If D has no isolated vertices, then D is connected so the color of a vertex
is uniquely determined by its distance (in D) from y and Ruleset is satisfied. Suppose
D has some isolated vertices, those isolated vertices are in Y ′. (They are connected
to z because D + z is Ξ-free and they cannot be odd extensions.) If c(y) = s1 = 1,
then Ruleset remains satisfied. If c(y) = s1 = 2, then change s2 to 3 and s3 to 1. Now
with M1 = M ′ Ruleset is satisfied again. (X ′ ⊆ A(1) = A(s3), Z ⊆ A(1) = A(s3)
and there cannot be trivial modules in X0.)

If D is 3-colored, then first suppose that if t ∈ Y , then c(t) 6= 1. Thus all vertices
in Z have color 1. Let s1 = c(y), s2 = 5− s1, s3 = 1, and color z by s2. Note that in
(D0 − z) ∪ Z there is a complete bipartite graph between the s1- and the s2-colored
vertices. Consequently every s2-colored vertex which is different from z is connected
to y. As vertices in Z have color s3 all vertices with color s2 are in X0. Thus color
s2 for z is permitted and all vertices with color s1 are in Y0. The isolated vertices
of D are in Y ′ as before so if none of the trivial modules is colored by s3 = 1, then
Ruleset is satisfied with M1 = M ′. As D is 3-colored, color 1 appears in Y0, so trivial
modules in X0 have different color. If y∗ ∈ Y0 is a trivial module colored by 1, then
X ′ is uniformly colored by s2. In this case vertices in Y0 \Y have no neighbors colored
by 1, so they themselves are colored by 1 = s3 and consequently swapping s1 and s3

and choosing M1 = M Ruleset is satisfied again.

Now suppose D is 3-colored and there is a t ∈ Y, c(t) = 1. Observe that Y cannot
be uniformly 1-colored because in this case color 3 could not appear in D, so there is
a t′ ∈ Y, c(t′) 6= 1. Let s1 = 1, s3 = c(t′), s2 = 5 − s3. Now vertices in X0 − z are
colored by s2, so vertices in Y0 \ Y are colored by 1 = s1 and there is no s2-colored
vertex in Y . The s3-colored t′ has a 1-colored neighbor z1; it must be in Z. If z2 ∈ Z
is colored by s3, then z1t

′ and z2t induce a II, which is not the case. Thus we are
allowed to color z by s3. To check that Ruleset is satisfied with M1 = M we need to
check rule (v). Every vertex in Z is connected to z. Let z2 ∈ Z be an arbitrary vertex
colored by s2. By (2.6)(iv) one of NY (z1) and NY (z2) contains the other. Clearly
NY (z1) ⊂ NY (z2) because z1 does not have any 1-colored neighbor in Y while z2

does. Therefore, the arbitrarily chosen s2-colored z2 ∈ Z and s3-colored t′ ∈ Y are
connected.

Case 2. D is not bipartite. As D+z is of Type 2, it is connected by the observation
made at the beginning of the proof of (2.6)—every nonbipartite subgraph must be
connected. Thus D is a vertex multiplication of C5.

Let Z be the (maybe empty) set of odd extensions connected to M and Z ′ be the
set of odd extensions connected to M ′. As D is a vertex multiplication of C5 both M
and M ′ are vertex multiplications of H1 and either Z is empty or there are no trivial
modules in Y0. Moreover, the equivalence classes of the C5 are uniformly colored and
one class is colored by 3 while the others are colored by 1212. It is easy to check (five
cases depending on which class is colored by 3) that we can color z in a manner such
that every II in D + z will be colored by three colors and Ruleset is satisfied in all
these cases with appropriate permutation s1, s2, s3.

Last stage. When the algorithm observes that D contains II it knows that D
satisfies Ruleset and is able to determine appropriate D0, M1, M2, and permutation
s1, s2, s3. In every step of the last stage A colors z in such a way that D + z always
satisfies Ruleset. In particular, G becomes 3-colored when A terminates.

Case 1. D is connected and z is an odd extension of D0. If z is connected to
M2, then color z by s3 and D+ z clearly satisfies Ruleset. Furthermore, suppose z is
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connected to M1. If all neighbors of z are colored by s3, then z is uniformly connected
to either A(s3) ∩ X1 or A(s3) ∩ Y1; otherwise an empty triangle could be found. In
the first case s1 and in the second s2 is the appropriate color for z to satisfy rule
(v). Now by symmetry we can suppose that z is connected to an x ∈ X1 such that
c(x) = s2. The following line of thought will be used in further cases:

(3.3) We claim that if x′ ∈ X1 and c(x′) = s3, then zx′ ∈ E. For getting a contra-
diction suppose that z is connected to x but not to x′. By this assumption and
by (2.6)(iv) NZ1+z(x) ⊃ NZ1+z(x

′) in graph D+ z and so NY1
(x) ⊆ NY1

(x′).
In the graph D all vertices in Z and Y1 have a color satisfying rule (v), so
NZ1

(x) = NZ1
(x′) and NY1

(x) = NY1
(x′). We get x ∼ x′ in D and this

contradicts rule (i).

To finish Case 1 observe that if z is connected to any y ∈ Y1, c(y) = s1, then xyz
would be a triangle. The argument above says that z is connected to every s3-colored
vertex in X1; consequently s1 is the proper color for z.

Case 2. D is connected and z is a bipartite extension of D0. Let M = [X,Y ]
be the module of D0 + z which contains z. By symmetry we can assume z ∈ X. If
M 6⊇ M1, then color z by s2 and Ruleset remains satisfied. Suppose M1 ⊆ M . First
observe that vertices in M \M1 different from z cannot make any rule wrong. (They
are trivial modules of D0.) If z is equivalent to some vertex in M , then the color of
that vertex is also good for z.

Suppose there is a y ∈ Y , c(y) = s3, and zy ∈ E. If z1 ∈ Z1 and z is connected to
z1, then y is not connected to z1 so c(z1) 6= s2. A similar argument as in (3.3) shows
that z must be connected to every s1-colored vertex in Y ; consequently s2 is a proper
color for z.

The remaining case is that all neighbors of z in Y are colored by s1. If z is
uniformly connected to A(s1) ∩ Z1, then s3 is a proper color for z. If there is a
z1 ∈ Z1 such that c(z1) = s1 and zz1 is not an edge, then the absence of empty
triangles shows that every s1-colored vertex in Y is connected to z. An argument
similar to (3.3) says that z has no s2-colored neighbors in Z1, so s2 is the proper color
for z.

Case 3. D is not connected. Now D is a vertex multiplication of II and is
3-colored (satisfying Ruleset). Note that when adding z to D some vertices might
change their partite sets. To resolve this problem consider D + z that is a connected
bigraph (with a unique bipartition). Then remove z and keep the eventually modified
bipartition for D. It is easy to check that in each case a permutation s1, s2, s3 can be
obtained so that Ruleset holds true for the modified bigraph D. Then the procedure
described in Case 2 applies. This concludes the proof of Theorem 1.

4. ∆-free critical graphs of on-line chromatic number 4. In this section we
characterize ∆-free 4-critical graphs. Obviously, every graph G with on-line chromatic
number 4 must contain an induced subgraph G′ such that χFF (G′) = 4. In [GKL1]
we list all graphs of FF-chromatic number 4 which are minimal. From the list of these
22 graphs the ∆-free ones are Fi, 1 ≤ i ≤ 5, shown in Figure 2. It is also shown in
[GKL1] that F2, F3, and F4 are 4-critical graphs, F1 = B and F5 are not. This is
formulated in the following proposition.

(4.1) Let G be a ∆-free 4-critical graph. Then either G is isomorphic to one
of F2, F3, and F4 or G contains at least one of B and F5, shown in Fig-
ure 2.
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Fig. 5.

The list of all 4-critical graphs containing F5 is obtained in [GKL1] and shown in
Figure 3. The analysis performed in this section results in a list of 4-critical graphs
containing a copy of B; see Figure 4. First we show that every graph in Figure 4 has
on-line chromatic number 4. Then we prove that the list contains 4-critical graphs
and is complete. We discuss connected and disconnected graphs separately in sections
4.1 and 4.2.

To prove χ∗(Bi) ≥ 4 we show that Drawer has a 4-forcing strategy against Painter
for every 1 ≤ i ≤ 10. Let v1, v2, . . . be the order of vertices of G as revealed by Drawer,
and let Dk be the colored subgraph after the kth step of the coloring game.

BE-strategy. Let D4 be isomorphic to II. If D4 becomes 2-colored, then Drawer
wins on B (see Figure 5(a)). If D4 is 3-colored, say, (1, 2) and (1, 3) are the colored
edges, then let v5 be an isolated vertex. Painter essentially has two different choices
to color v5. In both cases Drawer wins on E (see Figures 5(b) and 5(c)). It is easy to
check that E ⊂ Bi for 1 ≤ i ≤ 4; thus χ∗(Bi) ≥ 4 is satisfied by these graphs.

Pigeonhole strategies. Let v1, v2, v3, v4 be isolated vertices. If D4 contains
three vertices of the same color, say, v1, v2, v3 are colored 1, then Drawer reveals
v5, v6, v7 with edges v1v5, v2v6, and v3v7. In D7 two of these edges have the same
coloring pattern, say, (1, 2), and Drawer wins on B (see Figure 5(a)). If D4 contains
three vertices of distinct colors, then Drawer wins on a “claw” (see Figure 5(d)). This
strategy is feasible if the graph has 3K2 + K1. Therefore, one may assume that for
every Bi, i = 7, 8, and 9, D4 is 2-colored according to the pattern (1, 1, 2, 2). From the
fifth step the strategy depends on the graph in question. For B7, a fifth isolated vertex
v5 is Drawer’s winning move. Indeed, by this move Drawer forces three vertices of the
same color or three distinctly colored vertices; both are winning positions for Drawer
as before. For B8, the winning position is 4K2. In that case D8 always has two edges
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Fig. 6.

with the same coloring pattern, by the pigeonhole principle, and then Drawer wins
on B.

Ξ-variant. In the case of B9 and B10 Drawer starts with the pigeonhole strategy
and obtains three isolated vertices v1, v2, v3 with coloring pattern (1, 1, 2). Then v4 is
given by Drawer with edge v1v4 and a new edge, v5v6 (so until now a Ξ is given). If
Painter uses color 3, then Drawer wins as in Figure 5(e) or as in Figure 5(f); otherwise
the edges are colored by 1 and 2 and Drawer wins as in Figure 5(g).

A-variant. The strategy for B5 and B6 differs from the fourth step; however,
its elements are the same as before. After the first three isolated vertices D3 contains
two vertices with the same color, say, v1, v2 are colored 1 and v3 is colored 2. Then
Drawer’s winning move consists in giving v4 with edge v1v4. Depending on the color
of v4 (2 or 3) Drawer wins on graph A or on F (see Figures 5(i) and 5(j)).

In the next step of our analysis we show that all graphs in Figure 4 are 4-critical.
The removal of any vertex of Bi, 1 ≤ i ≤ 4, results in a (∆-free) graph which is either
Ξ-free or B- and F5-free. In the first case the proper subgraphs have on-line chromatic
number at most 3, by Theorem 1. In the second case FF is obviously a 3-coloring (c.f.
(4.1)). Hence Bi, is 4-critical for 1 ≤ i ≤ 4. To see that Bi is 4-critical for 5 ≤ i ≤ 10
it is enough to check the on-line chromatic number of its proper subgraphs containing
B (otherwise FF is a 3-coloring). Among all of these graphs it is enough to deal with
the maximal ones: Gj , 1 ≤ j ≤ 7, listed in Figure 6.

Since algorithm A defined in section 3 works also for (∆-free) graphs with a Ξ-
free connected component plus any number of isolated vertices, χA(Gj) ≤ 3 follows
for 1 ≤ j ≤ 4. The on-line 3-colorability of G5, G6, and G7 will be settled in section
4.2.

4.1. Connected 4-critical graphs. Let G be a connected ∆-free graph con-
taining B. The main goal of the present section consists of proving Theorem 2, which
states that the following statements are equivalent:

(1) G is E-free.
(2) G has no induced subgraph isomorphic to any of F3, F4 in Figure 2 and

B1, B2, B3, B4 in Figure 4.
(3) G is Ξ-free.
(4) G has on-line chromatic number χ∗(G) ≤ 3.
Our algorithm A in the proof of Theorem 1 is an on-line 3-coloring whenever G is

Ξ-free; thus we have (3) =⇒ (4). If G contains both B and E, then Drawer may use
the BE-strategy mentioned above and forces a 4-coloring; hence (4) =⇒ (1). Observe
that all graphs in (2) contain a copy of E, thus (1) =⇒ (2) . Therefore, it is enough
to prove the remaining implication (2) =⇒ (3).
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Fig. 7.

(4.2) Let G be a connected ∆-free graph containing B. Then G is Ξ-free if and
only if G has no induced subgraph isomorphic to any of F3, F4 in Figure 2
and B1, B2, B3, B4 in Figure 4.

Proof. Since all forbidden graphs contain Ξ, necessity is obvious. We prove suffi-
ciency by contradiction. Suppose there exists a minimal counterexample G containing
Ξ. Let D be a maximal bipartite Ξ-free subgraph of G such that it contains a copy of
B. First we show that every vertex of V (G) \ V (D) has a neighbor in D. Suppose to
the contrary that there are vertices z, z0 /∈ V (D) such that zz0 is an edge, z0 has no
neighbors in D, and D + z is connected. By the minimality of G and by the choice
of D, it follows easily that D = B and z is an odd extension of B. Consequently,
G = (B + z) + z0 is the graph shown in Figure 7, which contains F3, a contradiction.
Hence D + z is connected for every z ∈ V (G) \ V (D).

The proof of (4.2) (i.e., that the counterexample G does not exist) is arranged in
three steps. Let z be called an illegal extension of D if D + z contains Ξ. In Steps 1
and 2, we show that D has no illegal (bipartite or odd) extension. In Step 3 we prove
that the set of all odd extensions of D satisfy the conditions required by the structure
theorems in section 2. The contradiction is obtained by (2.7), which implies that G
is Ξ-free.

Step 1. We show that the bigraph D = [X,Y ] has no illegal bipartite extension.
Suppose on the contrary that z ∈ V (G) \ V (D) is an illegal bipartite extension of D.
By symmetry, one may assume that z extends X, which is adjacent to some vertex of
Y . Note also that z is nonadjacent to some vertex of Y (since otherwise it would not
be illegal). To get a contradiction, we shall show that D+z contains one of F3, B1, B2,

and B3 or, equivalently, the bipartite complement D̂ + z contains one of F̂3 = P6+K1,
B̂1 = P5 + 2K1, B̂2 = F2 (see Figure 2), and B̂3 = E + K2. For convenience, we

are working on the bipartite complement of G, and G∗ = D̂ + z is considered as the
extension of D̂. Note that Y contains both neighbors and nonneighbors of z also
in G∗. Let Gi = [Xi, Yi] be the nontrivial connected components of D̂, 1 ≤ i ≤ k.
By (2.4), each Gi is a connected reduced halfgraph. Since D contains B, and since

B̂ = Ξ, we have k ≥ 2. From the assumption that z is an illegal extension it follows
that G∗ has a P5.

Assume that G1 has a pair of nonadjacent vertices x ∈ X1, y ∈ Y1. Supposing that
z is (uniformly) nonadjacent to Y1 any P5 avoids G1 and together with {x, y} induces
a P5 + 2K1 ⊂ G∗. Suppose now that z is uniformly adjacent to Y1, and consider a P5

induced by {x1, y, z, y2, x2}, where x1 ∈ X1, x2 ∈ X2, and y2 ∈ Y2 (a P5 in this form
must exist). Then some y′ /∈ Y1 is nonadjacent to z. Hence {x1, y, z, y2, x2, y

′, x}
induces a P6 + K1 or P5 + 2K1 in G∗, depending on whether x2y

′ is an edge (see
Figure 8(a)). As a corollary, one may assume that for each Gi (1 ≤ i ≤ k) different
from the complete bigraph, Gi+z contains one of L1 and L2 in Figure 8 as an induced
subgraph. (z has both neighbors and nonneighbors in Yi and [Xi, Yi] is a connected
reduced halfgraph.)
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Fig. 8.

If there exist two components different from the complete bigraph, then G∗ con-
tains the union of Li and Lj (1 ≤ i ≤ j ≤ 2) sharing a common vertex z. Since
this union contains a P6 + P1 for each of the three possible choices of (i, j), one may
assume that all but possibly one component is a complete bigraph.

Case a. G1 is not a complete bigraph.
First suppose that L1 ⊂ G1 + z. To get a contradiction we show that there exists

a copy of L1 and there are two nonadjacent vertices x ∈ X, y ∈ Y not in L1 such that
x and y have no neighbor in L1 − z. Since k ≥ 2 and G2 contains an edge x2y2, the
claim follows if G∗ has at least one more component. If this is not true, then (since
B ⊂ D) it follows easily that G1 + z contains either L′1 or L′′1 in Figure 8 with x or y
in G1. Obviously, L1 and x2y2 together with x or y contain either a P5 + 2K1 or a
P6 +K1.

Suppose now that L2 ⊂ G1 + z. If G1 + z has a P5 (in this case it must have
an L1 as well), then we are done by using the previous argument. Hence there exists
an edge zy, for some y not in G1. Let x2y2 ∈ E(G2). If x2y is a nonedge, then
V (L2) ∪ {x2, y2, y} induces either an E + K2 or an F2, depending on whether z and
y2 are nonadjacent or adjacent (see Figure 9(a)). If y 6= y2, zy2 is a nonedge and x2y
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is an edge, then the subgraph induced by V (L2) ∪ {x2, y2, y} contains P6 + K1 (see
Figure 9(b)). Hence one may assume that y = y2. If some y′ /∈ Y1 is nonadjacent
to x2, then the subgraph induced by V (L2) ∪ {x2, y2, y

′} either contains a P6 + K1

or induces an F2 (see Figure 9(c)). If this last condition does not hold, then (using
B ⊂ D) we easily obtain the existence of y′ ∈ Y1 nonadjacent to L2. Then the
subgraph induced by V (L2) ∪ {x2, y2, y

′} contains a P6 +K1.

Case b. Gi is a complete bigraph for every i = 1, . . . , k.
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Suppose that (x1, y1, z, y2, x2) is a P5 with xi ∈ Xi and yi ∈ Yi (i = 1, 2). Since
B ⊂ D, there are two more components (possibly trivial) containing vertices x3 ∈ X
and y4 ∈ Y . One may assume that zy4 ∈ E(G∗) (because otherwise a P5 + 2K1 is
found). Then by the connectivity of D + z, we have yz /∈ E(G∗) for some y ∈ Y .
If yx3 is a nonedge, then we get a P5 + 2K1; otherwise, {x1, y1, z, y2, x2, y4, y, x3}
induces an E +K2 (see Figure 9(d)).

In each case there is a forbidden configuration; therefore, D has no illegal bipartite
extension.

Step 2. Next we show that D has no illegal odd extension. Suppose to the contrary
that z ∈ V (G)\V (D) is an illegal odd extension of the bigraph D = [X,Y ]. Consider
the modular decomposition of D and let Mi = [Xi, Yi], 1 ≤ i ≤ k, be the nontrivial
modules. Since D contains a B, we have k ≥ 2. Denote by X(z) ⊂ X and Y (z) ⊂ Y
the set of all neighbors of z in X and Y , respectively. Since z is an odd extension of
D and G is ∆-free, X(z) and Y (z) are nonempty sets belonging to the same module,
say, M1, and X(z)∪ Y (z) is an independent set of D. Clearly, GX = (D+ z)−X(z)
and GY = (D + z) − Y (z) are bipartite proper subgraphs of G. Moreover, one of
them contains Ξ (since z is an illegal extension). Hence, by the minimality of G,
Ξ ⊂ GX (or Ξ ⊂ GY ) implies that GX (or GY ) either is disconnected or B-free. This
observation implies that k = 2 as follows. If k ≥ 3, then GX (and GY ) is connected,
and any II between M2 and M3 together with z would induce Ξ in GX (and GY ).
Consequently, GX (and GY ) must be B-free. In particular, k ≤ 3 and D has no trivial
module. Suppose that k = 3. If M1 has an edge xy, then one of its end vertices is not
in X(z)∪Y (z), say, x /∈ X(z). Then clearly GX has a B, which is not allowed. Hence
M1 has no edge. If one of M2 and M3 has an edge, then GX (and GY ) also contains
a B. We have obtained that D has exactly three modules, none of which contains an
edge. Then D has no B, a contradiction. Therefore, k = 2 follows.

Next we show that M1 + z is an extended halfgraph. Suppose that H(n) is a
primitive representative of M1 with partite sets {x1, . . . , xn} and {y1, . . . , yn} with
xiyj an edge if and only if i < j. It is enough to prove that at least one of CM1(xt)
and CM1(yt) is uniformly adjacent to z for every 1 ≤ t ≤ n. First assume that there
exist vertices x ∈ CM1

(xt) ∩X(z), x̃ ∈ CM1
(xt) \X(z), and suppose on the contrary

that ỹ ∈ CM1
(yt) \ Y (z). (By the symmetry of CM1

(xt) and CM1
(yt), our argument

also applies when the roles of X and Y are interchanged.)

Let x′ ∈ X2 and y′ ∈ Y2 be nonadjacent vertices of D −M1. If t < n, then let
us choose an arbitrary vertex y′′ ∈ CM1

(yn). Since x ∈ X(z) and xy′′ ∈ E(D), we
have y′′ /∈ Y (z). Then the set {z, x, x̃, ỹ, x′′, y′′, y′} induces an F3 (see Figure 10(a)),
a contradiction. The same contradiction can be deduced for t = n if there exists a
vertex y′′ ∈ Y \ Y1 adjacent to x′.

We analyze further the case t = n assuming that D−M1 has no Ξ with its isolated
vertex in Y . Then, from the condition B ⊂ D, it follows easily that D contains a
copy of B such that x′yi, y′xj (1 ≤ i ≤ j ≤ n) are the top and bottom edges (i.e.,
edges of the II-part) and x∗y∗ with x∗ ∈ X, y∗ ∈ Y1 is the middle edge (i.e., the edge
between the two star vertices). Observe that any vertex of CM1(yn) may play the role
of y∗; thus (in the present case) we may set y∗ = ỹ. If xj ∈ X(z), then we get an F3

(see Figure 10(b)). Thus we assume that xj /∈ X(z) holds. Supposing that x∗ /∈ X1,
we may choose for yi any vertex of Y1 adjacent to z. This would result in a copy of
F3 (see Figure 10(c)); thus we may assume that x∗ ∈ X1 holds.

Supposing that x∗ ∈ X(z) (and because xj /∈ X(z)), we obtain a B1 (see Fig-
ure 10(d)). Thus we may assume that x∗ /∈ X(z) also holds. Regardless of whether zyi
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is an edge or a nonedge, we get an F3; see Figure 10(e) if yi /∈ Y (z) and Figure 10(c)
otherwise. Thus we have obtained that the existence of the vertices x ∈ CM1

(xt)∩X(z)
and x̃ ∈ CM1

(xt) \ X(z) (1 ≤ t ≤ n) implies that CM1
(yt) ⊂ Y (z). Recall that the

same is true when interchanging the role of X and Y .



ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 405

Fig. 11.

In the next step we show that CM1
(y1)∩ Y (z) 6= ∅. Suppose that ỹ /∈ Y (z)) holds

for every ỹ ∈ CM1
(y1). Notice that Y (z) 6= ∅ implies that n ≥ 2. Therefore (since G

is ∆-free), there exist vertices x̃ ∈ CM1
(x1) \X(z) and x ∈ X(z). If there is a vertex

y′′ ∈ Y \ Y1 adjacent to x′, then we get F3 (see Figure 10(a)). Otherwise, consider
again the copy of B with vertex set {xj , yi, x∗, y∗, xj , x′, y′}, where y∗ ∈ CM1(yn) and
x∗ ∈ CM1(x1) ∪ (X \ X1). Notice that x∗ /∈ X(z) holds (by the same argument as
before).

If xj ∈ X(z), then we get F3 as in Figure 10(a), with x = xj , x̃ = x∗, and y′′ = y∗.
Thus we may assume that xj /∈ X(z) holds for every vertex in the role of xj . Therefore
(since X(z) 6= ∅), there exists x ∈ CM1

(xn) ∩X(z). If the situation is different from
the one in Figure 10(e) (with ỹ = y∗), then either yi ∈ Y (z) or y∗ ∈ Y (z) holds, but
not both, since in this case we get an F3 (see Figure 11(a)).

In either case we get an F3: see Figure 10(c) (with ỹ = y∗) if yi ∈ Y (z), and see
Figure 11(b) if y∗ ∈ Y (z).

This proves that CM1(y1) ∩ Y (z) 6= ∅. By the symmetry of halfgraphs, the same
argument shows that CM1(xn) ∩ X(z) 6= ∅. From the previous steps of the proof it
follows that at least one of the properties CM1

(yt) ⊂ Y (z) and CM1
(xt) ⊂ X(z) holds

for t = 1 and n.

To conclude the proof, suppose that there exist vertices x̃ ∈ CM1
(xt) \X(z) and

ỹ ∈ CM1
(yt) \ Y (z), for some 1 < t < n. Let y∗ ∈ CM1

(yn) and x∗ ∈ CM1
(x1). If

y∗ ∈ Y (z), then we get F3 as in Figure 11(b) (with xj = x̃ and yi = ỹ). If x∗ ∈ X(z),
then we get F3 as in Figure 10(c) (with xj = x̃, yi = ỹ and ỹ = y∗). Assuming that
x∗ /∈ X(z), y∗ /∈ Y (z), and choosing a vertex x ∈ CM1(xn) ∩ X(z), we get F3 as in
Figure 10(e) (with xj = x̃, yi = ỹ, and ỹ = y∗).

Hence, for every 1 ≤ t ≤ n, at least one of CM1(xt) and CM1
(yt) is uniformly

adjacent to z. This implies that M1 + z is an extended halfgraph. In particular, by
(2.7), G+ z is Ξ-free, a contradiction. Therefore, D has no illegal odd extension.

Step 3. If the subgraph G − z is bipartite for some z ∈ V (G) and contains B,
then by the choice of D, D = G− z; furthermore, z is an illegal extension of D. This
is not possible as we have seen in Steps 1 and 2. Therefore, by the maximality of D,
one may assume that G − D has at least two vertices, and each z ∈ V (G − D) is a
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legal odd extension of D. Hence, by the structure result in section 2, D has exactly
two nontrivial modules.

Let Zi be the set of all odd extensions of D adjacent to Mi, i = 1, 2. By (2.6), for
every z ∈ Zi, Mi + z form an extended halfgraph. By Step 2, and since G is ∆-free,
Z1 and Z2 are independent sets.

First we prove that, for Z1 6= ∅, the bigraph H = [Z1, Y1] is II-free. Then, by sym-
metry, the same is true for the bigraphs [Zi, Yi], [Zi, Xi] (i = 1, 2). Let {x1, . . . , xn}
and {y1, . . . , yn} be the partite sets of a primitive representative H(n) of M1 with
xiyj ∈ E(D) if and only if i < j. For any z ∈ Z1, let X(z) = {x ∈ X1 : xz ∈ E(G)}
and Y (z) = {y ∈ Y1 : yz ∈ E(G)}. Assume that zu and z′u′ are edges of a II ⊂ H,
where z, z′ ∈ Z1 and u, u′ ∈ Y1. If u and u′ are not equivalent in M1, then there
exists a vertex x ∈ X1 such that, say, ux is an edge but u′x is not. But if zx is an
edge, then zux is a triangle; if it is not, then zu′x is an empty triangle. Thus u and
u′ belong to the same equivalence class, CM1(yt), for some 1 ≤ t ≤ n.

Let x′ ∈ X \X1 and y′ ∈ X \X1 be nonadjacent vertices of D−M1 and choose a
copy of B such that x′yi and y′xj (1 ≤ i ≤ j ≤ n) are the top and bottom edges and
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x∗y∗ with x∗ ∈ X, y∗ ∈ Y is the middle edge. If x∗ ∈ X \X1 and y∗ ∈ Y \ Y1, then
(since xt ∈ X(z) ∩X(z′)) we get a copy of B4 (see Figure 12(a)).

One may assume that at least one of x∗ and y∗ is in M1. This implies that n ≥ 2;
furthermore, every vertex of CM1

(yn) or CM1
(x1) may play the role of x∗ ∈ X1 or

y∗ ∈ Y1. If 1 < t < n, we obtain a B4 (see Figure 12(a) with x∗ = x1, y
∗ = yn). If

t = n, then either y∗ /∈ Y1 or yi must be different from y∗, u, u′ ∈ CM1(yn). Choosing
x∗ = x1, we get B4 as in Figure 12(a) or we get B1 (see Figure 12(b)).

If t = 1, then either x∗ /∈ X1 or yi must be different from u, u′ ∈ CM1
(y1). Choosing

y∗ = yn, we get B4 as in Figure 12(a), and for the second case, see Figure 12(c). This
proves that [Z1, Y1] is II-free, and, by symmetry, the same is true for each [Zi, Yi],
[Zi, Xi] (i = 1, 2).

Let zi ∈ V (G − D) (i = 1, 2) be two odd extensions of D adjacent to module
Mi of D. We prove that z1z2 ∈ E(G). Suppose on the contrary that this is not
true. For i = 1, 2, let H(ni) be the primitive representative of Mi, and assume that
n = n1 ≥ n2. Let {x1, . . . , xn} and {y1, . . . , yn} be the partite sets of H(n) with
xiyj ∈ E(D) if and only if i < j. Let x ∈ X(z1) ∩ CM1

(xn), y ∈ Y (z1) ∩ CM1
(y1),

and y′ ∈ Y (z2). If M1 has no edge (that is, n = 1), then neither has M2 (recall that
n ≥ n2). Then B ⊂ D implies that (D −M1)−M2 contains an edge x∗y∗. Thus we
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get an F4 (see Figure 13(a)). From now on n ≥ 2.
Suppose that D −M1 has a vertex nonadjacent with z2, say, y∗ /∈ Y (z2). Let us

choose vertices x∗ ∈ CM1
(x1) and x′ ∈ X(z2) adjacent with y∗. (Notice that x′ can

be chosen from M2, by Step 2.) Then we get one of F3 and B4; see Figure 13(b) if
x∗ /∈ X(z1) and see Figure 13(c) if x∗ ∈ X(z1). Thus we may assume that X(z2) ∪
Y (z2) = X2 ∪ Y2.

Consider the copy of B defined above, and observe that (in the present case) both
x∗ and y∗ are in M1. Hence, we may assume that x∗ ∈ CM1

(x1) and y∗ ∈ CM1
(yn).

It follows from 1 < i ≤ j < n that xj ′ ∈ X(z1) and yi ∈ Y (z1) may be assumed.
Since G is ∆-free, one of x∗ and y∗ is not adjacent to z, say, y∗ /∈ Y (z1). Then, by
letting x = xj , we obtain one of F3 and B4; see Figure 13(b) if x∗ /∈ X(z1) and see
Figure 13(c) (with yi in the role of yn) if x∗ ∈ X(z1).

In each case there is a forbidden configuration; therefore, z1z2 ∈ E(G) follows.
To conclude the proof of (4.2) we refer to the structure theorems in section 2. As

we have shown in Steps 1–3, the conditions of (2.7) are satisfied by G; therefore, G
has no Ξ, a contradiction.

It is worth noting that our list of forbidden graphs in (4.2) is minimal. Obviously,
B1, B2, B3, and B4 must be on the list; hence each contains B. To see this for F3 and
F4, in Figure 14 we give connected ∆-free graphs containing B such that their only
subgraph from the list is F3 and F4, respectively.

4.2. Disconnected 4-critical graphs. Let G be a disconnected ∆-free graph
containing B. The connected component G0 ⊂ G which contains B is called the major
component of G. If G is on-line 3-colorable, then the major component must be Ξ-free
by the results in section 4.1. Furthermore, G −G0 is (K2 + 2K1)- and II-free, since
B7 and B8 in Figure 4 are not 3-colorable. If G−G0 has no edge, then the algorithm
A in the proof of Theorem 1 is obviously 3-color G.

Therefore, when looking for further 4-critical graphs, one may assume that G−G0

has just one component with an edge, called the secondary component of G. Moreover,
the secondary component is either a C5 or a Km,n −K2 or an induced subgraph of
Km,n + K1 (i.e., in this last case the secondary component is a complete bipartite
graph and G possibly has one more isolated vertex).

(4.3) Let G be a disconnected ∆-free graph containing B. Then G has on-line
chromatic number at most 3 if and only if the major component of G is Ξ-
free and G has no induced subgraph isomorphic to any of the graphs Bi,
5 ≤ i ≤ 10, in Figure 4.

Proof. All excluded graphs are on-line 4-chromatic (see the beginning of this
section); thus we have only to prove that the list is complete. We may assume that
G has a major component, a secondary component, and possibly one more isolated
vertex. Since B5 and B6 are not 3-colorable, we may also assume that the major
component G0 has no H1 ⊂ B5 and no H2 ⊂ B6 (see Figure 15).
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First we show that the major component G0 ⊂ G is bipartite; moreover, its
modules have no edge. To see this, let us consider a maximal bipartite induced
subgraph D ⊆ G0 containing B. Clearly, D has at least two nontrivial modules. Let
M1 be a module of D with primitive representative H(n) such that n is as large as
possible. Observe that the bipartite complement of H1 (see Figure 15) is P4+K2+K1,
and H(n) contains the bipartite complement of P4 +K1 for n ≥ 3. Thus we obtain an

H1 in D if n ≥ 3. Suppose that n = 2, and notice that H(2) = P̂4. It is easy to check
that D ⊇ B implies that the bipartite complement of D−M1 contains K2 +K1. Thus
we obtain an H1 in D also for n = 2. Therefore, n = 1 follows; that is, the modules
of D have no edge. Since any odd extension of any module of D contains an H2 (see
Figure 15), D obviously has no odd extension. Hence G0 = D follows and concludes
the proof of the claim.

Next we define the required on-line 3-colorings depending on the type of the
secondary component. Let z1, z2, . . . be the order of vertices of G as revealed by
Drawer, and let Dk be the colored subgraph after the kth step of the coloring game.
For any integer r, let A(r) denote the set of all vertices of G colored with r by an
on-line algorithm A.

Case 1. G−G0 = K2. To make the definition on the algorithm easier we introduce
two new on-line coloring rules. The equivalence rule is as follows: if there are some
equivalent vertices with the current vertex z, assign to z the minimum color appearing
on a z-equivalent vertex. The parity first fit rule (PFF) says that the current vertex
should be colored by the smallest color which does not appear on a vertex that is at
an odd distance from the current one. We define an algorithm A∗ as follows:

• If zk+1 is an isolated vertex, Dk has exactly two components but none of
them has three different colors, then color zk+1 by 2.

• Otherwise, use the equivalence rule when it applies.
• Otherwise, if the component of zk+1 in Dk+1 is not a complete bipartite

graph, then apply the PFF rule.
• In any other cases apply the FF rule with two exceptions:

– If every neighbor of zk+1 is colored by 1, there exist a component in Dk

which is 2-colored by 1 and 2, there are no 1- and 3-colored vertices in
the same component, and there are no both 1- and 2-colored isolated
vertices, then color zk+1 by 3.

– If every neighbor of zk+1 is colored by 2, there are no 2- and 3-colored
vertices in the same component of Dk and there are no both 1- and
2-colored isolated vertices, then color zk+1 by 3.

We have to show that A∗ is a 3-coloring for this class. Let G be a graph with
major component G0 and secondary component K2 such that the modules of the
bipartite graph G0 have no edges. Let z1, z2, . . . be an ordering of the vertices of G,
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l is a natural number, and Gl0 = [X,Y ] is a subgraph of G0 induced by {z1, . . . zl}.
It is not too hard to see that when applying A∗ on G with order z1, z2, . . . then
after coloring l vertices either X or Y lacks for either any 1-colored or any 2-colored
vertices. A similar (but easier) argument shows that the case is similar with 1 and
3 or with 2 and 3. Using these one can check that neither X nor Y can have three
different colors. Consequently, there are colors {a, b} ⊂ {1, 2, 3}, a 6= b, such that X
does not have a-colored and Y does not have b-colored vertices. It is obvious that in
this case A∗ cannot use more than three colors.

Case 2. G−G0 6= K2. In this case G−G0 is a subgraph of either a Km,n +K1 or
a Km,n−K2 or a C5 and either K2 +K1 or K1,2 is contained in it. As B9 and B10 are
not contained in G it is easy to see that the edgeless nontrivial modules of G0 consist
of two vertices such that G0 is a complete bipartite graph with some nonincident
edges deleted. We define algorithm A∗∗, which is similar to (but simpler than) A∗,
as follows:

• If zk+1 is an isolated vertex and Dk has exactly two or exactly three compo-
nents, then color zk+1 by 2.
• Otherwise, use the equivalence rule when it applies.
• Otherwise, if the component of zk+1 in Dk+1 is not a complete bipartite

graph, then apply the PFF rule.
• In any other cases apply the FF rule with two exceptions:

– If every neighbor of zk+1 is colored by 1 and there are no 1- and 3-colored
vertices in the same component of Dk, then color zk+1 by 3.

– If every neighbor of zk+1 is colored by 2 and there are no 2- and 3-colored
vertices in the same component of Dk, then color zk+1 by 3.

A similar argument as in Case 1 shows that A∗∗ is really a 3-coloring for this
class.

Let us note that by using the algorithms in the proof of (4.3) we obtain that
each graph Gj , j = 5, 6, 7, in Figure 6 is on-line 3-colorable. Indeed, χA∗(G5) ≤ 3,
χA∗∗(G6) ≤ 3, and χA∗∗(G7) ≤ 3 follow.

As a corollary of (4.2) and (4.3) we obtain the list of all 4-critical graphs excluded
from on-line 3-chromatic graphs containing B: F3, F4 in Figure 3, and Bi, 1 ≤ i ≤ 10
in Figure 4. This concludes the proof of Theorem 3.
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